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Background and Objective: Cardiovascular disease is a high-fatality health issue.
Accurate measurement of cardiovascular function depends on precise
segmentation of physiological structure and accurate evaluation of functional
parameters. Structural segmentation of heart images and calculation of the
volume of different ventricular activity cycles form the basis for quantitative
analysis of physiological function and can provide the necessary support for
clinical physiological diagnosis, as well as the analysis of various cardiac
diseases. Therefore, it is important to develop an efficient heart segmentation
algorithm.

Methods: A total of 275 nuclear magnetic resonance imaging (MRI) heart scans
were collected, analyzed, and preprocessed from Huaqiao University Affiliated
Strait Hospital, and the data were used in our improved deep learning model,
which was designed based on the U-net network. The training set included 80% of
the images, and the remaining 20% was the test set. Based on five time phases
from end-diastole (ED) to end-systole (ES), the segmentation findings showed that
it is possible to achieve improved segmentation accuracy and computational
complexity by segmenting the left ventricle (LV), right ventricle (RV), and
myocardium (myo).

Results: We improved the Dice index of the LV to 0.965 and 0.921, and the
Hausdorff index decreased to 5.4 and 6.9 in the ED and ES phases, respectively; RV
Dice increased to 0.938 and 0.860, and the Hausdorff index decreased to 11.7 and
12.6 in the ED and ES, respectively; myo Dice increased to 0.889 and 0.901, and
the Hausdorff index decreased to 8.3 and 9.2 in the ED and ES, respectively.

Conclusion: The model obtained in the final experiment provided more accurate
segmentation of the left and right ventricles, as well as the myocardium, from
cardiac MRI. The data from this model facilitate the prediction of cardiovascular
disease in real-time, thereby providing potential clinical utility.
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1 Introduction

Currently, in the medical domain, various medical imaging
techniques and advanced equipment are utilized (Hu et al., 2019),
including computed tomography, X-ray, and magnetic resonance
imaging. As a new medical imaging diagnostic technology, MRI has
developed very rapidly in recent years. MRI not only provides more
information compared to many other imaging techniques but also has
significant potential advantages in disease diagnosis. Improvement in
medical imaging technology is closely related to advancements in
computer technology (Lou et al., 2020). The use of computer
technology in the domain of medical imaging enables doctors to see
pathological tissue structures more easily, improves the efficiency of
disease analysis, and provides more accurate medical reports, thereby
greatly reducing the rate of misdiagnosis (Olaf et al., 2015).

We have proposed a series of methods for cardiac image
segmentation based on our deep-learning algorithm. Avendi et al.
(2016) proposed a method to combine an algorithm and a learning
deformation model for the segmentation of the left ventricle. Because
the left ventricle tends to contract easily and is sensitive to initialization,
this method automatically uses the convolutional neural network to
detect the left ventricular chamber. The accuracy of the segmentation is
increased by using the stacked automatic encoder to determine the left
ventricular chamber based on the data model and the combination of
the anticipated shape to develop the formable model. van der Geest and
Reiber (1999) provided a method for segmenting the left ventricle using
a deep learning model along with several level sets. Based on the shape
and appearance of the training set, it required less training data, but it
had limitations when the region of interest in the training set was
modeled differently. The authors combined the benefits of both
methods to achieve left ventricular segmentation using deep
learning, thereby simulating this shift with less annotated training
sets, yet usually involving regularization to enhance the
generalization ability (Sulaiman et al., 2018).

Segmentation accuracy has improved through the use of deep
learning-based models compared with traditional methods for
dividing heart images (Geert et al., 2017). However, the models still
lack the capability to completely differentiate the left and right ventricles
from the myocardium, and the training complexity is high. To enhance
the performance of the neural network, this study adopted the
improved U-Net network in a fully convolutional neural network to
conduct cardiac segmentation. Our study also demonstrates the
addition of batch normalization (BN) and the adoption of different
loss functions. Finally, we conducted an experimental evaluation of the
data set and achieved superior segmentation results compared to
previous work by applying the batch normalization layer and the
combination weighted loss function.

2 Materials and methods

2.1 Network topology

In this study, the network adhered to the traditional U-Net
network (Sulaiman et al., 2018) encoding and decoding structure

(Olaf et al., 2015), and Figure 1 depicts the network model structure
(Wong et al., 2020). The network learned how to encode the image
characteristics in the training set along the encoding route.

The network obtained image characteristics from the acquired
encoding characteristics in the decoding route (Shi et al., 2021) and
reconstructed the images. The cascade between the outputs of each
stage and the inputs of the decoding path defined the U-Net network
topology. The convolution network of the decoding path was where
these cascade operations identified the high spatial resolution
information on the image. Therefore, using these data as a
foundation, a more accurate result was produced. The encoding
route had two identical sets of 33 convolutions at each stage.
Improvement of the U-Net (Zhang et al., 2018) could be
achieved by adding every 33 convolutions and a rectified linear
unit (ReLU) (Li et al., 2020) of the network. Each layer was used for
subsampling to a maximum pooling layer with 22 convolution steps
of 2. The network predetermined 64 feature channels to be the
starting number. The image size was reduced by half and the number
of feature channels was doubled following the subsampling of each
layer (Wong et al., 2017).

There were two identical 33 convolutions included in each step
of the upsampled decoding method. Similar to this, a batch
normalizing layer and a ReLU were applied after each
convolution. With 22 convolution upsampling, the number of
feature channels was halved and the upsampled feature images
cascaded with the feature images from the encoded path. A total
of 64 feature maps could be mapped to the four classes of heart
segmentation by adding an additional 11 convolution layers to the
final layer (the left ventricle, myocardium, right ventricle, and
background). In other words, the output of the last layer
suggested that one of the four classes following the softmax
classifier was where the pixels belonged.

2.2 Function of batch normalization

To create a Gaussian distribution with a mean of 0 and a
variance of 1, normalization (Anwar et al., 2018) was used to
change the input data. The normalized layer has the capacity to
return the output data distribution of the preceding layer to its initial
state throughout the training cycle. To avoid forcing the network to
adapt to a new data distribution, the processed data were fed into the
network’s subsequent layer, which took the initial state’s data
distribution as input (Su et al., 2019). High learning rates can be
used during network training to hasten network convergence and
reduce network overfitting. The batch normalization layer keeps
each layer’s size constant and in line with the dimension. A batch of
data is supplied into the training phase once the linear activation
unit has been standardized, where m is the amount of data.

As the first step, the data means for this batch were calculated as
follows:

μB � 1
m
∑m

i�1xi. (1)

Then, the variance was given by
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σ2B � 1
m
∑m

i�1xi xi − μB( )2. (2)

After standard processing,

x̂i � xi − μB������
σ2B − ∈

√ . (3)

Here, for an integer with very small values, we needed to avoid
the value of σ2B being 0.

The data distribution was only allowed to follow a Gaussian
distribution after standardization processing, while the data
distribution for some layers was not. The capacity of the network
for learning will be impacted by such standardization operations.
With the addition of new scaling parameters γ and translation
parameters β,

yi � γx̂i + β � BNγ,β xi( ). (4)

The newly added parameters, γ and β, are a pair of learnable
parameters that take part in network training and can restore
the distribution of features that the original network needs to
learn.

2.3 Training the loss function with the
network model hyperparameters

In this study, three loss functions to train improved U-Net
networks were used. To compute the difference between background
and foreground class, each pixel was individually inspected for class
prediction compared to the target vector encoded by one-hot using
the pixel-wise cross-entropy loss function (Diederik and Jimmy,
2014).

In the experiment, the network training incorporated the Dice
coefficient with the aim of obtaining a relatively stable gradient.
When calculating the Dice loss in the training network softmax
output layer, the Dice was reduced by 1, and the coefficient obtained
by the Dice loss function was

Ldiceloss � 1 − 2
A ∩ B

A| | + B| | + ò
, (5)

where B represents the outcome after output through the softmax
layer, which is a constant set close to 0, i.e., e−10, andA represents the
real value (ground truth). The loss trends toward zero, and the loss
function converges as the Dice coefficient gets closer to 1.

When training multi-class targets, the following pixel-level loss
function L is often introduced:

L � −∑M
j�1
yj log Pj, (6)

whereM is the number of categories, Pj is the jth value of the output
P of softmax (j = 1, . . ., M) that indicates the probability that the
sample falls into class j, and yj is the correct label (using one-hot,
when j is a certain class, the index value of the correct label in yj is 1,
and the others are 0).

This study combines pixel-level loss function and Dice loss
function as follows:

Lcrossentropydice � αL + βLdiceloss, (7)

where L is the pixel-level loss function, Ldiceloss is the Dice loss
function, and α and β are the respective weights, α = 1 and β = 0.2.

We utilized the Adaptive Moment Estimation (ADAM)
optimizer and implemented a batch size (one set of training
data) of 4, 18 epochs (training rounds), and a learning rate of
0.001 to decrease the loss function.

2.4 Experimental data acquisition

The short-axis cardiac MRI experimental data were obtained
from the Huaqiao University Affiliated Strait Hospital. All
patients in this study had given written consent for
participation in the study. Ethical approval was granted by the
review committee of our institutional board. The medical image

FIGURE 1
Classic U-network structure for the purpose of cardiac MRI image segmentation.
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dataset had a total of 275 MRI scans of hearts that consisted of
two stages, which pertain to the end-diastole and end-systole.
The spatial resolution range of this dataset was 0.70 mm ×
0.70 mm–1.92 mm × 1.92 mm. We divided the data into
training and test sets using an 8:2 ratio.

The gold standard image contained three-pixel regions: green
representing the left ventricle; red, the left ventricular
myocardium; and blue, the right ventricle. Figure 2 shows the
original image of a patient’s heart section and the corresponding
gold standard. The number of images in the data set needed to be
increased. The data enhancement method was adopted to expand
the number of experimental images by random cropping,
rotation, and flipping operations. The data enhancement
operation was carried out in the network training to reduce
data storage (Olaf et al., 2015; Hao et al., 2017; Ye et al., 2021).

2.5 Evaluation indicators

Three assessment coefficients [Dice coefficient, Hausdorff
distance (HD) (Khened et al., 2019), and average symmetric
surface distance (ASSD)], which are frequently employed to
gauge the effectiveness of segmentation, were utilized to assess
the similarity of segments and label the images.

The degree of similarity between the two segmentation results
and the reference image was gauged by the Dice coefficient, which is
given by

Dice A, B( ) � 2
A ∩ B| |
A| | + B| |, (8)

where A represents the true value and B represents the
following range pertaining to the softmax structure’s output,
which is based on the heart image segmented by the network
structure and measures the similarity between the two
segmentation outputs and the reference image. The Dice
coefficient is a number between 0 and 1. When the Dice value
is close to 1, it indicates that the heart image has been segmented
well; when it is close to 0, it indicates that the heart image has
been poorly segmented and there is little overlap with the gold
standard image.

The Hausdorff distance is the greatest distance between two
points in another set and is calculated as follows:

H A, B( ) � maxa∈A minb∈B d a, b( )( )( ),maxb∈B mina∈A d a, b( )( )( )( ),
(9)

where A stands for the idealized image, B for the segmented image,
and d (a, b) for the Euclidean distance.

The average symmetric surface distance is a metric based on the
surface distance, referring to the distance between the surface pixel S
(A) of the gold standard A and the surface pixel S (B) of the
segmentation result B, and calculated as follows:

ASD A, B( ) � 1
S A( ) + S B( ) ∑

SA∈S A( )
d SA, S B( )( )+⎛⎝ ∑

SB∈S B( )
d SB, S A( )( )⎞⎠, (10)

where A represents the standard image, B represents the model
results, and S (A) and S (B) represent the set of surface pixels ofA and B,
respectively. d (SA, S (B)) is a representation of the shortest Euclidean
distance between each point on S (A) and all other points on S.

3 Results

3.1 Comparison of test results for networks
trained using different loss functions

The network was trained with different kinds of loss functions,
and left ventricle, right ventricle, and myocardium segmentation
results were evaluated with the Dice coefficient and average

FIGURE 2
Sample datasets pertaining to cardiac images and magnetic resonance images with respective enlargements.

TABLE 1 Comparison of mean segmentation accuracy of three loss functions
based on improved U-Net network.

Left ventricle Right
ventricle

Myocardium

Dice ASSD Dice ASSD Dice ASSD

Dice loss 0.93 0.61 0.82 2.40 0.88 0.56

Cross entropy 0.93 0.69 0.86 1.60 0.88 0.64

LCrossentropy 0.94 0.53 0.89 1.03 0.89 0.51
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symmetric surface distance. After averaging the two phases, we
reached the final evaluation shown in Table 1. The least accurate
experimental results were obtained using a Dice loss function, and
the best were obtained using a weighted combined loss function
combining Dice loss with a pixel-level loss function. Usually, the
Dice loss function will have a negative effect on backpropagation,
which renders the training unstable but allows learning from the
smaller classes in the image; the pixel-level cross entropy function
is used for multiple classification tasks, but it is susceptible to the
categories with more pixels, thereby making it difficult to learn the
characteristics of categories with fewer pixels. Thus, merging both
advantages, this combined weighted loss function has been
considered as the best performing loss function for
experimental network training. The test results from networks
trained using a combined weighted loss function network are
presented in Table 1.

3.2 Test results from networks trained using
a combined weighted loss function network

The improved U-Net network (Zhao et al., 2020) used a new
combined weighted loss function, and the resulting network
model was used to distinguish the left ventricle and right
ventricle from the ED stage to the ES stage. The statistical
segmentation accuracy values and statistical results are
presented in Table 2. The data shows that the highest value
for the left ventricle occurred in the ES stage and the lowest in the
ES stage.

We selected three representative sections from the data for
demonstration, as shown in Figure 3. From left to right, we
obtained sections of the lower heart, middle heart, and upper
heart, which are depicted as Slice 1, Slice 2, and Slice 3, respectively.
Figure 4 shows the segmentation results of our modified U-Net

TABLE 2 Comparison of segmentation accuracy values based on improved U-Net network.

Left ventricle Right ventricle Myocardium

Dice HD ASSD Dice HD ASSD Dice HD ASSD

ED 0.965 5.40 0.37 0.938 11.75 0.58 0.889 8.34 0.48

ES 0.926 6.92 0.70 0.860 12.66 1.49 0.901 9.29 0.54

Mean 0.942 6.16 0.53 0.899 12.20 1.03 0.895 8.82 0.51

FIGURE 3
Cardiac MRI sampling locations included in this study.
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network in the test set. From upper to lower in position, the rows
represent the original image, segmentation result, and
corresponding true value. Figure 5 shows the segmentation
predicted from stage ED to stage ES. The red area represents
the right ventricle, the green area represents the myocardium, and
the blue area represents the left ventricle. The second row reveals

that the method showed more accurate segmentation results in the
analysis of the data set representing the middle of the slice, but the
segmentation of the base and the top of the slice was poor due to
the top of the heart slice containing very few ventricular pixels,
resulting in the ventricular boundary being too difficult to confirm
as ventricular density was close to tissue interference, etc.

FIGURE 4
Segmentation results from analysis of the three slice heart samples based on (A) raw images, (B) Predicted segmentation images, and (C) Actual gold
standard segmentation images; red areas represent the right ventricle, green areas represent themyocardium, and blue areas represent the left ventricle.

FIGURE 5
Predicted segmentation from stage ED to stage ES; red areas represent the right ventricle, green areas represent the myocardium, and blue areas
represent the left ventricle.
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3.3 Comparison of results by other methods

The experimental method was compared with different
segmentation methods (Simonyan and Zisserman, 2014), whereby
each method of heart data set segmentation was evaluated using the
Dice coefficient and Hausdorff distance. Segmentation results of the left
and right ventricular and myocardial accuracy values based on the two
evaluation indices are presented in Table 3. From the experimental
segmentation results compared with other methods, the Hausdorff
distance value was the lowest, and the best performance occurred in the
segmentation of the myocardium in the ED stage, demonstrating that
the Hausdorff distance value was the lowest. These data show that the
experimental training network improved the network segmentation,
which indicates that this experimental method has certain advantages
and results in much-improved segmentation of the heart.

4 Discussion

We trained a new model for cardiac segmentation fromMRI data
learning and effectively improved experimental results by adding
batch normalization layers to the neural network and using
different loss functions. Compared with the existing deep learning
segmentation method (Olaf et al., 2015; Avendi et al., 2016), we used
the improved U-Net network in the FCN Network for cardiac MRI
segmentation, added BN, and selected different loss functions to
improve the neural network performance. Good segmentation
results were obtained by combining the batch normalization layer
and the integrated weighted loss function. At the same time, due to the
tendency of the heart to contract easily, the method is sensitive to
initialization and other problems. Research using myocardial cell

models or cardiac-related cells of the ventricular structures has
combined analytics to measure intimate cellular interactions
(Wong, 2017), such as those at the apical segment, which have
been found to have a strong influence on dynamical changes or
even thickening of the ventricular wall; these data may provide new
insights into cardiovascular structure dynamics. We referred to the
convolutional neural network detailed in existing research (Su et al.,
2019) to automatically detect the left ventricle in the dataset and, at the
same time, the stacked autoencoder was used to judge the left
ventricular chamber. The method of merging these aspects into a
formable model solved a series of problems, including detail
extraction. However, we have not yet been able to achieve
complete segmentation of the heart ventricle and the atrium (Chen
et al., 2020; Zhu et al., 2021; Wong et al., 2022), or that of the aorta
(Wong et al., 2006; Chen et al., 2022), which will be the focus of our
upcoming research directions toward future implementation.

5 Conclusion

Through our experiments, we trained a deep learning model
with the capacity to achieve heart segmentation based on MRI data
by adding a batch-normalized layer to the neural network and using
different loss functions and numbers, which improved the
experimental results. The model described in this study has been
improved in the algorithmic sense. In subsequent studies, other
network structures may be added to the U-Net network’s
downsampling process to obtain a better network downsampling
structure. Additionally, the loss function selected by the network
greatly influenced the experimental results; therefore, the design of a
new loss function may further improve experimental accuracy.

TABLE 3 Segmentation accuracy statistics of different segmentation methods.

Methods Literature Dice Hausdorff

ED ES ED ES

LV U-Net Isensee (Isensee et al., 2017) and Jaeger (Isensee et al., 2017) 0.968 0.931 7.4 6.9

Modified U-Net + loss function Zotti (Zotti et al., 2018) and Luo (Zotti et al., 2018) 0.963 0.912 6.2 8.4

2D U-Net and 3D U-Net Baumgartner (Baumgartner et al., 2017) 0.963 0.911 6.5 9.2

2D FCN Jang (Jang et al., 2017), Hong (Jang et al., 2017), and Ha (Jang et al., 2017) 0.959 0.921 7.7 7.1

FCN + U-Net + BN Current study 0.957 0.911 5.7 6.7

RV U-Net Isensee (Isensee et al., 2017) and Jaeger (Isensee et al., 2017) 0.946 0.899 10.1 12.2

Modified U-Net + loss function Zotti (Zotti et al., 2018) and Luo (Zotti et al., 2018) 0.934 0.885 11.1 12.7

2D U-Net and 3D U-Net Baumgartner (Baumgartner et al., 2017) 0.932 0.883 12.7 14.7

2D FCN Jang (Jang et al., 2017), Hong (Jang et al., 2017), and Ha (Jang et al., 2017) 0.929 0.885 12.9 11.8

FCN + U-Net + BN Current study 0.932 0.862 11.5 12.7

Myo U-Net Isensee (Isensee et al., 2017) and Jaeger (Isensee et al., 2017) 0.902 0.919 8.7 8.7

Modified U-Net + loss function Zotti (Zotti et al., 2018) and Luo (Zotti et al., 2018) 0.886 0.902 9.6 9.3

2D U-Net and 3D U-Net Baumgartner (Baumgartner et al., 2017) 0.892 0.901 8.7 10.6

2D FCN Jang (Jang et al., 2017), Hong (Jang et al., 2017), and Ha (Jang et al., 2017) 0.882 0.897 9.8 11.3

FCN + U-Net + BN Current study 0.887 0.923 8.5 9.5
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