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Abstract 

Understanding the origins of diversity and the factors that drive some clades to be more 

diverse than others are important issues in evolutionary biology. Sophisticated SSE (state-

dependent speciation and extinction) models provide insights into the association between 

diversification rates and the evolution of a trait. The empirical data used in SSE models and 

other methods is normally imperfect, yet little is known about how this can affect these 

models. Here, we evaluate the impact of common phylogenetic issues on inferences drawn 

from SSE models. Using simulated phylogenetic trees and trait information, we fitted SSE 

models to determine the effects of sampling fraction (phylogenetic tree completeness) and 

sampling fraction misspecification on model selection and parameter estimation (speciation, 

extinction, and transition rates) under two sampling regimes (random and taxonomically 

biased). As expected, we found that both model selection and parameter estimate accuracies 

are reduced at lower sampling fractions (i.e., low tree completeness). Furthermore, when 

sampling of the tree is imbalanced across subclades and tree completeness is ≤ 60%, rates of 

false positives increase and parameter estimates are less accurate, compared to when 

sampling is random. Thus, when applying SSE methods to empirical datasets, there are 

increased risks of false inferences of trait dependent diversification when some sub-clades are 

heavily under-sampled. Mis-specifying the sampling fraction severely affected the accuracy 

of parameter estimates: parameter values were over-estimated when the sampling fraction 

was specified as lower than its true value, and under-estimated when the sampling fraction 

was specified as higher than its true value. Our results suggest that it is better to cautiously 
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under-estimate sampling efforts, as false positives increased when the sampling fraction was 

over-estimated. We encourage SSE studies where the sampling fraction can be reasonably 

estimated and provide recommended best practices for SSE modelling.  

 

Keywords: Trait dependent diversification, SSE models, phylogenetic tree completeness, 

sampling fraction 
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Understanding the origins of diversity and why some clades are more diverse than others are 

fundamental questions in evolutionary biology. Estimating the diversification rate of lineages, 

and how they vary across phylogenetic trees, is essential to developing this understanding. 

The per-lineage rates of speciation and extinction in a clade can be affected by environmental 

and geographical factors (Ricklefs 2007), time (or clade age; Henao Diaz et al. 2019), and 

species‟ traits (Jablonski 2008; Rabosky and McCune 2010). Possessing a certain trait state 

can promote speciation by increasing fitness or reproductive output (Liem 1973; Weber and 

Agrawal 2014; Helmstetter et al. 2016; Laenen et al. 2016; Igea et al. 2017). Conversely, 

some trait states may hinder speciation or increase extinction rates; for example, 

specialisation has been shown to reduce speciation rates in some clades (Day et al. 2016), but 

promotes it in others (Resl et al. 2018; Tonini et al. 2020). Although differences in 

diversification rates across trait states occur frequently (Jablonski 2008), it does not 

necessarily mean that the trait itself drives alone the clades‟ diversification dynamics. 

The State-dependent Speciation and Extinction (SSE) framework was developed to 

determine the impact that the evolution of a trait has on subsequent patterns of lineage 

diversification through time, by linking the presence/absence (or value) of trait states to 

diversification rates. To implement this approach and determine the most likely mode of 

diversification, Examined Trait Dependent (ETD) models, which include the trait 

hypothesised to affect diversification, are compared to models with Constant Diversification 

Rates (CR models) and Concealed Trait Dependent (CTD) models (also known as Character-

Independent (CID) models) (Beaulieu and O‟Meara 2016). CTD models account for the 

possibility that diversification rates do not vary in relation to the focal trait, but rather with 

some unmeasured trait(s). The CTD model is always as complex (in terms of the number of 

character states) as the ETD model (in CID notation, the number of character states has to be 

specified e.g., CID-2 has two character states). The use of CTD models successfully reduces 
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false inferences of trait dependent diversification that were problematic in earlier SSE tools 

(Rabosky and Goldberg 2015; Beaulieu and O‟Meara 2016) such as BiSSE (Maddison et al. 

2007a) and QuaSSE (Fitzjohn 2010). The improved suit of SSE models includes HiSSE 

(hidden-state-dependent speciation and extinction) (Beaulieu and O‟Meara 2016), GeoHiSSE 

(a biogeographical version) (Caetano et al. 2018), MuHiSSE (a multi-trait state version) 

(Nakovet al. 2019; Zenil-Ferguson et al. 2019; Román-Palacios et al. 2020), MiSSE 

(Vasconcelos et al. 2022), and SecSSE (several examined and concealed state dependant 

speciation and extinction) (Herrera-Alsina et al. 2019). 

The accuracy of model selection (i.e., comparing ETD, CTD and CR models) and 

parameter estimation (speciation, extinction, and transition rate estimates) in state-dependent 

diversification analyses is dependent on several factors, including: the similarity of true 

speciation rates across trait states, the number of transitions among trait states, completeness 

of trait information, and accuracy and completeness of the phylogenetic tree. It is harder to 

find evidence for trait dependent diversification when speciation rates are similar to each 

other (Beaulieu and O‟Meara 2016) and when extinction rates are high (Herrera-Alsina et al. 

2019). Incomplete trait information adds uncertainty to models: a missing tip in the 

phylogenetic tree or lack of trait information for an extant species will render the contribution 

of that branch to the analysis null. Some tools, such as SecSSE, can account for partial trait 

state data which reduces the negative effect of missing trait information (Herrera-Alsina et al. 

2019). Missing tips can result in loss of trait state transitions; this is a crucial piece of 

information for SSE modelling and lost transitions will likely negatively impact the analysis. 

Moreover, phylogenetic trees are sources of uncertainty themselves, with potential 

inaccuracies both in the topology of the tree and the branch lengths (Felsenstein 1985; 

Donoghue and Ackerly 1996). 
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Diversification analyses are normally intended for complete clades, but phylogenetic 

trees may be incompletely sampled, or only a (potentially polyphyletic) subset of taxa may be 

chosen for analysis. For example, the number of species/phylotypes in the entire clade may 

be unknown (e.g., in microbes) or the taxonomic scope of a study could be geographically 

limited. In SSE models, the sampling fraction is the percentage of taxa in the clade included 

in the phylogenetic tree (Nee et al. 1994; Fitzjohn et al. 2009; Chang et al. 2020), is specified 

separately in each trait state. The sampling fraction setting typically assumes that taxa are 

missing from the clade at random; however, this is rarely true and does not reflect realistic 

sampling associated with empirical phylogenies. Older, more abundant lineages are less 

likely to be excluded than younger lineages in incompletely sampled trees (Davies et al. 

2011). In some studies, certain sub-clades, for example those from the tropics in contrast to 

temperate counterparts, may be highly under sampled or completely excluded, potentially 

affecting the accuracy of SSE analysis (Titley et al. 2017). In studies that focus on a specific 

geographic region, species from outside that region would be removed. Plant collection 

biases have been well documented (Rich and Woodruff 1992; Moerman and Estabrook 2006; 

Corlett 2016; Daru et al. 2018) and some families (e.g., Asteraceae, Cyperaceae, and 

Poaceae) have phylogenetic biases in collection frequency (Daru et al. 2018), so sampling is 

neither uniform nor random across these phylogenies. Animals that are particularly prone to 

taxonomic bias include invertebrates such as Insecta, Arachnida, and Gastropoda (Troudet et 

al. 2017). Larger animals are not exempt from biases; for example, there is a lack of genetic 

data for bird species from tropical regions (Reddy 2014). Indeed, there is a general pattern of 

under-sampling of tropical species compared to those in temperate areas (Chek et al. 2003; 

Collen et al. 2008; Titley et al. 2017). Microbial phylogenetic reconstructions are likely to 

almost always be under-sampled and there may often be biases related to geography or 
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environmental conditions, for example with higher sampling occurring under certain pH 

conditions (Gubry-Rangin et al. 2015).  

In cases where the total number of species in a clade is unknown, the sampling 

fraction could be mis-specified, and this too may affect diversification analyses. Issues with 

clade specific sampling factions have previously been documented (Beaulieu 2020) but little 

work has been done on the effects of sampling extent, tree imbalance, and mis-specification 

on SSE model accuracy (Nee et al. 1994; Fitzjohn et al. 2009; Chang et al. 2020). However, 

understanding the consequences of different sampling regimes on model comparison and 

parameter estimation is paramount to give confidence to SSE studies with incomplete 

phylogenetic trees. Conducting SSE analyses in a Bayesian framework may be a useful 

method to reduce uncertainty around parameter estimation and improve the ability to detect 

signals of trait-dependence diversification. For instance, with Bayesian analysis is possible to 

account for sampling fraction uncertainty, by providing a range of possible sampling 

fractions as a prior, although this is not something that has been implemented in studies yet.  

Here, we provide the first in-depth evaluation of how incomplete phylogenetic 

information affects the performance of SSE models that incorporate concealed/hidden traits. 

We simulated data sets (phylogenetic trees along with trait information) and fitted SSE 

models in order to evaluate model selection under a number of different scenarios. 

Specifically, we evaluate the ability to select the correct type of relationship between trait 

evolution and branching patterns, and the accuracy in estimating parameter values 

(speciation, extinction, and transition rates). We focus on four key variables: (1) sampling 

fraction; (2) phylogenetic tree size; (3) sampling regime, in which phylogenies were sampled 

randomly or with taxonomic bias; and (4) misspecification of sampling fraction (where the 

true clade size is either under- or over-specified). We also used Bayesian analysis with a prior 

on the sampling fraction to deal with unknown sampling fractions.  
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MATERIALS & METHODS 

Trait and Phylogeny Simulation 

We simulated phylogenetic trees and accompanying trait data under three types of trait 

dependent diversification – Examined Trait Dependent (ETD), Concealed Trait Dependent 

(CTD), and Constant Rate (CR). We applied the same simulation procedure described in 

(Herrera-Alsina et al. 2019). In a nutshell, the simulations are run in continuous time, where 

first the waiting times are taken from an exponential distribution whose parameter is the sum 

of the per-lineage rates of events (i.e., speciation, extinction, and trait evolution). Then, a 

species is randomly taken to undergo one of the events and a record of it is kept. Specifically, 

we simulated the evolution of two traits that were independent from one another. Each trait 

had three states (examined trait with states 1, 2 and 3; concealed trait with states A, B, and C, 

see below) and all transitions across the three states were possible at a single rate (q). This 

means that the shift from state 1 to state 2 had the same rate than shifting from state 2 to state 

1. Notice that both traits are combined to yield a nine-state system (1A, 2A, 3A, 1B, 2B, 3B, 

1C, 2C, 3C) where double transitions (e.g., the change from 1A to 2C) are not possible. 

Although more complex systems (traits states ≥ 4) are possible in SecSSE (Herrera-Alsina et 

al. 2019), we chose three to minimise complexity. One of the traits, the examined trait, 

influenced diversification such that every time a lineage switched to a different trait state, its 

speciation/extinction rate was adjusted accordingly. This trait was the only factor affecting 

speciation and extinction dynamics and its‟ three states were numerically coded (i.e., 1, 2, 3). 

In contrast, the other trait, the concealed trait, did not influence diversification, but rather 

evolved neutrally over time. This trait‟s states were denoted alphabetically (A, B, C). 

Because the concealed trait had the same number of states as the examined trait (Fig. 1), the 

CTD model used here is equivalent to the character independent (CID-3) model in HiSSE 

(Beaulieu and O‟Meara 2016; Herrera-Alsina et al. 2019). We kept track of the evolution of 
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both traits and at the end of the simulation we retained the species‟ trait states of either the 

examined trait (ETD-generating model) or the concealed trait (CTD-generating model). Note 

that the CTD model accounts for trait dependent diversification of an unmeasured trait (the 

concealed trait), and it is equal in complexity to the observed trait model. We also ran a 

simulation where both traits were neutral, and the rate of diversification did not change across 

time or lineages (CR-generating model). In the ETD-generating model, speciation rates 

differed only across examined trait states λ1A = λ1B = λ1C ≠ λ2A = λ2B = λ2C ≠ λ3A = λ3B 

= λ3C, while in the CTD-generating model, speciation rates differed only across concealed 

trait states λ1A = λ2A = λ3A ≠ λ1B = λ2B = λ3B ≠ λ1C = λ2C = λ3C (Fig. 1). In the CR-

generating model, all speciation rates were the same regardless of trait state λ1A = λ1B = λ1C 

= λ2A = λ2B = λ2C = λ3A = λ3B = λ3C. The resulting simulated datasets included 

phylogenetic trees as well as the trait states associated with them. 

We set the speciation and extinction rates within the ranges previously used to test the 

performance of SecSSE analyses (Herrera-Alsina et al. 2019). For ETD and CTD generated 

phylogenies, the speciation rates (λ) were: 0.1, 0.3, 0.5; for CR generated phylogenies, all 

trait states had the same speciation rate of 0.3. The extinction rate (μ) was set either low 

(0.001) or regular (0.05). We did not include models with variable extinction rates (and/or 

different transition rates) which adds to the model complexity and may lead to confounding 

effects (Davis et al. 2013). The transition rate (q) was set to 0.4 for all transitions in all 

phylogenies, and all transitions between the three states were possible (Fig. 1). The transition 

rate is somewhat high, although not unrealistic: while some empirical SSE studies have found 

transition rates similar to the rate we chose (e.g., pollination in hummingbirds, Wessinger et 

al. 2019), other studies have found lower rates (e.g., habitat preference in Diatoms Nakov et 

al. 2019; host-plant association in dragonflies Letsch et al. 2016; body shape and habitat 

preference in marine fishes Rincon-Sandoval et al. 2020), or much higher rates (mycorrhizal 
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association in fungi Looney et al. 2016). This also enabled testing the performance of SecSSE 

under new conditions, as its performance has already been documented with transition rates 

of 0.05 and 0.1 (Herrera-Alsina et al. 2019). Phylogenetic trees were simulated in three size 

groups; as younger trees have fewer tips, this was achieved by altering the crown age of trees: 

large (1000 – 5000 tips; age = 23 MY), medium (450 – 650 tips; age = 19 MY) and small 

(100 – 250 tips; age = 13.4 MY). The range in number of species within each category of tree 

size is due to stochasticity and extinction rate (even with the same clade age). For each tree 

size, we simulated 100 phylogenies of each diversification mode (ETD, CTD, CR) with low 

extinction, giving a total of 300 trees per size group. For small and medium tree sizes, we 

also simulated 100 phylogenies of each diversification mode with regular extinction.  

 

Phylogenetic Tree Trimming 

Phylogenetic trees and accompanying trait data were trimmed (removal of extant tips), either 

randomly or with a taxonomic bias (SI Fig. S1), to generate five sampling fraction (SF) levels 

in 20% intervals, that is SF: 100% (the full tree), 80%, 60%, 40%, and 20%. For random 

trimming, tips were randomly removed from across the phylogenetic tree (which is how SSE 

models treat the sampling fraction of a phylogeny, with the sampling fraction specified for 

each trait state (Nee et al. 1994; Fitzjohn et al. 2009; Chang et al. 2020)). To generate 

taxonomically biased sampling, we selected one or two subclades (containing 20 – 30% of 

the clade‟s size) to be heavily trimmed (removal of 80 – 90 % of tips) (SI Fig. S1). This 

resulted in slight variation in the final sampling fraction (± 2%) in each SF level, but this was 

less than the variation in trait state percentages (see below).  

Randomly trimmed sets were created for all three phylogenetic tree sizes while 

taxonomic bias trimming was performed only on medium sized phylogenetic trees. Note that 

we did not explicitly evaluate the effect of a trait bias: tip loss was done agnostically with 
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respect to underlying trait state distributions. High tip ratio bias (e.g., one trait state 

accounting for < 10% of tips) can reduce model power and accuracy of parameter estimates 

(Davis et al. 2013). We therefore checked for tip ratio bias and found that all trait states were 

trimmed to a similar percentage – each of the three trait states accounted for ~33% of tips (SI, 

Fig. S2) and there were no differences in trait state percentages across tree sizes or trimming 

methods. Although our transition rate (q = 0.4) guarantees that transitions events are 

distributed throughout time and lineages, unsampling some tree tips might lead or not to the 

loss of trait state transitions events. The type of trait state transitions lost during trimming 

may affect model power. Therefore, during simulation of the regular extinction rate 

phylogenetic trees, the trait state transitions were recorded; for those datasets where the 

inference fails to select the right model, we explored whether they feature asymmetric 

transition lost (e.g., more 1 -> 2 lost than 2 -> 1) or dissimilar prevalence of 

concealed/examined transitions (e.g., more A -> B lost than 1 -> 2).  

 

Sampling fraction settings in Maximum Likelihood (ML) framework 

Using the above sets of simulated trees and trait states at the tips, SSE model analyses were 

performed under two different scenarios: (1) with the sampling fraction correctly specified, 

and (2) with the sampling fraction incorrectly specified (see Table 1 for details). The 

sampling fraction was specified per trait state: for example, for SF 60%, the sampling fraction 

was specified as 0.6 for each of the three trait states (notice that in hisse there is only global 

sampling fraction that accounts for phylogenetic incompleteness). Additionally, we provided 

a narrow and a wide prior for sampling fraction in a Bayesian context (see below). 
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Evaluation of SSE Models in ML 

To test the ability of SSE models to select the correct (generating) model of trait dependent 

diversification under the above scenarios, we ran SecSSE analyses under the three models 

(ETD, CTD and CR) and compared Akaike information criterion values (AICc) (Bekara et al. 

2005) and Akaike Weights (Wagenmakers et al. 2004). The percentage of false positives (i.e., 

erroneous model selection of ETD diversification) is calculated from the number of cases 

where ETD was selected as the best model in CTD and CR generated datasets, divided by the 

total number of CTD and CR generated datasets. False negatives (i.e., erroneous rejection of 

examined trait dependent diversification) are the percentage of ETD generated datasets that 

had CTD or CR selected as the best model. For medium sized, regular extinction trees, that 

were ETD generated, we also tested an ECTD model, which is a combination of the ETD and 

CTD, equivalent to the MuHiSSE. If ECTD was selected as the best model, it would indicate 

that the trait of interest has some effect on diversification dynamics but is not solely 

responsible. We explored the robustness of the results in regard to tree characteristics (tree 

size and imbalance). The Sackin Index (Sackin 1972) was used as a measure of tree 

imbalance: it is the average path length from tree root to tip (Blum and François 2005), and 

the less balanced the tree, the larger its Sackin Index value. 

Evaluation of SSE Models in Bayesian framework 

We also explored model selection in the presence of incomplete tree sampling under a 

Bayesian framework. Bayesian implementations of SSE models are available in RevBayes 

(Höhna et al. 2014), mcmc-diversitree (Silvestro et al. 2014), and BEAST (the “SSE” 

package; Mendes et al. 2018 in Bouckaert et al. 2019). RevBayes is particularly flexible, 

enabling various priors to be set, for example on the root frequencies, and allows for 

uncertainty in the tree topology and branch lengths to be marginalized over. The scripts 

provided in Freyman and Höhna (2018) are intended to compare the likelihood of state-
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dependent and state-independent models using RevBayes (Höhna et al. 2016), which fits our 

purpose. We simulated 50 ETD datasets using the same procedure as in our main analysis 

(but considering only two examined and two concealed states, tree size ranged from 100 to 

250 species; see note on computing time below), where 60% of the species were kept under 

both trimming methods: random and biased. We ran RevBayes‟s routine for state-dependent 

and state-independent models on each simulated dataset with two different setups for the 

sampling fraction. In one setup, we used a uniform prior with lower bound of 0.3 and upper 

bound of 0.9 (i.e., wide prior), whereas the other setup featured lower bound of 0.5 and upper 

bound of 0.7 (i.e., narrow prior). We used a stepping-stone approach to compute the marginal 

likelihood and bayes factor (Kass and Raftery 1995) to find the model with the highest 

statistical support. The major computational resources necessary to conduct this analysis 

prevented us from testing other scenarios under Bayesian framework (for the RevBayes 

analysis we used 192000 hours of computing time: two sampling methods x two priors x two 

dependence modes x 50 trees, 20 days each). 

 

RESULTS 

 

Effects of Phylogenetic Tree Size and Sampling Fraction, when the Sampling Fraction is 

Known and Taxonomically Unbiased 

To test the effect of phylogenetic tree size, we compared randomly trimmed phylogenies of 

large (1000 – 5000 tips), medium (450 – 650 tips), and small (150 – 250 tips) sizes. As 

expected, SecSSE performed best with larger trees and those with more complete sampling 

(Fig. 2; SI Table S1). Correct model selection was reduced in smaller phylogenetic trees, and 

under low sampling fractions across all phylogeny sizes. For large trees, the false positive 

rate was ~ 6.5% when the Sampling Fraction (SF) ≥ 60, and increased to 17% false positives 
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rate at SF 40 (SI Table S1, set 10; Fig 2). Medium sized trees had false positive rates of ~ 

14.5% when SF ≥ 80, this rate became > 22% at SF 40. Small trees had a higher false positive 

rate of 20% at SF 100, this decreased to 16% at SF 40, however, the rates of false negatives 

increased dramatically: from 9% at SF 100, to 55% at SF 40 (SI Table S1; Fig 2). In contrast, 

false negatives were negligible (< 5%) for large and medium sized trees when the sampling 

fraction was ≥ 60% (Fig. 2 and Table S1). Results were very similar for trees with higher 

extinction rates (Fig.2 and Table S3). 

Akaike weights were higher in correctly selected models compared to incorrectly 

selected models (Fig. 3); the difference was most pronounced in large trees, and less so in 

small trees. Mean Akaike weight values for correctly and incorrectly selected models were 

more similar at lower sampling fractions (Fig. 3). The ECTD model was heavily penalised in 

the AICc analysis due to too many free parameters (11 in ECTD compared to 5 in ETD) and 

as such was never selected as the best model, even with ECTD simulated phylogenetic trees 

(SI Table S4). With so many variables in the ECTD model, the parameter space becomes too 

wide, resulting in some model runs being incomplete even after 10 optimization cycles.  

Tree imbalance, as determined via Sackin index, did not affect correct model selection 

for complete or randomly trimmed phylogenies The random sampling procedure removed 

tree tips randomly and consequently transition events were also removed randomly as we 

found that number of transitions out of a given state were not different than transitions going 

into that state (e.g., 1 -> 2 = 2 -> 1). Moreover, the number of transitions lost across the 

examined trait were similar than in the concealed trait (SI Fig. S3).  

Parameter estimation was more accurate and precise at higher sampling fractions, 

whereas variation in parameter estimates increased with decreasing sampling fraction (Fig. 

4). Small trees had the largest variation in their parameter estimates, while large trees had the 

smallest variation (Fig. 4). The only exception was the net diversification rates of CTD 
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generated trees, which showed little difference in parameter estimate variation across tree 

size (Fig. 4). In most cases, large trees at SF ≥ 40 had less variation in parameter estimates 

compared to medium sized trees at SF 100 (Fig. 4). Extinction rates for phylogenies 

generated with low extinction (µ = 0.001) were generally over-estimated (e.g., for medium 

trees at SF 100, mean = 0.0284 ± 0.0371; median = 0.0111), whereas in the regular extinction 

sets (µ = 0.05), extinction rates were marginally under-estimated (e.g., for medium trees at SF 

100, mean = 0.0442 ± 0.0418; median = 0.0384). There were occasional high outliers for the 

transition rate estimates; this occurred with ETD, CTD and CR generated trees, but only 

affected medium sized trees at SF 20 and small trees at SF 60 or lower (Fig. 4).  

 

Effects of Sampling Bias when the Sampling Fraction is Correctly Specified 

Medium sized phylogenetic trees that were trimmed randomly, or with taxonomic bias, were 

compared to test the effects of sampling bias. Random sampling led to better model 

performance than biased sampling for both model selection and parameter estimation (SI 

Table S1, Fig. 2, and Fig. 4). Randomly trimmed trees had lower rates of false negatives than 

biased trimmed trees (SI Table S1). Biased trimmed trees had a lower rate of false positives 

compared to randomly trimmed trees at SF 80, but at SF 60 this was reversed (SI Table S1). 

At SF 20, the percentage of false positives was considerably higher for biased trimmed trees 

compared to randomly trimmed trees (SI Table S1). In biased trimmed sets, most false 

positives came from an erroneous ETD selection of a CR generated tree (SI Table S1). In 

contrast, for randomly trimmed trees, most false positives came from an erroneous ETD 

selection of a CTD generated tree (SI Table S1). Net diversification rate estimates were 

considerably more accurate in randomly sampled trees (Fig. 5). For biased trimmed trees, as 

sampling fraction decreased, net diversification rate estimates became more inaccurate (Fig. 

5). Figure 5 shows that, even though the rate estimates are not accurate, the model is able to 
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detect differences across the three states and accommodates the rates of net diversification to 

maximize this difference.  

 

Effects of Mis-specifying the Sampling Fraction 

Mis-specifying the sampling fraction by ±20% (of the total number of tips) reduced the 

accuracy of model selection (Fig. 6) and parameter estimates (Fig. 5). Random and biased 

sampled phylogenetic trees were affected by misspecification of the sampling fraction in a 

similar manner. Specifying the sampling fraction as higher than its true value often caused an 

increase in false positives (Fig. 6), while under-specifying the sampling faction gave similar 

or slightly lower rates of false positives compared to correctly specified SF sets (Fig. 4; SI 

Table S2). Similar to correctly specified SF sets, false negatives were negligible (≤ 5%) when 

the true SF was ≥ 60%, irrespective of the degree of misspecification; the only exception to 

this was Set 6b, which had a much higher false negative rate (SI Table S2). 

Mis-specifying the sampling fraction affected net diversification rate estimates in 

some sets, most noticeably „bias ETD‟, „random ETD‟ and „random CR‟ (Fig 5., SI Fig. S4). 

Values were over-estimated when sampling fraction was specified as lower than its true value 

(i.e., the clade was larger than thought), and under-estimated when sampling fraction was 

specified as higher than its true value (i.e., the clade was smaller than thought; SI Fig. S4). 

These effects were most noticeable at lower sampling fractions. Transition rate estimates 

were similar in correctly specified and mis-specified sets (SI Fig. S4). Top left panel in 

Figure 4 shows that even though net diversification rate estimates were inaccurate when the 

sampling fraction was mis-specified (i.e., boxplots with wide ranges), particularly in small 

trees, there was still little overlap between rate estimates for each trait state. This suggests 

that the model was able to correctly detect which trait state had a comparatively higher net 
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diversification rate and which trait state had a lower rate (i.e., the median for estimates are 

roughly at the true value). 

Specifying the sampling fraction as a range 

When using RevBayes, we found that the signal of state-dependent diversification is correctly 

recovered in all cases under both sampling methods when the prior distribution of sampling 

fraction was narrow (Table 2). However, when the uncertainty around the true completeness 

of the dataset is higher and the prior distribution of sampling fraction is wider, in 10% of 

cases the state-independent model was wrongly selected as being the best performing. Even 

though bayes factor did not point to ETD as the best performing model in those datasets, we 

note that the rate estimates taken from the MCMC posterior distribution did include the true 

generating rates. These distributions have an important overlap which is related to the failure 

to detect state-dependent diversification (SI Fig. S5). 

 

DISCUSSION  

In this study, we have explored how incomplete sampling of phylogenetic trees, and 

misspecification of the sampling fraction, can affect the ability of SSE models to detect trait 

dependent diversification and estimate diversification rates. We found that both taxonomic 

biased sampling and mis-specifying the sampling fraction can severely decrease the accuracy 

of parameter estimation. Sampling fraction misspecification had more minor effects on model 

selection, with false positive rates only increasing when the sampling fraction was over-

specified. Taxonomic biased sampling reduced the accuracy of parameter estimates, more so 

at lower sampling fractions, and sometimes increased the rates of false positives and false 

negatives compared to random sampling. When using biased sampled phylogenetic trees, 

there is a greater risk of obtaining a false positive from a neutrally diverging phylogeny. 

Smaller phylogenetic trees and any sized phylogenetic trees under low true sampling 
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fractions (< 60%) have higher rates of false positives, rendering them less suitable for current 

SSE analyses. Although SecSSE was the main method used in this study, our results are 

relevant to other SSE methods that incorporate hidden traits. The CTD model used is 

equivalent to the CID-3 model in HISSE (Beaulieu and O‟Meara 2016; Herrera-Alsina et al. 

2019), meaning our general findings are applicable to HISSE and its relatives.  

 

Effects of Tree Size  

Model selection accuracy was severely reduced in small phylogenies (150 – 250 tips) even at 

high sampling fractions (i.e., nearly complete phylogenetic trees). This concurs with previous 

work using BiSSE, which also showed that small trees (fewer than 300 tips) are less suitable 

for SSE modelling (Davis et al. 2013). This is because the statistical power of SSE models 

partially depends on the number of taxa in the phylogenetic tree (Davis et al. 2013). Across 

all phylogenetic tree sizes, rates of false positives and false negatives were elevated at lower 

sampling fractions. This is due to decreased sizes of phylogenetic trees and increased 

uncertainty in the models, both of which come as a consequence of lower sampling fractions.  

When interpreting parameter estimates from SSE models, it is therefore important to 

consider phylogenetic tree size. Interestingly, large phylogenetic trees (1000 – 5000 tips) 

under low sampling fraction (40%) had similar or better parameter estimates than medium 

sized phylogenetic trees (450 – 650 tips) at high sampling fractions (Fig. 4). This suggests 

that it may be better to use a larger, but incomplete phylogeny, rather than a smaller more 

complete subclade, to study the patterns of trait dependent diversification. The larger (and 

more complete) the phylogenetic tree, the more accurate the speciation and transition rate 

estimates. 

 As in other SSE performance studies (Maddison et al. 2007b; Beaulieu and O‟Meara 

2016), extinction rate estimates were imprecise, due to the lack of information about 
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extinction in phylogenetic trees (Rabosky 2006). In contrast to some studies (e.g., Höhna et 

al., 2011), but in agreement with others (e.g., Beaulieu and O‟Meara, 2016), we found that 

some extinction rate estimates tended to be over-estimated. Specifically, the low extinction 

sets (µ = 0.001) tended to have elevated extinction rate estimates. We believe this is due to 

the extinction rate parameter being set so low, because in the regular extinction rate sets (µ = 

0.05), extinction rate estimates were generally under-estimated. However, there was a large 

amount of variation in all parameter estimates. Previous work using BiSSE and simulated 

phylogenies with 500 tips, showed that speciation rate estimates remain accurate down to ~ 

50% sampling fraction (Fitzjohn et al. 2009). We concur with this finding and add that 

speciation rate estimates for larger phylogenetic trees (≥ 1000 tips in the complete in tree) 

could remain accurate at slightly lower sampling fractions (~ 40%), although accuracy is 

improved with greater sampling. As suggested by Beaulieu and O‟Meara (2016), more 

accurate net diversification rate estimates can be obtained from larger phylogenetic trees, 

making it possible to distinguish between trait-states with smaller rate differences. However, 

while larger trees are better suited to SSE analyses in terms of model selection and parameter 

estimation, the time and computational power required for these analyses is high. 

 

Tip ratio bias and loss of trait state transitions 

We found that datasets where the inference analysis failed to select the right model have very 

similar structure in terms of transition type lost than those datasets where the analysis 

recovered the right generating underlying process. However, it was often the same 

phylogenetic trees that had incorrect model selection at different sampling fractions, 

suggesting that there may be something inherent within these trees that made it more difficult 

for the model to detect the correct diversification type. The number of trait state transitions 

lost may have a different impact on simulations with different parameter settings.  
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Further studies will need to use scenarios with asymmetrical transition rates. Differences in 

transition rates may be more important when there are trait biases, that is when some trait 

states are more likely to be sampled than others. Equally, trait biases are more prevalent when 

transition rates are asymmetrical (Davis et al. 2013). For example, in the scenario where it is 

easy to transition into a specialist state, but harder to transition out of the specialised state, 

this asymmetry could lead to trait state biases with more tips in the specialised state, unless 

this specialised state also had a lower speciation or higher extinction rate. It would be 

interesting to test how loss of trait state transitions affects SSE models when there are trait 

biases. Other future work that could be beneficial to further understanding how loss of trait 

state transitions from incomplete phylogenetic trees affect SSE models include: (1) exploring 

transitions lost under different transition rate scenarios such as low, medium, and high 

transition rates and (2) asymmetrical transition rates and different speciation/extinction rates. 

 

Effects of Sampling Regime  

Phylogenetic trees may suffer sampling bias due to certain sub-clades containing greater 

numbers of rare or undescribed species. In other cases, some species may be deliberately 

removed from the clade. Overall, if phylogenetic trees are incomplete, our results show that is 

better for them to be randomly sampled rather than sampled with taxonomic bias. At high 

sampling fraction (80%), biased sampling represents a minor source of inaccuracy: parameter 

estimates were similar to those from randomly sampled phylogenies, and rates of false 

positives were lower than in randomly sampled phylogenies. However, when sampling is less 

complete (sampling fraction ≤ 60%), parameter values became over-estimated in biased 

sampled sets but remained accurate in randomly sampled sets. As sampling fraction 

decreased, rates of false negatives became higher in biased sampled sets compared to 
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randomly sampled sets. This means there is a greater risk of erroneously rejecting trait 

dependent diversification when a phylogeny is sampled with taxonomic bias.  

Similarly to Fitzjohn et al. (2009), we found that randomly trimmed CR generated 

trees maintained ~ 85% correct model selection across all sampling fractions. In contrast, we 

found that biased trimmed CR generated trees led to more false positives and to considerable 

reductions in correct model selection at lower sampling fractions. This means that there is a 

greater risk of erroneously finding evidence for trait dependent diversification from a biased 

sampled phylogenetic tree. This may be due to sampling method, as some sub-clades were 

heavily trimmed (to simulate under sampling), leading to longer branch lengths, and in the 

CR model branching patterns are the only information available to estimate diversification.  

Currently, the only way to specify the sampling fraction in most SSE methods is by 

trait state, so it is not always possible to account for alternative sampling methods or 

taxonomic biases. Clade specific sampling fractions were previously enabled in HiSSE but 

were removed as they caused mathematical errors (Beaulieu 2020); however, clade specific 

sampling fractions still exist in diversitree (FitzJohn 2012). RevBayes can also account for 

different sampling methods: uniform (random), diversified, and empirical (clade specific) 

sampling strategies can be accommodated 

(https://revbayes.github.io/tutorials/divrate/sampling.html). When it is not possible to sample 

clades completely, it is recommended to assess the degree of bias in sampling in SSE 

modelling. When clades are biased sampled and ≤ 60 % complete, extra caution is advised 

when interpreting the results of SSE models. It is also important to bear in mind that 

parameter estimates will likely be higher than their true value when trees are biased sampled 

and have a low sampling fraction. 
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Effects of Mis-specifying the Sampling Fraction 

It can be difficult to accurately set the sampling fraction of empirical phylogenetic trees as 

the actual number of extant species is often unknown. Organisms which may be particularly 

problematic in this regard include bacteria, archaea, and fungi, as these groups contain many 

undescribed species (Barns et al. 1994; Lambais et al. 2006; Mueller et al. 2007; Brock et al. 

2009; Öpik et al. 2013; Looney et al. 2016). Our findings indicate that it is not acceptable to 

guess the sampling fraction if it is completely unknown: inaccurate sampling fraction 

estimates have a high risk of false positives and inaccurate parameter estimates. Therefore, 

SSE modelling is most suitable for incomplete reconstructions when the sampling fraction is 

known with some degree of accuracy. Sensitivity analysis to sampling fraction specification 

should be performed to provide confidence to results when the sampling fraction has been 

estimated. 

Sampling fraction specifications of ±20% inaccuracy led to inaccurate parameter 

estimates. In incompletely sampled phylogenetic trees, the apparent number of speciation and 

character change events is reduced because tips/branches are missing from the tree. If 

incomplete sampling is not accounted for, this can lead to likelihoods favouring lower 

diversification and transition rate estimates (Fitzjohn et al. 2009). When the sampling fraction 

is thought to be higher than it truly is (over-specified; e.g., there is a 60% complete 

phylogenetic tree, but it is specified as 90% complete), not all tips and speciation events will 

be accounted for, leading to lower speciation rate estimates. Conversely, when the sampling 

fraction is thought to be lower than it truly is (under-specified; e.g., there is a 90% complete 

phylogenetic tree, but it is specified as only 60% complete), the model will account for more 

tips and speciation events than there actually were, leading to higher diversification rate 

estimates.  
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We suggest that parameter estimates are interpreted cautiously when there is 

uncertainty around the sampling fraction approximation. When considering net 

diversification, the differences in rate estimates with sampling fraction misspecification were 

only present with biased sampled phylogenetic trees. Even with low levels of sampling, the 

model correctly detects differences in diversification rates across states so that it tries to 

maximize the difference between trait 1 and 3 rates. Even though the estimated difference in 

rates is quite close to the true one (0.4), the overall estimates are inaccurate. This is more 

evident under bias sampling (Figure 5, bottom row) where net diversification rate for trait 1 is 

underestimated and at the same time, for trait 3 is overestimated. Interestingly, specifying the 

correct sampling fraction does not lead to better rate estimates under biased sampling. This is 

likely to be result of 1) confounding extinction with missing branches due to sampling, and 2) 

SSE models always assume that non-sampled branches are randomly distributed. In the 

presence of bias sampling, overspecifying sampling fraction yields to better estimates. When 

diversification rate is separated into rates of speciation and extinction, estimates are highly 

affected by sampling fraction misspecification. However, the relative speciation rate 

estimates (i.e., which trait states have the lowest and highest speciation rates) is robust to 

changes in sampling fraction specification.  

Due to unknown numbers of undescribed species and taxonomic uncertainties, it may 

be more common for researchers to over-specify the sampling fraction, thinking that they 

have a greater proportion of the phylogeny sampled than they actually do (Vieites et al. 2009; 

Pimm et al. 2014; Chan et al. 2018; Dickens et al. 2019). Our results show that, in contrast, 

cautiously under-specifying the sampling fraction may not be as bad as over-specifying it: 

false positive rates were elevated when the sampling fraction was over-specified but 

remained similar to (or even slightly lower than) correctly specified sets when the sampling 

fraction was under-specified. With an 80% complete (randomly trimmed, medium sized) 
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phylogenetic tree, when the sampling fraction was correctly specified (as 80%), the rate of 

false positives was 14.5%; when the sampling fraction was under-specified as 60% complete, 

the false positive rate was slightly lower (13.5%), but when the sampling fraction was over-

specified as 100% complete, false positives were higher (18%). As sampling fraction 

decreased, rates of false negatives became higher in biased sampled sets compared to 

randomly sampled sets. This means there is a greater risk of erroneously rejecting trait 

dependent diversification when a phylogeny is sampled with taxonomic bias. In SSE 

analyses, we recommend carrying out sensitivity analysis of sampling fraction specification 

that spans, at a minimum ±20% of the estimated fraction, to determine if the results are robust 

to variation in the sampling fraction specification. The range of sampling fractions used 

should reflect how much uncertainty there is in the completeness of the tree. 

 

Bayesian analysis 

One alternative method for dealing with an uncertain sampling fraction utilises Bayesian 

analyses with a hyperprior placed on the sampling fraction. No empirical studies have thus 

far used this method for dealing with sampling fraction uncertainty. More commonly used 

methods to specify the sampling fraction in Bayesian SSE studies are to specify the 

probability of sampling species within the clade, based on the total number of known species 

(tips) and the number of species sampled (e.g., Wessinger et al. 2019; Varga et al. 2021), or 

assuming that all extant species have been included in the phylogeny (e.g., Condamine et al. 

2018). Studies using RevBayes and HiSSE that may have benefitted from incorporating 

uncertain sampling include a study on weevils (Letsch et al. 2018) and a study on 

basidiomycete fungi (Varga et al. 2021), because these taxa likely have undescribed species. 

The use of RevBayes in SSE analysis is promising, especially when sampling fraction is not 
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well known. However, it is computationally slow which compromises its applicability in 

large datasets.  

  

Conclusions and Best Practices 

Much progress has been made from the early days of SSE models but work still needs to be 

done to make SSE methods more robust to the sampling issues explored here. Areas which 

require further attention include dealing with different types of sampling, uncertainty in tree 

topology, exploring how loss of trait state transitions affect SSE models, and developing 

robust methods for confident analyses of smaller phylogenetic trees. Additionally, a more 

thorough exploration of the efficacy of using a sampling fraction prior within a Bayesian 

framework is needed. Most empirical studies will to some extent violate the assumption that 

sampling is uniform and random across the phylogeny. It would be highly desirable for SSE 

methods to be able to account for taxonomic bias. One possibility which could provide more 

information to the model and decrease uncertainty around the sampling fraction, could be to 

allow for sampling fraction specification both by trait state and by clades at the same time; 

however, this would be challenging to develop (for birth-death process see Höhna et al. 

2011). 

This work has helped to inform how much error in sampling fraction estimates is acceptable, 

enabling confident SSE modelling of phylogenies where the sampling fraction can be 

reasonably estimated. To conclude, we provide suggestions for best practices when using 

SSE methods on incompletely sampled phylogenetic trees.  

 It may be better to use a larger but somewhat incomplete phylogeny, rather than a 

smaller but more complete subclade. Larger (≥ 450 tips) and more complete (≥ 60% 

SF) phylogenetic trees are most suitable for SSE analyses, but tree size is generally 

more important than completeness.  
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 Taxonomic biases in sampling can be problematic when phylogenetic trees are < 80% 

complete. We recommend assessing the degree of bias in sampling, as there are 

greater risks of false positives and inaccurate parameter estimates when trees are ≤ 

60% complete and have been sampled with taxonomic bias. If possible, additional 

sampling of missing tips is advised, to reduce sampling bias and increase the sampling 

faction of the phylogeny: increased taxon sampling remains one of the best methods 

to increase accuracy of inferences drawn from phylogenetic trees (Heath, Hedtke and 

Hillis 2008). Inclusion of tips with uncertain trait states is possible in some packages 

(e.g., SecSSE), and is one possible way to increase the sampling fraction.  

 For SSE methods, we do not recommend excluding tips from phylogenetic trees, for 

example because of regional sampling, as this lowers the sampling fraction, increases 

uncertainty in the model, and may increase sampling bias. 

 Misspecification of sampling fraction can reduce correct model selection and leads to 

inaccuracies in parameter estimates. We advise that SSE modelling is most suitable 

for incomplete phylogenies when the number of extant species in the clade is known 

with some accuracy. It is worth conducting a thorough examination to estimate the 

sampling fraction as precisely as possible. We suggest two methods for dealing with 

uncertainty in the sampling fraction: 1) using the ML approach, sensitivity analyses 

should be performed across an appropriate range of sampling fractions (at least ± 20% 

of the estimated sampling fraction), in order to confirm that results are robust to 

variation in sampling fraction specification; 2) using Bayesian analyses of SSE 

models in order to specify a range of possible sampling fractions as a prior. These 

methods are not mutually exclusive, and the most confident results may be obtained 

by implementing both approaches.  
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Figure Captions 

Figure 1. Schematic model diagram. Each circle indicates a trait state combination with one 

examined trait state (1, 2, or 3) and one concealed trait state (A, B, or C). The speciation rate 

(λ) for each trait state combination differed either with the examined trait (ETD model), or 

the concealed trait (CTD model). The extinction rate (μ) was the same in every trait state 

combination. The transition rates (q), shown in grey for the examined trait and red for the 

concealed trait, was symmetrical, i.e., the same rate was used for every transition, and all 

transitions between trait states were possible. 

 

 

Figure 2. False positives (A) and false negatives (B) from all correctly specified sampling 

fraction sets, including randomly trimmed large, medium, and small trees, as well as bias 

trimmed trees (medium B), and trees with different extinction rates (small HX and medium 

HX).  

 

Figure 3. Model selection. Akaike weights of correctly (blue) and incorrectly (red) selected 

models of each size and trimming method (R = randomly trimmed; B = biased trimmed), at 

each sampling fraction. All three generating models for each sampling fraction are grouped 

into the violin plot; for each pair of violin plots n = 300.  

 

Figure 4. Parameter estimates for correctly specified sampling fraction sets of randomly 

trimmed ETD (examined trait dependent), CTD (concealed trait dependent) and CR (constant 

rate) generated trees. Colours indicate tree sizes. The horizontal line indicates the true 

parameter value. Note that these plots include all generated trees, regardless of whether the 

generating model was selected as the best model or not. 

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syad001/6988090 by Bangor U

niversity user on 17 M
arch 2023



Acc
ep

ted
 M

an
us

cri
pt

 

Figure 5. Net diversification rate estimates of the medium size ETD generated phylogenetic 

trees, that were randomly (R; top row) or biased (B; bottom row) trimmed. ND1, ND2 and 

ND3 indicate the net diversification rate for trait state 1, 2 and 3 respectively. Colours 

indicate if the sampling fraction was correctly specified or mis-specified. The horizontal line 

indicates the true parameter value. Plots include all generated trees for each set, regardless of 

whether the generating model was selected as the best model or not. 

 

Figure 6. Percentages of false positives and false negatives in Random and Bias sampled sets. 

Colours indicated the difference from the true sampling fraction, that is if the true sampling 

fraction is 80, at -20 the sampling fraction was specified as 60, and at +20 the sampling 

fraction was specified as 100.  
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Table 1. Mis-specified sampling fraction sets. 100% is a complete phylogenetic tree; 20% is a 

phylogenetic tree containing only 20% of tips from the complete tree. In mis-specified SF, 

columns indicate what the True SF was mis-specified as; for example, True SF 80%, was 

mis-specified as SF 100% and SF 60%. Mis-specified sets were done on random and bias 

trimmed medium sized trees.  

 

 

 

 

 

 

  

 
Sampling Fraction (%) 

  

True SF 100 80 60 40 20 

  

Mis-specified SF 80 100 
60 

100 80 
40 

100 80 - 
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Table 2. Number of datasets that were incorrectly (column CTD) and correctly selected 

(column ETD) during RevBayes analysis using a narrow and wide priors for sampling 

fraction. The table also includes two different methods of tree tip sampling. 

 

Prior Sampling CTD ETD 

Narrow random 0 50 

 

bias 0 47 

    Wide random 8 42 

 

bias 1 49 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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