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text

Abstract

Bubble growth in magmas is a first-order control on volcanic eruption style, with
changes typically resulting from re-equilibration in non-isothermal-isobaric conditions,
or diffusive mass transfer of volatiles across the bubble interface. The latter process is
well understood for bubbles coupled to high-viscosity liquids such as rhyolitic magmas
associated with Plinian and Dome-forming eruptions, but two significant gaps remain:
(1) changes to decoupled bubbles in lower viscosity fluids like basaltic magmas typical
of Hawaiian or Strombolian eruptions, and (2) bubble resorption and magma regassing
resulting from reverse volatile mass transfer into the magma.

Using two new definitions of Péclet number for coupled and decoupled bubbles (Pes
and Peb), and Sherwood number (Sh), these two complexities are explored through
the relative timescales of diffusion and advection in analogue and magmatic bubble-
melt. Numerical simulations find that in basaltic systems, spherical bubbles are almost
always decoupled with resorption limited by diffusion (Peb � 105 or Sh>10), meaning
they resorb at the rate of diffusive mass transfer. By contrast, spherical bubbles in
rhyolitic melts have restricted buoyancy making them coupled and their resorption
limited by the high melt viscosity (Pes � 105). In both melt compositions, resorption
of the smallest bubbles (R0 < 1µm) becomes limited by surface tension effects.

Experimental observations of decoupled bubbles show that larger bubbles described by
high values of Peb resorb at a faster rate than smaller bubbles in lower Peb systems.
This is attributed to larger bubbles rising faster to continually encounter new melt with
a renewed concentration gradient.

These findings have great significance to the modelling of eruptive volcanic pro-
cesses, providing support for theories on the formation of bubble-free material, or dy-
namic magma regassing. Whilst a numerical model for decoupled bubble resorption in
magmas is not yet complete, this thesis quantifies the onset of different bubble regimes
for magmas of contrasting compositions.
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Thesis Rationale & Structure

The work presented in this thesis aims build upon previous studies of bubbles in highly
viscous fluids by Hadamard (1911), Rybczynski (1911), Doremus (1960), Pigeonneau (2007;
2009; 2011), McIntosh (2013; 2014) and Pereira et al. (2020), to name but a few. This wide
collection of work has already provided many solutions and models for bubble behaviours and
dynamics, including bubble nucleation, coalescence and rise. The latter has most recently been
developed for non-isothermal systems in a paper written in conjunction with but distinct
separation from this thesis (Jackson et al., 2022). Work on this type of bubble system is
included in discussion for completeness but is by no means the primary focus of this study.

More specifically, following examination of the predominant endmember cases for bubbles in
viscous fluids, this thesis aims to to gain further insight into the process of bubble resorption,
extending the dynamics and consequences of this process to natural volcanic systems. Inves-
tigation of this is done through both numerical and observational analysis of the combined
advection - diffusion problem in real-world volatile-magmatic melt systems and analogue gas-
melt systems.

The work concludes with the presentation of several regime diagrams which it is hoped, can be
used to make interpretations about bubble dynamics and resorption in both magmatic melts
and other viscous fluids. These diagrams provide an insight into the current understanding
of bubble resorption dynamics as well as showing where there is room for significant future
work following the completion of this thesis.
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Nomenclature

Variable Notation Units

System Parameters

Lengthscale x m

Time t s

Bubble Radius R m

Initial Bubble Radius R0 m

Acceleration due to Gravity g ms−2

Molar Mass Mm -

Gas Constant Rg Jmol−1K−1

Boltzmann Constant k m2kgs−2K−1

Jump Distance l m

Moles n mol

Velocity u ms−1

Terminal Bubble Rise Velocity u∞ ms−1

Melt Velocity u0 ms−1

Melt Density ρm kgm−3

Bubble Phase Density ρb kgm−3

Melt Viscosity µ Pa.s

Bubble Phase Viscosity µb Pa.s

Diffusion Coefficient D m2s−1

Diffusion Lengthscale L m

Initial System Pressure p0 Pa
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Surface Tension Γ Nm−1

Melt Solubility S0 wt.%

Heating/cooling rate q Ks−1

Timescales

Advective Timescale λA s

Bubble Rise Timescale λb = R0
u∞

= 3µ
R0g∆ρ

s

Melt Shell Response Timescale λv = 4µ
p0

s

Diffusive Timescale λD = L2

D s

Dimensionless Quantities

Reynolds Number Re = u∞ρR0

µ -

Eötvös Number Eo =
R2

0g(ρb−ρ)
Γ -

Density Ratio Πb = ρb
ρ -

Morton Number Mo = Eo3

Re4
-

Stokes Number Stk = u∞
u0

=
R2

0g∆ρ
u0µ

-

Péclet Number Pe = λD
λA

-

Buoyant Péclet Number Peb = λD
λb

-

Stationary Péclet Number Pes = λD
λv

-

Sherwood Number Sh -
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Introduction

Volcanoes and eruptive products have had a huge impact on the world around us over
geological time. From the proposed role of volcanic vents in the origins of life, providing vital
energy and nutrients for growth in the early oceans (Corliss et al., 1981; Martin et al., 2008),
to acting as the major delivery mechanism of stored gas species to Earth’s atmosphere (Das-
gupta, 2013; Brune et al., 2017; Fischer et al., 2019), the ability of volcanoes to influence our
world means they have long captured the imagination of the public and scientific communities
alike. The subsurface processes that drive volcanic eruptions are often impossible to observe,
leaving many questions in the field of volcanology unanswered or open to wide interpretation.
Volcanologists must instead make use of erupted products or surface level observations to
try and understand the sequence of subsurface processes that occur in the build-up to an
eruption.

The dynamics of magmatic melts and their interaction with gases in the plumbing system
is thought to be pinnacle to understanding how volcanic eruptions vary in style and evolve
over time (Sparks, 1978, 2003; Gonnermann and Manga, 2007). These interactions and
transitions between gaseous and melt phases have the ability to affect both the material and
chemical properties of magma, thus promoting or impeding its ascent and ultimately altering
the eruptive behaviour of the volcano (Woods and Koyaguchi, 1994; Dingwell, 1996; Edmonds
and Herd, 2007; Castro et al., 2012; Oppenheimer et al., 2018; Mittal and Richards, 2019).

Gas-melt interactions also represent a key control on the emission of gases into Earth’s at-
mosphere, as the ability for a dissolved gas to be held within a melt changes over time as
conditions within the volcanic system change. As a result, gas species are able to outgas
(exsolve) from the melt phase to nucleate a bubble phase which can then decouple from the
degassed melt and, driven by density and pressure differences, rise though the system to-
wards the surface. This is one of the key processes that makes volcanoes the primary natural
delivery method of gases to Earth’s atmosphere, accounting collectively for several hundred
mega-tonnes of gas emissions each year (USGS, 2018, 2019; Halmer et al., 2002; Kilbride
et al., 2016).

This work aims to investigate the micro-physics behind a single aspect of volcanic gas-melt
interactions: the ascent and volume change of bubbles formed in magma via exsolution. In
particular, the possibility for a bubble to be resorbed either when stationary or moving dy-
namically through magma. This concept is currently considered by very few in the field of
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volcanology, despite there being evidence for its occurrence in basaltic (Carey et al., 2013;
McIntosh et al., 2014) and rhyolitic systems (Yoshimura and Nakamura, 2008, 2010; Watkins
et al., 2012). The potential significance bubble resorption has to influence chemical or rheo-
logical alterations to magma could notably change eruptive style or evolutions, warranting a
need to develop understanding in this area.

1.1 Volcanic Gas-Melt Systems

Surface-level observations show there is a vast range in the style and products of volcanic
eruptions around the world. Some volcanoes produce effusive, foamy lava eruptions (Jaupart
and Vergniolle, 1988; Vergniolle and Jaupart, 1990) whereas others give extremely explosive
eruptions fuelled by the dynamics of rapid and extensive bubble nucleation and growth (Bur-
gisser and Degruyter, 2015). Some even display aspects of both, such as effusive eruptions
interrupted by sudden explosive bursts, or initially explosive eruptions decaying away to be
more effusive and long-lived (Pallister et al., 2013; Swanson et al., 2014). These differences
and evolutions in eruptive style occur as a direct result of gas-melt interactions as mass and
heat are transferred between the two phases, influencing magma properties and the dynam-
ics of the wider volcanic system they sit within (Burgisser and Degruyter, 2015; Castro and
Gardner, 2008).

1.1.1 Gas-Melt Interactions

At depth, all magmas contain dissolved volatile species in varying quantities. These
volatiles are typically water (H2O), carbon dioxide (CO2) and sulphur (mainly as SO2 or
H2S), although several other species can also be removed from the melt as a gaseous phase,
such as the hydrogen halides (HCl, HF and HBr). Under the right conditions, volatiles are able
to migrate out of the melt to nucleate a bubble phase, evidence for which is observed at the
surface during eruptions or preserved in ejected materials like pumice or scoria. Volcanologists
use these observations to hypothesise the different processes that must occur to take these
dissolved volatiles out of the melt and up through the system as a bubble phase to be released
at the surface or captured within erupted material.

1.1.1.1 Exsolution of Bubbles

The process by which dissolved volatiles are removed from a melt to form a bubble phase
is exsolution: the separation of a previously homogeneous phase into two or more phases
without the removal of material. In volcanic systems, exsolution has the potential to affect
the properties of the remaining magma and as exsolution acts to reduce that supersaturation
toward equilibrium. This chemical alteration could impact further interactions the magma
has with other material as it moves within the volcanic system. Followng exsolution, the
system contains two (or three) physically distinct phases; a gaseous bubble, a liquid melt and
depending on conditions a solid crystal phase, creating a multi-component magma that will
behave dynamically differently to a bubble-free melt.
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1.1.1.2 Degassing & Outgassing

In lower viscosity basaltic melts, once bubbles are exsolved from the melt phase, the
density contrast with the magma means they are able to rise buoyantly in the process of
closed-system degassing (Colombier et al., 2021). The rate of this bubble rise depends most
significantly on the size of the bubble and viscosity of the surrounding melt. If sufficiently
large enough or in a low-enough viscosity melt, a bubble will be able to rise free of the
magma it exsolved from. The bubble is then able to re-distribute both mass and heat (gas
sparging) around the volcanic system as it moves between different magma stores (Bachmann
and Bergantz, 2006; Annen et al., 2008; Dungan et al., 2010; Edmonds and Wallace, 2017).
The magma left behind by the rising bubble would also become denser over time due to the
removal of the buoyant bubble phase. This denser, bubble-free magma might then sink within
the system to greater depths where temperatures increase, sparking processes such as magma
cycling via convection currents. If a degassing bubble rises significantly close to the surface,
open-system degassing may take place. The gas held within the bubble is then expelled into
the atmosphere, a process referred to as outgassing.

In higher viscosity rhyolitic melts, outgassing takes place via a different mechanism. Exsolved
bubbles grow within the melt until they become large enough that they interact and connect
up to form a bubble network. Inter-connectivity of this bubble network then allows gas to rise
buoyantly upwards towards the surface to be outgassed into the atmosphere. This mechanism
doesn’t require any bubble buoyancy or convection of melt.

1.1.1.3 Bubble-Melt Coupling

In natural magmatic systems, the magma surrounding the bubble might also be migrating
upwards in conjunction with the bubble. Therefore, the degree to which bubbles and magma in
natural systems are coupled needs to be considered. Coupling describes the relative motions of
two phases, with two end-member scenarios: coupled and decoupled. In this case, it describes
the relative ascent velocities of rising bubbles and magma in a volcanic system (Gonnermann
and Manga, 2013).

1. Coupled Bubbles
When bubbles and the surrounding magma move with the same or very similar ascent
rate, they are said to be coupled. This means the relative velocity of the two phases is
close to zero.

2. Decoupled Bubbles
When bubbles rise much more rapidly than the surrounding magma, they are described
as being decoupled or separated. The relative ascent velocity of the phases is much
greater than zero.

There are numerical limits for the formation of a decoupled system that can be defined using
the dimensionless Stokes number (Stk); the ratio of bubble rise velocity to melt ascent velocity,
where Stk<< 1 indicates a coupled system and Stk>> 1 a decoupled system. Detail on the
mathematical definition of Stokes number is outlined further in Section 2.1.2. The large
variety in dynamics of natural volcanic systems means they are described by a wide range
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of Stokes number values, with it being most significantly influenced by bubble size and melt
composition (Degruyter et al., 2012; Gonnermann and Manga, 2013; Mader et al., 2013).

1.1.1.4 Coupling & Eruptive Style

The degree of bubble-melt coupling influences the eruptive style of a volcanic system (De-
gruyter et al., 2012; Mader et al., 2013). Surface observations show there are variable outputs
of magmatic material and gases from different volcanoes, with some eruptions being extremely
gas and material rich but others varying between gas dominant or material dominant. This
hints to the interactivity between the gases and magma prior to eruption that occurs to create
this spectrum of activity.

Figure 1.1 shows different regimes of eruption style derived from functions of magma
ascent rate and viscosity for a wide range of volcanic systems, from low-viscosity basalts
through to high-viscosity, silicate-rich rhyolites. Envelopes for several transitional processes
are also shown, including that for the onset of a decoupled (separated) flow for the size of
bubble typically found in natural systems. This envelope marks the divide between coupled
and decoupled natural bubble-melt systems, indicated by the respective blue and red regions
on the figure. Figure 1.1 therefore provides numerical evidence of the link between the degree
of bubble-melt coupling and the eruptive style observed for a volcano.

Explosive Plinian eruptions are associated with coupled systems, where high-viscosity melts
rise very rapidly, limiting the degree of outgassing prior to eruption. Any gases exsolved
to bubbles cannot then move freely of the melt, meaning the limit on bubble exsolution
is reached quickly and the surrounding magma becomes supersaturated in volatiles. This
results in processes such as brittle fragmentation and the formation of large gas slugs that
rise alongside extremely viscous melt to produce highly explosive eruptions. The 1980 eruption
of Mount St. Helens, USA was thought to have been fuelled by processes such as this (e.g.
Sparks, 2003; NASEM, 2017).

More effusive eruptions such as Hawaiian or weak Strombolian are associated with decoupled
systems, where lower-viscosity magmas ascend several orders of magnitude slower through the
volcanic system. Consequently, it is much easier for exsolved bubbles to degas through the
low-viscosity melt, and there is much more time for these bubbles to outgas at the surface. As
a result, the bubbles and melt are decoupled. These Strombolian eruptions tend to produce
high levels of gas emissions at the vent (102-104 m3s−1 (Greenland et al., 1985; Del Bello
et al., 2012; Ishii et al., 2019)) and emit material much more effusively, such as in the 1983
eruption of Kilauea, Hawaii (e.g. Swanson et al., 2014; NASEM, 2017).

The work in this study looks at bubble-melt processes in a wide range of natural magmatic
systems, from basaltic to rhyolitic composition, in order to better understand the similarities
and differences in bubble dynamics such melts. As Figure 1.1 demonstrates, large variation
in magma viscosities and ascent velocities means both basaltic and rhyolitic magma systems
sit on both sides of the separated flow envelope. Consequently, the bubbles and melt can be
coupled to varying degrees, which is taken into account in analysis throughout this study in
addition to exploring the implications of coupling on bubble resorption.
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Figure 1.1: Adapted from Gonnermann and Manga (2013) and NASEM (2017). Eruptive regimes
of volcanic systems represented as functions of magma ascent velocity, discharge rate and viscosity.
Envelope lines in grey dictate the onset of several transitional processes including brittle fragmentation,
bubble nucleation and outgassing. The envelope for the onset of a separated flow is also shown, marking
the divide between coupled bubble systems (blue shaded region) and decoupled bubble systems (red
shaded region). The regimes of interest in this work, in basaltic melts, are shown by the purple shaded
region to the left of the black dashed line. This region contains a range of different eruptive regimes
with both coupled and decoupled systems present.

1.2 Bubble Growth & Resorption in Volcanic Systems

In natural volcanic systems, it is widely accepted that volatile bubbles nucleate from
magma at depth. This occurs as the surrounding pressure at depth is much greater than at
the surface due to the weight of material sitting above (magmastatic overburden).

Once nucleated, bubbles can undergo growth or shrinkage as a result of changes to the physical
conditions of the system, or chemical processes such as diffusion. Since the presence of bubbles
can affect the buoyancy of a magma, its ascent velocity within a volcanic system and therefore
the eruptive dynamics at the vent (Sparks, 1978; Gardner et al., 1999; Degruyter et al., 2012),
it is important to understand how bubble sizes evolve in various magma compositions and
system conditions.

1.2.1 Growing Bubbles

Isolated bubbles suspended in any fluid will grow if there is a reduction in pressure
of the surroundings, referred to as decompressive expansion. This reduction in pressure is
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experienced in volcanic systems if (1) the bubble rises from depth to a shallower, lower pressure
region, or (2) if the system becomes open to atmospheric pressure for example during an
eruptive phase.

In both cases, the initial gas pressure of the bubbles is in equilibrium with the surrounding
fluid. As surrounding pressure then drops, the gas within the bubbles becomes overpressured
to the point that the gas will expand to try and re-equilibrate with the fluid pressure.

The latter case described above, where bubbles are exposed to an open-system and at-
mospheric pressure, is observed for a volcanic setting in the inflation of connected bubble
networks in pumices, pyroclatics and rhyolitic flows (Shea et al., 2012; Manley and Fink,
1987). Interconnectivity from the coalescence of multiple bubbles provides channels for de-
gassing straight to the surface and a sudden drop in pressure that causes bubbles in the
network to expand and coalesce further. This process has been observed in natural samples
and recreated experimentally in various decompression experiments (eg.Westrich and Eichel-
berger, 1994; Shea et al., 2012). However, the relevance of this bubble expansion case to this
study is limited due to it involving multiple interconnected bubbles as opposed to singular,
isolated bubbles.

The former case, where singular bubbles are rising within a system is more relevant to the
work of this study. Described as ascent-driven decompression (Gonnermann and Manga,
2007), it has been very well studied for volatile bubbles in various compositions of magmatic
melt. Decompression experiments (Westrich and Eichelberger, 1994; Liu and Zhang, 2000;
McIntosh, 2013; McIntosh et al., 2014; Ryan et al., 2015; Coumans et al., 2020) where samples
of bubble-baring volcanic material are subjected to pressure or temperature changes at varying
rates have shown that bubbles will expand or contract in line with gas laws.

Analytical (Prousevitch et al., 1993; Lensky et al., 2004) and numerical (Huber et al., 2014;
Coumans et al., 2020) bubble growth models, validated by the experimental results, have
been developed to give models for bubble radius evolutions in non-isothermal and non-isobaric
conditions. These models are also applicable to the scale of natural systems meaning they
are useful in developing understanding of bubble dynamics and the effects of these on wider
volcanic processes.

A second mechanism by which bubbles in a magmatic system may grow is through the
transfer of mass from dissolved volatiles in the melt to a gas phase within the bubble. This
process is driven by a difference in concentration between the surrounding melt and bubble
gas composition. If the surrounding magma is sufficiently oversaturated in a volatile species,
there will be a large concentration gradient with the bubble. As a result, the volatile species
will move down the concentration gradient, and transfer diffusively into the bubble. The
additional mass now contained within the bubble then has to be equilibrated by a volumetric
growth in line with gas laws, observed as an expansion of the bubble.

Models now begin to take this additional mass transfer growth mechanism into account (Prou-
sevitch et al., 1993; Blower et al., 2001; Chernov et al., 2018; Coumans et al., 2020) to allow
for a much more complete model of bubble evolutions. The most recent study by Coumans
et al. (2020) builds upon and experimentally validates the solution by Blower et al. (2001) for

19



bubble growth in magmatic melts that accounts for both pressure-temperature changes, mass
transfer and the secondary effects of mass transfer on the surrounding melt. These secondary
effects are changes to physical properties such as melt viscosity and density as a result of mass
being removed. They successfully show through their model and accompanying experiments
on vesicular rhyolite from Hrafntinnuhryggur, Krafla (Iceland), that diffusion of water across
the boundary of a bubble will firstly result in its growth, and secondly increase the viscosity of
the remaining melt as H2O is removed from its composition. More widely, their results again
demonstrate the interconnectivity of bubble and melt dynamics and confirm that changes
to bubble size must be considered alongside changes to magma properties if comprehensive
models of volcanic systems are to be developed.

1.2.2 Shrinking Bubbles

A less widely explored idea in volcanology is that of bubble resorption, mainly due to it
requiring the timescale for resorption to be faster than that for decompressive expansion, as
highlighted by Gardner et al. (2019). Understanding the role and impacts of resorption in
these settings could help explain some of the volcanic phenomena observed.

1.2.2.1 Shrinking or Resorbing?

As with bubble growth there are several mechanisms by which bubbles may shrink within
a fluid, principally being (1) when pressure-temperature conditions change such that the gas
volume shrinks in line with gas laws in response, or (2) when pressure-temperature changes
induce diffusion of the gas back into the melt by changing the saturation state of the melt
resulting in bubble resorption. It is likely that these two processes could occur simultaneously,
however case (1) may also be able to occur in isolation.

It is important to highlight here the difference between a shrinking bubble and a resorbing
bubble. Shrinking bubbles merely change size without there being any transfer of mass be-
tween the bubble and fluid. This is most likely observed in case (1), where a gas is insoluble
with the fluid and simply expands or contracts in response to pressure or temperature changes
to achieve equilibrium with the surroundings.

In a slightly more complex scenario, bubble shrinkage without distinct resorption is observed
in the Ostwald ripening of bubbles (Ostwald, 1896; Markworth, 1985; Stevenson, 2010; Huang
et al., 2017), where smaller bubbles shrink and transfer mass diffusively into larger bubbles via
the fluid in order to enable the growth of the larger bubbles. This process has been observed
in a range of fluids including rhyolitic melt (Lautze et al., 2011). Despite the gas species
transferring between bubbles by diffusion, here, this process is not considered to be resorption
as the overall gas volume fraction remains the same throughout and the gas species is not
held within the melt. This work instead chooses to define resorbing bubbles as those that
transfer mass diffusively into a fluid where it is then stored as a dissolved species, resulting
in a decrease in gas volume fraction as it does so.

For resorbing bubbles (case (2)) where pressure and temperature are changing, the rate of
mass transfer and therefore bubble shrinkage is controlled by changes to solubility of the gas
species with the fluid. A higher solubility means the fluid is more able to accommodate the
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mass from the bubble so that resorption is more likely. For magmas, pressure-temperature
changes can alter solubility by several orders of magnitude, making it a major control on the
plausibility of volatile bubble resorption (see Section 2.3.1.3). Whilst dramatic changes
to pressure that would favour a solubility increase are unlikely in natural systems, changes
to temperature as material is erupted or moves between stores in the volcanic system, could
generate a scenario where solubility increases to promote bubble resorption.

In both cases 1 and 2, the shrinkage of a bubble must be accommodated by motion of
the melt into the space left by either the volume change of the gas (case 1), or the removal
of mass of gas from the bubble (case 2). Therefore, an important consideration on top of the
equation of state of the gas phase and the solubility of the gas phase is the relative ease with
which the melt can move, controlled significantly by the viscosity of the melt. Therefore, it is
clear that shrinking bubbles are controlled by a range of inter-linked processes that need to
be understood both individually and collectively in order to understand this process.

For a volcanic system, the resorption of volatiles into a magma (or regassing) via any mech-
anism would have profound impacts on both the chemical and physical properties of the
magma. By extension, this re-gassed magma could have altered dynamic behaviours as an
increased volatile content and reduced bubble volume would affect properties like density,
viscosity, and compressibility.

1.2.2.2 Studies of Resorbing Bubbles

Resorption of bubbles has been extensively researched in non-magmatic silicate melts and
molten glasses (Greene and Gaffney, 1959; Greene and Kitano, 1959; Žlutický and Němec,
1977; Pereira et al., 2020) due to its significance to industrial processes and glass manufacture,
where bubbles need to be removed to produce ‘flawless’ materials. Alongside experimental
observations, Doremus (1960) developed an analytical solution from bubble dynamic theory
to describe the observed resorption of apparently stationary oxygen bubbles and silicate glass.
Cable & Frade (1986) later presented several further, more general analytical solutions for
the controlled growth and dissolution of spheres in viscous fluids. An extension of these ideas
on stationary, resorbing bubbles forms the focus of Chapter 5 in this work where application
to magmatic melts is also made.

More recently, numerical investigations have also been completed (Pigeonneau, 2007, 2009,
2011), to produce a numerical model for buoyant bubble resorption with simultaneous redox
reactions. Tested against experimental observations of a resorbing oxygen bubble in an iron-
doped silicate melt, the scenario dexcribed by this model is much more complex, as the
dynamics of the decoupled bubble have to be combined with the diffusive mass transfer process
to achieve a complete model. The idea of decoupled, resorbing bubbles forms much of the
work presented in Chapter 6 of this study where again it is extended to consider magmatic
melt systems.

Investigations of bubble resorption in magmatic melts or glasses are less extensive, but
two experimental studies have been able to such direct observations. Yoshimura & Nakamura
(2008) used an open degassing system to look at the resorption of water into highly-silicic
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rhyolitic obsidian from Wada Pass, Japan. They found the applied pressure difference resulted
in bubble resorption along the margins of the obsidian samples.

Further similar work (Yoshimura and Nakamura, 2010) looking at the relative movements
of H2O and CO2 found that H2O diffused rapidly from the bubble into the undersaturated
melt causing shrinkage; but then CO2 in the melt began to diffuse in the opposite direction,
into the bubble. Therefore, the initially observed bubble shrinkage was only temporary on the
timescale of their experiments and didn’t result in complete resorption. Watkins et al. (2012),
studied the concentration of H2O and CO2 in the material surrounding bubbles in samples of
obsidian from Mono Craters, USA. They similarly found an increased concentration of H2O in
the melt directly surrounding the bubbles and attribute this to resorption immediately prior
to eruption.

A third study by Carey et al. (2013) presents more indirect evidence of bubble resorption
from erupted clasts. Basaltic clasts from the 2008 eruption of Lake Halema’uma’u, Kilauea,
Hawaii, show distinct ‘haloes’ of high water concentration around bubble edges, indicating
that water had transferred diffusively back into the melt during its downwards convection.

Each of these three studies attribute the resorption of volatiles to be principally driven
by pressure changes; either from open-system degassing or movement of material to different
depths. In each case, an increase in pressure results in an increase in solubility of the species
to the melt, enabling it to undergo diffusive mass transfer observed as bubble resorption. von
Aulock et al. (2017) and Weaver et al. (2022) Weaver more recently explained processes of
bubble resorption to be driven by pressure differences between the bubble and surrounding
melt, rather than just the effects of pressure on solubility. This is of particular significance
when describing processes of outgassing, where bubbles may experience extreme pressure
contrasts.

McIntosh (2013; 2014) alterantively begins to explore the role of temperature changes on
bubble resorption in magma. They observe partial resorption of water from bubbles into
volcanic glasses. This resorption mainly occurs above glass transition, when the magma is
still mobile, but increases during rapid cooling (quenching) of the glass due to solubility of
H2O with the glass increasing with decreasing temperature.

Collectively, this previous work demonstrates that bubble resorption in both highly-viscous
non-magmatic and magmatic systems is possible, and that it is mainly driven by changes to
solubility as a result of variations in the surrounding conditions. They also each make the
case for using observations of bubble resorption as a tool for reconstructing pre-eruptive
conditions or eruptive histories. However, something not yet considered is the potential for
volatile bubbles to resorb whilst simultaneously moving within a wider magmatic system.
Building on the work by Yoshimura & Nakamura (2010), this could mean that rising bubbles
consistently encounter different magma compositions, some of which may be undersaturated
in volatiles. As a result, bubbles may undergo complete resorbtion to re-gas the melt.
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1.2.3 Secondary Effects of Bubble Resorption

Evidence of the chemical changes to surrounding melt composition that result from resorp-
tion from these previous studies (Watkins et al., 2012; Carey et al., 2013; McIntosh, 2013;
McIntosh et al., 2014) justify why the wider impacts of bubble resorption on the dynamics
of volcanic systems need to be hypothesised on. If coupled with the potential for bubbles to
rise buoyantly through a volcanic system, it may be that these bubbles are repeatedly recy-
cled around the volcanic system in cycles of exsolution, degassing and regassing. On a large
enough scale, such cycling will enable the transfer and re-distribution of mass and heat within
the plumbing system, which could bring the potential to trigger an eruption. The extreme
significance of these re-distributions to existing models of volcanic dynamics and the ability
to explain several volcanic phenomena is something this work aims to explore. Here, some of
the potential secondary effects of bubble resorption and magma re-gassing are described in
more detail.

1.2.3.1 Melt Density

On the scale of a body of magma, bubble resorption via diffusive mass transfer will reduce
the bubble volume fraction of a magma and thus produce a denser melt packet. If instead the
melt is considered on a smaller, more individual scale, an increased proportion of volatiles will
decrease the melt density (Wallace and Anderson, 1999). CO2, due to its greater molecular
weight, reduces the density of melt to a lesser degree than H2O, but either way, melt regassed
with volatiles will have a lower density than a degassed melt. However, overall, the larger-
scale density increase from the loss of buoyancy will be more significant than the density
decrease due to compositional changes, and therefore regassed magma is likely to be denser
than degassed magma.

Considering this in a wider context, denser regassed magma has the potential to overturn
and sink down to greater depths where pressure and temperature are increased. Overturn
of magma like has the potential to establish convection cycles. Such cycles are thought to
be associated with unusually high gas emissions from some deep chamber volcanoes (eg.
Strobmoli, Stevenson and Blake (1998)), and it has been suggested that if able to take place
on a large scale, convective overturn could be enough trigger an eruption of the volcano
(Yoshimura and Nakamura, 2010). This links a potential secondary effect of bubble resorption
to surface-level phenomena observed at several different volcanoes.

1.2.3.2 Melt Viscosity

The viscosities of magmas can vary over fifteen orders of magnitude and are significantly
affected by both temperature and composition (Dingwell, 1996; Gonnermann and Manga,
2013). Magmas display an inverse temperature-viscosity relationship, with melts at high
temperatures having a lower viscosity in comparison to those at low temperatures. Consider-
ing the potential that bubbles within a volcanic system have to transfer heat via gas-sparging
as well as mass, suggests that regassed magmas can gain heat and as a result, decrease in
viscosity.

Magma viscosities are also heavily sensitive to dissolved volatile content, especially dissolved
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H2O due its interaction with the molecular framework of a magma. Increasing H2O in the
melt composition by just a few weight percent can decrease magma viscosities by several
orders of magnitude (Hess and Dingwell, 1996).

In the context of magma regassing, the combined effects of heat and volatile mass transfer from
a resorbing bubble would reduce the viscosity of a magma as a secondary effect. Consequently,
the regassed magma would be much more mobile, and could have different dynamic behaviour
that would add to explanations of the different eruptive styles observed ay volanoes around
the world.

1.2.3.3 Magma Compressibility

The volume of an exsolved bubble phase within a degassed affects the magma’s com-
pressibility. Described by the ‘magma sponge’ model, an increased bubble volume increases
compressibility of the magma, allowing it to expand or contract with relative ease in response
to fluxes of material within the volcanic system (Voight et al., 2010; Edmonds and Wallace,
2017).

Applying this to the context of magma regassing, a reduced bubble volume from bubble
resorption would reduce compressibility of the magma. Therefore, the ability of the magma
compensate volumetric changes in the volcanic system via expansion or contraction would be
limited. At surface level, this may lead to observations such as increased ground deformation
prior to and in response to an eruption, as the dynamics of the magma are altered as a
secondary effect of bubble resorption.

1.3 Hypothesised Scenarios of Bubble Resorption

Throughout the previous sections, several different volcanic processes or scenarios relating
to bubble resorption have been alluded to. Here, scenarios where volatile bubble resorption
into magma is plausible are set out more specifically along with thoughts on the potential
secondary effects of this resorption. These consequential effects have been scarcely examined
in previous literature despite having the potential to significantly impact magma dynamics or
the eruptive style of a volcanic system.

The scenarios presented are divided into settings where bubbles are coupled and apparently
stationary, and those where bubbles are decoupled and move buoyantly through the melt
(similar to Figure 1.1). In both cases, the assumption is made that any change to bubble size
driven by localized pressure or temperature changes occurs on a timescale much longer than
that resulting from diffusive resorption. Secondly, diffusive mass transfer is only considered
in a single direction, from the bubble into the melt, whereas in reality, different volatile
species may also be transferring into the bubble from the melt phase. Finally, each scenario
assumes bubbles are un-coalesced and therefore move and interact with melt independently
of one-another to simplify the dynamics discussion.
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1.3.1 Coupled Bubble Scenarios

Possible volcanic scenarios for bubble resorption in coupled systems are considered to
occur chiefly silicic rhyolitic systems, where melt viscosities are significantly higher than in less
silicic (basaltic) systems, restricting bubble rise to result in an apparently stationary diffusion
dominated system. The two scenarios outlined in more detail here, both rely on the ability for
bubbles to become suspended in very-high viscosity melt following an eruptive degassing event.
Such an event leave the melt depleted in volatiles and therefore able to accommodate those
from within the suspended bubbles. Therefore, mass is transferred diffusively to regas the
highly-viscous magma and the apparently stationary bubbles shrink in response to equilibrate.
Under some conditions, the bubbles may be able to undergo complete resorption.

This idea is now applied to two more specific volcanic scenarios where it is plausible that
coupled volatile bubbles could undergo resorption via diffusive mass transfer.

1.3.1.1 Foam Collapse

One setting where coupled bubbles are thought to exist in a volcanic setting is in rhyolitic
melt following foam collapse. Following this collapses, bubbles can become isolated within a
melt with a gas pressure lower than the surrounding magma, and subject to cooling once that
would result in the thermal resorption of bubbles as magma solubility would increase with
the temperature decrease.

Originally, Eichelberger et al. (1986), suggested that bubble shrinkage and resorption could
also occur at this point due to undersaturation of the melt. They proposed that the magma
would be undersaturated in volatiles following their removal through the permeable foam.
They use this idea to explain observations in nature of completely bubble-free obsidian such
as that cored from Obsidian Dome, California (USA). Furthermore, Westrich and Eichelberger
(1994) completed a series of high-temperature decompression experiments on pumice samples
to show that the re-pressurisation of decompressed rhyolitic foams resulted in a decrease
in volume of up to 50% and production of samples that tended towards being bubble-free
(Figs.4-5 in Westrich and Eichelberger (1994)).

Despite these results, the foam collapse model and its role in influencing eruption transitions in
rhyolitic systems is disputed (Friedman, 1989; Fink et al., 1992; Castro et al., 2014; Gardner
et al., 2017; Wadsworth et al., 2020). It is thought that bubble entrapment of collapsed magma
foams is more likely to yield material with vesicularity 30vol.% rather than being completely
bubble-free. However, bubble resorption could help explain models where completely bubble-
free material remains.

1.3.1.2 Welded Pyroclastic Deposits

A second scenario where coupled bubbles could undergo resorption occurs within welded
layers of pyroclastic density current (PDC) deposits. These deposits are typically layered with
a range of different textures that vary from loose, unconsolidated material to porphyritic with
large crystals embedded in a glassy groundmass (vitrophyres). Within a vitrophyre there can
be further sequences of material textures including variably vesicular pumice and devitrified
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rhyolite glass.

These rhyolite glass (obsidian) pyroclasts often contain low quantities of isolated bubbles
formed as material accumulates and welds together (Sparks et al., 1999; Manley and Fink,
1987). As material continues to accumulate the increased lithostatic load on top of the still
molten obsidian leads to the shrinkage or complete collapse of bubbles.

Temperature changes could also result in bubble resorption due to an increased solubility of the
obsidian glass melt. This idea was first suggested to explain observations of dense, bubble-free
obsidian by McIntosh et al. (2014) and has been further investigated by other since (Gardner
et al., 2019; Allabar et al., 2020; Weaver et al., 2022). As the PDC cools following eruption,
solubility of volatiles into the rhyolitic glass layers will increase by several wt.% (Newman and
Lowenstern, 2002) leading to the thermal resorption of bubbles as volatiles diffuse into the
glass melt (McIntosh et al., 2014).

Gardner et al. (2019) used experimental results and order of magnitude estimates of timescales
for diffusion and viscous flow around a bubble to propose that if rapid cooling of the pyroclast
took place, the glass would be immobile before any significant diffusion or bubble shrinkage
could occur. However, if much slower cooling took place, the time available for diffusion
would be much greater and therefore significant enough for thermal resorption of bubbles
to occur. They suggest that if cooling was significantly slow enough, volatile bubbles may
undergo complete resorption, leaving behind densely welded, bubble-free obsidian. Therefore,
resorption of stationary bubbles within cooling PDC deposits is a plausible natural scenario.

1.3.2 Decoupled Bubble Scenarios

In contrast to coupled bubble scenarios, the volcanic systems where resorption of decoupled
bubbles is plausible are more likely to be basaltic. This results from bubbles requiring a
relatively fast rise velocity, which, whilst not always the case, is more plausible in lower-
viscosity basaltic melts. Multiple scenarios are outlined here, each of which applies a similar
underpinning process to more specific volcanic settings on various scales. In each case, the
decoupled bubbles rise through the systems away from the melt they were exsolved from, to
interact with magmas of different compositions. Under certain conditions, the rising bubbles
may enter a magma that has been previously degassed and can therefore take up volatiles
via diffusive mass transfer. The magma will then be regassed and the bubbles will shrink
in response to the removal of volailtes. This process will carry on as the bubble continues
to rise through previously degassed magma until the bubble has either undergone complete
resorption or is small enough that it is no longer buoyant and therefore no longer decoupled
from the magma. At this point, the mass will be transferred until an equilibrium state with
the melt is reached.

The following scenarios outline in more detail, volcanic settings where decoupled volatile
bubbles could undergo resorption to regas the surrounding magma.

1.3.2.1 Intrusion & Magma Mixing

Magma mixing following intrusion events is known to transfer heat (gas sparging) as well
as affect the melt composition and crystal content (e.g. Sides et al. 2014; Rossi et al. 2019).
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Bubble enhanced mingling has also been investigated (e.g. Manga and Stone 1995; Wiesmaier
et al. 2015) however, the effect on bubbles in the latter stages of mixing has not been widely
discussed. Here, it is proposed that during mixing, bubbles can become decoupled from the
melt and interact with the surrounding melts following the intrusion of two compositionally
different magma bodies.

In the case that a hot buoyant body of gas-rich magma rises to meet a cooler previously
degassed magma body resulting, turbulent mixing will cause both heat and mass to be trans-
ferred, and bubbles could become decoupled. This leaves them free to interact with both
the degassed melt and the new mixed-composition melt, both of which would have a lower
volatile saturation than original buoyant melt. A volatile concentration gradient between the
bubble and distal melt down then enables the transfer of mass via diffusion (see 1.3.2) and
the bubble is resorbed (Fig.1.2a).

Regassing of the melt through bubble resorption would act as a further alteration mechanism
to the melt composition following intrusion and mixing. This suggests bubble resorption could
occur in tandem with physical mixing effects (Manga and Stone, 1995) to aid the mixing of
two distinct melts into a single homogeneous melt composition.

Figure 1.2: Cartoon diagrams showing some of the hypothesised scenarios where decoupled bubble
resorption may take place within a volcanic system. (a) Intrusion and mixing of two magma bodies
with different compositions. (ai) A hotter more buoyant bubbly magma body rises to interact with
a cooler, denser magma that have previously been degassed. (aii) Bubbles become decoupled and
migrate through the degassed magma, transferring mass diffusively as they do. (b) Convection cells
within an open lava lake. (bi) Bubbles rising within a hot body of magma will move directly past
downwelling, cooler melt that has been degassed at the lake surface. (bii) This direct interaction
results in diffusive mass transfer between the rising bubbles and downwelling melt. (c) Foam drainage
at during open-system degassing.
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1.3.2.2 Convective Cells

The theory that magmatic melts and volatiles can be continuously cycled has been used
to explain observations from open lava lakes such as those at Mount Nyiragongo, D.R.Congo,
Etra Ale, Ethiopia, or Kilauea, Hawaii. In these lakes, convection of material is though to
enhance degassing processes leading to phenomena such as spattering and fountaining within
the lake (e.g. Harris 2008; Patrick et al. 2018; Valade et al. 2018).

Considering this scenario on bubble-scale, melt that has undergone a comination of passive
and active degassing at the surface of the lake will now be denser and depleted in volatiles.
This increased density from loss of the bubble phase causes the magma to downwell back to a
greater depth in the system. As it does so, the degassed magma will move directly past volatile
bubbles rising within a less dense upwelling magma. This interaction of the sinking degassed
melt and decoupled bubbles could result them being resorbed as they rise, via the mechanism
outlined in Section 1.3.2 (Fig.1.2b). Consequently, the downwelling melt becomes regassed,
having implications for melt density that could influence the convection itself, as well as the
rates of movement via its influence on viscosity.

1.3.2.3 Mafic Underplating

Mafic (or basaltic) underplating is a larger scale scenario that considers more of the
secondary impacts of bubble resorption and how these could aid the triggering of an eruption.
Underplating is the process by which the base of an older, cooler silicic magma body comes
into contact with a hotter, buoyant, volatile-rich mafic magma (Bachmann and Bergantz,
2006). The silicic body is likely to be sitting at the saturation point, ready to vesculate
bubbles if surrounding conditions change. By contrast, the hotter mafic magma is more gas-
rich, having degassed volatiles to become a buoyant multi-phase magma. When the mafic
magma underplates the silicic magma, the melt is unable to rise at the same rate due to
a large viscosity contrast. However, bubbles within mafic melt continue to rise, becoming
decoupled from the melt to rise towards the mafic-silicic boundary.

From here, two main scenarios are hypothesised (Bachmann and Bergantz, 2006); one where
the bubbles remain trapped beneath the silicic melt and a second where the bubbles are able
to migrate across the melt interface (Fig.1.3).

In the first case (Fig.1.3a), the bubbles collect into a foamy layer along the boundary, gaining
buoyancy over time. Eventually, this increased buoyancy and the associated low density of
the foamy layer falls out of equilibrium with the overlying silicic melt, resulting in large-scale
overturn and mingling of the two melt bodies (Bergantz and Breidenthal, 2001; Bachmann and
Bergantz, 2006; Edmonds and Wallace, 2017). As a result, the bubbles become decoupled in
the turbulent mix of magmas and could end up being resorbed similarly to Section 1.3.2.1.
Such large-scale overturn events that occur as a result of large density contrasts are thought
to be responsible for triggering eruptive behaviour (Yoshimura and Nakamura, 2010).

In the second case (Fig.1.3b), the viscosity contrast of the two melts is high enough that the
two melt remain separated but simultaneously low enough that the more buoyant bubbles can
be transferred across the boundary. These bubbles then rise, decoupled from the surrounding
silicic melt, and could potentially resorb via the mechanism (section 1.3.2).
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Figure 1.3: Cartoon diagrams showing the two different scenarios that can result from mafic un-
derplating of a silicic magma but a less viscous, bubbly basaltic magma. (a) Bubble migration. (ai)
Bubbles rise towards the melt interface (aii) and transfer across the melt boundary. (aiii) Bubbles
continue to rise into the previously degassed silicic melt where they can be resorbed by diffusive mass
transfer. (b) Large scale overturn. (bi) Bubbles rise towards the melt interface (bii) and become
trapped at the melt interface. (biii) The trapped bubbles increase buoyancy in a concentrated layer
leading to large-scale overturn and mingling of the two melts.

The dynamics of bubble migration and heat transfer following underplating have been
previously considered by Bachmann and Bergantz (2006), however the potential for mass
transfer in such a setting has not. Including the effects of diffusive mass transfer from bubble
resorption into the melt migration model for underplating (Fig.1.3b) could help explain the
differences in melt composition or gas emissions observed at the eruptions of Soufriere Hills,
Montserrat or Fish Canyon, Colorado, USA (Bachmann and Bergantz, 2003, 2006) where
large scale overturn is not the likely cause of eruption.
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Theoretical Background

This chapter introduces the theory that underpins work in the later chapter of this thesis.
The combined problem of bubble coupling and resorption is set up numerically using a series
of dimensionless quantities, introduced to describe the parameter space that that applies to
the modelling of singular, spherical bubbles in high viscosity fluids.

A further dimensionless group, the Péclet number, is also introduced. A crucial concept
throughout the whole of this work, different modifications of Péclet number are set out to
create a suite of dimensionless expressions to describe coupled and decoupled bubble-fluid
systems. These Péclet numbers will be used in later chapters to analyse what can enhance or
limit resorption in bubble-melt systems.

Following the numerical background, material properties of different gas-melt systems are in-
troduced to obtain an understanding on their controls. Magmatic melts are discussed along-
side several analogue melts which are used in experimental studies discussed later on.

2.1 Bubble Regimes

Rising bubbles in any fluid system can occupy many different behavioural regimes de-
pending on the conditions. In each regime, the effects of different parameters dominate to
differing degrees, impacting the geometry of the bubble and dynamics of the combined bubble
and fluid. In a volcanological context, these variations can affect the stability and interations
of two-phase bubbly magmas, whcih in turn could impact eruptive style or explosivity.

2.1.1 Dimensional Quantities to Describe Bubble Regimes

Bubble regimes can be defined through dimensionless quantities. These quantities take
into account the effects that inertia, viscosity, gravity, and surface tension can have on the
bubble, showing which effects are dominant on the system (Clift et al., 2005).

Applying the conditions for a typical basaltic gas-melt system to these dimensionless quantities
will enable the specific bubble regimes investigated in this work to be defined. As a result,
this allows the combined effects of bubble coupling and resorption via diffusive mass transfer
to be described in dimensionless space, and will justify the application of certain assumptions
and models in the following chapters.
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Much of the theory presented here is applicable to wider applications than just gas-melt
systems. Therefore the background theory is discussed with respect to bubble-fluid systems
rather than any one specific system. If bubbles in a volcanic setting are being discussed in
more detail, a bubble-melt or bubble-magma system may be referred to instead.

2.1.1.1 The Reynolds Number

The first dimensionless quantity to consider is Reynolds number Re. This describes the
balance between viscous and inertial effects in the fluid surrounding a bubble. Re can be
expressed as,

Re =
u∞ρR0

µ
(2.1)

where R0 is the initial bubble radius, ρ is the fluid density, u∞ is the terminal rise velocity
of the bubble and µ is the fluid viscosity. When Re � 1, inertial effects dominate in the
surrounding fluid, whereas, when Re � 1, viscous forces are induced instead.

2.1.1.2 The Eötvös Number

A second dimensionless quantity, Eötvös number, Eo describes the ratio of gravitational
and surface tension effects on a bubble in a fluid as,

Eo =
R2

0g(ρb − ρ)

Γ
(2.2)

where g is acceleration due to gravity, ρb is the density of the gaseous bubble phase and Γ is the
surface tension. Higher values of Eötvös number (Eo � 1) indicate that gravitational forces
dominate the system, whereas at lower values (Eo � 1), surface tension forces dominate.

2.1.1.3 The Density Ratio

The density ratio Πb is a further dimensionless quantity, the value of which dictates the
relative buoyancy of a bubble-fluid system. It is expressed as the ratio of the gaseous bubble
phase and fluid phase densities.

Πb =
ρb
ρ

(2.3)

When Πb � 1, the bubble is equivalent to a solid particle and will therefore sink in the
surrounding fluid. When Πb � 1, the bubble is buoyant and will rise instead.

2.1.1.4 The Morton Number

A final dimensionless quantity to take into consideration is Morton Number Mo. This can
be defined from Eo and Re to give a value that is independent of lengthscale or timescale,
and instead depends only of material parameters of the bubble-fluid system.
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Mo =
Eo3

Re4
=
µ4g(ρb − ρ)

ρ2Γ3
(2.4)

The exact interpretation of Morton number for bubble-fluid systems is as of yet quite unclear,
however it is included here for completeness in a similar way to other studies in this field.

2.1.2 Coupled & Decoupled Regimes

The Stokes number, Stk is another dimensionless quantity used to identify if a bubble-
fluid system is coupled or decoupled. It is expressed as the ratio of the characteristic times
for bubble and fluid motion, defined as,

Stk =
t0ub
l0

(2.5)

where t0 is the relaxation time of a fluid, l0 is the characteristic lengthscale of the fluid and
ub is the velocity of the of the particle in the fluid.

This expression leads to second definition for Stk, which instead considers the ratio of the
bubble and fluid velocities, ub and u0 respectively.

Stk =
ub
u0

(2.6)

Equation 2.5 and 2.6 are equivalent to onanother when t0/l0 is given by 1/u0.

If ub is taken to be the bubble velocity, for the case of bubbles in a highly viscous melt such as
magma ub can be replaced with the terminal rise velocity u∞, leading to a further expression
for Stokes number,

Stk =
u∞
u0

=
R2

0g∆ρ

u0µ
(2.7)

where R0, g, ∆ρ and µ are system parameters as previously defined, and u0 is the velocity of
the melt (Clift et al., 2005).

High values of Stokes number, Stk� 1, indicate that a system is strongly decoupled, meaning
a bubble would rise freely through the fluid with a large relative velocity. Low values of Stokes
number, Stk � 1, instead indicate the system is strongly coupled. In this case, the bubble
appears stationary in the fluid as it has no rise velocity relative to it.

In natural magmatic systems, relatively high melt viscosities which confine the setting to
the low Reynolds number regime, mean that bubble rise velocities (u∞) vary only within a few
orders of magnitude compared to the ascent rate of the surrounding melt (u0). By contrast,
u0 can vary over several orders of magnitude. As a result, values of Stk for natural melt
systems vary over significant orders of magnitude, suggesting that there are huge variations
in the degree of bubble-melt coupling from system to system.

This variety is confirmed by surface-level observations of different volcanic systems around
the world that display many different eruption styles as a consequence of the differences in
bubble-melt coupling, which influences other processes in the build up to an eruption.
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2.1.3 Bubble Regimes of This Work

Each of the dimensionless quantities outlined above to describe bubble-fluid systems, is
now considered with respect to the systems of interest in this work. More specifically, a
gaseous bubble within either a basaltic or rhyolitic magma. Order of magnitude estimates
for the typical value of the different parameters (Gonnermann and Manga, 2013) are used
to calculate each dimensionless quantity can be made. This allows the most likely bubble
regime of the system to be found. In addition, an upper limit is estimated to find the largest
bubble that could exist in the fastest rising, lowest viscosity form of each magma, whilst still
remaining in this same bubble regime. Table 2.1 shows these estimates for both basaltic and
rhyolitic melt compositions.

Order of Magnitude Estimate Dimensionless Quantity
log(10) log(10)

µ0 u∞ ρ0 ρb Γ R0 Re Eo Πb Mo
Pa.s ms−1 kgm−3 kgm−3 Nm−1 m

B 3 -2 3 -1 -1 -3 -5 -1 -4 17
R 8 -2 3 -1 -1 -3 -10 -1 -4 37

Table 2.1: Order of magnitude estimates of the system parameters for a typical basaltic (B) and
rhyolitic melt (R). Dimensionless quantities: Reynolds number, Re, Eötvös number, Eo, Density
ratio, Γ and Morton number, Mo are calculated from these estimates and values coloured according
to relative size to allow for interpretation. Blue = < 1, orange = ≈ 1 and pink = > 1. Values for
Morton number are included for completeness but do not yield much other interpretation for the type
of bubble regime or behaviour of the bubble-melt systems.

The estimates in Table 2.1 show that for a typical basaltic system, each of Reynolds number,
Eötvös number and the density ratio have values less than one. This places a typical basaltic
system towards the upper limit of the viscous and surface tension dominated regime where
spherical bubbles will rise buoyantly through a reasonably low viscosity melt. Estimates for
a typical rhyolitic system similarly yield values of Re, Eo and Πb all less than one. The
significantly lower value of Reynolds number can be attributed to the much greater viscosity
of a rhyolitic melt compared to a basaltic melt. In consequence, all bubbles considered in this
thesis will be buoyant and dominated by viscous and surface tension effects, making them
spherically stable.

Estimates for Stokes number of these systems have not been made here as varying degrees
of bubble-melt coupling can exist in both basaltic and rhyolitic magmas (Figure 1.1). As a
result, values of Stk vary significantly across systems of the two different melt compositions.

The range of Stokes numbers accessible in a basaltic melt system means varying degrees of
bubble-melt coupling would be observable; from completely decoupled, high-Stokes number
systems, through to completely coupled, low-Stokes number systems. In the next section of
this chapter, the relationship between this degree of coupling and the rates of diffusion or
advection for bubble-melt systems is outlined along with how further regimes of dynamic
bubble behaviour can be distinguished from these relationships.
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2.2 Péclet Numbers

The Péclet number (Pe) is a class of dimensionless numbers used in the study of fluid
dynamics to represent a ratio of timescales. Péclet numbers can define timescale ratios for
lots of different processes, but are most commonly used to describe heat or mass transfers.
Most significant to this study is mass trasnfer, for which a Péclet number can be expressed
that is the ratio of advective transport rate to diffusive transport rate (Levich, 1962; Patankar,
1980).

Pe =
advective transport rate
diffusive transport rate

(2.8)

Considering the transfer of mass in or out of a bubble phase, this Péclet number can also be
defined using the relative timescales for advection and diffusion instead of with rates. With
this approach, Péclet number can be expressed as,

Pe =
diffusive time
advective time

=
λD
λA

(2.9)

where λD is the diffusive timescale and λA is the advective timescale.

The differing degrees to which a bubble may be coupled to a fluid means the definition of
advective used to find λA in Equation 2.9 can be thought of in two distinct ways, (1) the
movement of melt material around the interface of a bubble as it rises buoyantly through the
packet of melt, or (2) the movement of melt material into the space previously occupied by a
stationary, shrinking bubble.

Case 1 describes advection in a decoupled high-Stokes number system, where the bubble has
a buoyant rise velocity relative surrounding melt. By contrast, case 2 describes advection in a
coupled system, where there the apparent relative velocity between the bubble and the melt
is zero. This system would sit in the low-Stokes number regime.

2.2.1 Diffusive Timescale (λD)

The diffusive timescale, λD depends significantly on the value of the diffusion coefficient,D,
of the system. This diffusion coefficient, also known as mass diffusivity, is the proportionality
factor in Fick’s Law to describe how far a mass of a substance will diffuse over a given timescale
(Mostinsky, 2011). Values of D vary between systems depending on concentration gradient,
temperature, pressure and the exact substances used. In gas-glass systems, some glasses are
more accommodating of certain gases based on solubility and particle size (Schaeffer, 1984;
Bansal and Doremus, 1986; Brehens, 2010) (see 2.3)).

Diffusivity is measured in meters squared per second, and so can be expressed as a ratio
of lengthscale, L squared over a timescale t. Rearranging this yields an expression for the
diffusion timescale λD.

D =
L2

t
=
L2

λD
(2.10)
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For the context of gases diffusing from a spherical resorbing bubble into a surrounding fluid,
the diffusive lengthscale L can be thought of as the largest radial distance around the bubble
which can be saturated by the total number of moles of gas originally in the bubble. Therefore,
the diffusive lengthscale is dependent on the original size of the bubble and components of
the ideal gas equation for the diffusing gas, such as molar mass, Mm , system pressure p0 and
temperature, T . A complete derivation for this diffusive lengthscale is shown in Appendix
II, with the final expression being,

L =
100Mmp0

3RgTρmS0
·R0 (2.11)

where ρm and S0 are the melt density and solubility, and Rg is the ideal gas constant. Applying
this to Equation 2.10 means the characteristic diffusive timescale of gas diffusing from a
bubble into melt can be expressed as,

λD =

[
100Mmp0

3RgTρmS0

]2

· R
2
0

D
(2.12)

suggesting λD has a strong dependence on the specific gas species through its equation of
state, and as well as the initial radius of the bubble.

2.2.2 Advective Timescale (λA)

Given that bubble-fluid systems can either be coupled or decoupled, there are two possible
definitions for advective timescale λA as set out in Section 2.2. This means two different
numerical experssion of λA can also be made.

For the case of coupled bubbles, the advective timescale refers to the time required for sur-
rounding fluid (or melt) to respond to a shrinking bubble, defined as the melt shell response
timescale λv. For the case of decoupled bubbles in the high-Stokes number regime, the ad-
vective timescale refers in essence to the time taken for a bubble to rise through a lengthscale
of melt, defined in this work as the bubble rise timescale λb.

2.2.2.1 Melt Shell Response Timescale (λv)

As a bubble grows or shrinks within a viscous melt, the rate of growth is heavily controlled
by viscosity of the melt near to the bubble interface, sometimes referred to as the melt shell.
This shell exerts a viscous resistance which needs to be overcome in order for the bubble to
change size (Blower et al., 2001; Coumans et al., 2020). Once this resistance is overcome, the
melt will undergo viscous relaxation, meaning it is able to move (advect) around the bubble
interface. In the case of a growing bubble, the melt is pushed away to accommodate the
expanding gas phase. However, in the case of a shrinking or resorbing bubble, the melt shell
advects inwardly to occupy the space held by the previously larger bubble.

A key driver of changes to bubble size in this setting is over or under-pressure of the gas phase
relative to the surrounding melt pressure, p0. Combining the effects of this and viscosity, µ
a characteristic timescale for the viscous relaxation response can be defined. This melt shell
response timescale, λv can also be thought of as the time over which the melt advects towards
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or away from the bubble interface (Navon et al., 1998; Lensky et al., 2004).

λv =
4µ

p0
(2.13)

λv is proportional to the melt viscosity yet inversely proportional to melt pressure. Therefore
in higher viscosity melts, the melt shell will be much more resistive to movement meaning it
won’t relax as easily and thus the system will have a longer response timescale. Alternatively,
in high viscosity melt systems where pressure is extremely high, the bubble would collapse
rapidly in on itself because of the large pressure contrast with the gas inside the bubble.

2.2.2.2 Bubble Rise Timescale (λb)

The buoyant rise of bubbles in glassy or magmatic melts is best described by the Hadamard-
Rybczynski (H-R) equation for terminal rise velocity u∞,

u∞ =
2

3

R2g∆ρ

µ
· (µ+ µb)

(2µ+ 3µb)
(2.14)

where R is bubble radius, µ0 is melt viscosity, µb is viscosity of the bubble species, g is
acceleration due to gravity and ∆ρ is the density contrast between the melt and bubble
phases (Hadamard, 1911; Rybczynski, 1911). This equation highlights the significance of
melt viscosity and bubble size on the rise velocity, which has been confirmed experimentally
in previous work for both isothermal and non-isothermal conditions (Hornyak and Weinberg,
1984; Li and Schneider, 1993; Jackson et al., 2022).

When the contrast between the melt and gas viscosities is very large, the secondary term in
Eq.2.14 tends to 1

2 , meaning the H-R equation can be simplified to,

u∞ =
1

3

R2g∆ρ

µ
(2.15)

which is more appropriate for magmatic gas-melt systems. Applying this simplified expression
for terminal rise velocity a simplified problem where the lengthscale of bubble rise is equal to
its initial radius, R0, the timescale for buoyant advection, λb, can be defined.

λb =
R

u∞
=

3µ

Rg∆ρ
(2.16)

λb is proportional to the melt viscosity, meaning that in a system where bubble size and melt
density remain constant, increases in viscosity will result in a slower terminal rise velocity
of the bubble and thus a longer advective timescale. Similarly, smaller bubbles will have a
longer rise timescale owing to a slower rise velocity driven by the inverse relationship between
λb and R0.

2.2.3 Defining Two Distinct Péclet Numbers

With coupled and decoupled gas-melt systems requiring different definitions for the advec-
tive timescale, it follows that each of the two systems has its own definition of Péclet number.
By adapting the general definition of Pe (Eq.2.9) to account for either viscous advection
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through melt shell response or buoyant advection through bubble rise, two unique expres-
sions can be written. The former for coupled, low-Stokes number systems, and the latter for
decoupled, high-Stokes number systems.

2.2.3.1 Stationary Péclet Number (Pes)

For coupled bubble-melt systems, Péclet number can be expressed as the ratio of the
diffusive timescale λD and melt shell response timescale λv. This is the stationary Péclet
number Pes, applicable to systems where Stk << 1 and the bubbles appear stationary relative
to the melt.

Pes =
λD
λv

=

[
100Mmp0

3RgTρmS0

]2

· R
2
0p0

4Dµ
(2.17)

This expression suggests that Pes is highly dependent on the pressure of the surrounding
melt, having a proportionality to p3

0. By comparison, the dependence of Pes on initial bubble
radius, melt viscosity and diffusivity appear less significant.

A low value of Pes means the system is limited by viscosity as λv will be significantly longer
than λD. At this point, the rate of bubble shrinkage is determined by how quickly the
surrounding melt shell can respond and relax into the space once occupied by the shrinking
bubble. In the endmember case where melt viscosity becomes increasingly high, Pes → 0 and
system pressure will instead become the controlling factor on bubble shrinkage, as significant
over-pressure would be required to counteract the extremely resistive high viscosity.

A high value of Pes means the system is limited by diffusion as λD will be much longer than
λv. For this case, the low melt viscosity means the melt shell around the bubble is able
to relax inwards with relative ease. The value of diffusion coefficient becomes the principal
control such that in the opposite endmember case, as D reduces towards zero, Pes →∞ and
the gaseous species is essentially unable to move into the melt.

It is expected that the transition between these two limits will also occur around Pes = 1

where λD and λv will be in a similar order of magnitude, and the melt shell is able to relax
at a similar rate as the gaseous phase can diffuse through it. The stationary Péclet number
and its application to natural volcanic systems is discussed further in Chapter 5.

2.2.3.2 Buoyant Péclet Number (Peb)

For decoupled bubble-melt systems, Péclet number can be expressed by taking the ratio
of the diffusive timescale λD and bubble rise timescale λb. This yields the buoyant Péclet
number Peb for systems where Stk>> 1.

Peb =
λD
λv

=

[
100Mmp0

3RgTρmS0

]2

· R
3
0g∆ρ

3Dµ
(2.18)

For this version of Péclet number, the initial bubble radius appears the most significant
parameter, with Pes being proportional to R3

0. Melt pressure has a second order significance
and melt viscosity, diffusivity, and density contrast even less.

A high value of Peb means the system is limited by diffusion such that λD will be much longer
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than λb. In this case, a bubble would rise rapidly, unimpeded by the melt viscosity and the
diffusion coefficient would act as the principal control on the movement of gas into the melt.
In the endmember case where D becomes so small that λD >> λb, Pes → ∞ and minimal
diffusion would be observed such that the bubble appears not to reduce in size during rise.

A low value of Peb means the system is instead limited by viscosity as λb will be much longer
than λD. This means the advection of melt around the rising bubble is slower than the
rate at which the gas species diffuses into the melt. Since λb is controlled principally by the
bubble’s size and the melt viscosity, an opposite endmember case will occur as µ increases or
R decreases such that Pes → 0. At this point, bubble rise will be halted meaning it becomes
stationary in the melt.

Therefore, at very low values of Peb, the system transitions to a low-Stokes number regime
and instead, the stationary Péclet number Pes becomes more applicable. Melt viscosity and
bubble size can therefore be seen to act as a switch control between the two cases of coupling
and decoupling in a system. Further investigation of the buoyant Péclet number, including
experimental observations and the transitions between the different Péclet number regimes is
outlined in Chapter 6.

2.3 Materials, Properties & Parameters

Material properties of magmatic melts can be determined through various underpinning
laws that show how they vary with changes to conditions in the wider system. The effect
of temperature and pressure variations are chiefly considered for the context of this study as
they can vary significantly within a volcanic system, both spatially and temporally.

Alongside an overview of magmatic melts, the material properties of several analogue mate-
rials, including manufactured silicate melts (glasses), viscous oils and syrups, are also intro-
duced. This highlights the similarities to magmatic melts that makes these analogues suitable
in scaled experiments such as those carried out later in this study.

2.3.1 Magmatic Melts

2.3.1.1 Composition

The major element composition of naturally occurring silicate melts is fairly consistent,
comprising of silicon, oxygen, aluminium, some alkali and alkali earth metals, titanium and
iron. These build to together to form a base network of tetrahedral silicate anions (SiO4−

4 ),
charge balanced by cations (Mysen, 1983; Henderson et al., 2006). In addition to these major
elements, other more minor elements may be present which are able to alter the base network
or modify the wider silicate structure. These modifications are observed as chnages in material
properties like viscosity.

In magmatic melts, silicon can be partially replaced by aluminium (AlIII) to form an alumi-
nosilicate base network. Further modifications to the melt can also occur when alkali cations
such as Na+, K+, Mg+ and Ca+ are present. These act to modify the base network by binding
with oxygen to form metal oxides, breaking the continuous Si – O – Si bonds as a result (Bot-
tinga and Weill, 1972). Therefore, melts with a high presence of network modifying cations
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are said to be depolymerised compared to a completely polymerised melt of only Si and O.

These network alterations lead to magmatic melts being classified by their SiO2 and alkali
oxide (NaO2 and K2O) composition using Total Alkali Silica (TAS) diagrams such as Figure
2.1. On this diagram, it can be seen that basaltic melts have medium-to-low alkali and SiO2

content whereas rhyolitic melts have very high SiO2 and wide variation in alkali content.
These two melt classifications are principally focused on in this study as they represent two
opposing compositions associated with different types of volcanism (Fig.1.1).

Figure 2.1: Total Alkali Silica diagram adapted from Iacovino and Gouard (2021) to show the
variation in both SiO2 and total alkali content between different melt classifications. Compositions of
basaltic and rhyolitic melts are highlighted in blue and pink respectively. An alternative classification
system is included along the top axis.

TAS classification diagrams use the assumption of a dry melt; so are based on melt composition
which are completely free of dissolved volatiles like H2O or CO2. In natural systems, magmatic
melts can instead contain varying quantities of volatiles that affect the network structure and
melt properties because OH- hydroxyl and CO2−

3 carbonate ions act as network modifiers,
reacting with oxygen to break up the base network and depolymerise the melt (eg. Behrens
and Gaillard, 2006).

Therefore, to conclude, it is crucial to know the volatile content in addition to the wider
compositional make-up of a magmatic melt in order to understand its material properties.

2.3.1.2 Viscosity Laws

Dynamic viscosity of a fluid µ is the ratio of the shear stress experienced to the strain rate
applied; expressed more simply as the resistance of a fluid to movement. The viscosities of
naturally occurring magmatic melts vary dramatically, from highly viscous rhyolites where µ
can be greater than 108 Pa.s, to much lower viscosity basalts or basanites where µ is closer to
100 Pa.s (Lesher and Spera, 2015). This significant range between different TAS classifications
of melt highlights the control of chemical composition and structural make up on the observed
physical properties.

As a result, SiO2 and volatile content are two quantities that can alter the viscosity of a mag-
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matic melt. Figure 2.2a demonstrates the effect of increasing SiO2, equivalent to increasing
the polymerisation of the melt. A lack of bond-breaking network modifiers means the melt
has a much more rigid structure, which is reflected though a high viscosity. Consequently,
rhyolitic and dacitic melts have much greater viscosities than basaltic melts under the same
conditions.

Figure 2.2: Set of plots showing how visocsity of different magmas vary with (a) silica content,
(b) volatile water content, and (c) temperature. In all figures, basaltic melts have significantly lower
viscosities than rhyolitic melts.

Figure 2.2b shows the effect of volatile content on magmatic melts. Just a 3 wt.% increase
in the quantity of dissolved volatiles (in this case water) can reduce the dynamic viscosity of a
melt by over two over two orders of magnitude. This results from modification of the bonding
network and increased depolymerisation. The effect is most dramatic for silicate-rich melts
and the first 1 wt.% H2O increase, after which the effect becomes increasingly less pronounced
(Hess and Dingwell, 1996).

Fluid viscosities, including those of magmatic melts are also significantly affected by
temperature, described by an Arrhenian relationship in the Vogel-Fulcher-Tammann (VFT)
equation,

µ = µ0 exp
A

(T − B)
(2.19)

where T is temperature in Kelvin, A and B are constants unique to the melt and µ0 is
viscosity of glass transition (Vogel, 1921; Fulcher, 1925; Tammann and Hesse, 1926). An
increase in temperature reduces the viscosity of the melt exponentially, meaning that at higher
temperatures, melts are more dynamically mobile than at lower temperatures (Fig.2.2c). The
exact values of A and B vary between melts based on their composition, as is also true for
the value of µ0.

The viscosity of glass transition µ0 has additional significance as it represents the viscosity at
which the melt first displays fluid-like behaviour; also described as where the applied stress
and the strain rate are proportional, and any response to stress is immediate. For magmatic
and silicate melts, this transition in behaviour is controlled by the relaxation time of the melt
which itself is determined by rate at which Si – O bonds can be broken in the structural
network (Dingwell, 2006). For any given melt, this process has a strong dependency on
temperature and therefore µ0 has its own temperature relationship,
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µ0 =
c

|q|
(2.20)

where c is a function of the melt composition and q is the heating or cooling rate (Gottsmann
et al., 2002).

Viscosity models for magmatic melt have been developed that incorporate the effects of
both temperature and volatile content, more specifically, H2O content. Some of these models
are for a very specific type of melt or conditions, whereas others are derived to be used
for a much wider range systems. For example, Hess and Dingwell (1996) present a model
suggested to be best for silicic and hydrothermal granitic melt systems, where viscosity can
range between 102 - 1013 Pa.s and H2O content altered from 0 - 12.5 wt.%. Giordano et al.
(2008) have also developed a comprehensive viscosity model that uses compositional inputs to
estimate viscosities between 10−1 - 1014 Pa.s and 0 - 8 wt.% H2O. Some of these melt-specific
viscosity laws are applied in the modelling of bubble systems in Chapter 5 6.

2.3.1.3 Solubility Laws

Solubility of a fluid is the key driver for mass transfer in a gas-fluid setting, where it
describes the amount of gas that can be accommodated into the fluid under equilibrium
conditions. The presence of a concentration gradient over a distance x between a bubble of
gas and the surrounding fluid enables the migration of the gas species into the fluid, down
the concentration gradient, from a region of high gas concentration ci to a region of low gas
concentration c∞ (Fig.2.3).

Figure 2.3: Schematic representation of concentration variation as distance, x from a bubble in-
creases. For cases where (a) concentration at the bubble, ci is greater then in the distal melt, c∞
mass transfer can take place, whereas (b) if there is no concentration gradient, mass transfer is not
plausible.

In volcanic systems, magmas and natural silicate melts act as the fluid phase, and exsolved
volatile bubbles as the gas phase. Any diffusive mass transfer that occurs from the bubble
is controlled by solubility of the melt, which in turn can vary in its degree of saturation (or
concentration) (McIntosh, 2013). Low solubility, highly volatile-saturated melts will act as if
they are already in equilibrium as the melt has no more capacity to accommodate dissolved
volatiles. However, if the gas bubble sits within a high solubility, volatile-unsaturated melt,
a concentration gradient exists as the melt has capacity to take up further dissolved volatiles
and so the gas species can be transferred diffusively.
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Figure 2.3 sets out these two endmember scenarios schematically in order to highlight the
pinnacle significance of solubility, saturation and concentration gradients to the hypothesis of
bubble resorption and shrinkage.

For many gas-fluid systems, Henry’s Law can be applied to find the solubility C of the
gas species g.

Cg = Hpg (2.21)

It shows how solubility is unique to each system, being dependant on the partial pressure of the
gas pg and Henry’s constantH which itself is strongly dependant on the fluid and temperature,
and weakly dependant on pressure (eg. Gamsjäger et al., 2010). H and therefore Cg are
proportional to both temperature and pressure. For more complex scenarios where multiple
different gas phases or species may be present, Henry’s Law is not applicable. Instead, more
comprehensive solubility laws have been developed that are unique to a specific or range of
melt classifications and a specific gas.

Zhang (1999; 2007) and Liu et al. (2005) have looked extensively at H2O and CO2 solubility
laws for rhyolitic melts, developing several models for different system conditions. One such
model for mixtures of H2O and CO2 applicable for rhyolitic and haplogranitic melts between
700 - 1200 oC and up to 500 MPa, shows an inverse relationship between volatile solubility
and temperature, but proportionality to pressure (Liu et al., 2005) (Fig. 2.4). A similar
observation is made by Ryan et al. (2015) for H2O in rhyolitic obsidian, where they find the
magnitude of retrograde solubility with temperature to be -7.1 x10−3 wt.% per 100 oC (Fig.
2.4).

Solubility studies have also been completed for a whole range of volatiles and rare gases
in melts with a more basaltic composition (Jambon et al., 1986; Pan et al., 1991; Berndt
et al., 2002; Behrens et al., 2009; Lesne et al., 2011). Experimental data from these studies
suggest that the pressure control on solubility is much stronger than the temperature control,
but similarly that solubility increases with pressure and decreases slightly with temperature
(Fig.2.4). Using models such as those from these studies allow the solubility of melts to be
estimated for a given gas-melt system with specified conditions. The approach is adapted
in Chapters 5 & 6 of this study when modelling volatile bubble dynamics in naturally
occurring melts.

2.3.1.4 Diffusion Laws

Diffusion is the mechanism by which mass is transferred between the bubble and melt
phase. As highlighted in Figure 2.3 diffusive mass transfer will only occur if there is a
sufficient concentration gradient over which a substance can equilibrate. Diffusive movement
of particles to reach this equilibrium results from random motion as particles from a high
concentration spread out into a region of low concentration. Described by Fick’s first law,
the rate (or flux) of diffusive particle motion J is therefore dependant on the concentration
gradient dC/dx and is unique to the system, as indicated by the diffusion coefficient, D.
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Figure 2.4: Collection of datasets demonstrating the effects of (a) pressure and (b) temperature
on the solubility of different gases in magmatic melts. The effects of increased pressure increasing
solubility are more dramatic than those of increased temperature reducing solubility, especially in the
first 1000MPa increase. References for the datasets are given in a table in Appendix I.

J = D
dC

dx
(2.22)

A high concentration gradient will result in more rapid diffusion than a low concentration
gradient. Similarly, systems where the diffusion coefficient is high will experience faster rates
of diffusion than systems with a lower value of D. This is highlighted further in Fick’s second
law which relates both the temporal and spatial evolutions of substance diffusion:

dC

dt
= D

d2C

dx2
(2.23)

As described in section 2.2.1, applying Fick’s laws to a simplified one-dimensional case
with fixed initial and final concentrations allows the characteristic timescale or lengthscale of
diffusion to be found (Zhang, 2010).

As well as being unique to the system materials, the value of the diffusion coefficient also
varies with temperature and pressure. For pure substances, pressure acts to limit the rate
of self-diffusion in a system as increasing pressure is thought to reducing the space available
between molecules, although the effects are minimal compare to those of temperature which
acts to promote diffusion in a system. This relationship of diffusion and temperature is
correlated by an Arrhenian relationship,

D = D0 exp
−pV
RgT

(2.24)

lnD = lnD0 −
Ea

RgT
(2.25)

where Ea is the activation energy, Rg is the gas constant and D0 is a fitting parameter unique
to the system. At increased temperatures, a substance will diffuse at a faster rate resulting
from the thermally increased internal energy and greater particle motion, as described by
Fick’s first law (Brehens, 2010).

The trends described by these pressure-temperature relationships have been observed for an
extensive range of gas-melt systems, including natural and simulated magmatic systems (Wat-
son, 1991; Roselieb et al., 1996; Alletti et al., 2007; Brehens, 2010). Figure 2.5 summarises
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a selection of diffusion data for both gaseous species and individual cations to show how values
of D vary significantly from system to system and are more strongly affected by temperature
than pressure.

Figure 2.5: Collection of datasets demonstrating the effects of (a) pressure and (b) temperature on
the diffusivity of different gases and cations in magmatic melts. The effects of tempreature are more
pronounced, with the value of the diffusion coefficient increasing with temperature. References for the
datasets are given in a table in Appendix I.

A further observation from diffusion data for magmatic melts is that diffusivity and
viscosity of the melt are linked. This was first described by the Stokes-Einstein equation,
and subsequently refined to give the Eyring equation,

D =
kT

µl
(2.26)

where l is the jump distance of an oxygen atom, k is the Boltzmann constant, T is temperature
and µ is the viscosity of the melt (Glasstone et al., 1941). It shows that at a given temperature,
a gas species will diffuse faster through a lower viscosity melt than a higher viscosity melt.
Past hypotheses attribute this to the control that Si – O bond networks have on viscosity
(see 2.3.1.2) and therefore it is harder for a species to move between molecules in highly
polymerised viscous melts than in depolymerised melts where fewer Si – O bonds are present.

However, work by Oishi et al. (1975) and Henderson et al. (1985) show that diffusion-viscosity
data for both natural and manufactured glasses deviate from the Eyring model at a certain
temperature so that the value of D becomes much higher than that predicted by the model.
Figure 2.6 shows a collection of data from diffusion studies in natural gas-melt systems
showing this same trend. Oishi et al. (1975) described this deviation point, to be when the
melt ‘super cools’ towards a solid state.

Analysis by Dingwell (1990) instead suggests that the deviation arises due to the relative
timescales of viscous relaxation (glass transition) and diffusion, and how these relate to the
jump frequency of oxygen within the Si – O bonding network. At lower temperatures (higher
µ), diffusion is faster than that of the Si – O network, leading to a deviation from the Eyring
model. At higher temperatures (lower µ), the timescales of relaxation and diffusion are much
more similar, resulting in the convergence of data with the Eyring line.

The significance of a viscosity-diffusivity relationship to this study is limited to the determi-
nation of D values for different fluid viscosities during experimental planning and numerical
simulations. However, it is important to highlight the inter-play between the different pa-
rameters of bubble-melt systems in order to build a holistic view of the impacts that volatile
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Figure 2.6: Datasets showing the link between the value of diffusion coefficient and melt viscosity.
In line with the Eyring equation, increased viscosity results in decreased diffusion however data points
deviate significantly from the lines modelled for a rhyolitic obsidian and basalt using Equation 2.26.
References for the datasets are given in a table in Appendix I.

resorption could have.

2.3.2 Analogue Materials

Volcanological studies frequently use data from scaled experimental analysis to validate
numerical models built from underpinning theory. This requires the careful selection of ana-
logue materials to ensure the laboratory scale system remains in the correct dimensionless
regimes (see section 2.1).

For studies investigating the dynamics and interactions of magmas and exsolved gas bubbles,
highly viscous analogue materials are typically used to replicate the magma phase. Whilst
having lower viscosities than a natural magma, the use of these analogues in smaller scale
setups ensures the system sits within low Reynolds and Eötvös number regimes, and that
the density ratio remains low (Kavanagh et al., 2018). Under these conditions, viscous and
surface-tension forces will dominate, and spherical rising bubble phases can be generated.

There are two main groups of analogue materials to replicate magmatic melts, manufac-
tured silicate glass (eg. Zhang, 1999; Jackson et al., 2022), which requires experimental pro-
cedures to be carried out at high-temperatures and high-viscosity oils or syrups (eg. Llewellin
et al., 2002; Mathieu et al., 2008; Spina et al., 2016b) which allow the correct system regimes
to be accessed at room temperature.

In the remainder of this chapter, some of these analogue materials are introduced in more de-
tail, and specific properties and parameter laws explored. This work accompanies subsequent
experimental work presented in this thesis which makes use of such analogues.

2.3.2.1 Manufactured Silicate Glass

Manufactured silicate glass melts, also referred to as silicate glasses or synthetic melts are
beginning to be used for an increasingly wide range of volcanology studies. These include in-
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vestigations into diffusion (Zhang, 1999), solubility (Zhang, 1999; ?), viscosity (eg. Dingwell
and Virgo, 1988; Wadsworth et al., 2022) and more general magmatic fluid-dynamics studies
(Jackson et al., 2022). Originally produced for industrial or artistic use, these glass melts pro-
vide a very close analogue to natural silicate melts due to their silica-based bonding structure,
resulting composition, high viscosity and temperature-dependant material properties.

Figure 2.7a displays viscosity-temperature relationships for several different manufactured
glasses, which all follow unique Arrhenian laws, similar to natural melts. A specific example
for the soda-lime-silicate glass Spectrum System-96 (Jackson et al., 2022) demonstrates this
similarity of silicate glass viscosity laws to those for magmatic melts (eg.Eq.2.19).

log |µ| = −4.10 +
5700

(T − 430)
(2.27)

Conducting experiments in glass at elevated temperatures so that they are molten provides
a better replication of real volcanic settings. Furthermore, melt viscosity can be easily and
significantly changed by altering the experimental temperature within a single order of mag-
nitude, allowing a large range of melt conditions to be recreated.

Manufactured glasses and melts have the additional similarity to magmatic melts of compo-
sition; dominated by SiO2 content and the degree of Si – O bonds in the network. The exact
glass composition can be altered during production to be saturated or depleted in different
species. As a result, reactive or mass-transfer processes can be incorporated into experimental
analysis by selecting the correct composition of glass (eg. Pereira et al., 2020; Pigeonneau
et al., 2010). Figure 2.7b shows log |µ|-log |D| relationships for some manufactured glasses,
demonstrating that diffusion of gaseous species is observable and that the rate diffusion varies
with viscosity in a similar way to natural silicate melts.

Figure 2.7: Datasets showing the link between (a) melt viscosity and temperature, and (b) melt
viscosity and diffusivity for various manufactured silicate glasses. Similarly to magmatic melt, viscosi-
ties can vary dramatically in response to small temperature increments. References for the datasets
are given in a table in Appendix I.

In Chapter 4 of this thesis results from studies using glass-based analogues are discussed in
relation to the case of non-resorbing decoupled bubbles in magmatic melt systems.

2.3.2.2 Golden Syrup

Despite being more distinctly removed from magmatic melts in terms of chemical and
structural make-up, golden syrup, honey and other glucose-based syrups are widely accepted
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experimental analogues for recreating observations of volcanic systems on a laboratory scale.
In particular, golden syrup has been used to simulate scenarios such as the geometries of
magma intrusions (Mathieu et al., 2008; Poppe et al., 2019), multi-phase magma rheologies
(Mueller et al., 2011; Truby et al., 2015; Llewellin et al., 2002) and lava dynamics in flows,
conduits, and lakes (Castruccio et al., 2010; Beckett et al., 2011). Golden syrup is a mixture
of sucrose and invert sugars diluted to around 20vol.% with water Ed Thesis REF. It’s
structure is dominated by C - O - H bonding which acts in a similar way to the Si - O
bonding in a magma. This composition and bonding structure lead to material properties
that make golden syrup popular as an analogue, including its translucency, Newtonian fluid
properties and the ease with which its viscosity can be altered through dilution or temperature
change.

As with natural silicate melts, the viscosity of golden syrup has an inverse relationship with
temperature, driven by the thermally-induced breakdown of the C – O – H structure and
increase in internal energy. Viscosity can also be reduced by further dilution with water; a
process more suitable for laboratory-scale analysis where temperature control isn’t possible
or would have other unwanted effects on the system (Beckett et al., 2011; Baker et al., 2004).
Figure 2.8 shows viscosity data for readily available Tate & Lyle golden syrup alongside data
from some different glucose-based syrups which have a very different chemical make-up. This
highlights how viscosities are affected by both temperature and dilution, but also how there
is great variation between syrup types.

Figure 2.8: Viscosity variance with temperature for several sugar syrups at different dilutions.
Glucose syrups have a different bonding structure to golden syrup which is a sucrose-based syrup,
which is reflected in the viscosity-temperature trend. References for the datasets are given in a table
in Appendix I.

In Chapter 6 of this thesis golden syrup is used to observe mass transfer of gaseous
species during bubble rise on a laboratory scale at standard temperatsures and pressure. The
results from these experiments are then extended to discuss decoupled bubble resorption in
natural magmatic melts and the implications of this.
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Hypotheses

Following a review of previous literature on magmatic bubble systems and the fluid dynam-
ics underpinning the study bubbles and bubble resorption in highly viscous fluids, hypotheses
on the work in this thesis can be set out. Taking into consideration the two different numerical
definitions of Péclet number, the ability for diffusive mass trasnfer to occur in systems where
there is sufficient solubility or concentration gradient, and the ablility for bubbles to be either
coupled or decoupled with respect to the fluid surrounding them, it is hypothesised that:

1. The suite of dimensionless Péclet numbers can be used to describe different types of
bubble system in respect of whether they are able to undergo resorption and what
drives that resorption. The dimensionless Stokes number can be used to describe if a
bubble and surrounding fluid are coupled or decoupled. Combining the use of Péclet
number and Stokes number, systems where bubbles may be coupled or decoupled in
addition to udergoing resorption or not will be able to be described.

2. Two further definitions of Péclet number can be used by considering the different types
of advection: the movement of melt inwards around a shrinking bubble (melt shell
response) or the movement of melt around a rising bubble (bubble rise). These will be
the stationary and buoyant Péclet numbers, Pes and Peb respectively.

3. For systems described by stationary Péclet number:

o High values define systems where diffusion occurs slower than the melt shell response,
so the bubble will resorb at the rate of diffusion.

o Low values define systems where diffusion occurs faster than the melt shell is able
to respond, leading to overpressure in the bubble and the sudden collapse of bubbles
following removal of the gaseous species via diffusion.

4. For systems described by buoyant Péclet number:

o High values define systems where bubbles rise much faster than the gas is able to
diffuse, leading to less diffusion and resorption as the bubble is in contact with melt for
a shorter period of time.

o Low values define systems where bubbles rise much slower than the rate of gas diffusion,
so that bubbles resorb faster as they are in contact with melt for longer.
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5. In systems described by Peb, there will be a point at which bubble buoyancy is so small
in relation to the melt that it can be considered as effectively stationary with no rise
velocity. At this point Pes would provide a better description of the system.

6. Each value of Péclet number is unique to a systems as a result of the gas and fluid
present. These unique values help define a specific system regime in which a bubble will
have a specific behaviour. There will also be limits to each of these regimes, occurring
at specific value of Peb or Pes.

7. There will be four major types of bubble regime that are dependent on the degree of
diffusive mass transfer and bubble-fluid coupling:

o Stationary, non-resorbing – no significant mass transfer in a coupled system

o Stationary, resorbing – significant mass transfer in a coupled system

o Buoyant, non-resorbing – no significant mass transfer in a decoupled system

o Buoyant, resorbing – significant mass transfer in a decoupled system

8. Further dimensionless analysis of bubble radius evolutions with time using different
normalisations will highlight the onset of different system limits as well as enabling the
transition between systems where resorption is dominant or not to be identified. It is
initially thought that this transtition will occur around a Péclet number of 1.

9. Applying conditions for various volcanic systems will produce a spectrum of different
Péclet number values that will allow for interpretation of the effects that limit or enhance
bubble resorption in natural system.

3.1 Graphical Hypothesis

To provide a visual representation of the four major types of bubble regime that are
hypothesised, and their relation to one another in terms of Péclet and Stokes numbers, a
graphical hypothesis is devised. This shows the expected relative values of Peb, Pes and Stk
at which different bubble regimes will be found.
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Figure 3.1: Image representing a graphical hypothesis of the four different major bubble regimes.
These are displayed in relation to one another in terms of Stokes and Péclet number. The relevant
chapters exploring each of the different regimes is also displayed.

50



Non-Resorbing Bubble Systems

This chapter explores bubble-melt interactions in systems where significant mass transfer
does not take place, meaning bubbles undergo growth or shrinkage rather than resorption.
Such systems can occur in two main ways, (1) when the timescale of diffusion is significantly
greater than the timescale of advection, or (2) when the bubble and melt are in chemical
equilibrium so there is lack of a concentration gradient. In the latter case, no mass transfer
would occur as there would be zero potential for the gas species to move into the melt.
However in first case, transfer of mass between the bubble and melt may still be occurring
but over such a long timescale that it is negligible compared to any advection of the bubble
due to buoyant rise or pressure-temperature-controlled growth.

In the majority of this thesis, a general assumption is made that system conditions are isobaric
and isothermal so that changes to bubble size result only from mass transfer. However, in this
chapter, some non-isothermal and non-isobaric cases are discussed to demonstrate the controls
that act on bubble systems where mass transfer is negligible. These changing conditions are
applied to the two endmember cases of coupled and decoupled bubbles in systems where mass
transfer is negligible.

4.1 Coupled Bubbles

In addition to sitting in a low-Stokes number, coupled regime, bubble-melt systems may
also be subject to conditions that result in little to no mass transfer.

Considering this in the context of Péclet number regimes, the coupled nature of the systems
means they are described by the stationary Péclet number Pes, with the advective timescale
referring to the melt shell response timescale for the viscous relaxation of the bubble wall, λv
(see 2.2.2.1). In a system where λv is significantly shorter than λD so that there is little to
no mass transfer, bubble size will be solely controlled by the pressure or temperature of the
system as the fixed quantity of gas in the bubble expands or contracts in response, and the
surrounding melt advects to accommodate it. These types of pressure-temperature controlled,
coupled systems are described by very large values of Pes as λD →∞ relative to λv.
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4.1.1 Pressure-Temperature Controlled Bubbles

Gas bubbles will expand or contract in accordance with an equation of state such as the
ideal gas equation. This highlights the proportionality of gas volume to temperature, T and
inverse proportionality to pressure, p. Using this equation, the equilibrium radius, R∞ of a
spherical gas bubble under any conditions can be determined as,

R = 3

√
3nRgT

4πp
(4.1)

where Rg is the gas constant and n the number of moles of gas in the bubble, taken to be
fixed when there is no mass transfer.

The effects of pressure and temperature in high Pes systems can be demonstrated using a
numerical model for stationary bubble growth (Coumans et al., 2020) (see Chapter 5). Ap-
plying a very low diffusivity (O(10−20)m2s−1) to replicate negligible mass transfer conditions,
means pressure and temperature responses become the only things simulated by the model,
reducing its functionality to an iterative solver of Equation 4.1. More complex applications
of the stationary bubble growth model are set out in Chapter 5 alongside a more detailed
description of its design.

Input conditions are set to simulate shrinkage of a water vapour bubble in rhyolitic obsidian
from Krafla, Iceland. Testing the model with isothermal-isobaric conditions shows that there
is no bubble shrinkage when mass transfer is negligible and temperature and pressure are
constant (Fig.4.1a). Applying a sudden temperature drop at fixed pressure results in bubble
shrinkage in line with the ideal gas equation (Fig.4.1b) as the rapid cooling causes gas in the
bubble to contract resulting in a new, smaller equilibrium radius. Bubble shrinkage is also
observed by applying a sudden pressure increase at a fixed temperature (Fig.4.1c), causing
the gas bubble to contract to a smaller equilibrium radius, again in-line with Equation 4.1.

Figure 4.1: Outputs from the bubble growth model (Coumans et al., 2020) showing how in systems
where there is no mass transfer, bubbles can shrink as a result of pressure or temperature changes.
(a) Constant conditions result in no changes to the bubble. (b) A sudden drop in temperature or (c)
a sudden increase in pressure causes contraction of the bubble to a smaller equilibrium radius in line
with the ideal gas law.
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4.2 Decoupled Bubbles

The opposing endmember case to coupled pressure-temperature-controlled bubbles is high-
Stokes number systems where the bubble is decoupled from the melt.

In this case is described by the buoyant Péclet number, Peb as a relative velocity between the
bubble and melt means the advective timescale instead describes the buoyant rise timescale
λb (see 2.2.2.1, Eq.2.16). Bubble rise timescales are principally determined by the terminal
rise velocity (TRV) of the bubble, which is in turn affected by parameters such as bubble
radius, or material densities and viscosities (Eq.2.15).

Where decoupled systems also experience negligible mass transfer, they will be described by
high values of Peb, as λD will be significantly longer than λb. Large radius bubbles moving
through low density and viscosity melts will have the highest Peb values, tending towards
infinity. Smaller radius bubbles moving through denser, higher viscosity melts will have lower
Peb values until eventually the melt shell response timescale becomes more limiting than the
response to buoyant rise. Therefore, at low values of Peb, there is a transition towards a
coupled-style regime more suitably described by Pes.

4.2.1 Bubble Rise in Isothermal-Isobaric Conditions

Under isothermal and isobaric conditions, many parameters of a decoupled bubble-melt
system can be considered as constants, including the viscosities and densities of the gas and
melt. Therefore, TRV and by extension λb and Peb of a given system at a fixed temperature
and pressure will vary only with the initial bubble size.

These controls on bubble TRVs have been determined from experimental studies conducted
in high-viscosity fluids (Jucha et al., 1982; Hornyak and Weinberg, 1984; Li and Schnei-
der, 1993), result from which have enabled the experimental validation of the Hadamard-
Rybczynski (H-R) solution for isothermal conditions, which underpins the definitions of λb
and Peb.

Jucha et al. (1982) used a novel transparent furnace system to observe the rise of air bub-
bles in boron-silicate (borate) glasses at several different temperatures. This altered the glass
properties for each run, resulting in varying bubble rise velocities, demonstrating that TRVs
are highly dependent on glass melt viscosity. Furthermore, their results confirmed that the
bubble rise motion is better described by the Hadamard-Rybczynski solution than the pre-
viously used Stokes solution. Hornyak and Weinberg (1984) used a different experimental
system to produce similar observations but this time between bubbles of oxygen, CO2 or air
a soda-lime-silicate glass melt. Their results again confirm that the evolution of bubble rise
is best described by the H-R solution compared with the Stokes solution (Fig.4.2a). The
final study by Li and Schneider (1993) measured the rise velocities of helium bubbles in high-
viscosity oils using a computerised detection system to track the bubble movement through
the melt. This added a further dataset of evidence to support the use of the H-R solution to
describe bubble motion in high-viscosity fluids (Fig.4.2b).

Figure 4.2 displays a selection of results from these past studies highlighting the excellent fit
of the H-R solution for bubble rise in isothermal, isobaric, low Reynolds number systems, as
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well as confirming the key control that temperature and bubble size has on TRVs. Therefore,
by extension, these, along with pressure that would also affect viscosities and densities, can
be confirmed as major controls on λv and by extension the value of Peb for decoupled systems
with limited mass transfer.

Figure 4.2: A selection of data from past observational studies of non-resorbing bubbles rising in
isothermal-isobaric (a) soda-lime-silicate glass melt, and (b) high viscosity oil. In both cases, the data
across a range of bubble radii are better described by the Hadamard-Rybczynski solution than the
Stokes solution.

4.2.2 Bubble Rise in Non-Isothermal-Isobaric Conditions

Under conditions where temperature and pressure are not constant with time, the pa-
rameters of the gas-fluid system that were previously considered as constants (µ, ρ, and R),
will now vary. A study on the effect of non-isothermal conditions on TRVs Jackson et al.
(2022) used an integral form of the Hadamard-Rybczynski equation (Eq.4.2) to account
for temperature-related changes to melt density, viscosity, and bubble radius, to find bubble
position over time.

x =
g

3

∫ t

0

R2∆ρ

µ0
, dt (4.2)

This solution was tested against experimental data collected from the entrapment of air bub-
bles in soda-lime-silicate glass. Various heating and cooling cycles were applied to the system
to generate different non-isothermal conditions, with the integral solution providing a better
description of the observed bubble motions than if isothermal conditions were assumed.

Therefore, this study further confirms that µ, ρ and R are all key controls on TRVs in high-
viscosity melts and that TRVs can change in response to changes in system conditions. By
extension, the findings of this study suggest that in non-isothermal or non-isobaric systems,
the values of λv and Peb may change in space or over time such that systems may fluctuate
between dynamic regimes. This additional complexity is not analysed further in this study
but is included here for consideration and discussed again in Chapter 7.
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4.3 Implications for Volcanology

4.3.1 Coupled Systems

There are several plausible volcanic settings where coupled bubble-melt systems may
exist without significant mass transfer. Firstly, bubbles moving rapidly upwards through a
conduit coupled to a low viscosity basaltic melt. The bubbles would experience changes in
size controlled only by pressure or temperature variation, as the rate of diffusive mass transfer
would be significantly slower than that of the melt shell response to the expansion of the gas
in the bubble. This setting would be defined by high Pes values.

A second setting, more akin to a system where the bubble and melt are both stationary,
concerns bubbles sitting within a volatile-saturated, cooling rhyolitic lava. In this case, there
will be little to no diffusion of the gas species into melt, meaning despite its high viscosity,
the melt shell response around the cooling, contracting gas would be relatively fast. This
high Pes setting would produce magmatic material with entrapped bubbles and a noticeable
absence of the diffusive haloes observed in studies by Watkins et al. (2012) or McIntosh et al.
(2014) for resorbing bubbles.

As Figure 4.1 demonstrates, in high Pes systems, changes to the system conditions appear
to be a much greater control on bubble size. In a volcanic setting where pressure varies with
depth and conduit temperatures are in constant flux, understanding how bubbles respond and
how these responses might act to enhance or limit an eruption is paramount.

4.3.2 Decoupled Systems

Despite there being no direct measurements or observations of bubble rise velocities in
magmatic melts, results from studies using suitable analogues of oils and silicate glasses
have been able to describe TRVs well using forms of the Hadamard-Rybczynski solution.
Future work could aim to better this by measuring bubble rise more directly in magmatic
material. For this, the preparation technique employed by Wadsworth et al. (2022) could be
combined with the non-isothermal methodology adopted by Jackson et al. (2022) and to make
direct observations of bubble rise in non-analogue melts. This would provide comprehensive
validation of the H-R equation to describe bubble rise directly in magmatic melts; but even
without this, the collection of past work is sufficient to justify the use of the H-R solution to
generate an expression for the characteristic bubble rise timescale, λb (Eq.2.16) used here to
calculate the buoyant Péclet number of decoupled bubble-melt systems.

High-Peb, decoupled systems where no significant mass transfer takes place are plausible in
volcanic settings. One such setting is where small bubbles sit within an ultramafic melt where
melt viscosity is very low. As a result, the bubbles would rise very rapidly relative to the
melt, enhancing processes such as fragmentation which result in fountaining, Hawaiian-style
eruptive behaviours.

Another plausible setting for decoupled, non-diffusive bubble rise is where the surrounding
melt is saturated. Here, even in very high-viscosity silicic melts, bubbles would have a buoyant
rise timescale shorter than that of the diffusive timescale due to the lack of volatile concentra-
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tion gradient. Coupling this with non-constant temperature-pressure conditions, unreactive
bubble rise could occur in settings such as lava lakes or cooling lava flows where temperature
or pressure vary with time and space.
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Coupled, Resorbing Bubble Systems

In this chapter, systems where diffusive mass transfer is no longer negligible begin to be
introduced, with coupled bubbles resorbing into the surrounding melt. The bubbles in these
low Stokes number (Stk << 1) systems can be considered as stationary relative to the melt
such that any reference to advection is to viscous relaxation rather than buoyant rise.

The stationary Péclet number (Pes) is used to describe the regimes of these coupled resorbing
systems with λD as the diffusive timescale and λv as the advective timescale for viscous
relaxation of the melt around the shrinking bubble. Variations in the conditions of the system
will result in variations to both λD and λv and as a result, the value of Pes. Therefore, this
type of system no-longer represents an endmember scenario and instead a whole spectrum of
different Péclet numbers depending on whether the diffusive or viscous timescale is dominant.
This range of Pes equates to different bubble-melt dynamics as parameters of the systems
such as viscosity, diffusivity, or solubility change. As a result, the evolution of bubble radii
over time will vary from system to system as either diffusion or viscosity act to limit the
resorption and the degree of bubble shrinkage.

In this chapter, observations of coupled bubble resorption are briefly discussed before
more numerical analysis is presented using an adaptation of a model for bubble growth and
shrinkage. Simulations of bubble resorption from this model are used to highlight the different
Péclet number regimes as well as the onset of the viscous and diffusive limits. Solutions for the
evolution of bubble radii with time at and between these limits for any given coupled gas-melt
system are also set out. Finally, the significance of these findings for natural systems such as
basaltic or rhyolitic melts is discussed to demonstrate the application of this non-dimension
analysis to wider settings.

5.1 Previous Observations of Stationary Bubbles

Central to this chapter of work is a previous study by Coumans et al. (2020) in which a
numerical model for bubble growth is presented. Alongside the numerical model (see section
6.2), they give experimental observations of stationary bubbles changing size as a result of
mass transfer.
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They monitored the porosity of rhyolitic obsidian samples from Hrafntinnuhryggur, Krafla
(Iceland) following heating at a constant rate to a hold temperature between 930 − 1000◦C
under isobaric conditions. Over the course of the experiments, an increase in the gas volume
fraction (φ) of the samples was observed. This occurred as a result of H2O transfer from the
melt, leading to bubble growth, even when corrected for expansion due to the temperature
increase. The rate of growth appeared vary over time, starting off slow before accelerating
in response to the increase in temperature which would as have reduced the viscosity of the
surrounding melt. As the samples reached the hold temperature, the rate of volume change
slowed again as the bubbles reached an equilibrium state under the constant conditions.

Coumans et al. (2020) highlight the similarity of these findings to Ryan et al. (2015) who
also investigated H2O mass transfer in obsidian, observing an increase in gas volume fraction
following the heating of the same Hrafntinnuhryggur rhyolitic obsidian at a constant high
temperature. They however attribute the additional observation of the varying growth rate
to be significantly controlled by the changing viscosity of the surrounding melt, given the
correlation of growth rate to the changes in temperature over time.

Alongside their new experimental observations, Coumans et al. (2020) compile data from
decompression experiments where pressure is changed under isothermal conditions (Burgisser
and Gardner, 2004; Mourtada-Bonnefoi and Laporte, 1999; Hamada et al., 2010). Each
experiment exposed various rhyolite samples to reduced pressures at a fixed temperature,
measuring the initial and final gas volume fraction to estimate bubble growth. Under these
conditions, changes to the gas volume fraction were concluded to occur principally as a result
the equation of state for H2O, increasing as the pressure is decreased. Furthermore, results
from Burgisser and Gardner (2004) where the samples underwent an isobaric quench at the
end of the experiment provided further supporting evidence for the control of viscosity on
bubble growth, as gas volume fraction reduced during the rapid decrease in temperature.

This work is appropriate to review here as it discusses mass transfer processes in natural
magmatic melts, however, the work mainly focuses on bubble growth and doesn’t discuss the
possibilities of bubble shrinkage or resorption to a very large extent.

A second previous work on stationary bubbles by Doremus (1960), presenting experimen-
tal observations from Greene and Kitano (1959), instead focuses on bubble shrinkage but in
molten glasses rather than naturally occurring melts. Given that molten glass is an appro-
priate analogue for magmatic material (see Section 2.3.2.1), results from this study are
appropriate to present here and provide evidence for diffusive mass transfer leading to the
resorption of a gas species into surrounding melt, and the shrinking of a bubble phase.

Greene and Kitano (1959) monitored individual millimetre-scale oxygen bubbles in borosilicate
and barium-alkali-silica glass melts for several hours to track bubble radius evolution with time
instead of measuring changes to the gas volume fraction of a sample with multiple bubbles.
The transparent properties of the glasses compared to obsidian, and the novel experimental
apparatus developed allowed this to be possible.

The results show that the rate of bubble shrinkage is significantly dependant on the glass used
and the temperature of the experimental run, with bubbles of the same initial radius shrinking
faster when the same glass is increased in temperature. Similarly, to Coumans et al. (2020),
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this can be attributed to reduction of melt viscosity with increased temperatures, which acts
to limit bubble volume change. Furthermore, the results suggest that the rate of bubble
shrinkage varies depending on bubble size, with the radius of initially larger bubbles reducing
faster than those that were initially smaller.

Overall, these previous works provide a substantial base of evidence for bubble growth and
shrinkage to build upon and better understand. Evidence that such diffusive mass transfer
processes can take place in both naturally occurring and analogue melts warrants investigation
of the physical laws and relationships that control mass transfer and the resulting bubble
volume change, as well as the system parameters that act to control these changes.

5.2 Modelling Bubble Radius Evolutions

The past works of Coumans et al. (2020) and Doremus (1960) also present models for
bubble radius evolutions over time which they test against the experimental data collected.
Doremus (1960) derives a solution from equations for solute flux, J around the surface of a
sphere, and the concentration gradient between the bubble, bubble wall and distant melt.
Their analytical solution is given as,

R(t)2 = R2
0 − 2Dβt

[
2R0√
πDt

]
(5.1)

where R0 is initial bubble radius, D is the diffusion coefficient, and β takes the form of a
concentration gradient.

Comparison of this solution to the experimental data from Greene and Kitano (1959) (Fig.5.1)
shows that it provides a good fit for bubbles in the barium-alkali-silicate glass and for bubbles
in the borosilicate glass at lower temperatures. At higher temperatures, the solution matches
well for the initial evolution of bubble radius but deviates away from the observed data with
time. Greene and Kitano (1959) originally attribute this to the presence of a secondary gas
in the bubble that doesn’t diffusively transfer in the glass melt or diffuses at a much slower
rate than the oxygen. Therefore, this secondary gas remains in the bubble phase after the
oxygen has been removed, limiting bubble shrinkage beyond a certain radius.

Doremus (1960) alternatively suggests that the size of the glass rods used were too small to
accommodate all of the oxygen mass from the bubble. As a result, the concentration gradient
between the bubble and distant melt would decrease over time as oxygen is transferred and
diffuses throughout the melt. Eventually, the oxygen concentration in the distant melt is
large enough for mass transfer to be significantly reduced and therefore the observed bubble
shrinkage rate is slower than predicted from the solution.

The model by Coumans et al. (2020) is much more comprehensive, starting from a well
understood form of the Rayleigh-Plesset equation which describe the dynamics of spherical
bubble growth as a result of pressure difference between the gas in the bubble pg and melt
p∞, viscous pressure pv and surface tension pressure ps.

p∞ − pg + pv + ps = 0 (5.2)
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Figure 5.1: Experimental data from Greene and Kitano (1959) showing the shrinking of oxygen
bubbles in molten (a) barium-alkali-silicate glass, and (b) borosilicate glass at various different tem-
peratures. The black lines show solutions for bubble radius evolutions modelled by Doremus (1960)
(Eq.5.1). These solutions have the best fit in lower temperature melts and the barium-alkali-silicate
glass, however there is visible variation between the model solutions and observation across all datasets.

They expand upon the terms of this equation by setting out various other governing equations
that would affect the volume change of a spherical bubble in an incompressible fluid where
inertial effects are negligible (low Reynolds number systems). To do this, they define the
bubble as being surrounded by a ‘melt shell’ which can grow or shrink in response to volume
change in the bubble. It is between this shell and the bubble that mass transfer will occur,
and thus it can be said to have a concentration gradient from ci at the bubble wall to c∞ at
the exterior wall of the melt shell that will help to drive mass transfer. For a bubble that
will grow, (ci < c∞) such that mass moves from the melt into the bubbles, whereas for a
shrinking bubble, (ci > c∞) which tends towards zero resulting in the movement of mass from
the bubble into the melt.

Into this melt shell model approach, governing equations for diffusivity, solubility, equation of
state and viscosity are incorporated. Viscosity, µ is of particular significance in their model as
is built to describe the diffusion of water into magmatic melts, which could alter significantly
in viscosity as a result (see 2.3). Therefore, with each timestep of the model, as water is
released into or removed from the melt, its viscosity needs to be recalculated.

Finally, they consider the potential effects of non-isothermal and non-isobaric conditions on
these different governing equations and therefore the bubble radius evolution. This enabled
them to run simulations for conditions such as those they measured experimentally, and for a
wider context, allows conditions more akin to those of a natural volcanic system to be tested.

The model is coded into MATLAB for execution and run through a series of scripts that
ultimately solve a series of ordinary differential equations to integrate their solution for bubble
radius change with time. Different input conditions can be entered such as initial bubble
radius, gas volume fraction, melt density and pressure-temperature profiles. The governing
equations for solubility, diffusivity, viscosity and equation of state can also be changed to be
most specific to the melt and gas being simulated.
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5.3 Simulations of Bubble Resorption & Shrinkage

The outputs of the Coumans et al. (2020) bubble growth code include profiles for bubble
radius and gas volume fraction over time. These give a clear indication as to whether a bubble
is undergoing diffusive growth or resorption.

In the remainder of this chapter, the method used to adapt this code for unique use in this
study is set out, and the resulting simulations presented for analysis. This adaptation of the
code enables bubble radius profiles to be generated for systems where resorption and therefore
shrinkage occur. These simulations help better understand the controls on these processes
and the onset where either viscosity or diffusion becomes the limiting control.

5.3.1 Adaptation of the Model for Bubble Shrinkage

In order to investigate the effects of different parameters on bubble shrinkage, the bubble
growth model needed to be adapted so that the parameters could be changed individually
and systematically. To explore the ‘simplest’ case scenario to start with, the code also needed
to be changed so that parameters such as melt viscosity didn’t change with time during the
model runs. The code was set up using an analogue gas-glass system where it known that
the gas would diffuse well into the glass as its composition is undersaturated in that species.
The well-studied soda-lime-silica glass Cristalica was used as it has a known composition,
and helium was chosen as the gas phase. To incorporate these into the code, the chemical
make-up and density of Cristalica were set as an input, and the molecular mass Mm of water
was changed to that of helium throughout.

Next, the individual laws for solubility, diffusivity, viscosity and equation of state had to be
adapted. The original code was designed so that pressure-temperature-concentration depen-
dant laws for each of these, that would change over time, could be entered. In the adapted
code, the laws for diffusivity and viscosity were changed to be fixed, constant values through-
out the entire run, which allowed for the investigation of the viscous and diffusive limits. The
equation of state was maintained as the ideal gas law (Eq. X) except with the molecular
mass of helium instead of water. The solubility law was changed to be a simple equation
following Henry’s law (Eq.X), where the value of the Henry constant could be changed to
control the ability for the bubble to be completely resorbed or not.

For the other input settings, the system conditions were set to be isothermal and isobaric,
surface tension and the gas volume fraction were given fixed values and the initial bubble
radius could be set to a required length. Therefore, the code could be run for different bubble
radii, different values of viscosity or different values of diffusivity, either in sequence or in
combination.

The time of the simulation for each run completed was extended so that the bubble always
underwent complete resorption. Data for the bubble radius evolution over time was printed
as an output for each simulation along with the exact input conditions to complete further
analysis with.
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5.3.2 Processing Simulation Outputs

Running the code multiple times, each with varying inputs results in a large range of bubble
sizes and systems for which the radius evolutions with time need to be made comparable. In
order to do this, a series of normalisations are carried out on the output radius-time data from
the MATLAB code. These normalisations non-dimensionalise the datasets, enabling radius
evolutions for bubbles of different sizes and for different gas-melt systems to be plotted in a
single dimensionless space.

5.3.2.1 Normalised Radius

Firstly, to make bubbles of different sizes and their shrinkage rates comparable, the radii
need to be normalised. The simplest way of doing this is to divide the radius value at each
timestep of the simulation by the initial input radius to give R̄ , the normalised radius.

R̄ =
R(t)

R0
(5.3)

This means all radius data now starts at a value of one and decreases over time towards zero.
If the bubble is completely resorbed, R̄ will become zero.

5.3.2.2 Diffusion Normalised Timescale

To help identify the onset of the diffusive limit in a bubble-melt system, where diffusivity
becomes the controlling factor, the timescale over which bubble radius is simulated needs to
be normalised. Normalising time to a characteristic diffusive timescale gives t̄D, the diffusion
normalised time,

t̄D =
tD

R2
0

(5.4)

where D is the diffusion coefficient of the gas into melt. t̄D is independent of viscosity,
highlighting how this normalisation helps to show systems where diffusion is the limiting
effect. For systems that sit at this diffusive limit, bubble radius evolutions in dimensionless
space should be the same, regardless of any other changes to the inputs or parameters.

5.3.2.3 Viscous Normalised Timescale

The viscous limit of a bubble-melt system, where viscosity of the melt becomes the con-
trolling factor, can be found using a second normalisation of time. Normalising time to a
characteristic viscous timescale that depends on melt pressure, p0 and viscosity, µ gives the
viscous normalised time t̄v.

t̄v =
tp0

4µ
(5.5)

The independence of t̄v to the diffusion coefficient shows how at this point, viscosity is the
limiting parameter of the system. Similarly to the diffusive limit, systems that sit at the
viscous limit will have the same radius evolution for resorption in dimensionless space.
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5.3.2.4 Capillary Timescale

In systems where surface tension dominates, most commonly when the bubble in the melt
is very small, the capillary normalised time, t̄c may be useful. This normalises time using
surface tension, Γ viscosity and the initial bubble radius.

t̄c =
tΓ

µR0
(5.6)

Using this dimensionless timescale enables bubble radius evolutions for initially very small
bubbles to be compared.

5.3.3 Analogue Simulation Results

In order to test the effects of changing diffusivity, viscosity and solubility on different sized
bubbles, several series of model simulations were completed. This helped to build a better
understanding of how each parameter affected the system and the resulting bubble radius
evolutions. The results shown here are a compilation of the different simulations from each
of these series of tests, selected and combined to give the best demonstration of the findings.

Firstly, results from the analogue gas-glass system on Cristalica and helium are presented.
These represent a ‘simplest case’ simulation where each parameter has a fixed value for the
duration of bubble shrinkage. Viscosity, diffusivity and initial radius were varied sequentially
to generate different bubble radius evolutions (R(t) evolutions). The outputs from the MAT-
LAB code were reduced using the different non-dimensionalisations to give graphs of R̄− t̄D
and R̄− t̄v. An example output is shown in Figure 5.2, which shows R(t) curves for bubbles
of different initial radii with fixed values for µ, D and S.

Figure 5.2: Simulation results from the adapted bubble growth code, run for bubbles of varying
radii in a fixed condition system where µ = 108Pa.s and D = 10−15m2s−1. Each bubble is described
by a different value of Pes indicated by the colour bar and has a unique bubble radius evolution in
(a)dimensional space as well as (b) diffusion-normalised, and (c) viscosity-normalised dimensionless
space. The value of Pes increases from right to left in R̄ − t̄D space, but from left to right in R̄ − t̄v
space.

Figure 5.2 demonstrates how each bubble has a unique R(t) evolution in both dimensional
and dimensionless space. A further observation comes when Pes for each R(t) curve is calcu-
lated from the model inputs. In Figure 5.2, each curve is coloured according to its order of
magnitude value of Pes, showing a trend of increasing stationary Péclet number from left to
right in dimensional space, driven by the factor two proportionality of Pes to R0. There are
also trends in the dimensionless figures, with values of higher values of Pes on the left in dif-

63



fusion normalised space (Fig.5.2b), but on the right in viscous normalised space (Fig.5.2c).

When comparing R(t) curves between simulations of different systems where viscosity
or diffusivity were set to different values, curves with the same order of magnitude of Pes
align in dimensionless space to the exact same curve (Fig.5.3). This leads to the conclusion
that regardless of the input conditions, systems with the same magnitude of Pes have a
unique bubble radius evolution in dimensionless space (ie. R̄(t̄D) or R̄(t̄v)). This presents
the opportunity for the bubble radius evolution for any given bubble and melt to be found as
long as all initial conditions of the system are known.

Figure 5.3: Two simulation outputs from the adapted bubble growth code, for bubbles of the
same initial radius (10−5m) but in systems where viscosity and diffusivity vary. The two systems
are described by the same value of Pes (10−2). (a) Bubble radius evolutions in dimensional space
are different due to the different system conditions. In (b) diffusion-normalised and (c) viscosity-
normalised space, the two simulations collapse to the same result. This demonstrates that these
normalisations of bubble radii and time lead to systems with the same value of Pes having the same
solution in dimensionless space, regardless of the input conditions.

Combining the results from several different simulations so that a much larger range of
Pes is analysed, further observations become apparent (Fig.5.4). Figure 5.4b shows that
in diffusion normalised space, the R̄(t̄D) curves begin to converge to a single solution when
the magnitude of Pes becomes greater than 105. Similarly in Figure 5.4c, the R̄(t̄v) curves
converge to a single solution when Pes has a magnitude less than 105.

5.3.3.1 Diffusive Limit

The collapse for R̄(t̄D) represents the diffusive limit, where diffusivity becomes the limiting
control on the system. Here, regardless of the value of viscosity, initial bubble radius or any
other parameter in the system, bubble shrinkage is controlled chiefly by the value of the
diffusion coefficient. Therefore, Figure 5.4b suggests systems where Pes > 105 will sit in the
diffusive limited regime.

5.3.3.2 Viscous Limit

The collapse of R̄(t̄v) in viscous normalised space represents the viscous limit, where
viscosity becomes the limiting control on a system. At this limit, it is principally the value
of melt viscosity that controls bubble shrinkage over any other parameter in the system. The
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Figure 5.4: Model results combined from simulations where diffusion or viscosity are varied for a
bubble of the same initial radius (10−5m). Curves are coloured according to the value of Pes for that
simulation, shown by the colour bar. (a) In dimensional space, there is overlapping of the data as
the various different input conditions are affecting the evolution of the bubble radius. This provides
evidence that normalisation of the data is required for meaningful analysis to be completed. (b) When
time is normalised to diffusion, the curves align with increasing Pes values from right to left and there
is collapse of simulation curves for systems with values of Pes greater than 105; the diffusive limit. (c)
When time is normalised to viscosity, curves again align but with higher Pes values on the right. The
simulation curves for systems with values of Pes < 105 similarly collapse but this time to the viscous
limit.

curves shown in Figure 5.4c suggest that systems for which Pes < 105 will sit in the viscous
limited regime.

5.3.3.3 Pes Regime Transition Point

Identifying the transition point between the viscous and diffusive limit, and its relationship
to a value of Péclet number can confirmed through further analysis. This is done by taking
the value of t̄D and t̄v at which each bubble has shrunk by half its original value, equivalent
to when R̄ = 0.5. Plotting these values of t̄D0.5 and t̄v0.5 for each bubble against Pes (Fig.5.5)
highlights the transition from a low-Péclet number regime where viscosity dominates and
curves have the same radius evolution in t̄v space, but different in t̄D space, to a high-Péclet
number regime where the opposite is observed.

From the results analysed so far for the analogue gas-glass system, it appears that the tran-
sition point from a low to a high Péclet number regime occurs at Pes. This can be concluded
from both Figure 5.4 and Figure 5.5. As a result, in any remaining analysis of the simu-
lated gas-glass system, high-Pes regimes refer to those where Pes > 105 and low-Pes regimes
to those where Pes < 105.

5.4 Solutions for Bubble Radius Evolutions

These observations of a single unique curve in dimensionless space for both the viscous
and diffusive limits suggests there must be a numerical solution to describe the bubble radius
evolution in these two different regimes. Next, these numerical solutions are derived from
first principles and compared to the results from the model simulations to assess the extent
to which they describe bubble shrinkage.
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Figure 5.5: Analysis showing where the onset of the transition between the viscous and diffusive
limits occurs. (a) The value of t̄D taken when the bubble radius fall to half of the initial value
against the value of Pes for that simulation. At Pes values > 105, t̄D(0.5) has the same value for all
simulations. These bubble systems sit in diffusive limited regime. For systems described by values of
Pes < 105, t̄D(0.5) increases with decreasing Pes. The transition between these two types of behaviour
occurs in the blue shaded region around Pes = 105, indicated by the black dashed line. (b) The value
of t̄v taken when the bubble radius fall to half of the initial value against the value of Pes for that
simulation. At Pes values < 105, t̄v(0.5) has the same value for all simulations, meaning these bubbles
sit in the viscosity limited regime. For systems described by values of Pes > 105, t̄v(0.5) increases with
increasing Pes. The transition between these two types of behaviour is again indicated by the blue
shaded region and occurs around Pes = 105 (black dashed line).

5.4.1 High Pes Systems (Diffusion Limited)

Systems described by high values of stationary Péclet number (Pes > 105) sit in the
diffusion limited regime, where melt shell response is fast enough that the rate of diffusion is
the only factor that determines the rate of bubble resorption. This is most likely due to melt
viscosity being reasonably low. As a result, even if the diffusivity of a gas species is high, the
diffusive timescale λD will be significantly longer than the melt shell response timescale λv,
yielding higher values of Pes that place these systems in a diffusion limited regime.

Complete numerical solutions for the diffusion limited case of coupled bubble resorption
are sparse due to the complexities of the problem. Clift et al. (2005) describe this type of
system as a bubble in a stagnant continuous phase where the velocity can be considered zero
everywhere. They also explain that diffusion can then only occur in the radial direction, with
the diffusing species spreading out into the melt from the spherical surface area of the bubble.
Using this description, Clift et al. (2005) provide an expression for the concentration gradient
of the diffusing gas around a stationary or coupled bubble as,

∂

∂r

(
r2 ∂c

∂r

)
= 0 (5.7)

where r is the radial coordinate and c the concentration of the gas. This is the limiting case
where the diffusivity of the melt, D tends to infinity in, leading to infinitely fast diffusion
compared to melt shell response and thus high Pes values. Therefore Equation 5.7 can be
thought of as a description of the concentration of the diffusing species around a coupled
bubble in a diffusion limited system.
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Secondly, the model previously developed by Doremus (1960) can be thought of as a solu-
tion for bubble radius evolutions in diffusion limited systems (Eq.5.1) as it does not appear
to factor in any effects of the surrounding melt viscosity. Instead, the radius evolution is
controlled strongly by the diffusion coefficient and their factor β which is similar to a concen-
tration gradient. However, this beta factor and its ill-described definition in their work makes
it very difficult to model solutions that could then be compared to the simulations produced
in this study. Furthermore, the data used by Doremus for comparison to their model was
taken from a different previous study (Greene and Kitano, 1959) such that information on
the material properties of the glasses used are missing, making it difficult to normalise the
results or remodel solutions for the inputs of their experiments.

The underpinning theory of diffusion controlled stationary bubble systems is very complex
as highlighted by the lack of solutions developed in previous studies and poor description of
these to data outside of their measured system. As a result, a complete numerical solution
for this regime is not presented in this work. The dynamics of diffusion limited bubbles have
been attempted to be modelled in several other settings outside of those in viscous fluids
(eg. Srinivasan et al., 2003). Solutions such as these could be investigated further in future
work with the aim of adapting them to develop a solution applicable to spherical bubbles
in viscous fluids. The remainder of this chapter instead focuses on solutions for the viscous
limited regime, where there has been a lot more development in the underlying theory allowing
solutions to be derived and tested.

5.4.2 Low Pes Systems (Viscous Limited)

Systems described by a low value of stationary Péclet number (Pes < 105) sitting in the
viscous limited regime are dominated by the melt shell response timescale over the diffusive
timescale. Bubbles in low-Pes systems experience rapid diffusion of their gas species such
that the bubble becomes fully vacated and significantly under-pressured. As a result of this
pressure contrast, the bubble space acts like a vacuum and collapses in on itself. However, the
rate of this collapse is controlled by the ability for the melt shell to respond, itself controlled
by surface tension of the bubble surface and the melt viscosity. These two effects, especially
viscosity, play a key role in determining the length of the advective shell response timescale
(λv). Hence, bubbles shrinking in this type of system are viscous limited.

5.4.2.1 Complete Analytical Solution

Given that pressure contrasts help initiate bubble shrinkage, and viscosity and surface
tension help control the rate of shrinkage in the viscous limited regime, the inertia-free form
of the Rayleigh-Plesset equation (Eq.6.2) is used as the starting point to derive a numerical
solution for the viscous limited regime.

Expanding out the terms for viscous and surface tension pressure, Equation 6.2 can be
written as,

p∞ +
4µ

R

dR

dt
+

2Γ

r
= 0 (5.8)
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where p∞ is the melt pressure, from the assumption that pg is zero in (p∞ − pg). Integration
and manipulation of this equation leads to an expression for R(t) in terms of melt pressure,
viscosity and surface tension.

R(t) = R0exp
(
− tp∞

4µ

)
+

2Γ

p∞

[
exp

(
− tp∞

4µ
− 1

)]
(5.9)

It can be noted here that the exponential term tp∞
4µ is the viscous normalised time from

Eq.6.8. By dividing throughout by R0, Equation 6.11 can be written as a dimensionless
solution for R̄(t̄v).

R̄(t̄v) = exp(−t̄v) +
2Γ

R0p∞
[exp(−t̄v − 1)] (5.10)

A further non-dimensionalisation can be made by considering the pre-exponent pressure term
2Γ

R0p∞
, which is the inverse of a dimensionless pressure p̄. Incorporating this yields a completely

dimensionless solution for bubble radius evolution the viscous limited regime.

R̄(t̄v) = exp(−t̄v) +
1

p̄
[exp(−t̄v − 1)] (5.11)

Testing this full solution against the model simulations from Figure 5.4 shows it provides
a good fit to the simulated results that sit in the viscous regime (Pes < 105) (Fig.5.6). As
expected, the solution does not fit well for results where Pes < 105 as these sit in the diffusive
regime and are better described by the diffusive limit solution.

Figure 5.6: Combined model simulation results (solid lines) from Figure ?? tested against the
complete numerical solution (dashed lines) for bubble systems in the viscous limited regime (Eq.5.9).
All curves are coloured according to the value of Pes for that system, shown by the colour bar. (a) In
diffusion-normalised space, the modelled curves fit well to those with values of Pes > 105. The model
poorly describes the collapsed solution, as expected since this collapse is for the opposing diffusion-
limited regime. (b) The model gives a very good fit to the simulation curves that have collapsed to a
single unique solution for the viscous-limited regime, but a poor fit to curves for systems with a higher
value of Pes. This provides support for a single viscous-limited solution of bubble radius evolutions
in dimensionless spaces (Eq.5.11).
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5.4.2.2 A Solution for Larger Bubbles

Equation 6.13 provides a complete and comprehensive solution for the viscous limit
as both a viscosity and surface tension dependant term are included. A simpler form of
Equation 6.13 could be written just using the viscous term which would be valid for viscous
limited systems where R0 or p∞ are sufficiently large that surface tension effects would be
negligible, captured by large values of p̄.

R̄(t̄v) = exp(−t̄v) (5.12)

Comparison of this solution to the simulations shows it has a reasonable fit to the modelled
results and again describes only those simulations in the viscous limited regime but is visibly
less good than the full solution (Fig.5.7). Deviation from the simulated curves is seen most
dramatically towards the final stages of bubble shrinkage when the bubble radii are becoming
increasingly small and surface tension would play a major role in the behaviour.

Figure 5.7: Combined model simulation results (solid lines) from Figure 5.4 tested against the
numerical solution (dashed lines) for larger bubbles in the viscous limited where surface tension effects
can be neglected (Eq.5.12). All curves are coloured according to the value of Pes for that system,
shown by the colour bar. The results of this solution fit slightly less well than the complete solution
(Eq.5.9) but still give a reasonable estimate of normalised bubble radius evolutions in both (a)
diffusion-normalised space, and (b) viscous-normalised spaces for systems where the values of Pes is
greater than 105.

This simplified solution gives the best fit for bubbles with a radius larger than 10−6m, sug-
gesting this might be a threshold for where bubbles can be considered as large or small.
For bubbles with radii less than 10−6m, the role of surface tension is too significant to be
neglected, but for bubbles with a radius larger than 10−6m, this solution may be appropriate.

Overall, Equation 6.14 is appropriate for finding approximate bubble radius evolutions in
viscous limited systems or for settings where knowledge of the gas-melt system is insufficient
to use the full solution Equation 6.13.

5.4.2.3 A Solution for Smaller Bubbles

A final adaptation of the full solution can be made for systems where the bubbles are
small enough that surface tension is the major control on radius evolution instead of melt
viscosity. For such small bubbles, the gas pressure inside the bubble becomes so great that
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the pressure contrast with the melt tends to zero. As a result, the ∆p term in the Equation
6.2 can be neglected, leaving just the viscous and surface tension pressure terms. Similar
integration and manipulation of this reduced Rayleigh-Plesset equation yields an expression
for R(t).

R(t) = R0 +
Γt

2µ
(5.13)

Normalisation of radius to R0 results in another completely dimensionless solution where Γt
R0µ

is the capillary timescale t̄c from Equation 6.9.

R̄(t̄c) = 1− 1

2
t̄c (5.14)

Testing this solution against model simulations for different bubble radii (Fig.5.8)from shows
it provides a very good fit for bubbles with a radius less than 10−6m, matching the threshold
at which the simplified solution for large bubbles (Eq.6.14) was no longer valid.

Figure 5.8: Combined model simulation results (solid lines) from Figure 5.4 tested against the
numerical solution (dashed lines) for smaller bubbles in the viscous limited where surface tension
effects become dominant (Eq.5.14). All curves are coloured according to the value of Pes for that
system, shown by the colour bar. This solution gives a good fit to curves in both (a) diffusion-
normalised, and (b) viscosity-normalised space for bubbles with an initial radius smaller than 10−6m,
suggesting this is the onset of the surface-tension regime. Bubbles larger than this would be better
described by Equation 5.9 or 5.12

.

To summarise the numerical solutions for low-Pes, viscous limited systems, the complete
numerical solution (Eq.6.13) provides the most comprehensive solution for a wide range
of bubble sizes and system conditions as it accounts for both viscous and surface tension
effects. For larger bubbles (R > 10−6m) or more approximate results, the simplified solution
(Eq.6.14) which neglects surface tension effects is appropriate. For smaller bubbles (R <

10−6m), the simplified surface tension solution (Eq.6.16) gives a good estimation of bubble
radius evolution.
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5.5 Natural Systems Simulations

Having explored coupled bubble resorption and shrinkage for an idealised case using an
analogue glass, the dynamics of water vapour bubbles in natural melt systems is considered,
to see if the same observations are made and the same solutions for radii over time are
applicable. The same model code can be used to do this but with one significant difference
to the analogue system in that the pressure-temperature-concentration dependant laws for
solubility, viscosity, and diffusivity, are reinstated instead of using fixed values. This means
that model parameters such as viscosity adapt to the diffusing water during the time of the
simulation. Initial water content of the melts was set to be very low in order to artificially
ensure that each bubble tested would resorb.

Two endmembers of magmatic melt composition are tested, a basalt and a rhyolite, to see how
the different properties of the melts affects bubble resorption. These properties are altered
by changing the temperature at which the simulation is run. Completing similar analysis to
Section 5.3 will also reveal if bubbles in these melts sit in the diffusive regime, the viscous
regime or across a spectrum between the two.

5.5.1 Rhyolitic Melt

To simulate a rhyolitic system, a rhyolitic obsidian from Hrafntinnuhryggur, Krafla (Ice-
land) (Tuffen & Castro, 2009) was selected to input into the MATLAB code. Solubility
of this melt was modelled using the Liu et al. (2005) solubility model for H2O in wt.%,

S =
354.94p0.5 + 9.623p−1.5223p1.5

T
+ 0.0012439p1.5 (5.15)

with pressure, p in MPa and temperature, T in Kelvin. For the diffusion of the H2O from the
bubble, the simplified diffusion model for rhyolitic silicate melts was used,

D = H2Otexp
[
−18.1 + 1.888p− (9699 + 3626p)

T

]
(5.16)

where p is in GPa, T in K and H2Ot is the wt.% of water (Zhang & Ni 2010). Viscosity of
the rhyolitic obsidian was calculated from the Giordano et al. (2008) model,

µ = 10[A+ B
T−C

)] (5.17)

in which A, B and C are constants unique to the melt composition; A = −4.55, B = 11073

and C = 327.5935. Incorporating these into the bubble growth code allowed bubbles of
different sizes to be modelled in a hot melt (900°C) and a cooler melt (800°C).

Figure 5.9 shows the simulation results for the rhyolitic obsidian melt at 800°C. As with
all simulations using the analogue glass, systems with different magnitudes of Pes have unique
curves in non-dimensional space. In addition, the same collapses are seen at high-Pes for the
diffusive limit and low-Pes for the viscous limit.

An observation that differs for this natural melt simulation is that for very small the curves
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Figure 5.9: Simulation results for bubbles of different initial radii in rhyolitic obsidian melt from
Krafla, Iceland at 800°C. All curves are coloured according to the value of Pes for that system, shown
by the colour bar. The same trends in both (a) diffusion-normalised space, and (b) viscous-normalised
space as those simulations for the analogue glass system can be seen, with higher Pes values on the
left in (a), but on the left in (b). An additional observation is that curves for the smallest bubbles
(R < 106m) do not follow this same trend and in (b) do not collapse to the viscous solution. This
indicates the dominating effects of surface tension for these simulations which results in curves of a
different shape. Similar simulations were also completed at a hotter temperature of 900°C more akin
to an eruptive temperature, but outputs are not shown here.

in R̄− t̄D space have a different shape and no longer have the trend of increasing Pes to from
left to right. Furthermore, in R̄ − t̄v space the curves appear to deviate further to the left
in R̄ − t̄v space, away from the viscous limit. This occurs when bubble radius gets smaller
than 10−6m, suggesting there is a further limit – the perhaps the surface tension limit where
surface tension effects become extremely significant in the bubble dynamics.

To better understand these limits and transitions, the same Pes transition analysis as
Section 5.3.3.3 is carried out, finding the value of t̄D and t̄v when each bubble has a radius
half of its original size. Unlike with the simulated glass system there appear to be two
transition phases (Fig.5.10). The first, occurring around Pes = 105, is the transition between
a diffusive or viscous limited regime. The second, occurring when Pes << 100, aligns with
the deviations from the viscous limit observed in Fig.5.9.

This helps to confirm the presence of a second regime transition as bubbles get increasingly
small (Pes increasingly small) and surface tension effect increasingly significant. It should be
noted here that it is likely this secondary transition would also be observed in the silicate
glass analogue melt if smaller radius bubbles were simulated. It is not likely to be something
unique to natural melts.

Finally, the solutions for bubble radius evolutions in the viscous limited regime are tested
against the rhyolitic obsidian simulation results.

The three different viscous solutions (Eq.6.14, 15, 17) are then tested (Fig.5.11) showing
that the full numerical solution, accounting for both viscous and surface tension effects, gives
the best fit to the resulting curves in the viscous limited regime (Fig.5.11a,b). The simplified
solution for larger radius bubbles has a small window of good fit where bubbles are both
large enough for surface tension effects to be negligible, but small enough for the system to
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Figure 5.10: Analysis showing where the onset of the transition between the viscous and diffusive
limits occurs for bubbles in the Krafla rhyolitic obsidian. Values of t̄D and t̄v are taken when bubble
radius falls to 0.95% of the initial value. (a) t̄D(0.95) against Pes showing that at Pes values ≥ 105,
t̄D(0.5) has the same value for all simulations. These bubble systems sit in diffusion limited regime.
For systems described by values of Pes between 105 and 10−3, t̄D(0.5) increases with decreasing Pes,
before becoming constant again for values of Pes < 10−3. The first transition (blue shaded region)
is that between the viscous and diffusion-limited regimes. The second (orange shaded region) is the
transition between the viscous-limited and surface-tension limited regimes. The same two transitions
are observed in (b) viscosity-normalised space at similar values of Pes = 105 and Pes = 10−3.

still be in the viscous limited regime (Fig.5.11c,d). The most interesting observation here is
that the simplified surface tension solution for small radius bubbles provides a poor fit for
all simulated bubbles regardless of size (Fig.5.11e,f). This suggests that for the natural
melts, the complex interplay of surface tension effects and viscous effect that change as the
gas species is diffusing cannot be captured by this simplified solution.

5.5.2 Basaltic Melt

To simulate a basaltic system, a melt composition of basalt from Kilauea, Hawaii was
implemented into the MATLAB code. Alongside this, the laws for diffusivity, solubility and
viscosity were also changed to be more appropriate for this type of system. The solubility
model from Iacono-Marziano et al. (2012) for H2O in a basalt,

S = exp
[
0.54ln(p)− 2.56 + 0.02

p

T

]
(5.18)

where p is in bars and T in K was used. The diffusion model was changed to be a temperature
and water concentration-dependant model from Zhang & Ni (2010).

D = H2Otexp
[
−8.56− 19110

T

]
(5.19)

For the viscosity of the basaltic melt, a different law from Giordano and Dingwell (2003)
Giordano et al. (2000) was implemented,

µ = 10(−5.9−0.286log|H2O|) +
10775.4− 394.8H2O

T − 148.7 + 21.65log|H2O|
(5.20)

with T in K and H2O in wt.%. Changing the code to run from these laws allowed for water

73



Figure 5.11: Model simulation results (solid lines) for bubbles in rhyolitic melt from Figure 5.9
tested against the three different numerical solutions (dashed lines) for bubble systems in the viscous
limited regime. All curves are coloured according to the value of Pes for that system, shown by the
colour bar. (a-b) The complete numerical solution (Eq.5.9) has a good fit for bubbles in systems
with a value of Pes between 105 and 10−5 (blue and light green curves) in both t̄D and t̄v space. (c-d)
The numerical solution for larger radius bubbles (Eq.5.12) fits well for similar curves, which can
be expected as these sit in the viscous-limited regime where surface-tension effects do not dominate.
(e-f) The numerical solution for smaller bubbles (Eq.5.14) where surface-tension dominates doesn’t
provide a good fit to any of the simulated curves, even for the very smallest bubbles with radii
< 10−6m.

diffusion into a basaltic melt to be simulated at two different temperatures, 1050°C and
1150°C, characteristic of a hot and cooler eruptive temperature. The results from bubble
simulations in the basalt at 1050°C are shown on Figure 5.12.

These display very similar trends to both the analogue and rhyolitic simulations with unique
curves for different magnitudes of Pes. Similarly to the rhyolitic simulations, when initial
bubble radius becomes very small (very low Pes) the curves begin to collapse together in
R̄ − t̄D space and spread out in R̄ − t̄v space again, at a point different to the viscous and
diffusive limits. This can again be attributed to significant surface tension effects and the
onset of a surface tension limit.

Transition analysis finding the value of t̄D and t̄v when R̄ = 0.5 again confirms the presence
of this second limit (Fig.5.13). An observed difference between the basaltic simulations and
rhyolitic simulations is that the transitions occur at higher values of Pes. The viscous-diffusive
transition occurs around Pes = 107, and the surface tension limit around Pes = 103. These
increased values are likely due to the physical properties of basaltic melts, such as lower
viscosity and increased diffusivity. As a result, bubbles in basalts are most likely to sit within
the diffusive regime at higher values of Pes unless the initial bubble radius is very small
(R < 105).

The same solutions for bubble radius evolution are tested against the basaltic simulation
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Figure 5.12: Simulation results for bubbles of different initial radii in basaltic melt from Kilauea,
Hawaii at 1050°C. All curves are coloured according to the value of Pes for that system, shown by
the colour bar. Similar trends in both (a) diffusion-normalised space, and (b) viscous-normalised
space as those simulations for the rhyolitic system can be seen, with higher Pes values on the left in
(a), and on the left in (b), but with deviations in curve shape and collapse for simulations of the
smallest bubbles. This again indicates the dominating effects of surface tension when bubble radius
is less than 106m. Figure (a) shows there is a much smaller window in which bubbles in basaltic
melts sit in the viscous-limited regime, unaffected by either viscosity of the melt, or surface tension.
Therefore, bubbles in these systems are likely to be better described by solutions for the diffusive
limit. Similar simulations were also completed at a hotter temperature of 1150°C more akin to an
eruptive temperature, but outputs are not shown here.

results for various different bubble radii at 1050°C. Comparisons of the simulations to the
three viscous solutions (Eq.6.14, 15, 17) are shown on Figure 5.14. In all cases, the
solutions do not give a very good fit to the radius evolutions in R̄− t̄D space but give a better
description of the viscous limit in R̄− t̄v space.

It could be that basalts are more affected by changes to the melt system during the resorption
of water, such as changes to viscosity, that mean a solution based on just the initial inputs
of the system isn’t appropriate. For the rhyolite, the melt properties remained much more
similar to the initial inputs throughout, meaning this discrepancy between the solutions and
simulations was less apparent.

Further exploration of the implications of these results for natural melt systems is discussed
in Chapter 7. The impacts of the different likely regimes of basalts and rhyolites is also
considered, in particular, the effect on magmatic processes and eruptive behaviours where
bubbles play a key role.
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Figure 5.13: Analysis showing where the onset of the transition between the viscous and diffusive
limits occurs for bubbles in the Kilauea basalt melt. Values of t̄D and t̄v are taken when bubble radius
falls to 0.95% of the initial value. (a) t̄D(0.95) against Pes showing that at Pes values ≥ 107, t̄D(0.5) has
the same value for all simulations. These bubble systems sit in diffusion limited regime. For systems
described by values of Pes between 107 and 103, t̄D(0.5) increases with decreasing Pes, before becoming
constant again for values of Pes < 103. The first transition (blue shaded region) is that between the
viscous and diffusion-limited regimes. The second (orange shaded region) is the transition between
the viscous-limited and surface-tension limited regimes. The same two transitions are observed in (b)
viscosity-normalised space at similar values of Pes = 107 and Pes = 103. The small range of systems
that sit in the viscous limited regime again suggests that the majority of basaltic melt system will be
diffusion-limited instead.

Figure 5.14: Model simulation results (solid lines) for bubbles in basaltic melt from Figure 5.12
tested against the three different numerical solutions (dashed lines) for bubble systems in the viscous
limited regime. All curves are coloured according to the value of Pes for that system, shown by the
colour bar. (a-b) The complete numerical solution (Eq.5.9) only has a good fit for one of the bubble
simulations, in a system with a Pes value of 104 (dark blue curve). This matches observations in
Figure 5.12 & 5.13 that suggest this system sits in the viscous-limited regime. For all other curves,
the fit of this solution is very poor. (c-d) Fit of the numerical solution for larger radius bubbles
(Eq.5.12) is similarly poor, only providing reasonable fit to the curve for Pes = 104 system. (e-f)
The numerical solution for smaller bubbles (Eq.5.14) where surface-tension dominates again only
provides a good fit to simulated curves for the Pes = 104 system. This means the bubble in this
system is small enough to also be well described by the surface-tension limit solution.
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Decoupled, Resorbing Bubble Systems

This chapter explores the final subset of bubble-melt system where both buoyant advection
and significant mass transfer take place, resulting in a simultaneously rising and resorbing
bubble. These systems will occur when neither the timescale of diffusion nor the timescale of
advection is dominant. Instead, the two timescales have a more similar order of magnitude
as the system conditions allow for both diffusive mass transfer of the gas and buoyant rise of
the bubble through the melt with relative ease.

The decoupled nature of these systems means they are in the high Stokes number regime (Stk
>> 1) where the bubble moves freely of the melt. For describing this case, the advective
timescale refers to the time for melt to move around the walls of a rising bubble. Therefore,
λA is replaced with the buoyant rise timescale λb in the definition of Péclet number. As a
result, these systems are described by the buoyant Péclet number Peb. Unlike the endmember
scenarios discussed in Chapter 4, these decoupled-resorbing systems have a spectrum of
Péclet number values extending from Peb → ∞ to Peb → 0 as λA and λD vary with the
material properties of the gas and melt.

Observations of decoupled-resorbing bubbles in molten silicate melts have been made
previously, with a focus on redox reactions between a bubble of oxygen and borosilicate glass
melt. However, these systems are often subject to additional complexities that affect the
dynamics of bubble resorption. In this chapter, new experimental results from a simplified
scaled system using a golden syrup analogue melt are presented alongside the previous results
from glass melts. Péclet number analysis similar to that in Chapter 5 is completed on
the combined datasets, including comparison to numerical solutions for decoupled bubble
resorption.

Finally, results of bubble simulations in magmatic melts are shown as part of a discussion on
bubble behaviours in natural silicate melt systems. Results in section 5.5 have shown that
for natural magmatic melt systems, the buoyant Péclet number regime is only applicable to
basaltic melts, and inappropriate for rhyolitic melts. The size of bubble required for a rhyolitic
melt system to be better described by Peb would be so large that the system would no longer
sit in the low Reynolds number regime, and therefore much of the underpinning theory applied
in this work would no longer be correct. Consequently, simulations are completed solely in
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melts of rhyolitic composition.

6.1 Observations in a Simplified Analogue System

To investigate the ‘simplest’ case for resorption of rising, decoupled bubbles, an experiment
was designed using analogue materials. This ‘simplest’ case experimental system needed to
provide observational evidence for bubble resorption as well as quantifiable results for the
evolution of bubble radius over time but neglect any additional complicating factors to the
bubble-melt system such as mixed gas bubbles or non-isothermal-isobaric conditions. Here,
a description of the system, its design process and user procedure are outlined before initial
results and observations are presented.

6.1.1 Selecting Materials

To select the analogue materials for the gas and melt phases, a scaling approach was
adopted to ensure that (1) the viscosity and other material properties of the melt phase
mean the system sat in the low Reynolds number regime and bubble rise timescales would
be relatively long, and (2) the gas phase was sufficiently mobile in the melt that diffusion
would take place on relatively short timescales. These two points were crucial to consider
as it would make sure that the bubble-melt system didn’t sit in either of the stationary or
the non-diffusive rise regimes. Instead, it was preferable that a suite of experimental runs
could be completed in systems that ranged in buoyant Péclet number by several orders of
magnitude so that varying degrees of bubble resorption could be observed. This could be
achieved by changing the analogue melt used, its temperature, or alternatively by generating
different sized bubbles.

The practical constraints of a laboratory-scale experiment also had to be considered when
selecting the materials for use. For a ‘simple’ case experiment, working at high temperature
or pressures wasn’t preferable as maintaining these at a constant value throughout a sample
of melt may have been difficult and other factors such as convection or pressure-temperature
gradients would have to be accounted for. Therefore, an analogue melt that could be worked
with a room temperature and pressure was required. As set out in Section 2.3.2.2, golden
syrup is an increasingly common small-scale analogue used for experiments investigating mag-
matic processes due to it being manipulable at standard laboratory conditions, inherently low
risk and having naturally very viscous. This means it would provide sufficient resistance to a
rising bubble to ensure the system remained in the low Reynolds number regime for bubbles
up to ∼ 15 cm in diameter. For these reasons, golden syrup was chosen as the analogue melt
phase for the experimental system.

The gas phase chosen had to be able to diffuse into the golden syrup. Since this syrup
diluted to around 80% with water, and the experiments were completed without changes
to temperature or pressure, species such as water vapour were unsuitable. Other common
laboratory gases such as oxygen or helium also presented practical difficulties due to high
flammability or issues with sourcing small enough quantities.

Therefore, another common and readily available gas, CO2, was considered. CO2 is regularly
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dissolved in many sugar syrup-based fluids such as fizzy drink syrups in soda streams among
others (Lv et al., 2018). Pre-experimental calculations (Appendix III) using the material
properties of golden syrup and an estimate for the diffusion coefficient of golden syrup at room
temperature showed that for a suitable range of experimental bubble sizes (0.1 < R < 10

mm), CO2 would resorb on a timescale that would enable a range of Peb systems to be tested.
Therefore, CO2 was chosen as the gas phase for the experimental system.

A summary of the material properties required for both golden syrup and CO2 for standard
laboratory conditions of 298K and 1bar (105 Pa) pressure is given below in Table 6.1.

Molar Mass
gmol−1

Density
kgm3

Viscosity
Pa.s

Diffusivity
m2s−1

Solubility
wt.%

Golden
Syrup 198.17 1437.59 77.55 - -

Carbon
Dioxide 44.01 1.8393 - 1.6x10-9 0.03

Table 6.1: Material properties of golden syrup and carbon dioxide gas under experimental conditions
used in pre-experimental calculations and all post-experimental analysis.

6.1.2 Methodology

The experimental equipment consisted of a gas delivery system that would take CO2 from
a small pressurised cannister via a flow regulator through a series of connecting silicon and
copper tubes into an open cylinder of undiluted golden syrup. Figure 6.1a shows a schematic
of the system used alongside images of the final setup (Fig.6.1b-c). In addition to this, LED
lighting and a camera were set up to take periodic photographs of each bubble as it moved
through the syrup (Fig.6.1d). Photo timings varied between runs (from 10 seconds to 5
minutes) to best suit the size of each bubble and its rise velocity, but the timestamp of each
photo was recorded to ensure accurate analysis of bubble could be made subsequently.

6.1.2.1 Gas Delivery System

The gas delivery system modified the use of a gas recharger typically used for home-
brew beer kegs. The ability to connect small volume pressurised CO2 cannisters using this
and the reasonable sensitive gas release trigger made this device suitable for the scale of these
experiments along with the built-in safety-catch feature. Each gas cannister stored 16g (21cm3

by volume) of 90-99% pure CO2, pressurised to 900psi (REF), equivalent to those used in
commercial kitchen devices or domestic bike pumps. The recharger device connected these
cannisters directly into a gas flow regulator which housed a further valve to vary the rate of
gas flow between 0-0.5 litres-per-minute (LPM) (Fig.6.1c). This valve controlled the release
of gas into the feeder tubes and thus, controlled the size of the bubble injected into the syrup.

Connections throughout the whole of the gas delivery system, from the recharger to the
regulator and subsequent tubes were all sealed with plumbing and PVC tape to ensure an
airtight seal. Once secure, the delivery tubes were flushed with CO2 from the pressurised
cannister to remove air and reduce the likelihood of a mixed-gas bubble being produced. The
copper tube end was then stopped with a small amount of syrup to keep the system flushed
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Figure 6.1: (a) Simplified schematic showing the experimental setup used. Not to scale, the compo-
nents of the gas delivery system and the apparatus used to support the copper piping once submerged
in the cylinder of golden syrup are shown. (b,c) Images showing the gas recharger and flow regulator
for scale and in more detail. The safety catch on the recharger is visible in red and the gas release
trigger in dark grey to the left of (b). (d) Image of the wider experimental set up with the cylinder
of syrup placed in front of a black screen to enhance the images taken by the camera. LED lights
were adjusted onto the apparatus to provide better lighting for the images.

with CO2, before the entire copper tubing section was submerged into a cylinder previously
filled with bubble-free syrup (Fig.6.1d). A small 3D-printed pipe support structure was also
submerged to fix the final pipe position upwards in the centre of the cylinder cross-section.

6.1.2.2 Injecting Bubbles

Once the gas delivery system was submerged in the cylinder of syrup, the setup was left
to settle for several minutes to allow any movement in the syrup to cease before a bubble was
injected. By releasing the safety catch on the recharger and gently pressing the gas release
trigger, CO2 was released into the flow regulator. The control knob on the regulator was then
briefly (∼1s) but carefully turned for allowing a small flow of CO2 through the submerged pipe
until a small bubble formed at the end of the final copper tube. Once free of the tube, the gas
regulator value was turned to closed again and the safety catch on the recharger re-applied.
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At this point, the camera was set to take periodic photos of the bubble until it had risen to
the top of the syrup in the cylinder. For larger bubbles, photos were taken in closer succession
than for smaller bubbles which could take significantly longer to rise the same distance. In
total, ten differently sized spherical bubbles were injected in ten individual experiment runs.
Between every 2-3 runs, syrup held in the cylinder was changed to ensure it wasn’t becoming
oversaturated, and the camera timings reset before the method was carried out again.

6.1.2.3 Measuring Bubble Radii

The set of photographs collected for each experiment were used to determine if the bubbles
had undergone shrinkage from resorption. Observations of this by eye were extremely difficult
to make out due to the very slow rise of the bubbles and the small scale of the experimental
set up. Instead, the photos were used to quantify the bubble radii using scaling to grid. Prior
to the submergence of the gas delivery system in each experiment run, a laminated tab of
mm-scale graph paper was lowered into the syrup down the central plane of the cylinder cross-
section and photographed. This photo formed a base scale over which photos of the bubbles
were then laid. Taking measurements of both the grid and bubble diameter on image-editing
software, then allowed for relative scaling to estimate each bubble size. Use of a grid photo
taken ‘in-situ’ provided a continuous scale for measurement complete with correction for the
effects of parallax and the curvature of the cylinder walls which proved better than trying to
apply a digital grid to the bubble images subsequently.

Figure 6.2 shows how the gridded scale photos were used to measure bubble radii by su-
perimposing them over images of the bubbles during rise. This method was completed for
images from various stages of each bubble experiment, using the appropriate scale image for
that run, to help build an understanding of radius evolutions.

6.1.2.4 Methodology Development & Limitations

The final experimental system and methodology were the result of a series of trial-and-
error tests using different gas flow regulators, tubing configurations and connectors. Some
of the initial connections used were not completely air-tight meaning CO2 gas was escaping
unnecessarily and raised the concern that air might be getting into the system to form mixed
gas bubbles.

The type of flow regulator had to be changed from the original planned design to allow for
much more precise control of gas delivery. This high level of control was required to inject
bubbles into the syrup that were small enough to have a significant residence time in the
syrup and not just rise rapidly with limited time for diffusion.

Another issue encountered was that once a bubble had been released into the syrup, there
would be some ‘back-flow’ of syrup into the copper tubing. This again likely occurred due to
the system not being perfectly airtight. As a result, the tube regularly became blocked to the
point where the pressure of gas released into the tube was insufficient to force out the syrup
and form a bubble. To fix this, the entire section of submerged tubing had to be regularly
removed from the syrup, dismantled, cleaned and reconnected before it could be re-submerged
to inject a bubble again. This was a timely process that markedly increased the lab time for
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Figure 6.2: A selection of images showing how bubble radii were measured using photos of a gridded
scale. (a) Image of the millimetre gridded scale submerged down the central axis of the cylinder of
golden syrup. The horizontal white lines are markers on the outside of the cylinder and provided
a good reference point when matching up the images. (b) Timelapse image (file DSC_7399) from
bubble run 6 where the initial bubble radius was 1.15 ±0.12 mm. (c) Overlain images of the gridded
scale and bubble. Without image alteration and cropping, it is difficult to interpret the bubble size.
(d) Cropped image with alteration to colour and contrast to make both the bubble and scale clearer
for measurement.

each experiment run and limited the number of runs that could be run in any one session.

The method used to measure bubble radii was also developed through trials. Originally,
use of a scale on the outside of the cylinder was the proposed method of measuring bubble
radii, however it soon became apparent that this had a large associated uncertainty due to
distortion from both the syrup itself and the curvature of the cylinder containing it. Therefore,
the submerged scale positioned to where the bubbles were then injected proved a much better
method.

Use of digital image alteration tools allowed the colour, contrast and transparency of the
collected images to be adapted so that the bubble edge and gridded scale were both as clear
as possible during measurement. In some cases, reflections or marks on the glass meant a
measurement of bubble radius wasn’t possible meaning some images had to be disregarded.
There was also still fairly significant uncertainty in the measurements of bubble radii due to
the small scale of the experimental setup and measuring approach used. Nonetheless, bubble
radii could still be measured repeatedly with reasonable accuracy for the required analysis
using this technique.

Despite the limitations, mainly due to the practice required to control the gas input to
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create small bubbles and the required regular clearing of the tubing, the final experimental
set up did allow reproducible runs to be completed with bubbles of different sizes injected
and monitored during rise through the cylinder of syrup. The digital measurement method
still had quite large uncertainties associated with it but provided the most accurate way of
simply measuring bubble radii through time to a reasonable degree of precision.

6.1.3 Results

Measurements made from digital photograph analysis yielded ten independent datasets
for bubble rise distances and radii over time. This data is presented in full in Appendix III.
From these datasets, several different lines of analysis can be completed including estimation
of bubble terminal rise velocities (TRVs), an estimation of CO2 solubility in golden syrup and
analysis of bubble shrinkage due to resorption.

6.1.3.1 Bubble Terminal Rise Velocities

Bubble TRVs can be estimated from the total rise distance travelled during the exper-
iment run. Given the high-viscosity of the golden syrup, it is expected that TRVs should
be reasonably well described by the Hadamard-Rybczynski solution (Eq.2.15), varying with
initial bubble radius. Figure 6.3 shows the experimentally observed TRVs as a function of
initial bubble radius alongside the H-R estimation for a CO2-golden syrup system.

Figure 6.3: Terminal rise velocities (TRVs) of CO2 bubbles in golden syrup against the initial raidus,
R0. TRVs are calculated from the total rise height and rise time. The data points show a good fit
to the Hadamard-Rybczynski solution for bubble rise in high-visocsity fluids (black line) (Eq.2.15).
This assumes there is no effect on TRV from the reducing bubble size as a result of resorption, which
could explain why some of the data lie outside of error with this solution. An integral approach to
modelling bubble rise velocities (Jackson et al., 2022) may be more appropriate for this setting in the
future.

An assumption made in the calculation of these TRVs is that any reduction in bubble size due
to resorption is small enough that on the scale of these experiments, it would not significantly
affect the rise speed. However, in reality as a bubble shrinks it will have less buoyancy and
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therefore rise with a slower velocity through the melt. This simplification could help explain
some of the deviations from the H-R solution in Figure 6.3, and if bubble were monitored
through to complete resorption, these deviations could be even more profound. Nevertheless,
the TRV average across the total rise distance for each bubble is still reasonably well described
by this solution.

6.1.3.2 Estimating CO2 Solubility

Prior to experimentation, the solubility of CO2 in golden syrup had been estimated from
that for water given that 20% of golden syrup by volume is water (see Appendix IV).
Using the data collected and some assumptions, a more direct estimate of CO2 solubility can
be made and compared to the previously assumed value.

To do this, each bubble is considered to have risen through a cylindrical volume of melt with
a cross-sectional radius equal to that of the initial bubble, and a height equal to the total
bubble rise distance. This gives a volume of melt that the bubble would have been in direct
contact with as it rose. The volume of CO2 lost from each spherical bubble is estimated from
the initial and final bubble radii. From there, the moles and mass of both the syrup and gas
are calculated and compared to give a value for solubility in weight percent.

Completing this for each of the ten bubbles observed gives a range of estimates for SCO2

all of which sit around two orders of magnitude lower than those of the original estimated
value from water. The mean SCO2 from the ten measurements is 4x10-4 wt.% compared with
3x10−2 used in experimental planning calculations (Fig.6.4).

Figure 6.4: Estimates of CO2 solubility in golden syrup from the ten observed bubbles. To generate
each data point (blue crosses) the volume reduction of the resorbing bubble and volume of melt
encountered during rise are used to calculate SCO2 in wt.%. Both the mean and median solubility
values found using this method are around two orders of magnitude lower than those predicted from
the solubility of CO2 in the pre-experimental calculations.

This discrepancy could be explained by golden syrup being a mixture of sucrose and invert
sugars which contain carbon within their molecular structure, meaning the ability for the syrup
to accommodate more carbon from CO2 is lower than that for pure water, which previously
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contains no carbon. As a result, it could be expected that the solubility of CO2 in golden
syrup is lower than that in water. However, due to this SCO2 measurement being estimated
from a small number of experimental values via a method using several different assumptions,
the original value of 3x10−2 used in experimental planning calculations continues to be used
in all further analysis.

6.1.3.3 Bubble Shrinkage

Measurements of bubble radius with time were collected for each of the ten experimental
runs using the digital analysis method. Figure 6.5 shows radius evolutions for each bub-
ble complete with the estimated measurement uncertainty. In Figure 6.5b the data been
normalised to each initial bubble radius to allow for better comparison.

Figure 6.5: Datasets collected from ten experimental runs of CO2 bubbles in golden syrup. Data
point colours do not correspond to any other value, just each different dataset. (a) Bubble radii over
time suggest there is some bubble shrinkage occuring. For the smallest bubbles, this reduction is less
definite as over change in the radius does not fall outside of error. However for larger bubbles, reduction
in bubble size is more apparent. the small subplot shows an individual dataset for Bubble Test 2 to
demonstrate that radius change is greater than the estimated errors. On this plot, the datapoint
marked in red is considered erroneous as lighting in the image used to make the measurement made
it difficult to read. (b) Bubble radii normalised to the initial radius of each bubble test to enable for
better comparison between bubble sizes. This suggests that the initially larger bubbles (eg. orange
datapoints) shrink at a faster rate than initially smaller bubbles (eg. blue or purple datapoints).

All bubbles appear to have undergone a small degree of shrinkage, however, there is significant
uncertainty in the data which casts a high level of inclarity to some of the results, especially for
the smallest bubbles. However, for the larger bubbles, reductions in bubble radii fall outside
of the margin of error suggesting that shrinkage is taking place (Fig.6.5a). It could be that
if the cylinder of syrup had been taller, the bubbles would have had a greater rise distance
and longer residence time in the syrup over which to resorb meaning the observed shrinkage
would have been more definite.

A second observation from this initial data is that larger bubbles appear to be resorbing at a
faster rate than smaller bubbles. This mimics observations from previous decoupled resorbing
bubble studies such as Pereira et al. (2020) where the rate of resorption for bubbles rising
under the same conditions appears dependant on the initial bubble size (see Section 6.2).
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6.1.3.4 Bubble Shrinkage Rate

To better analyse if bubble shrinkage rates are dependent on bubble size, radius change
over approximately the first 10 minutes each experiment (dR/dt) is plotted against initial
bubble radius (Fig.6.6a).

Figure 6.6: Different rates of bubble shrinkage for the CO2 bubbles in golden syrup. Data point
colours do not correspond to any other value, just each different dataset as in Figure 6.5. (a) Change
in bubble radius with time, dR/dt plotted against the value of the initial bubble radius for each of
the ten bubbles observed. dR/dt is measured across the first ten minutes of each bubble test. Data
suggests there is a positive trend, with initially larger bubbles having a faster shrinkage rate with
respect to time. The small subplot shows data from Pereira et al. (2020) where the same trend was
observed. (b) Change in bubble radius over the first 100mm of bubble rise plotted against the value
of the initial bubble radius for all ten bubbles observed. In this instance the trend between the two
datasets is less apparent, suggesting that over the same distance, bubbles resorb at a similar rate,
independent of bubble size.

This appears to show a positive correlation between dR/dt and R0 similar to that from
Pereira et al. (2020), shown in the subplot of Figure 6.6a. It might be expected for systems
with larger bubbles, yielding higher Péclet number values would undergo very little diffusive
resorption as high values of Peb indicate that the characteristic advective timescale is much
shorter than the diffusive timescale, and thus rise would be more rapid than resorption.
However, these results appear to contradict this, with initially larger bubbles resorbing faster
than smaller bubbles. In their work, Pereira et al. attribute this trend to larger bubbles
having greater TRVs which results in the chemical boundary layer around the bubble wall
being decreased, enabling faster diffusion. However, it is also plausible that the faster TRV of
these larger bubbles means they encounter more, ‘new’ melt over the same timescale than small
bubbles would. As a result, they are continually rising into melt with a larger concentration
gradient than they were previously in. As a result, gas from the bubble will diffuse at a greater
speed for longer, resulting in more rapid resorption. This is discussed further in Chapter 7.

Fig.6.6b, which shows bubble shrinkage rate over the first 100 mm of bubble rise (dR/dx)
helps to support this hypothesis, as over the same travel distance the degree of resorption
is similar for bubbles of all sizes, with little apparent dependency on initial bubble size.
Therefore, it is due to the faster rate of movement through the melt resulting from the faster
TRV that larger bubbles are able to resorb more in a given time.
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6.1.3.5 Summary of Results

To summarise the experimental data collected for the analogue system of CO2 bubbles
in golden syrup at room temperature and pressure; the rise velocity of all bubbles is well
described by the H-R solution for spherical bubbles in high-viscosity, low Re systems. An
estimation of CO2 solubility as 1x10−3.5 calculated from the initial and final bubble volumes
is within the same order to that estimated from water and confirms that CO2 is soluble in
this system.

Measurements of bubble radii over time suggest resorption is taking place and that larger
bubbles resorb at a faster rate than smaller bubbles, but results are subject to significant
uncertainties due to the small scale of the experiments. Use of a larger cylinder of syrup
could help reduce these uncertainties and would provide a larger rise distance and longer
residence time in the syrup so that more complete bubble resorption might be observable.

It is also possible that there is some contamination of the gas within the bubble resulting
from the air remaining within the tubes of the gas delivery system. As a result, the bubbles
may have a mixed gas composition meaning there is a limit on resorption if one of the gases
in the mixture (such as air) is not soluble in the syrup or diffuses very slowly.

Despite some of these uncertainties and limitations, the suite of experimental data gives an
insight into a simple analogue system for simultaneous bubble rise and resorption. This data
is combined with a collection of existing data for further analysis in Section 6.3.

6.2 Observations in Glass Melt Systems

A series of previous, more complex studies made observations of decoupled bubble re-
sorption in silicate melts and molten glasses. Added complexities included the conduction of
experiments at high temperatures, and the use of mixed gas bubbles prompting other factors
to be considered, such as limits to complete resorption or chemical reactions between the
different gases and melt. Two studies are focused on here: Pigeonneau et al. (2010); Pereira
et al. (2020), both completed from the perspective of industrial glass refinement or ‘fining’,
the process by which bubbles, or gaseous impurities are removed from molten glasses. This
process is vital in the industry of glass manufacturing and other industrial glass-based pro-
cesses such as nuclear waste conditioning. Nonetheless, the results presented support theory
which has much wider applications including the scope of this work.

Pigeonneau produced a series of works (Pigeonneau, 2009, 2011; Pigeonneau et al., 2010)
investigating the resorption of oxygen bubbles in molten glass. They focussed principally on
the problem of decoupled bubbles but also extended to consider reduction-oxidation (redox)
reactions of the oxygen with iron compounds in the glass taking place simultaneously to
diffusion and bubble rise. Alongside experimental results observed at high temperatures,
Pigeonneau developed an increasingly complex numerical solution to describe bubble radius
evolutions with time in a high-visocsity, redox environment. This model is discussed further
in Section 6.4.

Observations of decoupled resorbing bubbles in a glass melt are presented in Pigeonneau
et al. (2010). These observations and measurements of bubble radii over time were made
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using a novel transparent furnace (Kloužek and Němec; Fig.1 in Pigeonneau et al. (2010))
and gas delivery system which allowed millimetre-scale bubbles of oxygen to be injected into
two different compositions of molten soda-lime-silica glass. Bubbles were monitored directly
for several hours through the furnace window and recorded using a video camera to acquire
measurements of radii.

In total, four different bubbles were injected and observed, two in each of the glass compo-
sitions and each one at a different temperature. Collective results for radius evolutions over
time are shown on Figure 6.7, including data normalised to the initial bubble radii for better
comparison (Fig.6.7b).

Figure 6.7: Datasets collected from Pigeonneau et al. (2010) for the evolution of oxygen bubble radii
in two different soda-lime-silicate glasses (Glass 1 & Glass 2). (a) Radius evolutions with respect
to time show that all bubbles are undergoing resorption but towards a plateau rather then complete
resorption. This suggests there may be another non-resorbing gas species present in the bubble. (b)
Bubble radii normalised to the initial bubble radius for each experiment against time, enabling better
comparison. Bubbles in hotter melts appear to resorb faster and bubbles in Glass 2 resorb faster than
those in Glass 1 at the same temperature.

These results show that bubbles resorbed faster in higher temperature melts, and in Glass
1 which had a lower iron content. This confirms the hypothesis of Pigeonneau et al. that
an increased iron content reduces the shrinkage rate of an oxygen bubbles due to the mass
transfer of oxygen controlling the redox of iron; a conclusion significant glass refinement
processes where reagents need to be selected to enhance the removal of bubbles.

A second observation is that the bubble radii appear to plateau towards a non-zero value
described by Pigeonneau as reaching steady-state. Similar to observations from the results
of bubbles in golden syrup in this study, this is attributed to the presence of other gases in
the bubbles, which therefore cannot be assumed to be pure oxygen. Complete resorption
of the bubble is not then observed as either the glass melt is completely saturated in these
contaminating gas species, or the gas has a diffusion rate much slower than the timescale of
the experiment. Pigeonneau considers the behaviour of mixed gas bubbles more in a later
numerical study (Pigeonneau, 2011), including the possibility for one gas species to diffuse
into a bubble whilst another is diffusing out which would also act to limit complete bubble
resorption.

In a more recent work by Pereira et al. (2020) the work of Pigeonneau et al. (2010) is built
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upon but instead with observations of decoupled resorbing oxygen bubbles in borosilicate
glasses. Still focussed on the effects of redox reactions, the glass melts were doped with
differing amounts of a cerium agent to alter redox state and thus the rate of bubble resorption.
A similar experimental set up and digital measuring technique to that of Pigeonneau et al.
(2010) was used but for a much more extensive range of bubble sizes and glass types. In total,
45 bubbles were injected, and radii monitored over time. Figure 6.8 shows a sample of the
collected data to demonstrate some of the key observations.

Figure 6.8: Datasets collected from Pereira et al. (2020) for the evolution of oxygen bubble radii in
borosilicate glass melts with differing quantities of Ce2O3. Five datasets are selected to show the range
of behaviours observed, the names of which correspond to those listed in their work. The number in
each dataset name refers to the wt.% of Ce2O3 doping agent added to the melt. (a) Bubble radii over
time shows that bubbles in all the different glass compositions are undergoing resorption (b) Bubble
radii normalised to the initial bubble radius of each experiment against time shows that bubbles in
melts with a greater Ce2O3 content (increased reduction state) resorb faster than those in melt with a
lower Ce2O3 content. (c) Rate of bubble resorption with respect to time, dR/dt against initial bubble
radius for a single dataset repeated from the subplot of Figure 6.6. Larger bubble appear to resorb
faster than smaller bubbles.

Across all bubble sizes and melt compositions, the experimental observations support the case
that an increased reduction state of the melt enhances bubble resorption due to it increasing
the rate of mass transfer of oxygen. As mentioned previously and observed in the golden-
syrup experiments of this study, a second observation made is that under the same conditions,
initially larger bubbles appear to shrink faster when monitored over the first ten minutes of
rise, than initially smaller bubbles (Fig.6.8c). Pereira et al. attribute this to larger bubbles
having a greater terminal rise velocity than smaller bubbles, which they suggest would cause
a reduction in the chemical boundary layer around these bubbles. This reduced layer would
then enhance the mass transfer of the oxygen leading to more rapid resorption of initially
larger bubbles. Numerically, they explain this as an increase in Péclet number which in turn
would increase Sherwood number, the dimensionless value used to describe the relative rate
of bubble shrinkage in their study. Importantly to this study, this observation matches those
made for bubbles of CO2 in golden-syrup, showing that it appears to be the case across
multiple different gas-melt systems.

To summarise the key observations from these two more complex studies using glass melts,
the rate of bubble resorption appears to depend on (1) temperature, a higher temperature
melt will resorb a bubble at a faster rate; (2) redox state, with more reduced melts resorbing
bubbles faster and (3) initial bubble radius, as initially larger bubbles appear to resorb faster.
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Perhaps the most significant to this work are the effects of temperature and initial bubble
radius as the effects of redox or further chemical reactions fall outside of the scope of this
work. Importantly, observations from these past studies align with those newly presented for
a different gas-melt system in Section 6.1.3.

6.3 Analysis of Combined Experimental Results

Results from this work can now be combined with those from the two existing studies to
create a combined dataset with decoupled bubbles of different gases in various silicate and
non-silicate analogue melts. This larger dataset enables further analysis and discussion using
Péclet numbers to explore possible trends between the different systems and the implications
of any findings to the field of volcanology.

6.3.1 Buoyant Péclet Number Analysis

To start with, the value of buoyant Péclet number is calculated for each individual dataset
using Equation 2.18 before the data is combined graphically (Fig.6.9) and coloured accord-
ing to this value of Peb. Figure 6.9a shows only the new data from this study of CO2 bubbles
in golden syrup. Figure 6.9b shows this dataset combined with the two existing datasets
from Pigeonneau et al. (2010) and Pereira et al. (2020) recoloured to accommodate the wider
range in Peb values.
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Figure 6.9: (a) Datasets from observations of CO2 bubble resorption in golden syrup normalised
to initial bubble radii and the diffusive timescale. Each dataset is coloured according to the value of
Peb for that system shown by the colour bar. Higher Peb systems sit to the left of the plot and those
with lower Peb values, to the right, in a similar to trend to that observed for stationary bubbles (eg.
Fig.5.4). (b) Combined datasets from this study, Pigeonneau et al. (2010) and Pereira et al. (2020)
normalised to initial bubble radii and and the diffusive timescale. Each dataset is again coloured
according to the value of Peb for that system shown by the colour bar. Across this wider set of data,
the same trend is apparent with data aligning according to the value of Peb, descending from left to
right.

A trend immediately observed across both figures is that the data organises according to Peb
value. Whilst the data doesn’t collapse to exact or complete curves, likely due to natural vari-
ation that arises with experimental results, the data groups together by Peb value, increasing
from right to left. This observation is similar to that made in R̄− t̄D space for simulations of
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stationary bubble resorption in Chapter 5.

On Fig.6.9b, datasets from the two studies using glass melts have higher Peb values and sit
to the left of those from this study in golden syrup. These elevated Peb values are likely to
result from the glass melts having a much higher density than golden syrup, or oxygen having
a relatively low solubility and diffusivity with both glasses, all of which would act to increase
the value of Peb (Eq.2.18).

All of the datasets displayed on Figure 6.9 are described by Peb values much greater than
1, the previously hypothesised threshold for the transition between a diffusive or advective
controlled regime. Even if the higher transition point of 105 observed throughout Chapter 5
is considered, the datasets still all sit in the high Peb, diffusion limited regime. It would then
be expected that in R̄− t̄D space, the high Peb datasets would collapse to a single solution for
this diffusive limit. However, Figure 6.9 shows there is no such collapse, indicating that even
at very high values of Peb (> 1010), viscosity is still playing a role in the dynamics of bubble
resorption. This results in a transition window for Peb that is not the same as that for Pes
and therefore very high Peb systems can still be defined by unique bubble radius evolutions.

6.3.1.1 Peb Regime Transitions

To confirm that the datasets collected with very high Peb values don’t yet sit in the
diffusive limited regime, transition analysis is completed (Fig.6.10). In variation to that
completed in Chapter 5, the value of tD taken each time is that when R̄ = 0.95 as many of
the observed bubbles did not shrink to half their initial radius. Due to the values being taken
from experimental data, exact values of t̄D when R̄ =0.95 are not always possible to extract,
and instead the next nearest t̄D value is used.

A negative correlation is observed between t̄D0.95 and Peb for all data points, with no horizontal
trend or transition region, as would be expected for such high Péclet number systems (see
Figure 5.5a). This again indicates that none of the experimental bubble-melt systems are
diffusion limited and provides further evidence that viscosity must still playing a role in the
evolution of bubble radii. Furthermore, unless further effects are acting that have not yet
been taken into consideration, it suggests that the onset of the diffusive limit occurs a Peb
values even greater than 1013.

A secondary trend in Fig.6.10 is that the two glass datasets sit distinctly separate from
the golden syrup dataset. It may be that this separation arises from natural variation in
experimental data that makes the datasets appear to separate out. Alternatively, there could
be an additional control on buoyant bubble resorption that differs from stationary bubble
systems and has not yet been accounted for, be that redox or mixed gas species in the glass
systems, or even a completely different dynamic control for buoyant bubbles in general.

Given the complexity of a decoupled resorbing bubble, this latter explanation seems most
likely and therefore suggests that a further normalisation of time is required to better analyse
systems described by Peb. This could also explain the seemingly absent onset of the diffusive
limit for the decoupled bubble observations and provide an alternative solution for high Peb
bubble radius evolutions in dimensionless space.
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Figure 6.10: Analysis to try and find where the onset of the transition between the viscous and
diffusive limits occurs for buoyant, decoupled bubbles. The black dashed line sits at a Peb value of
105 where it is hypothesised from the work on coupled bubbles that the transition would occur. The
value of t̄D for each dataset taken when the bubble radius falls to 95% of the initial value, t̄D(0.95).
Every dataset sits to the right of the transition line in the viscous-limited regime where it would be
expected that the data falls along a horizontal line (similar to Figure 5.5a. Instead, the data forms
a negative correlation, with values of t̄D(0.95) decreasing as the Peb value of the system increases.

6.3.2 Sherwood Number Analysis

To expand the analysis of decoupled resorbing bubble systems, a further dimensionless
number, Sherwood number, Sh is taken into consideration. Sherwood number is the ratio of
convective mass transfer to diffusive mass transfer. It is used in both the Pigeonneau et al.
(2010) and Pereira et al. (2020) studies to better account for mass transfer from a mobile
phase. Pereira describes its application to the case of a decoupled bubble in a highly viscous
fluid more specifically, where the bubble is considered the mobile phase and the surrounding
melt as the immobile or motionless phase. As a result, the convective mass transfer term of the
Sherwood number becomes an expression of the mass transferred from a bubble specifically
due to it rising.

A similar description is made by Clift et al. (2005) along with an expression that shows the
inherent link between Péclet number and Sherwood number.

Sh = 1 + (1 + 0.564Pe
2
3 )

3
4 (6.1)

For the purposes of this work, Pe in this expression is taken to be Peb. Use of Sherwood
number in the analysis of bubble radii evolutions should therefore enable improved reduction
and normalisation of data from the different gas-melt systems than buoyant Péclet number,
as observed previously (eg. Fig.9 in Pereira et al. (2020)).
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6.3.2.1 Sherwood Normalised Timescale (t̄Sh)

Incorporating Sherwood number into the normalised timescale for decoupled bubble re-
sorption yields,

t̄Sh = t̄DSh =
tD

R2
0

Sh (6.2)

where Sh is found from Equation 6.1 and the effects of diffusion are still accounted for
through the diffusion normalised timescale t̄D. Normalised bubble radii from the combined
experimental datasets can then be plotted against t̄Sh (Fig.6.11).
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Figure 6.11: Combined datasets from this study, Pigeonneau et al. (2010) and Pereira et al. (2020)
normalised to initial bubble radii and the Sherwood timescale (Eq.6.2). The figure is plotted on the
same scale as Figure 6.9 to enable comparison. Each dataset is coloured according to the value of
Peb for that system shown by the colour bar. When normalised in this way, the datasets collpase to
be much closer together than when normalised to the diffusive timescale. There is also no apparent
trend for the value of Peb between datasets.

In comparison with Figure 6.9b, the datasets are significantly closer grouped and appear to
be tending towards complete collapse to a single radius evolution. There is still some variation
in the results and the collapse is not to a completely unique curve. However, the lack of any
other significant trend (for example with Peb value) suggests these variations are probably
due to the experimental nature of the data points.

This confirms that the consideration of convective mass transfer through Sherwood normalised
time provides a much better normalisation of the data and indicates there is a single limiting
solution in dimensionless space for bubble radii in high Peb systems. If similar reduction and
analysis were to be completed with simulated model results, a much clearer collapse to a single
unique curve is expected.
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6.3.2.2 Sh Regime Transitions

For completeness, transition analysis of the newly normalised R̄− t̄Sh data is carried out.
From the observations in Figure 6.11, it should be expected that the data points for t̄Sh
when R̄=0.95 will lie close to horizontal as the data is trending towards being expressed the
limiting solution. Figure 6.12 shows the results of transition analysis from the combined
experimental data.

Figure 6.12: Analysis to see if the data, newly normalised to the Sherwood timescale enable the
onset of the transition between the viscous and diffusive limits to be found for buoyant, decoupled
bubbles. The black dashed line sits at a Peb value of 105 where it is hypothesised from the work on
coupled bubbles that the transition would occur. The figure is plotted on the same scale as Figure
6.10 to enable comparison. The value of t̄Sh for each dataset taken when the bubble radius falls
to 95% of the initial value, t̄Sh(0.95). All datasets again sit to the right of the transition line in the
viscous-limited regime and appear more spread out than in Figure 6.10. Two possible interpretations
of the data are indicated by the purple and orange dashed lines. (1) Data sits on a horizontal trend
but is scattered due to experimental variation. (2) Data is separated due to the different viscous fluids
used and still displays a negative correlation.

There are two different interpretations of the data on this plot; (1) the data points show a
roughly horizontal trend as shown by the purple dashed line plotted through linear regression
analysis of all of the data points, or (2) the data points for the glass and syrup systems are
still separated into two distinct groups which each have negative regression fits shown by the
orange dashed lines. The first case would suggest that the data points sit in the diffusion
limited regime and that transition to an advection limited regime would be observed in lower
Péclet number systems where Peb < 106. The latter case suggests the Sherwood normalisation
has not adequately accounted for all of the controls on the decoupled resorbing bubble system
and has accentuated the separation of data from the different gas-melt systems.

Uncertainties and natural spread in the experimental data are causing these conflicting inter-
pretations of the data, again highlighting that if it were possible to complete this transition
analysis on results from model simulations, the trend in t̄D-Pe space would be more apparent,
allowing one of the above interpretations to be rejected.
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6.4 Modelling Buoyant Resorbing Bubbles

It is apparent from analysis of experimental data, that interpretations from the analysis of
bubble radius observations are difficult to make as a result of variations within datasets arising
from experimental error and uncertainties. Therefore, numerical models and simulations of
buoyant resorbing bubbles now need to be considered and utilised in order to clarify some of
the possible interpretations made in Section 6.3.

6.4.1 Previous Modelling Studies

In addition to Pigeonneau’s experimental work in 2010, they also completed extensive
work to model buoyant resorbing bubbles. Pigeonneau (2009) initially sets up the numerical
problem in a similar way to this study, using several dimensionless numbers: Péclet number
Pe, Sherwood number, Sh and Schmidt number, Sc (the ratio of viscous diffusion and mass
diffusion rates). They express Péclet number not as a ratio of timescales but instead as a
function of the other dimensionless quantities, Re and Sc such that Pe = ReSc to account for
the buoyant advection of a resorbing bubble within a melt. Secondly, where their model differs
from this study, the effects of redox reactions between the gas and melt are incorporated using
a modification of Péclet number,

Pe′ = Pe[1 + (Sa)NFe] (6.3)

where Sa is the saturation rate of the gas species and N−Fe the equilibrium constant for the
redox reaction taking place. This modified Péclet number is used to redefine a modified Sher-
wood number, Sh’ from Equation 6.1 for a system where a rising bubble is also experiencing
redox during diffusive mass transfer.

Sh′ = 1 + (1 + 0.564Pe′
2
3 )

3
4 (6.4)

From this background theory, Pigeonneau (2009) develops an analytical solution for oxygen
bubble radius evolution that accounts for the redox reaction taking place with iron in the glass
melt. When tested against experimental data (Pigeonneau et al., 2010) this solution appears
to provide a better fit than previous solutions (eg. Ramos, 1986; Beerkens, 2002; Beerkens,
2003), however there is still some discrepancy, with the solution increasingly overestimating
bubble radii as time goes on.

A final combined presentation of numerical and experimental work in Pigeonneau (2011)
shows an updated version of the solution complete with a numerical model for bubble radii
over time,

R̄(t̄) = R0

[
1− 1

2

(
1− x− Sa− Sa

τ̄

)
t̄

]2

(6.5)

where x is the molar fraction and t̄ a non-dimensionalised time. τ̄ is defined as the reduced
timescale for the gas species and is used to express a normalised dimensionless timescale for
mass transfer as,
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τ̄ =

(
1− x− Sa− Sa

τ̄

)
t̄

2
(6.6)

They use this timescale to normalise experimental results from different glasses, system tem-
peratures and bubbles of different sizes for comparison in a single dimensionless space. As a
result, Pigeonneau (2011) found that a single numerical solution could be expressed in this
dimensionless space that gave a good fit to normalised observations from the glass melt ex-
periments (Fig.6.13). Therefore, they conclude that this solution can be used to simulate
bubble radius evolutions in any decoupled bubble-melt system complete with the effects of
oxidation and reduction reactions.

Figure 6.13: Datasets from Pigeonneau et al. (2010) (Fig. 6.7) normalised to a dimensionless time
(Eq.6.6) and compared to a numerical solution (Eq.6.5) (black line) as set out in Pigeonneau (2011).
The time normalisation pulls together the four different datasets towards a single radius evolution in
dimensionless space, and the numerical solution describes this evolution fairly well. It provides the
best description for the initial period of bubble shrinkage.

The later study by Pereira et al. (2020) validated the use of this model to different gas-melt
systems by successfully simulating oxygen bubble radius evolutions that matched those they
observed in different borosilicate glasses. These results suggest that simulations, carried out
and visualised using a series of executable C+ and Python scripts, can be run for different
gas-melt systems by changing the input variable. Outputs of radius over time could then be
analysed in a similar way to Chapter 5 and Section 6.3 to gain a better understanding of
the Sherwood normalisation proposed in this work for describing decoupled resorbing bubbles,
without the complicating factors that arise from using experimental data.

6.4.2 Simulations of Decoupled Bubble Resorption

Using the executable code developed by Pigeonneau (2011) and Pereira et al. (2020) a
series of other bubble simulations were completed to show its application to other gas-melt
systems and analyse the results in a similar way to Chapter 5 and section 6.1.3. The aim of
this was to gain a better understanding of the Sherwood normalisation proposed in this work
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for describing decoupled resorbing bubbles, without the complicating factors and variation in
data that arise from using just experimental results.

The input conditions of the code were adapted to model the same soda-lime-silica glass melt
(Cristalica)-helium gas system used in Chapter 5 to investigate stationary bubbles. This
allowed simulations to be generated for decoupled bubbles that are comparable to those for
coupled bubbles. It also provided a different glass melt system to those from previous work,
which bubbles could be modelled in so see if any similarities or differences arose with those
modelled in a different soda-lime glass or borosilicate glass melt.

Using the composition and material property laws of Cristalica (see section 2.3.2.1) and
helium, model simulations were completed at 1000K and atmospheric pressure for bubbles of
initial radius 0.75, 1.00 and 1.25 mm. Figure 6.14 displays the radius outputs for the first
35000 seconds of the simulation with normalisation to the initial radius shown in Figure
5.14b. Each of the helium bubbles undergoes resorption into the soda-lime glass but do so
over a resonably long timescale. It is difficult to decipher if the larger bubbles are resorbing
faster than smaller ones as would be expected from previous observations. Running the
simulations for a longer time period may help to clarify this.

Figure 6.14: Three simulations of decoupled bubble resorption run using the model from Pigeonneau
(2011) and Pereira et al. (2020) with input conditions for an analogue glass (Cristalica) and helium
as the bubble gas species. (a) Bubble radius against time for three initially different sized bubbles.
All three helium bubbles undergo resorption in the soda-lime-silicate glass melt. (b) Bubble radii
normalised to the initial values against time for better comparison across bubble sizes.

To compare these new simulations with those from the previous literature, and bet-
ter determine the trends suggested by analysis of experimental results in Section 5.3 and
6.3, bubble radius evolutions from a set of model runs are normalised to both the diffusive
timescale, t̄D and Sherwood timescale, t̄Sh (Fig.6.15). Simulations for an oxygen bubble in
both soda-lime-silicate glasses from Pigeonneau et al. (2010) at 1400°C and a selection from
Pereira et al. (2020) (all bubbles from glasses R-1.5 and I-1.5) are displayed for comparison.

Each of these systems sit in very high buoyant Peclet number regimes (Peb > 107) where
it would be expected that diffusion is the limiting process and thus all simulation curves
collapse to a single unique solution. When plotted in diffusion normalised space (Fig.6.15a),
this collapse does not occur, with each curve appearing unique. There is some rough grouping
of the curves according to the value of Peb for that bubble-melt system, but there is no collapse
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to a single diffusive limit. Simulations from the helium-Cristalica system sit significantly apart
from the others suggesting the specific gas and melt used is affecting the collapse of results.
This further corroborates conclusions from the analysis of experimental data that there is an
additional control in decoupled-resorbing systems that is not captured by diffusion normalised
time alone.
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Figure 6.15: A selection of simulations from Pigeonneau et al. (2010) (Figs.3 & 6 in their paper)
and Pereira et al. (2020) (all bubbles in glasses R-1.5, I-1.5 and O-1.5) alongside simulations from
Figure 6.14 for an Cristalica glass. Each simulation curve is coloured according to the value of Peb
for that system shown by the colour bar. (a) Normalised bubble radii against diffusion normalised
time. There is some ordering of the simulations with values of Peb decreasing from left to right, but
the curves appear quite randomly spaced with not apparent collapse for curves with a very high Peb
value. (b) Normalised bubble radii against Sherwood normalised time. The simulated curves lie much
closer together with no apparent ordering accoriding to Peb value. This provides further evidence from
Figure 6.11 that the use of Sherwood number in the data normalisation helps identify the onset of
the viscous limited regime.

In Figure 6.15b where bubble radius evolutions are instead normalised to the newly proposed
Sherwood timescale, the simulation curves collapse much more significantly towards a single
solution for bubble radii in dimensionless space. The collapse is not as perfect at that for
stationary bubbles in Chapter 5 but it again helps to confirm that the idea of further controls
are acting and haven’t been accounted for.

Comparing now the normalised simulations with experimental data for a single gas-glass
system (glass R-1.5 from Pereira et al. (2020)), it can be seen that the data and modelled
curves have an excellent fit (Fig.6.16). This adds to previous supporting evidence for the
Pigeonneau (2011) model for decoupled bubble resorption. It also suggests that if a numerical
solution can be derived for R̄ in terms of t̄Sh, bubble radius evolutions will be able to be
predicted with reasonable accuracy for system where Peb > 107.

6.4.2.1 Sherwood Normalised Transition Analysis

To better decide which of the two possible conclusions of the transition analysis carried
out on experimental data of rising resorbing bubbles is correct (see section 6.3.2.2), the
same analysis is completed on the set of simulated curve output from modelling. The value
of t̄Sh is again taken when R̄ is equal to 0.95, or 95% of the original bubble remains. These
values of t̄Sh(0.95) are then plotted against the value of buoyant Péclet number for each system
(Fig.6.17). This time, the data points lie much closer to a linear fit than in Figure 6.12
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Figure 6.16: Data points from observations of oxygen bubbles in glass R-1.5 from Pereira et al.
(2020) compared to simulated curves for bubble radius evolutions in dimensionless space normalised
to the Sherwood timescale. Each dataset and curve is coloured according to the value of Peb for
that system shown by the colour bar. The data and modelled curves have a very good fit, even in
non-dimensional space and both similarly collapse towards a single unique solution regardless of the
Peb value for each system.

indicating that t̄Sh(0.95) has a unique value in the order of 104 for all the simulated systems
that sit in the high Peb regime, (this is the same as one case (1) average estimated from the
experimental data) and therefore that these systems sit at some kind of limit, perhaps the
diffusive limit.

There is some slight variation in the datapoints which probably stems from the fact that dif-
ferent gas-glass systems are being modelled whereas in the original stationary bubble analysis
(Fig.5.5), only a single glass-gas system was used (Cristalica-Helium). The analysis where
natural basaltic and rhyolitic melt inputs were used at different temperatures (Fig.5.10 &
5.12) did produce some variation like that on Figure 6.17 suggesting that the exact prop-
erties of the materials in the system do indeed play a part in the exact point of regime
transition.

Furthermore, the fact that the curves simulated for rising resorbing bubbles don’t have a
perfect collapse in Sherwood normalised space is also a further factor that would cause slight
variations in the transition analysis. Nonetheless, the observations from Figure 6.17 help
to confirm that interpretation (1) from experimental data on Figure 6.12 is correct and
that these high Peb systems do sit in a limiting regime but one where controls in addition to
diffusion that can be factored in by the use of Sherwood number also act.

Future work should aim to complete simulations of these glass systems at temperatures or
with initial bubble radii that mean they sit in lower Peb regimes. For these, it would be
expected that t̄Sh(0.95) values would become non-constant as Peb reduces in value and that
t̄Sh(0.95) would get display an inverse relationship as the systems move towards a low Peb
regime. Confirming this with either more experimental results or model simulations would
provide a more comprehensive understanding of the proposed Sherwood normalisation.
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Figure 6.17: Analysis to see if the modelled simulations normalised to the Sherwood timescale enable
the onset of the transition between the viscous and diffusive limits to be found more clearly than from
experimental data (Fig.6.12). The black dashed line sits at a Peb value of 105 where it is hypothesised
from the work on coupled bubbles that the transition would occur. The figure is plotted on the same
scale as Figure 6.10 & 6.12 to enable comparison. The value of t̄Sh for each dataset taken when
the bubble radius falls to 95% of the initial value, t̄Sh(0.95). All datasets again sit to the right of the
transition line in the viscous-limited regime but this time sit much closer to a horizontal line, as would
be expected for systems with such high Peb values that sit in the viscous-limited regime. There is still
some slight varition compared with transition analysis for stationary bubbles, which may result from
the Sherwood timescale not provided an entirely complete normalisation.

6.5 Buoyant Resorbing Bubbles in Natural Melts

Having comprehensively analysed decoupled bubble resorption through both experimen-
tal data and numerical simulations for a series of analogue glass systems, volatile bubble
resorption in natural melt systems is now considered. Direct numerical simulations of these
bubble-magma systems were not able to be completed within the scope and timescale of
this project, however, potential outcomes hypothesized from the work already set out in this
project are presented alongside some discussion on the expected bubble behaviours in mag-
matic melts. The possibility of observing single-bubble resorption experimentally in magmatic
material is also discussed to explore the frontier of experimental techniques which could be
applied in future work to make directly observing these complex systems a reality.

As alluded to at the beginning of this chapter of work, the buoyant Péclet number regime
and all associated analysis is only applicable to basaltic magmas, as bubble sizes required to
make it applicable to rhyolitic magmas would place the system in a high Reynolds number
regime, in which the numerical theory and model used for simulations would be incorrect.

Therefore, a first hypothesised outcome is that if basalts with high viscosities tending towards
those of rhyolitic melts were modelled, bubble radius evolutions would not be appropriately
modelled using the Pigeonneau (2011) model used here. For mid-to-low viscosity basaltic
melts, however, the model would be suitable, and it is expected that if bubbles were to be
modelled, they would display similar trends to those in glass when analysed. Each different
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system would have unique bubble radius evolution curves in dimensionless R̄ − t̄D space.
Given that it is thought other control act on these decoupled systems, none of the curves will
collapse to a single limiting solution, even at very high Peb values. However, if analysed in
R̄− t̄Sh space, a collapse should be observed at very high Peb values with curves then deviating
away from this as Peb decreases.

To find the exact point at which this deviation occurs, transition analysis could be completed,
which would highlight where the limiting regime begins. As with results from analysis of
stationary bubbles in natural melt systems, there may be variation in the transition curves
between systems of different temperatures or slightly different melt compositions. However,
the overall trends would be the same with the order of magnitude estimate of Peb where
transition occurs also being the same.

A further observation that might be expected is that a second limiting regime is entered as
in Figure 5.13. This would occur as bubble sizes become increasing small and very low Peb
regimes are entered. At this point, surface tension forces would play an increasing role in
addition to diffusive and buoyant viscous forces.

If there were to be any direct experimental observations of bubbles resorbing in a basaltic
melt, it would be expected that larger bubbles would undergo more rapid resorption over time
due to have a greater TRV and thus would encounter more melt in a given time period with
which to transfer mass. Rates of bubble rise and resorption would also vary greatly with the
temperature of the experiment and exact basalt composition used.

Such an experiment would be practically very challenging to complete, not only due to the high
temperatures and precise equipment that would be required to melt the rock sample and insert
a volatile bubble, but also because of the opaque nature and iridescence of molten volcanic
materials. A less direct experimental method could be designed akin to that of Jackson et al.
(2022) using entrapment and cycles of heating and cooling to produce samples with a bubble
contained inside which could then be sliced and analysed. But then an addition complexity of
non-isothermal conditions and further practical complications such as the precision slicing of
an opaque sample would have to be accounted for. Entrapped bubble sizes could be estimated
from CT scanning of solidified samples such as in studies by Westrich and Eichelberger (1994),
but this would come at great cost and only work best if the melt surrounding the entrapped
bubble were completely bubble-free, meaning several pre-experimental preparation steps for
the basalt sample would have to be applied. A project embarking on attempting to make
observations of single-bubble resorption would require significant time, laboratory experience
and collaboration that fell largely out of the scope of this project.

Implications of the findings in the chapter to natural magmatic bubble-melt systems are
significant. The idea of decoupled resorption being plausible in several volcanic settings as
shown through numerical modelling, and exploration of the possible impacts of large bubbles
resorbing more rapidly could help to explain more specific magmatic scenarios such as those
discussed in the introduction of this thesis. Potential for natural bubble-melt systems to
be described by different values of buoyant Péclet number calculated purely from material
properties, which could then allow for estimates of bubble radius evolutions with time could
prove significant if factored into models for wider volcanic conduit processes or when modelling
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eruption phenomenon. This significance and future potential are discussed further inChapter
7.

102



Discussion

In this chapter, work from the entirety of this thesis is drawn together and considered side-
by-side to build up a more holistic picture of the different types of bubble-fluid systems that
can exist and the different bubble regimes that can arise within these systems. Developments
in understanding from the hypotheses are set out before considerations of findings are made to
natural volcanic systems where the bubble-fluid system consists of volatile bubbles in either a
basaltic or rhyolitic melt. Differences between bubble behaviours in these two contrasting melt
compositions are discussed as well as the effects of bubbles either being coupled or decoupled.

To create a visual, interpretable summary the work from individual chapters on coupled
and decoupled resorbing bubbles, regime diagrams are plotted. These display plausible bubble
regimes that can occur in natural systems and the physical controls that act to enhance or limit
bubble resorption. A complete regime diagram spanning the spectrums of both Stokes number
and Péclet number is also presented. On this, examples of bubbles observed or modelled in this
study or previously literature are included to demonstrate the types of system represented by
each endmember scenario. This gives a comprehensive overview of current understanding on
all low-Reynolds number bubble-melt systems, highlighting also where there is need for further
work to be completed. Some of these areas for potential future study are briefly discussed to
highlight additional complexities that are yet to be accounted for in the modelling of bubble
dynamics in volcanology.

7.1 Péclet Number Regime Diagrams

Regime diagrams build a visual picture of different types of behaviour for systems based on
two or more numerical values. They are commonly used in fluid dynamics to highlight where
different physical effects control a process through dimensionless quantities. A commonly
used example applicable to this work is Figure 2.5 in Clift et al. (2005) which shows different
bubble shapes interpretable from the values of Reynolds number and Eötvös number for a
bubble-fluid system.

In this study, regime diagrams are useful to draw together observations for both coupled and
decoupled systems. Using the correct dimensionless numbers, a picture can be built up of
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when resorbing bubbles sit in the viscous, diffusion or surface tension limited regime, helping
to build conclusions on the regimes that dominate, specifically in magmatic melts.

7.1.1 Coupled Bubble Regimes

In the work presented in Chapter 5 on coupled, resorbing bubble systems, model sim-
ulations have shown that bubble resorption is possible in both basaltic and rhyolitic melts
when there is sufficient solubility of the gas species and a large pressure difference between the
bubble and surrounding melt. Stationary Péclet number works well to describe these systems
with simulations produced for an analogue silicate glass alongside those for natural melts,
showing significant trends according to values of Pes.

Normalisation of bubble-melt simulations to either the viscous or diffusive timescales leads
to the collapse of normalised bubble radius evolutions at both high and low values of Pes.
These represent the diffusion and viscosity limited regimes respectively, and show that for the
majority of bubbles tested, D and µ act as the key controls on the system. As hypothesised,
bubbles in a system with larger Pes values resorb with greater ease than bubbles in a lower
Pes system as in the diffusion limited regime, bubble resorption takes place at the rate of
diffusion, unimpeded by the viscous effects of the melt. In contrast, bubbles in a lower Pes
system will be limited by viscosity of the melt such that mass transfer of gas may still occur,
but the bubble wouldn’t resorb until sufficiently overpressured that it collapses as a result of
the large pressure difference.

Both of these regimes have unique solutions in dimensionless space (R̄− tD or R̄− t̄v) that are
well described by numerical solutions. These allow R̄(t̄) and by extension R(t) to be found
for any bubble in any low Re, low Stk system where the material properties of the gas and
melt are known.

The transition between the viscous and diffusive regimes which dictates the appropriate nu-
merical solution is observed around Pes = 105, five orders of magnitude higher than the
hypothesised transition point of Pes = 1 and is consistent across multiple simulations of
analogue and natural bubble-melt systems.

This analysis also highlights a second limit for simulations of very small bubbles where surface
tension becomes the dominant control. In this regime, surface tension effects and a very high
gas pressure inside the bubble act to impede resorption. In addition to the numerical solutions
for the viscous and diffusion regimes, there are adaptations of the solutions for this surface
tension regime, best applicable to bubbles with a radius smaller than 1µm.

To create a better image of these different limiting regimes for coupled resorbing bubbles,
a regime diagram of Pes against initial bubble radius, R0 can be plotted. Figure 7.1 shows a
regime diagram for resorbing bubbles of H2O in Kilauea basalt and Krafla rhyolitic obsidian
melts at both a hotter and cooler temperature akin to an eruptive and storage temperature.
There is a much larger difference resulting from temperature for the rhyolitic melt than the
basaltic melt. This is likely due to the larger contrast in viscosity for rhyolites between storage
and eruption in comparison to basalts which have more consistently low viscosities under both
conditions.

The different limiting regimes of diffusion, viscosity and surface tension are also shown on
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Figure 7.1: Regime diagram showing the three major limiting regimes that stationary, coupled
bubble systems may sit within. The boundary between a diffusion and viscous limited regime occurs
at Pes = 105. The onset of the surface tension limited regime occurs for bubble with an initial radius
of 10−6m or less. Trendlines are plotted for bubbles of different sizes in a basaltic (Kilauea basalt)
and rhyolitic (Krafla obsidian) melt at a hotter and cooler tempreture, denoted by the pink and blue
lines respectively. For the basalt, these are 800°C and 900°C, and for the rhyolite, 1050°C and 1150°C.
The trendlines are dashed for bubbles with a radius greater then 102.5, the Eötvös radius, as these
will no longer be spherically stable. Resorbing bubbles in rhyolitic melts sit entirely in the viscous or
surface tension limited regimes, where as bubbles in basalt will mainly be limited by diffusion until
they are small enough to be affected by surface tension effects.

Figure 7.1. In addition, trendlines are dashed beyond the point of a stable spherical bubble,
dictated by the Eötvös radius, Eo which is in the order of 10−2.5 for both a basaltic and
rhyolitic melt. Bubbles with radii greater than this are no longer in the Eo � 1 regime and
have the potential to become geometrically unstable, forming non-spherically shaped bubbles
with complex dynamics. Each of these regime spaces corresponds to where the different
numerical solutions derived in Chapter 5 are applicable.

Overall, this diagram enables conclusions to be drawn on the expected behaviours of
resorbing bubbles in different magmatic melts. Stable, coupled bubbles resorbing in a basaltic
melt will almost always be unaffected by the viscous effects of the melt, with only a small
window of bubble sizes sitting in the viscous limited regime before radii are small enough
that the surface tension effects dominate. This means that bubbles with a radius greater
than 10µm will shrink in direct response to and at the same rate as diffusive mass transfer.
They will remain in pressure equilibrium and not experience any collapse due to over or
under-pressure. Bubbles between 1-10µm will experience some viscous effects and a pressure
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contrast will build between the bubble and melt that could lead to collapse from overpressure.
Finally for bubbles smaller than 1µm, surface tension will dictate the rate of resorption. This
observation helps to explain the poor fit of the viscous solution in Section 5.5.2 to simulations
of stationary bubble resorption in the Kilauea basalt melt, with the only exception being the
system simulated at Pes = 104. It can now be seen from the regime diagram that the is the
only simulation that sits in the viscous limited regime and is therefore well described by the
viscous solution.

Stable, coupled bubbles resorbing in a much higher viscosity rhyolitic melt sit entirely in the
viscous limited regime, with only those that have a radius greater than REo experiencing
no effects of viscosity during resorption. This is due to the significantly greater viscosity of
rhyolites in comparison to basalts that means at all initial bubble radii, values of Pes are lower
than 105. As a result, even for the largest stable bubbles viscosity acts as the key control
on bubble resorption, limiting the degree to which a bubble can shrink until the pressure
contrast is so great that the bubble collapses. This explains the excellent fit of both the
complete and simplified form of the viscous solution derived in Chapter 5 to simulations of
bubbles in rhyolitic obsidian from Krafla. In addition, the onset of the surface tension regime
for bubbles smaller than 1µm further justifies the need for the small radius solution that uses
the capillary timescale to predict bubble radius evolutions with good accuracy.

7.1.2 Decoupled Bubble Regimes

Work on decoupled resorbing bubble systems in Chapter 6, whilst less numerically com-
prehensive than the work on coupled resorbing bubbles, adds to experimental observations
of bubble resorption and presents some model simulations of a previously validated code in
a range of high-viscosity analogue fluids. The smaller scope of this work highlights the high
level of complexity of trying to model a bubble that is simultaneously rising and diffusively
transferring mass. Whilst not complete in its analysis here, advancements in understanding of
this type of system have been made, which lay the foundation for future work to continue on
with the aim of obtaining comprehensive numerical solutions for decoupled, resorbing bubbles.

An important development from the hypotheses is the interpretation of what a high Peb or
low Peb system mean in terms of bubble resorption. It may be expected from a first glance, as
hypothesised earlier on, that in high Peb systems bubbles would not undergo large amounts of
resorption as the advective rise timescale is much shorter than the diffusive timescale. Hence,
the bubbles wouldn’t be resident in the melt long enough to diffuse to any significant degree.
Oppositely for a low Peb system, it might be thought that bubble would undergo resorption
with greater ease as residency time in the melt would be much longer and thus there is more
opportunity for mass to transfer into the surrounding melt.

However, both new experimental observations measured in gold syrup and those from past
studies in molten glasses show that larger bubbles, which yield higher Peb values for the
systems due to the third order relationship of R0 and Peb, or bubbles in hotter melts where
viscosity is reduced, resorb faster than lower Peb where bubbles are smaller or the melt cooler.

This contradiction therefore leads to a rethinking in the interpretation of buoyant Péclet
number. It is instead that larger bubbles in higher Peb systems, will undergo more rapid
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resorption due to rising faster through the melt meaning they will encounter more ‘new’ melt
in a given time. Continually rising into this ‘new’ melt is equivalent to the melt saturation
begin kept consistently low, or concentration gradient consistently high so that mass transfer
is a favourable process. For smaller bubbles in lower Peb systems, rise velocities will be slower
meaning the bubble sits in the same region of melt for longer, allowing for it to become
saturated or the concentration gradient to drop so that diffusive mass transfer is very slow.
In extreme cases where bubble rise velocity is very slow, the system becomes equivalent to a
stationary, coupled system marking a limit for the use of Peb.

A further key idea introduced in Chapter 6 is that of Sherwood number, as the use of
just buoyant Péclet number, Peb and diffusion normalised time, t̄D is insufficient to capture
different regimes of bubble behaviour. For both the experimental data and model simulations,
using an adaptation of the diffusive timescale, the Sherwood timescale t̄Sh, normalised bubble
radius evolutions in very high Peb systems begin to collapse towards a single unique solution
like those for coupled resorbing bubbles in the diffusive regime. The need for this extra
normalisation was not hypothesised and suggests that additional controls act in decoupled
systems that are affecting the dynamics of bubble rise and diffusion.

Sherwood number allows the effects of convective mass transfer to be accounted for suggest-
ing this is necessary for systems where there is a relative velocity between the bubble and
surrounding fluid. However, use of Sherwood number alone does not yet provide as compre-
hensive a collapse as would be expected and therefore leave questions remaining about the
other controls that could be acting and how they could be accounted for. As a result of
this missing link, complete numerical solutions for bubble radius evolutions either in dimen-
sional or dimensionless space have not yet been derived, other than those used in the model
developed by Pigeonneau (2011).

Nevertheless, a regime diagram can still be pieced together from the experimental and
simulation results, then extended to natural magmatic melt systems to allow for further
discussion on additional controls that might be acting and the significance to volcanic systems.
Figure 7.2 shows this regime diagram which has Sherwood number plotted against initial
bubble radius. Experimental data is displayed as datapoints and trendlines shown for analogue
glass melts and the natural systems of H2O bubbles in Kilauea basalt and Krafla rhyolitic
obsidian. The natural melts are again shown at two different temperatures to represent a
hotter eruptive temperature and a cooler storage temperature.

A regime transition line is shown at Sh = 10 as this is where the trendlines experience
a change to a constant gradient and therefore is where a consistent relationship between
Sherwood number and initial bubble radius begins. One interpretation of this is that above
this line (Sh � 10) a system will be diffusion limited, and below this (Sh � 10) it will be
buoyantly limited as viscosity of the surrounding melt is too great for the buoyancy of the
bubble to easily overcome.

The radius at which bubbles become spherically unstable, the Eötvös radius, REo is again
indicated by dashed lines. Since simulations of much smaller bubbles were unable to be
complete in this work, only these two major regimes are shown as the onset point of a possible
surface tension regime is unknown. The final regime shown on Figure 7.2 marks where the
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Figure 7.2: Regime diagram showing the three major limiting regimes that buoyant, decoupled
bubble systems may sit within. The boundary between a diffusion and buoyancy (viscosity) limited
regime occurs at Sh=10. Trendlines are plotted for bubbles of different sizes in a basaltic (Kilauea
basalt) and rhyolitic (Krafla obsidian) melt at a hotter and cooler tempreture, denoted by the pink
and blue lines respectively. For the basalt, these are 800°C and 900°C, and for the rhyolite, 1050°C
and 1150°C. Additional trendlines are shown for some of the analogue glass melts studied in this work
as well as data points for systems observed in experimental work. For all trendlines, as Sh approaches
100.3, there is a plateau to a constant value regardless of bubble radius. This indicates the onset of
where viscous forces are so great that the systems can essentially be considered stationary or coupled.
The trendlines for the magmatic melts are dashed for bubbles with a radius greater then 10−2.5m, the
Eötvös radius, as these will no longer be spherically stable. Bubbles in rhyolitic melts sit entirely in
the buoyancy limited or stationary regimes, meaning decoupled resorbing spherical bubbles in rhyolitic
melts are unlikely in nature. Bubbles in basaltic melts can sit in the diffusion limited regime as well
as the buoyancy limited or stationary regimes for smaller bubbles.

movement of decoupled bubbles becomes so minimal that they are effectively stationary in the
melt and therefore better described by the stationary Péclet number, Pes. This is observed
as the value of Sherwood number approaches 100.3.

The first thing highlighted by this regime diagram is that stable decoupled bubbles that
resorb unimpeded by viscous effects cannot exist in the rhyolitic melt as the limit of bubble
stability coincides with the transition to a diffusion limited regime. Therefore, any decoupled
bubbles undergoing resorption in a rhyolite will experience large viscous forces that inhibit
buoyant rise and prevent bubbles from being able to interact with new melt that can accommo-
date the transfer of mass. The window of bubble radii that sit between this viscous-diffusive
limit and the onset of a stationary regime is relatively small, suggesting that only bubbles
with radii on mm or cm scale will be able to buoyantly resorb in a rhyolitic melt. This is
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reasonably large for bubbles trapped in such high-viscosity melts, so it is likely that most
bubbles found naturally in melts such as obsidian will be effectively stationary.

By contrast, stable decoupled and resorbing bubbles in a basaltic melt can sit in both the
diffusion and viscous limited regime. For bubbles larger than 100µm in radius, diffusion
becomes the limiting control on the system meaning bubbles will shrink directly in line with
the rate of diffusion as viscosity of the surrounding melt has no effect. Bubbles with radii
smaller than 100µm, down to around 10µm will experience viscous limiting effects in the melt
as buoyancy of the bubble is reduced and therefore rise velocity through the melt gets slower.
For bubbles smaller than 10µm, viscous forces are so great and bubble buoyancy so small that
they then become stationary in the melt and would instead undergo coupled resorption in the
diffusion or surface tension limited regime.

In addition to trendlines for natural melts, experimental data and trends calculated for
some of the analogous glass melts referred to throughout this thesis are included for com-
pleteness. Some interesting observations from the addition of these is that melt viscosity
reduces from right to left, which if extended to natural melts, suggests that trends for higher
viscosity melts will sit further to the right than those for lower viscosity melts. Secondly,
the trendlines for two different soda-lime-silicate glasses (Cristalica and that used by Pigeon-
neau et al. (2010)) sit quite separate from one another, indicating that the position of the
trendline depends heavily on the exact melt composition and that melts of the same wider
category may not always group together. This raises a question about where trends would lie
for other natural melt compositions that are more unusual or sit outside the compositions of
basalts or rhyolites, such as phonolites or andesites, presenting another topic for future work
or discussion.

7.1.3 Significance to Volcanology

The regime diagrams created to show where the onset of different controls lie for magmatic
bubble-melt systems give a great insight into the types of behaviour that can expected to
occur in natural systems. Furthering from this, the implications of these different behaviours
under different conditions can be used to discuss impacts to a wider volcanic system and the
plausibility of scenarios where it is thought bubble resorption may be able to take place.

7.1.3.1 Coupled Systems

The key finding of studying coupled bubbles is that in rhyolitic melts, resorbing spherical
bubbles will always be affected by the high viscosity of the surrounding magma. From this, it
can be interpreted that these bubbles will experience large overpressures that result in them
suddenly collapsing in on themselves to leave a regassed bubble-free melt when a threshold
overpressure is reached, rather than gradually resorbing as mass is diffusively transferred out
into the melt. Considering this in the context of a volcanic scenario, foam collapse following
non-explosive silicic eruptions, the confirmation that bubbles trapped in rhyolite are viscously
limited at both eruptive and storage temperatures, and shrink due to large pressure contrasts
supports the hypothesis of Eichelberger et al. (1986) and experimental work of Westrich and
Eichelberger (1994) that showed the decompression of rhyolitic foams could produce samples
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reduced in volume by up to 50%.

Whilst the results from this thesis cannot estimate the degree to which resorption would take
place, or the final vascularity of a melt sample where resorption had occurred, they provide
strong evidence that if bubbles have an internal pressure much lower than the surrounding
melt, as occurs following permeable foam collapse, they will be resorbed to some extent and
may even undergo complete collapse to leave a bubble-free melt. The smallest bubbles may
be preventing the production of bubble-free material forming if surface tension effects are too
great to allow for complete collapse. In this case, material with a higher vesicularity may
be yielded following foam collapse, as thought by Gardner et al. (2017) or Wadsworth et al.
(2020).

It could be useful to produce trends for the regime diagram where pressure is varied instead of
temperature. This would allow the bubble regimes at different storage pressures (depths) to
be interpreted so that estimations of the required magmastatic pressure for bubble resorption
following foam collapse could be made. It could also help to understand if bubble resorption
is more plausible under deeper storage conditions, or shallower eruptive conditions.

A second scenario considered for stationary bubble resorption is in densely welded layers
of obsidian within pyroclastic deposits. It has been proposed that if these deposits cool slowly
enough, there will be sufficiently time for diffusion and for bubbles to resorb. However, as
the regime diagram (Fig.7.2) shows, it would also require there to be a significant pressure
difference between the bubbles and surrounding deposit so that the limiting viscous effects
of the obsidian melt can be overcome. Therefore, it could be that bubble resorption in PDC
deposits is only possible in very thick, dense deposits that would provide enough overpressure
for bubbles to collapse. For the very smallest bubbles that would be dictated surface tension
effects, the pressure disequilibrium would have to be large enough to also overcome these.
Similarly to the foam collapse scenario, understanding the regimes of bubbles under different
system pressures would help determine amount of pyroclastic deposit required to generate
sufficient overpressure for bubble resorption.

The two previously hypothesised scenarios for coupled bubble resorption focused on sta-
tionary bubbles in a motionless rhyolitic melt phase; basaltic melts were not discussed. Figure
7.2 shows that coupled bubbles in lower viscosity basaltic melts have the potential to undergo
both diffusion and viscous limited resorption. Whilst it is unlikely that bubbles will sit sta-
tionary in a basaltic melt due to its lower viscosity, it is possible that bubbles may move
simultaneously to the melt as it ascends thus remaining coupled. For resorption to then occur
this case, it is likely that saturation of the melt would have to become thermally altered if it
is assumed the bubbles are remaining in the same melt they were exsolved from which has
therefore already reached its saturation limit. Magmatic melt saturation increases as tem-
perature decreases meaning if the basaltic magma is cooling whilst rising with the bubbles,
it may be able to accommodate more volatile mass leading to diffusive mass transfer and
resorption. Under these conditions, larger bubbles would resorb at the rate of diffusion and
shrinkage of any smaller bubbles would become impeded by either surface tension or viscous
effect. However, cooling of a buoyantly ascending bubbly basalt would be quite unusual in a
magmatic setting, leading to the conclusion that, despite being able to be modelled, stationary
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resorbing bubbles are most likely to occur in rhyolitic melts.

If instead, an extrusive scenario for coupled bubbles in basaltic material is considerd, where
bubbles are trapped within a clast of melt ejeted during an eruption, cooling that would
result in an increase in volatile saturation is much more plausible. It could be expected in
this case that the bubbles would undergo diffusion limited resorption into the cooling clast
material, leaving behind halos of increased volatile concentration in the preserved material.
However, these halos are not always observed which could lead some to think the bubbles
are not diffusion-limited. Taking typical lengthscales for a basaltic pyroclast (10−2m) and
values of thermal and volatile diffusivity (DT = 10−8m2s−1 and D = 10−12m2s−1), it is
found that the cooling timescale (λc = a2/DT ) is several orders of magnitude longer than
the volatile diffusion timescale, λD for bubbles µm scale bubbles (λc/λD = 104/102). This
explains why despite being diffusion-limited, no concentration profiles are observed radiating
from trapped bubbles, as the cooling has been so long that the volatiles have equilibrated
with the surrounding melt before being ’frozen’ into the cooled material. For small bubbles
in large clasts, this effect will be even more enhanced, however for bubbles in much smaller
clasts, the two timescales become a lot more similar meaning concentration profiles may be
observable in field samples.

7.1.3.2 Decoupled Systems

The regime diagram for decoupled bubble systems displays an opposite conclusion to
the coupled regime diagram, with resorption of spherically stable rising bubbles only being
favourable in basaltic melts rather than rhyolites. This is due to the high viscosity of rhyolites
that means bubbles would have to be very large to be sufficiently buoyant that the buoyancy
would affect the dynamics of diffusive mass transfer. At this size, the bubbles would no longer
be described by the underpinning theory of this thesis which relies on low Reynolds and Eotvos
number. Any hypothesised scenario involving decoupled spherical bubbles in rhyolitic melts
can therefore be dismissed.

Rising spherical bubbles can resorb in basaltic systems which validates the plausibility of
the scenarios set out for this case in Section 3.1 for bubbles larger than 1µm in radius. This
has major significance to volcanic processes and suggests that models or eruptive processes
should also take alterations to melt compositions or dynamics as a result of resorption into
account. Furthermore, resorption should be considered more widely in studies attempting to
explain sequences of processes that produce certain volcanic phenomena.

In respect to interpreting eruptive or intrusive volcanic materials, Figure 7.2 hints at
observations that could expected in preserved magmatic products if dynamic bubble resorption
has occurred. If resorption of buoyant bubbles has taken place, rapidly quenched samples of
basaltic melt would display different patterns of volatile concentration in the preserved glass
depending on the bubble size. Around an originally smaller bubbles would have been viscously
limited or effectively stationary, haloes of increased volatile concentration will radiate out
from a vesicle or from a point where a vesicle once was. Around originally larger bubble
that would have sat in the diffusion limited regime and therefore would’ve continued to rise
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during resorption, streaks or haloes with tails of increased volatile concentration would be
preserved in the melt as the bubble leaves behind melt it has transferred mass with. Vesicles
in rhyolitic melts where resorption is suspected to have taken place would display haloes of
increased volatile concentration around the remaining bubble. In extreme cases of complete
resorption, circular patches of increased concentration may be all that remains. Looking for
these patterns of regassing in rapidly quenched melt samples could provide a vital piece of
observational evidence to support theories of bubble resorption in volcanic systems.

7.2 Péclet Number-Stokes Number Regime Diagram

In addition to regime diagrams for the individual types of bubble system, a further regime
diagram can be constructed that draws both systems together to consider a representation
of all the work in this thesis. Using Stokes number and Péclet number as the two primary
dimensionless quantities, and Sherwood number as a secondary quantity, the different types
of bubble-melt system can be shown in relation to one-another (Fig.7.3).

Within the diagram, example studies conducted into each type of system are listed, along
with highlighted regions showing where different numerical solutions or models for bubble
dynamics are applicable. This diagram therefore provides an overview of the current extent
of understanding on the dynamics of bubbles in high-viscosity melts.

Hypothesised transition lines are shown at values of Stk and Pe where a system would
change distinctly between two different types of behaviour. For Stokes number this is the
transition between a coupled and decoupled system, and for Péclet number the transition
between a viscous limited or diffusion limited solution. On the right-hand axis it is shown
that bubbles lying in the upper-half of the diagram would be best described by buoyant Péclet
number, whereas for those in the lower-half, stationary Péclet number would provide a better
description. At the upper limit of the diagram, Sherwood number may need to be considered
to better distinguish between buoyant resorbing systems. Regions where different effects act
to limit the system are shown, along with depictions of where different solutions for bubble
dynamics are applicable. These include some of the specific solutions from this thesis set out
in Chapter 6, as well as those from previous modelling studies or classical theory (Hadamard,
1911; Rybczynski, 1911; Prousevitch et al., 1993; Pigeonneau, 2011; Coumans et al., 2020;
Jackson et al., 2022). Experimental datasets considered throughout this thesis are also plotted
for comparison. To use this regime diagram, the material parameters of a system should be
used to calculation the value of Stk. If Stk is much greater than one, or bubbles are known
to be decoupled, Peb should then be calculated from further material parameters of the gas
and melt. If Stk is much less than one, or bubbles and melt are known to be coupled, Pes
should then be calculated in a similar way. From there, the region of Figure 7.3 in which
the system sits in will be apparent and the most applicable model for bubble dynamics can
be determined.

Positions of the four main endmember dynamic cases, coupled non-resorbing bubbles, de-
coupled non-resorbing bubbles, coupled resorbing bubbles and decoupled resorbing bubbles,
sit in similar relation to that hypothesised in Figure 3.1, but have a more complex configu-
ration than just being situated towards each corner. The main cause of this difference is the
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Figure 7.3: Regime diagram covering all of the different regimes of behaviour discussed in this work
for both coupled and decoupled bubbles. Degree of bubble coupling is determined by the Stokes
number axis, with the transition occurring at Stk=1. Sherwood number or Péclet number is used on
the x-axis to determine the regime of behaviour. In areas shaded blue (A) bubbles are essentially
stationary, in pink areas (B,D) they are buoyancy limited, in orange areas (C,E,H) diffusion limited,
yellow areas (G) are viscosity limited and bubbles in purple areas (H) are surface tension limited.
Two thinner black dashed lines are shown in Area G where the onset of the surface tension regime is
observed for both a rhyolitic and basaltic melt. Regions where certain models for bubble dynamics
are applicable are shown as bold pink lines. Any datasets observed are shown with purple markers.
Regions where numerical solutions presented in this work are applicable are shown with blue text.
Overall, the diagram highlights where past work has been able to develop understanding, as well as
where there are gaps in knowledge for future work to focus on.

development that more rapidly rising bubbles described by higher values of Péclet number
will resorb faster, thus placing them further to the right of the regime diagram. In addition,
at low values of buoyant Péclet number (or Sherwood number) bubble rise is so negligible they
are better described by stationary Péclet number, nullifying a large area up to the upper-left
of the diagram.

One remaining limitation of this Stk-Pe regime diagram is that regions between each endmem-
ber are not that well accounted for in terms of experimental data or modelling. This includes,
for example, systems where the degree of bubble coupling is less definitive so that bubbles
may be moving within a melt that is also moving but at a different velocity. In this case, the
system is decoupled but to a lesser extent than if the melt were stationary (Fig7.3areaG).
As a result, the ratio of bubble and melt velocities (Stokes number) is neither tending towards
an infinitely large or small value and sits somewhere in-between, requiring a different solution
to be able to model the bubble dynamics. Nonetheless, the relative position of this bubble
system to others in Stk-Pe space and the key control being diffusion rate would be known and
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may help to estimate some of the expected bubble behaviours or system dynamics.

It would now be appropriate to collect together further datasets from bubble systems of
various gases and melts for plotting onto this diagram to see if any further trends between
systems, either magmatic or non-magmatic, become apparent. Some trends that would be
expected from the numerical descriptions of Pe and Stk have been shown on Figure 7.3,
but confirming these with observational evidence has potential for a future study. It would
be especially potent to plot datasets or trends from systems with intermediate degrees of
coupling to build better understanding of the relationship between Stk and Pe beyond the
endmember cases.
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Conclusions & Extensions

The aim of this thesis was to build upon existing work on bubbles in high-viscosity fluids
with a principal focus on the dynamics of bubble resorption in both coupled and decoupled
systems. This was done using dimensionless quantities, principally Péclet numbers, to explore
the controls and limits to bubbles of different sizes in different melt compositions, and the
boundaries between different bubble regimes. Exploring the topic in this way has enabled a
development in understanding from the hypotheses originally set out, as well as some addi-
tional findings made along the way to addressing the principal aims of the project. It has also
highlighted the extent to which there is room to expand even further on the topic of bubble
resorption dynamics, especially in the context of volcanic systems, leaving several avenues for
further valuable research.

8.1 Conclusions

After extensive analysis of the four hypothesised endmember of limiting bubble regimes and
experimental work to generate new observations of bubble resorption, the following conclusions
are drawn:

1. Two different definitions of Péclet number enable regimes of bubble behaviour in coupled
or decoupled systems to be better differentiated, as they take into account different
definitions of advection for the two types of system. Each system simulated in the
study had a unique value of Péclet number based on the input conditions and there
were several trends observed based on the order of magnitude of these Péclet number
values.

2. The stationary Péclet number proves comprehensive for describing coupled bubble sys-
tems, whereas the buoyant Péclet number had limitations. It was found that for sys-
tems described by very high values of buoyant Péclet number, the additional factor of
Sherwood number became more appropriate to distinguish between different regimes of
behaviour.

3. In bubble systems where there is no resorption, bubble growth or shrinkage will be
entirely controlled by changes to temperature and pressure.
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4. Numerical simulations of coupled resorbing bubble systems show there to be three main
regimes of bubble resorption: diffusion limited, viscous limited or surface tension limited.
The transition between the diffusion limited regime where resorption occurs at the rate
of gas diffusion into the melt and the viscous limited regime where the surrounding fluid
is slow to respond to the equilibration of the bubble radius following mass transfer,
occurs around Pes = 105. Therefore typically, larger bubbles are diffusion limited
whereas smaller bubbles are viscously limited. For the very smallest bubbles surface
tension effects become dominant in limiting the rate of bubble resorption when Pes � 1

(R0 < 10−6m).

5. Numerical simulations of decoupled resorbing bubble systems show there to be two main
regimes of bubble resorption: diffusion limited and buoyancy limited, where viscosity of
the surrounding melt restricts the buoyant advection of the bubble. The transition be-
tween these two regimes is best captured using Sherwood number, occurring at Sh=10.
An additional observation when Sh→ 100.3 is that bubble buoyancy is reduced so sig-
nificantly that the bubble can be considered as coupled to the melt and are therefore
better described by the stationary Péclet number.

6. Stable spherical bubbles in rhyolitic systems are almost exclusively coupled due to high
melt viscosities. As a result, they are also viscously limited and described by lower
values of Pes and Sh<10.

7. Stable spherical bubbles in basaltic systems can be coupled or decoupled due as melt
viscosities are lower. Therefore, they almost always diffusion limited and described by
higher values of Pes and Sh>10. When coupled, the relative timescales of melt cooling
and diffusion means that despite being diffusion limited, neutral volatile concentration
profiles are observed extending from the bubble edge. This is due to equilibration with
the surrounding melt during slow cooling following mass transfer. When decoupled, tails
or streaks of increased volatile concentration may be observable in rapidly quenched
material as a result of the bubble rising simultaneously to resorbing.

8. Experiments completed using CO2 bubbles in golden syrup provides further support for
the use of syrup as a laboratory-scale analogue for magma. Observations collected cor-
roborate with existing datasets for decoupled resorbing bubbles, where initially larger
bubbles appearing to resorb at a faster rate than initially smaller bubbles. In an im-
provement to understanding from the hypotheses, this means that in high Peb systems,
bubble resorption actually occurs faster than in lower Peb systems. This is attributed
to larger bubbles, rising faster through the surrounding melt and therefore continually
encountering new melt equivalent to continually resetting the concentration gradient
between the bubble and distal melt or maintaining a consistently high solubility.

9. The four endmember bubble regimes hypothesised can now be expressed in terms of
numerical values of Péclet number and Stokes number as shown on the regime diagrams
plotted. Whilst endmember cases do exist, the boundaries between them are much
more fluid, with a spectrum of both Péclet number and Stokes number being plausible
in volcanic systems.
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8.2 Topics for Future Study

With this thesis giving a comprehensive overview of current understanding on the different
types of bubble-fluid systems that may occur, with focus to those that are plausible in higher
viscosity magmatic bubble-melt systems, it has also encountered scenarios where there are
limits to understanding and therefore room for future research. The following list, whilst not
exhaustive, sets out some of these areas where developing knowledge through further study
would be important in working towards a complete understanding of bubble dynamics in
volcanic settings.

8.2.1 Developing a Diffusion Limited Solution for Coupled Bubble Resorption

One significant area for future study is the development of a numerical solution for coupled
bubbles in the diffusion limited regime. Such solutions have begun to be explored by Doremus
(1960) and Clift et al. (2005), but are still far from the solutions presented in this work for
the viscous and surface tension regimes, or models such as that by Coumans et al. (2020).

A solution for bubble radius evolutions in this regime are of particular importance to appli-
cations in volcanology as it would be applicable to bubbles in basaltic melts, most of which
sit in this diffusion limited regime. Being able to calculate bubble radius at any given point
in time from input parameters of the system would be invaluable to the wider modelling of
eruptive basaltic systems.

8.2.2 Developing Solutions for Decoupled Bubble Resorption

Whilst the model by Pigeonneau (2011) provides an appropriate fit to experimental data
from oxygen-molten glass systems, it would be interesting to extend investigations by adapting
the model to run with magmatic melt and volatile bubble inputs. In addition, the reactionary
sections of the model set up to simulate redox could also be applied or adapted for other
reactions that may take place between the bubble gas phase and surrounding melt.

More analytical solutions for dimensionless coefficient, similar to those set out in Chapter 5
for coupled resorbing bubbles, would be good to develop in addition to a complete numerical
model. However, this would require better normalisation of data first. Whilst the Sherwood
normalised timescale begins to suggest the effects of convective mass transfer need to be
accounted for, there is still room improvement and a more definite normalisation to collapse
data from decoupled resorbing systems.

If possible, improved solutions or models would enable bubble radius evolutions for any decou-
pled bubble-melt system to be simulated from the material parameters and input conditions of
the system. This would prove pivotal to the modelling of wider eruptive processes in volcanoes
where bubbles play an active part.

8.2.3 Intermediate Stoke Number Systems

Within the development of this decoupled bubble resorption solution for a magmatic
setting, it would be important to build in the possible effects of intermediate Stokes number
where a bubble may be moving in a melt that also has an ascent velocity. As highlighted in
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section 7.2, this is a region of significant unknowns in current understanding, but given it
is a likely scenario for a lot of natural volcanic settings, it is important to build it into any
new model. In addition to being modelled, collecting observational data of rising bubbles in
a non-stagnant melt would also give an insight, as datapoints could be plotted onto Figure
7.3 to see the relationship between Stk and Pe or Sh as Stk changes as well. It may be that
there are further dimensionless quantities that could be expressed to describe the ratio of Stk
to Pe, similar to Morton number in the Re-Eo regime space.

8.2.4 Temporal & Spatial Changes

The current definitions of Péclet number set out in this thesis use the initial conditions
of a system to define a value of Peb or Pes. In magmatic systems where there are constant
changes to conditions in both time and space, it may be more appropriate to have a Péclet
number that changes in line with these conditions. This would mean it is plausible that the
Péclet regime of a system is not fixed at a constant value. Different regions of the same system
may be in different limiting regimes as things like temperature or pressure vary, meaning that
bubbles experience different controls on their behaviour as they migrate through the system,
sometimes being diffusion limited and able to freely resorb, other times being viscously limited
and experiencing larger amounts of overpressure, or occasionally even being under conditions
that don’t allow for any resorption.

Furthermore, as the radius of a bubble changes because of resorption, a Péclet number that
accounts for these changes would mean the value used to describe the system would change
over time. This could be a good way of determining where the onset of different controls may
be such as if a bubble resorbs to become so small that surface tension then limits any further
resorption. Rather than just determining the initial limiting controls of the system, a dynamic
Péclet number would allow changes in these controls over space or time to be observed.

8.2.5 Two-way & Reactive Diffusion

As shown in the numerical solution of Pigeonneau (2011), reactions between bubbles and
melt during rise and resorption can be accounted for when modelling bubble radius evolutions.
To extend this, the effects of other reaction processes would be good to build into models used
specifically for magmatic melts and volatile bubbles.

Another factor which has not yet been considered is the possibility for two-way diffusion,
where one gas species moves from the bubble into the melt and a secondary gas species from
the melt into the bubble. This would be a simultaneous ragassing and degassing of melt as the
gas species are exchanged. In terms of bubble radii, bubbles would not necessarily shrink as
mass is being replaced as it is being removed. If replacement with the new species takes place
at a slower rate than removal of the original gas, the bubble may shrink, but not to complete
resorption. However, the bubble size also depends on the volume that the new gas occupies
according to its ideal gas law. Therefore, a smaller mass of the new gas species may actually
occupy a greater volume, resulting in bubble growth instead. These complex dynamics began
to be discussed by Doremus (1960) in terms of mixed gas or multi-phase bubbles. Some initial
modelling of gas exchanges was then carried out in the discussion of Pigeonneau (2011), but a
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more comprehensive consideration of two-way diffusion, especially in the context of magmatic
systems, is yet to be carried out.

8.2.6 Observations of Bubbles in Natural Melt

Throughout this thesis, extensions to experimental work on bubbles in high-viscosity
fluids to melt samples from magmatic systems has been alluded to. To date, bubbles have
rarely been observed directly in natural melts such as basalts or obsidian. Those studies that
have been able to make observations relied on complex experimental processes to analyse
situations before or after a process has taken place. This approach could be extended to try
and observe non-reactive bubble rise in magmatic material as suggested in section 4.3.2
to confirm hypotheses on the use of the Hadamard-Rybczynski equation to describe bubble
motions. Furthermore, this type of indirect observation of a process could also be used to
observe resorption of a single decoupled bubble in magmatic material using a similar technique.

A gold-standard for observations of bubbles in natural melts would be to directly observe
processes as they take place. However, the complex properties of magmatic melts including
inherent opaqueness, high temperature working viscosities and iridescence when heated pro-
vide particular complexity. Significant advances in experimental practices would be needed to
complete such experimental work, if it is even possible at all. Nonetheless it provides an in-
teresting topic for discussion in future work, which should always try to explore experimental
options alongside numerical modelling to solve volcanological problems.
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Appendices

Appendix I - Glass & Analogue Datasets

Table of references for datasets used in Chapter 2.3 to demonstrate the properties of
magmatic melts and analogue materials. Reference number refers to the indexed number on
the figure legends, and Citation gives a reference for the data source.

Reference No. Citation

1 Ryan et al. (2015)

2 Liu et al. (2005)

3 Silver et al. (1990)

4 Holtz et al. (1992, 1995)

5 Berndt et al. (2002)

6 Lesne et al. (2011)

7 Fogel and Rutherford (1990)

8 Pan et al. (1991)

9 Carroll and Stolper (1993)

10 Schmidt and Keppler (2002)

11 Brehens (2010)

12 Roselieb et al. (1996)

13 Zhang (1999)

14 Liu et al. (2005)

15 Behrens et al. (2004)

16 Alletti et al. (2007)

17 Balcone-Boissard et al. (2010)

18 Watson (1991)

19 Watson et al. (1982)

20 Cristalica (n.d.)

21 Jackson et al. (2022)

22 Altemose (1961)

23 Terai and Oishi (1977)

24 Scholze and Mulfinger (1959)

25 Shelby (1973)

26 Schellart (2011)

27 Beckett et al. (2011)
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Appendix II - Derivation of the Diffusive Lengthscale λD

A full derivation showing the origins of the expression for diffusive lengthscale L in Equa-
tion 2.11, which is then subsequently used in the definitions of both stationary and buoyant
Péclet numbers, Peb and Pes.

𝐿
𝑅!

gas	
bubble

melt	shell

Considering a bubble with initial radius R0, con-
taining a fixed mass of ideal gas mb, surrounded by
a viscous melt shell into which this mass can transfer
diffusively. The initial moles of gas in the bubble n,
can be expressed as,

n =
mb

Mm
=

4

3

πR3
0p0

RgT

where Mm is the molar mass of the gas, Rg the ideal
gas constant and p0 and T the pressure and tempera-
ture of the system respectively.

The mass of melt in the surrounding shell required to completely accommodate all of the mass
from the gas bubble ms can be found from the initial solubility of the melt, S0,

ma =
100

S0
mb

where S0 is in wt.% at the conditions of p0 and T . The volume of this melt mass, Vm depends
on its density ρm.

Vm =
ms

ρm

From here, the diffusive lengthscale L, otherwise thought of as the distance the diffusive
gas moves into the surrounding melt shell by diffusion, can be expressed as the ratio of melt
volume to surface area of the spherical bubble.

L =
Vm

4πR2
0

Expansion and simplification of this ratio to incorporate material properties of the gas and
melt, as well as parameters for the system conditions yields the final expression for diffusive
lengthscale used in Equation 2.11.

L =
Vm

4πR2
0

=
ms

4πR2
0ρ

=
100mb

4πR2
0ρS0

=
100Mm

4πR2
0ρS0

n

L =
100Mm

4πR2
0ρS0

· 4

3

πR3
0p0

RgT

L⇒ 100Mmp0

3RgTρS0
·R0
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Appendix III - Pre-experimental Calculations

The sequence of calculations completed prior to experimental work with CO2 bubbles in
golden syrup to investigate the plausibility of the study and estimate the expected outcomes.
Using known material properties of the syrup and other similar substances, diffusivity and
solubility at room temperature (given in Table 6.1) are approximated before calculations of
the diffusion and bubble rise timescales are carried out to find the accessible range of buoyant
Péclet number regimes.

1. System Conditions
For the designed open system experiment, initial conditions are as follows:

Room pressure = 1 bar ≈ 1 atm = 105 Pa
Room temperature = 25oC = 298K
CO2 density = 1.8393 kgm−3

Undiluted golden syrup density = 1437.59 kgm−3

Undiluted golden syrup viscosity = 77.55 Pa.s

The two missing parameters for the calculation of the diffusive and bubble rise timescales are
solubility and diffusivity of CO2, which can now be estimated from these initial conditions.

2. Solubility
Laws for the solubility of CO2 in sugar syrups from existing studies (eg. Vazquez Una et al.,
1994) are unsuitable for use in this work as they are for glucose syrups with significantly
different compositions, very diluted syrup mixtures, or occasionally only applicable under
higher temperature and pressure conditions.
Therefore the solubility of CO2 in water is used to approximate its solubility in golden syrup.
This is considered valid since golden syrup is diluted to around 20vol.% with pure water
and the effects of the predominantly sucrose sugar are thought to be minimal. Given this
assumption, 1.5g of CO2 is soluble in every kilogram of water (Engineering Tool Box, n.d.).

CO2 Solubility = 1.5x10−3 mass fraction
CO2 Solubility = 6.148x10−4 mole fraction

To account for the fact that only 20% of the golden syrup is water, these values for CO2

solubility in water are divided by five to give a better estimate for the gas solubility in the
syrup.

CO2 Solubility = 3x10−4 mass fraction
CO2 Solubility = 1.2295x10−4 mole fraction

The value of solubility in weight percent (0.03wt.%) is used in all further pre-experimental
calculations (Table 6.1) as well as the post-experimental analysis completed in Chapter 6.

3. Diffusion Coefficient
The diffusion coefficient, D of CO2 in carbonated drinks containing a sugar syrup solution has
previously been estimated (Lv et al., 2018). In club soda and colas at room temperature and
pressure, D has a value in the order of 1.73x10−9m2s−1. A mean value of 1.535x10−9m2s−1

from drinks containing different sugar syrups could be used, however the concentration of
syrup in these drinks is around 10% by volume, significantly less than in golden syrup.
Therefore, a similar approximation to solubility is completed, using the diffusion coefficient
of CO2 in water instead of a sugar syrup. Given this, D can be calculated from,
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log|D| = −4.410 +
773.8

T
−
(

506.4

T

)2

whereD is given in cm2s−1 and T in Kelvin (Cadogan et al., 2014). Using this, the value of dif-
fusion coefficient calculated and used in further pre-experimental calculations is 1.9903x10−9m2s−1.
This value is also used in subsequent analysis of experimental results in Chapter 6.

4. Bubble Rise Timescale
Using the Hadamard-Rybczynski equation (Eq.2.15), the terminal rise velocity of different
sized bubbles is estimated. From then, the bubble rise timescale for the CO2 bubble to rise the
height of the 50cm glass cylinder used in the experiments is estimated (Eq:2.2.2.2). These
estimations show that the timescale of bubble rise will quite slow enough and will therefore
be monitorable by eye or time-lapse photography.

Tube Height
m 0.5 0.5 0.5 0.5 0.5

Initial Bubble Radius
mm 0.1 0.5 1.0 5.0 10

Bubble Rise Velocity
ms−1 1.21x10−6 3.03x10−5 1.21x10−4 3.03x10−3 1.21x10−2

Bubble Rise Timescale
s 4.13x105 1.65x104 4.13x103 1.65x102 4.13x101

5. Diffusion Timescale
Using Equation 2.12, the timescale for diffusion of CO2 from the bubble into the syrup is
estimated. For this estimation, the standard conditions are used in the calculation of the
diffusive length, L. This shows the timescale of diffusion is fairly long, and in all cases, longer
than the bubble rise timescale. As a result, bubbles will not undergo complete resorption but
some change in the radius may still be evident and measurable.

Initial Bubble Radius
mm 0.1 0.5 1.0 5.0 10

Diffusive Length
x107 m 3.83 3.83 3.83 3.83 3.83

Diffusion Timescale
m2s−1 1.92x108 4.81x109 1.92x1010 4.81x1011 1.92x1012

6. Reynolds Number Estimates
Stokes number is calculated for each bubble size to show that in all cases, the system lies in
the low-Reynolds number, viscous dominated regime where bubbles will remain spherical.

Initial Bubble Radius
mm 0.1 0.5 1.0 5.0 10

Bubble Rise Velocity
ms−1 1.21x10−6 1.21x10−5 1.21x10−4 1.21x10−3 1.21x10−2

Reynolds Number 2.2x10−9 2.8x10−7 2.2x10−6 2.8x10−4 2.2x10−3
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7. Buoyant Péclet Number Estimates
Finally, using Equation 2.18, values of buoyant Péclet number are calculated for each bubble
system. These range over several orders of magnitude showing that various orders of Peb can
be tested by varying the bubble radius between 0.1 and 10 mm.

Initial Bubble Radius
mm 0.1 0.5 1.0 5.0 10

Bubble Rise Timescale
s 4.13x105 1.65x104 4.13x103 1.65x104 4.13x101

Diffusion Timescale
s 1.92x108 4.81x108 1.92x1010 4.81x108 4.81x108

Buoyant Péclet Number 4.7x102 2.9x105 4.7x106 2.9x109 4.7x1010
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Appendix III - Complete Experimental Results

Table containing data from the ten decoupled bubble experiments completed with bubbles
of CO2 in golden syrup used to plot figures in Section 6.1.3. Bubble radii measurements
complete with positive and negative estimates of error from measurement are given alongside
both the time and distance travelled by the bubble at each point. The file number of each
image used to take a bubble radius measurement are also listed.

File
Number

Time
s

Rise Distance
mm

Bubble Radius
mm

+ve Error
mm

−ve Error
mm

Bubble Test 1 - Peb=2.2x108

7148 0 0 1.56 0.170 0.144
7149 20 4 1.56 0.174 0.140
7150 40 8 1.55 0.174 0.138
7151 60 12 1.53 0.169 0.137
7152 80 15 1.54 0.172 0.137
7153 100 19 1.59 0.178 0.142
7154 120 23 1.57 0.174 0.141
7155 140 27 1.54 0.172 0.137
7156 160 31 1.50 0.168 0.133
7157 180 35 1.55 0.173 0.139
7158 200 38 1.53 0.171 0.137
7159 220 42 1.52 0.169 0.136
7160 240 46 1.58 0.176 0.142
7161 260 50 1.54 0.172 0.137
7162 280 54 1.52 0.181 0.128
7163 300 58 1.47 0.164 0.131
7164 320 62 1.51 0.168 0.136
7165 340 65 1.47 0.164 0.131
7166 360 69 1.49 0.166 0.133
7167 380 73 1.46 0.163 0.131
7168 410 79 1.46 0.191 0.117
7169 440 85 1.50 0.167 0.134
7170 470 90 1.48 0.164 0.132
7171 500 96 1.42 0.159 0.128
7172 530 102 1.47 0.164 0.133
7173 560 108 1.45 0.161 0.131
7174 590 114 1.43 0.167 0.123
7175 620 119 1.49 0.165 0.134
7176 650 125 1.48 0.164 0.133
7177 680 131 1.45 0.161 0.130
7178 710 137 1.45 0.161 0.130
7179 740 142 1.49 0.164 0.134
7180 770 148 1.39 0.156 0.123
7181 800 154 1.45 0.161 0.130
7182 830 160 1.43 0.160 0.128
7183 860 165 1.52 0.169 0.137
7184 890 171 1.45 0.161 0.130
7185 920 177 1.40 0.159 0.123
7186 950 183 1.40 0.161 0.122
7187 980 189 1.38 0.163 0.118
7188 1010 194 1.39 0.158 0.121
7189 1040 200 1.35 0.161 0.114
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File
Number

Time
s

Rise Distance
mm

Bubble Radius
mm

+ve Error
mm

−ve Error
mm

7190 1070 206 1.33 0.151 0.117
7191 1100 212 1.29 0.144 0.115
7192 1130 217 1.39 0.155 0.124
7193 1160 223 1.34 0.150 0.119
7194 1190 229 1.28 0.138 0.119

Bubble Test 2 - Peb=4.7x108

7195 0 0 2.01 0.233 0.175
7196 30 8 2.02 0.222 0.185
7197 60 15 2.00 0.229 0.176
7198 90 23 2.10 0.230 0.191
7199 120 31 1.99 0.219 0.181
7200 150 38 1.92 0.210 0.176
7201 180 46 2.03 0.222 0.185
7202 210 54 1.90 0.207 0.174
7203 240 61 1.94 0.214 0.176
7204 270 69 1.69 0.187 0.153
7205 300 76 1.98 0.217 0.180
7206 330 84 1.92 0.211 0.175
7207 360 92 1.91 0.215 0.170
7208 390 99 1.87 0.206 0.170
7209 420 107 1.89 0.208 0.171
7210 450 115 1.83 0.202 0.167
7211 480 122 1.83 0.198 0.168
7212 510 130 1.83 0.207 0.162
7213 540 138 1.87 0.202 0.173
7214 570 145 1.73 0.191 0.156
7215 600 153 1.76 0.193 0.160
7216 630 161 1.78 0.195 0.162
7217 660 168 1.74 0.192 0.158
7218 690 176 1.78 0.202 0.158
7219 720 183 1.86 0.205 0.169
7220 750 191 1.75 0.202 0.153
7221 780 199 1.56 0.178 0.138
7222 810 206 1.62 0.185 0.142
7223 840 214 1.53 0.173 0.136
7224 870 222 1.48 0.170 0.129
7225 900 229 1.47 0.169 0.129
7226 930 237 1.42 0.166 0.123

Bubble Test 3 - Peb=4.5x108

7232 0 0 1.99 0.213 0.185
7233 4 1 2.04 0.217 0.192
7234 49 12 1.95 0.209 0.181
7235 64 16 1.99 0.212 0.186
7236 109 28 1.91 0.204 0.180
7237 124 32 1.94 0.208 0.181
7238 169 43 1.96 0.209 0.184
7239 184 47 1.92 0.205 0.180
7240 229 58 1.91 0.202 0.180
7241 244 62 1.94 0.207 0.182
7242 289 74 1.88 0.200 0.176
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7243 304 77 2.17 0.231 0.203
7244 349 89 1.92 0.203 0.181
7245 364 93 1.87 0.199 0.175
7246 409 104 1.89 0.203 0.177
7247 424 108 1.80 0.193 0.167
7248 469 119 1.88 0.201 0.175
7249 484 123 1.82 0.192 0.172
7250 529 135 1.79 0.191 0.167
7251 544 139 1.80 0.193 0.168
7252 589 150 1.81 0.196 0.167

Bubble Test 4 - Peb=1.4x108

7253 0 0 1.35 0.148 0.123
7254 45 5 1.44 0.154 0.134
7255 50 5 1.37 0.149 0.126
7256 105 11 1.35 0.147 0.124
7257 120 12 1.33 0.144 0.123
7263 300 30 1.31 0.144 0.119
7265 360 37 1.32 0.143 0.121
7269 480 49 1.33 0.143 0.123
7273 726 74 1.31 0.141 0.121
7277 846 86 1.28 0.140 0.117
7279 906 92 1.23 0.136 0.111
7283 1026 104 1.29 0.140 0.118
7284 1307 133 1.30 0.143 0.119
7287 1382 140 1.20 0.134 0.109
7291 1502 153 1.24 0.134 0.114
7295 1622 165 1.25 0.136 0.115
7299 1742 177 1.18 0.132 0.106
7303 1862 189 1.15 0.126 0.105
7307 1979 201 1.08 0.122 0.096

Bubble Test 5 - Peb=1.6x108

7308 0 0 1.40 0.157 0.125
7309 15 2 1.36 0.149 0.125
7313 135 14 1.37 0.148 0.125
7317 255 26 1.33 0.145 0.122
7321 375 38 1.38 0.150 0.127
7325 495 51 1.32 0.144 0.121
7326 540 55 1.36 0.152 0.122
7329 672 69 1.40 0.152 0.129
7332 777 79 1.38 0.149 0.127
7336 897 92 1.37 0.148 0.126
7340 1017 104 1.32 0.144 0.121
7344 1137 116 1.29 0.140 0.119
7347 1212 124 1.31 0.141 0.122
7348 1276 131 1.32 0.145 0.121
7352 1396 143 1.25 0.138 0.112
7356 1516 155 1.21 0.131 0.111
7360 1636 167 1.23 0.135 0.112
7365 1816 186 1.19 0.133 0.106
7368 1916 196 1.20 0.131 0.111
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Bubble Test 6 - Peb=8.7x107

7374 0 0 1.15 0.126 0.104
7375 44 2 1.12 0.127 0.099
7376 48 2 1.13 0.127 0.099
7377 66 3 1.13 0.129 0.098
7381 180 9 1.15 0.131 0.100
7385 300 15 1.09 0.123 0.095
7389 420 21 1.03 0.119 0.089
7393 540 27 1.09 0.125 0.094
7397 660 32 1.11 0.127 0.097
7401 780 38 1.05 0.120 0.091
7405 900 44 1.10 0.125 0.095
7408 1005 49 1.05 0.121 0.091
7409 1069 53 1.02 0.116 0.089
7414 1204 59 1.03 0.117 0.090
7418 1324 65 1.02 0.116 0.090
7422 1444 71 1.00 0.113 0.087
7426 1564 77 1.07 0.123 0.093
7430 1684 83 0.96 0.111 0.083
7434 1804 89 1.03 0.118 0.090
7436 1921 94 1.00 0.114 0.087
7440 2161 106 1.05 0.119 0.092
7444 2401 118 1.02 0.116 0.089
7448 2641 130 0.99 0.114 0.085
7452 2881 142 1.05 0.120 0.092
7456 3121 153 1.02 0.117 0.088
7460 3361 165 0.98 0.112 0.085
7464 3601 177 0.97 0.111 0.085
7468 3841 189 0.99 0.114 0.086
7472 4081 201 0.97 0.112 0.083
7476 4321 212 0.94 0.109 0.081
7480 4561 224 1.00 0.118 0.086
7484 4801 236 0.96 0.114 0.081

Bubble Test 7 - Peb=2.6x108

7502 0 0 1.66 0.187 0.146
7503 22 5 1.57 0.177 0.138
7504 74 15 1.54 0.172 0.138
7506 179 37 1.52 0.171 0.136
7508 254 53 1.47 0.165 0.131
7510 359 75 1.50 0.170 0.132
7512 434 90 1.44 0.163 0.128
7514 539 112 1.49 0.168 0.133
7516 614 128 1.51 0.167 0.136
7518 719 150 1.49 0.167 0.132
7520 794 165 1.47 0.164 0.132
7522 908 189 1.49 0.168 0.133
7524 983 205 1.46 0.163 0.131
7526 1088 227 1.47 0.164 0.131
7528 1163 242 1.45 0.164 0.127
7529 1253 261 1.44 0.166 0.125
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7530 1328 277 1.41 0.164 0.121
7532 1343 280 1.36 0.165 0.114

Bubble Test 8 - Peb=6.3x107

7501 0 0 1.03 0.139 0.080
7503 60 5 1.01 0.118 0.087
7504 112 9 1.03 0.120 0.088
7505 165 13 0.99 0.116 0.084
7507 240 19 1.04 0.122 0.089
7510 397 31 1.03 0.123 0.087
7514 577 45 1.02 0.122 0.085
7518 757 59 0.99 0.118 0.082
7521 885 69 0.94 0.113 0.078
7524 1021 79 0.99 0.118 0.082
7527 1178 92 0.97 0.115 0.082
7531 1358 106 1.00 0.118 0.084
7535 1538 120 0.97 0.114 0.081
7539 1718 134 0.97 0.116 0.081
7541 1793 139 1.00 0.120 0.083
7543 2024 157 0.99 0.117 0.084
7546 2204 171 0.95 0.114 0.079
7549 2384 185 0.97 0.116 0.081
7552 2564 199 0.96 0.114 0.081
7555 2744 213 0.94 0.109 0.080
7559 2984 232 0.99 0.116 0.083
7561 3104 241 0.95 0.114 0.079
7563 3224 251 0.93 0.112 0.078
7564 3345 260 0.96 0.117 0.079

Bubble Test 9 - Peb=4.4x107

7501 0 0 0.91 0.111 0.075
7502 38 2 0.90 0.110 0.074
7503 60 3 0.89 0.107 0.074
7506 217 11 0.90 0.108 0.076
7508 232 12 0.90 0.108 0.074
7510 397 20 0.90 0.106 0.075
7515 600 31 0.85 0.102 0.070
7520 832 43 0.89 0.107 0.074
7526 1126 58 0.86 0.104 0.070
7531 1358 70 0.85 0.103 0.070
7536 1561 80 0.89 0.107 0.074
7541 1793 92 0.87 0.105 0.072
7542 1972 101 0.88 0.105 0.072
7547 2264 116 0.84 0.101 0.069
7551 2504 128 0.88 0.105 0.072
7555 2744 141 0.83 0.102 0.067
7559 2984 153 0.87 0.106 0.070
7563 3224 165 0.86 0.104 0.070
7566 3464 178 0.84 0.101 0.069
7570 3704 190 0.82 0.100 0.067
7574 3944 202 0.86 0.104 0.070
7578 4184 215 0.86 0.102 0.072
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7581 4316 221 0.84 0.103 0.069
7582 4616 237 0.85 0.104 0.069
7583 4916 252 0.87 0.105 0.071
7584 5216 268 0.86 0.103 0.071
7585 5516 283 0.85 0.103 0.071

Bubble Test 10 - Peb=6.8x106

7501 0 0 0.49 0.068 0.035
7502 38 1 0.47 0.065 0.033
7503 60 1 0.50 0.067 0.036
7504 112 2 0.49 0.063 0.037
7505 165 3 0.44 0.058 0.032
7508 292 6 0.46 0.061 0.033
7509 345 7 0.48 0.062 0.035
7510 397 8 0.48 0.062 0.036
7515 600 12 0.46 0.060 0.034
7521 885 17 0.49 0.064 0.036
7528 1201 23 0.48 0.064 0.035
7534 1486 29 0.45 0.060 0.032
7541 1793 35 0.48 0.063 0.036
7544 2084 40 0.46 0.060 0.034
7549 2384 46 0.43 0.057 0.031
7554 2684 52 0.47 0.061 0.035
7559 2984 58 0.42 0.057 0.030
7564 3344 65 0.41 0.055 0.029
7569 3644 70 0.41 0.055 0.029
7574 3944 76 0.44 0.058 0.032
7579 4244 82 0.42 0.056 0.030
7582 4604 89 0.41 0.055 0.029
7583 4904 95 0.44 0.059 0.031
7584 5204 101 0.40 0.055 0.027
7585 5504 106 0.44 0.059 0.032
7586 5804 112 0.40 0.054 0.027
7587 6104 118 0.39 0.052 0.027
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