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Abstract—The threat of malware in the Internet of Things
(IoT) is ever-present given that many IoT systems today rely
on the Android operating system. There has been a consistent
rise in Android Malware in recent years and many new variants
continue to adopt sophisticated detection avoidance techniques,
including various forms of obfuscation. Hence, there is a need
to improve the effectiveness of Android malware detection as
obfuscation becomes more prevalent in the wild. In this paper we
present a novel approach for obfuscated malware detection in IoT
Android applications based on the visualization of app executable
files with Markov images. The app images are trained using
CNN to detect obfuscated malware and for the identification
of the obfuscation type. We evaluate the performance of the
proposed system by experimenting with four different classifica-
tion models using 12,000 Android applications. The CNN model
created to distinguish between malware and benign apps obtained
an accuracy of 99.41%. The model for identifying obfuscated
malware from benign applications obtained 99.65% accuracy,
while the model created to identify obfuscated malware from non-
obfuscated malware yielded an accuracy of 99.81%. The model
for classifying obfuscated malware into 14 different obfuscation
categories obtained an accuracy of 99.67%. The results of these
experiments show that CNN models trained from Markov images
generated using application byte code can be highly effective for
obfuscated malware detection and classification. Moreover, our
proposed system provides a more sustainable, accurate and cost
effective method for obfuscated malware detection compared to
the manual feature engineering-based approaches that are more
prevalent in the current literature.

Index Terms—Obfuscated malware, Markov images, Android
malware, IoT, Deep learning, Convolutional Neural Networks.

I. INTRODUCTION

MALWARE refers to software that has been created
purposefully to cause harm to a computer system, net-

works, or computer-controlled systems. They include viruses,
worms, trojans, botnets, ransomware, spyware etc. Malware is
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usually injected into a system without users’ knowledge and
can pose a significant risk to their personal and sensitive data.
With the rise of IoT in recent years and their increased reliance
on the Android operating system, the proactive detection of
Android malware is now of great concern to IoT systems.

Android applications are frequently plagiarized [1]. Mali-
cious actors can very easily clone legitimate Android apps and
insert malware code [2]. This has been a common method
for spreading Android malware, especially through third-
party app distribution sources. A recent report from Symantec
corporation also revealed that more than 50% of new malware
were actually variants of existing ones [3].

Obfuscation is one major approach employed by malware
authors to evade detection systems [4] [5]. Obfuscation is the
purposeful concealment of written code by programmers, and
it is employed mainly to protect applications from tampering.
Obfuscation can be used to conceal the source code of
an Android application, hide the logic used and make the
executable code less understandable to third parties. Several
open source and commercial obfuscation tools are available to
programmers to help them secure their Android applications
from intellectual property theft and tampering. Unfortunately,
malware authors also employ such obfuscation tools to hide
malicious code and prevent detection.

In order to complement signature-based detection, static
and dynamic malware analysis based approaches have been
proposed by researchers. Static analysis involves examining an
application without executing it [6]. In contrast, dynamic anal-
ysis involves executing the apps and observing its behaviour
patterns typically in a protected/sandboxed environment [7].
Hybrid analysis methods combine both static and dynamic
analysis in order to gain the benefits of both techniques and
overcome their limitations [8]. Static, dynamic and hybrid
analysis usually provide the basis for Machine Learning (ML)
based malware detection.

Obfuscation has a detrimental effect on static and dynamic
analysis as it can hinder the extraction of pre-determined
features from the applications. This can ultimately affect the
performance of ML-based detection systems. Hence, detecting
obfuscation in Android applications and identifying the obfus-
cation technique employed, is crucial to enhancing ML-based
malware detection. By identifying the obfuscation technique
employed, appropriate steps can be taken to de-obfuscate
malware and make it easier to analyze and to extract features
for training ML-based detectors.
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In this paper, we present a novel approach for obfuscated 
malware detection in IoT Android applications based on the 
visualization of app executable files w ith M arkov images. 
The app images are trained using Convolutional Neural Net-
work (CNN) models built from scratch, to detect obfuscated 
malware and for the identification o f t he o bfuscation type 
with high accuracy. Compared to traditional ML classifiers, 
CNN enables more efficient e xtraction o f f eatures a nd can 
potentially yield much higher accuracy rates [9] [10] [11]. 
In order to leverage CNN, we constructed grayscale Markov 
images from the Android apps’ Dalvik executable files and 
used these for training and prediction. Constructing Markov 
images from Dalvik executable files enables us to find unique 
patterns in compiled code. These patterns have distinguishing 
properties that can be learned effectively by the CNN model so 
as to accurately categorize unknown applications. Moreover, 
we have chosen to base our system on Markov images rather 
than visualize the raw bytes. This is because unlike the 
byte plot visualization, Markov images provide a fixed-sized, 
compact representation of the executable files. I n summary, 
the unique contributions of this paper are as follows:

• We propose a new visualization-based system for de-
tecting obfuscated malware in IoT Android applications.
The system utilizes Markov images generated from the
byte code of applications’ Dalvik executable files, and
these are used to train bespoke CNN models for detecting
obfuscated malware and identifying the obfuscation type.

• We present the results of several experiments undertaken
to evaluate the proposed system using 12,000 benign and
malware apps. The results of the experiments demonstrate
the effectiveness of our approach in detecting obfuscation
and identifying the obfuscation type applied to malware.
Additionally, we present further experiments that give
more insight into the effect of obfuscation on some static
and dynamic features, as well as discussion that shed light
on the potential resilience of our proposed approach to
concept drift.

• We present and describe a theoretical framework for
maintaining the sustainability of our models by means of
a parallel substitute detector for monitoring concept drift.
The approach is based on monitoring the distribution of
test samples over time using the substitute detector.

The rest of the paper is structured as follows. Section II
presents an overview of related works including recent ones
focusing on image-based detection. The methodology of our
proposed Markov image-based detection approach is detailed
in Section III, followed by experimental setup in Section IV.
The results are presented in Section V. The paper ends with
the conclusions and future work in Section VI.

II. RELATED WORK

In this study, we utilized Obfuscapk [12], an open source
Python tool for automatic obfuscation of Android applications.
Using this tool, we applied 14 different Obfuscation techniques
to our Android applications under study. These techniques are
summarized in Table I. For more details of the obfuscation
techniques refer to [12].

TABLE I
OBFUSCATION TECHNIQUES UTILIZED IN OUR STUDY

Obfuscation Techniques Explanation
AdvancedReflection Uses reflections to invoke dangerous APIs

ArithmeticBranch Inserts junk arithmetic computations and
branch instructions in the code

AssetEncryption Encrypts the asset files
CallIndirection Modifies the control-flow graph
ClassRename Rename the classes within the code
ConstStringEncryption Encrypts the constant strings in the code
DebugRemoval Removes debug information within the code
Field Rename Rename the fields

Goto
Inserts goto instruction pointing to the end
of a method and another goto pointing
to the instruction after the first goto

Nop Inserts random junk nop code
LibEncryption Encrypts native library files

MethodOverload Gives same name to different methods
but using different arguments

RandomManifest Randomly reorders entries in manifest file
Reorder Changes the order of basic code blocks

Android malware detection is currently an active area of
research with numerous works such as [13], [14], [15], and
[16] proposing deep learning based approaches. For example,
in [13], the authors used CNN models for the detection of
Android botnets using 342 static features obtained from the
APK. The technique yielded a high accuracy of 98.9% when
evaluated on 6802 samples (1929 malware and 4873 clean
samples). In [15], a related study, the same static features were
used with several other deep learning models (CNN, DNN,
LSTM, GRU, CNN-LSTM and CNN-GRU). The results of the
study showed 99.1% overall accuracy on the dataset utilized
in their experiments. Although the aforementioned works have
achieved good results, they did not address the detection of
obfuscated malware apps.

DroidSieve was proposed in [17] as a fast and obfuscation
resilient Android malware classifier that achieved 99.82%
accuracy for malware detection and 99.26% accuracy for
family identification, in the experiments performed. Its high
performance is attributed to the wide range of static features,
including obfuscation artefacts and features that are invariant
under obfuscation. However, the range of obfuscation tech-
niques covered by their approach is limited. Furthermore,
a considerable amount of feature engineering is required
compared to our approach which only involves producing
Markov images. RevealDroid [18] is another system proposed
for obfuscation-resilient Android malware detection. It extracts
API-based features and native code features combined with
machine learning. However, obfuscation resiliency was tested
by applying relatively unsophisticated transformations from
DroidChameleon [19]. It is also worth mentioning that both
RevealDroid and DroidSieve are not specifically designed
to detect obfuscation or obfuscation types even though they
incorporate some obfuscation resilience.

Visualization-based detection of malware is currently gain-
ing attraction. Recent works such as [20], [21], [22], [23],
and [24], used different types of image processing techniques
with deep learning or machine learning but did not address
detection of obfuscated malware. Han et. al. [20] used entropy
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graphs and similarity measures between the entropy images for 
classification o f m alware a nd a chieved a n a ccuracy o f 97.9%
using 1000 samples from 50 families. In [21], Histogram 
of Oriented Gradients (HOG) were extracted from bytecode 
images of Android DEX files, and used to classify APKs into 
botnet or benign. The system used Autoencoder with several 
machine learning algorithms. Similarly, in [24], HOG was 
used for feature extraction from Android DEX images but was 
combined with manifest features for improved performance, 
thus obtaining accuracy of 96% when evaluated on 1929 botnet 
apps and 2500 benign applications.

In [22], MalFCS is proposed as a malware classification 
framework that visualizes malware binaries as entropy graphs, 
and then used a deep convolutional neural network as an 
automatic feature extractor and SVM as a classifier. The 
method achieved 99.7% accuracy on the malimg dataset and 
100% accuracy on Microsoft dataset. In [23], an image-
based malware classification system using fine-tuned CNN was 
proposed. The method was tested on malimg and IoT-android 
dataset yielding 98.82% and 97.35% accuracies respectively. 
Also, in [25], VGG19 was used as a transfer learning feature 
extractor for a CNN model with spatial attention mecha-
nism. The model achieved 97.68% accuracy in classifying 
25 families of the malimg dataset using a 70:30 training and 
testing split. Kumar et al. [26], presented a system based on 
deep convolutional neural network enhanced by autoencoder 
(AE-DCNN) to classify malware images into their respective 
families. Their experiments undertaken on the malimg dataset 
obtained 99.38% accuracy.

SAVORTAM [27], is a proposed system which converts 
Android malware non-intuitive features into fingerprint images 
and uses a fine-tuned C NN t o a utomatically e xtract rich 
features from visualized malware. SAVORTAM was evaluated 
using the Drebin dataset and used 15 different combinations of 
the images obtained from Android apps to identify and classify 
Android malware. Furthermore, the CNN softmax layer is 
substituted with machine learning algorithms, and it was 
observed that CNN-SVM outperformed original CNN model 
achieving 92.9% accuracy using Android certificates and man-
ifest malware images. In [28], the authors proposed a mod-
ified R esNeXt a pproach f or A ndroid m alware identification 
and classification w here t hey e mbedded a  n ew regularization 
technique to improve the classification t ask. T hey a lso used 
15 different combinations of grayscale images obtained from 
Android app files ( DEX, M anifest, c ertificate an d resources). 
They performed experiments on the Drebin dataset and showed 
that their modified ResNext approach could obtain an accuracy 
of 98.2% for the malware family classification u sing images 
from Android certificates only.

The study in [29] provides a comprehensive analysis of 
22 CNN algorithms (one of which was proposed by the au-
thors), for vision-based Android malware identification. Their 
approach is based on various forms of conversion of artefacts 
from the Android malware APKs to 2D grayscale images 
which are then fed into the CNN models for categorization 
into malware families. The study utilized the Drebin and AMD 
datasets and compared the performance of their proposed CNN 
model to various flavours of existing pre-trained models such

as VGG, ResNet, DenseNet, EfficientNet, InceptionResNet,
Xception, Inception, and MobileNet. On the Drebin dataset,
their model outperformed the pre-trained models by achieving
the highest accuracy of 95.82% and F-measure of 95.78%
using the images obtained from manifest files extracted from
decompilation process. Similarly, on the AMD dataset, their
model achieved the highest accuracy of 97.49% and F-measure
of 97.48% using manifest file images.

DEXRAY is proposed in [30] for Android malware de-
tection. The system coverts the bytecode of the app DEX
files into grayscale vector images and feeds them into a
1-D CNN model. DEXRAY was evaluated on over 158K
apps and achieved a high detection rate with F-measure of
0.96. Furthermore, the impact of time decay (sustainability)
and image-resizing, as well as resilience to obfuscation on
performance of the system were investigated in the paper.
The study in [31] presented a performance comparison of 26
state-of-the-art pre-trained CNN models for Android malware
detection. The paper also included performance obtained with
SVM and RF classifiers and stacking with CNN models. Based
on their results they proposed EfficientNet-B4 CNN-based
model to detect Android malware using image-based DEX
file representations. The proposed method obtained 95.7%
accuracy for binary classification of Android malware images.

A few other works on obfuscation detection such as An-
drodet [32] can be found in the literature. However, unlike our
system that can identify 14 different obfuscation techniques,
Androdet can only identify 3 techniques. Unlike previous
works, our proposed approach not only enables detection of
obfuscated malware but also allows for the identification of
obfuscation type. Furthermore, we utilized a more compact
visualization in the form of Markov images, thereby avoiding
the cost and effort involved in manual feature engineering.

Since sustainability is an important aspect of ML-based
malware detection, some recent works have been proposing so-
lutions for mitigating performance degradation of their models
over time. Others incorporate solutions to detect the onset of
drift so as to signal the need for retraining of the models. Wang
et al., [33] proposed an approach to analyse the characteristics
of each neuron to find the reason for the concept drift in Deep
Neural Networks (DNN). Their approach is based on utilizing
a threshold derived using sensitivity and specificity curves of
the model. Guerra-Manzanares et al., [34] presented a study
that focused solely on the use of permissions to detect Android
malware, showing that when concept drift is addressed, per-
missions alone can provide and keep high-performance metrics
over time. More recently, the same authors [35] proposed
a method that effectively tackles concept drift by arranging
the data set chronologically and dividing it into consecutive
periods. They generated a pool of classifiers from initial data
chunks. The chunks that followed were used for testing the
classifiers. Finally, the worst performers are replaced with a
new classifier. Quantitative characterization of the concept drift
is measured as the difference between the loss calculated using
pseudo-random values and the original data.

In AMalNet [36], a deep learning-based Graph Convolu-
tional Network trained on a set of string features (permission,
API calls, App components treated as string) is proposed.
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Fig. 1. Overall Architecture of the proposed CNN-based system leveraging Markov images

The authors experimented with the proposed model being
sustainable and concluded that the functions computed in the
deep model are complex, and have an intrinsic rigidity due to
repeated calculations in the iterative process, which helps the
deep model to be better generalized to unseen samples (which
appear after a specific cut-off date). In CADE [37], the authors
proposed a Contrastive Autoencoder for Drift detection and
Explanation (CADE), which aims to detect drifting samples.
The detection model is optimized in latent space, where pairs
of samples in the same class have a smaller distance while a
pairs of samples from different classes have a larger distance.

Aiming to ensure that our proposed models for obfuscated
malware detection is sustainable, we also propose a theoretical
framework for detecting concept drift within our CNN models.
This is achieved by means of a parallel substitute detector that
monitors the distribution of test samples over time. The details
of the approach are presented later in the paper.

III. METHODOLOGY

A. Dataset Description

For experiments performed in our study, we collected
12,000 Android applications. Out of these, 5500 were malware
while 6500 were benign samples. The benign samples and
malware samples were re-verified by scanning them using
VirusTotal. From the 5500 malware samples, 4500 samples
was obtained from the Drebin data set [38] [39] while the rest
of the 1000 samples was obtained from the Android Malware
dataset (CIC-InvesAndMal2019) of the Canadian Institute of
Cybersecurity at the University of New Brunswick [40]. From
the 6500 benign samples, 3000 samples were obtained from
the Google Play Store, 2000 samples from 9Apps, and the
remaining 1500 samples were from Apk Pure.

B. Dex Extraction

Android applications or APKs are zipped archives contain-
ing app code, resources, meta information etc., required to
install and run them on a compatible device. In the first step,
we extract the DEX file from the APKs shown in Fig. 1.
Since the DEX file is usually targeted by malware creators
we utilize this file as the input to the proposed system. A
DEX file or Dalvik Executable file [41] is an executable with
.dex extension that contains compiled code written for Android
platform. DEX files in Android applications are named as
classes.dex and depending on the purpose, each application

can have multiple number of DEX files. Therefore, we source
all the DEX files from an application sample. The extraction
of DEX files is done by unzipping the Android package from
which these classes.dex files are obtained [42].

C. Dex to Hex

The opcodes from a Dex file are in binary or machine
readable format. Hence, we need to convert this to a format
that is easier to understand and process by our program. Within
our system we utilized a tool called HEXDUMP to create
a corresponding hex code file for each DEX file as shown
in Fig. 1. HEXDUMP is a tool that can be used to convert
the contents of binary files such as classes.dex into more
understandable format such as hexadecimal, decimal, octal or
ASCII [43]. Note that during the process of generating the hex
code, the address lines were removed.

Fig. 2. Conversion of Hex code to a 256×256 Markov Matrix

Fig. 3. Grayscale Markov image generation from the 256×256 matrix

D. Markov Image Generation

From the hex code obtained, a 256×256 Markov matrix
(also known as the transition probability matrix) is generated
as shown in Fig. 2. The transition probability of the byte
sequences appearing in the DEX file is captured by a Markov
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chain which is converted into an image before being fed into 
the classification m odel. T he b yte t ransition p robabilities of 
every possible two-byte sequence (Pbi,bj ) is represented in the 
form of pixels and transformed into a 256×256 pixel image as 
shown in Fig. 3). The probabilities for any two bytes bi and bj 
is computed as shown in Equation 1. The pixel values (Sbi,bj ) 
of the 256×256 Markov image are obtained by scaling the 
transition probabilities as depicted in Equation 2, where Pmax 
is the maximum transition probability in the entire matrix.

Pbi,bj =
P (bi, bj)

P (bi)
=

P (Bj/Bi)∑255
n=0 P (Bj/Bn)

(1)

Sbi,bj = Pbi,bj ∗
255

Pmax
(2)

E. Convolutional Neural Network

A Convolution Neural Network [44] [45] is an artificial
neural network, similar to our brain, which uses perceptrons
for supervised learning that works based on the behaviour of
neurons of the animal visual cortex [46]. It takes images as
input, studies the features and characteristics of the image
and tries to differentiate it from other images. CNNs or
ConvNets are widely used for image and pattern recognition
problems [47] as they have several advantages when compared
to other machine learning techniques [48], [49]. For high
dimensional input such as an image it is impractical to connect
all neurons of a given layer to neurons in previous layers, as
the dense architecture does not takes into account the spatial
arrangement of the data. However, CNN uses a convolution op-
eration which allow neurons to focus on a patch of contiguous
pixels. This makes it possible for CNN to utilize correlation
between neuron of adjacent layers to extract interesting regions
to improve classification. The system learns to perform feature
extraction from images directly without the key features being
pre-trained as they are learned while the network trains on a
collection of images. ConvNets are extremely successful in
handling large and unstructured data [50] [51].

F. CNN Model Topology

Our CNN model for the proposed system is a sequential
model consisting of five layers, which constitutes of two
Conv2D and MaxPool2D layers and a fully connected neural
network consisting of two dense layers [52] [53]. The arrange-
ment and structural setting of our CNN model is shown in
Table II.

• Convolution Layer: Convolution is a mathematical com-
bination of two functions [54] that merges two sets of
information. In the case of CNN, the convolution is
performed by the conv2d layer on the input image with
the use of a kernel filter to produce a feature map.
The first convolution layer extracts low-level features.
Higher-level layers extract high-level features. The layer
convolves the input by moving the filters along the input
vertically and horizontally and thus multiplying the values
in the filter with the original pixel values of the image.

• Max-Pooling Layer: The pooling technique used here
is max pooling which is the process of calculating the

maximum value of each patch in the feature map. The
first layer max pools the output from the first Conv2d
layer and the second does the same to the output from
the second Conv2d layer.

• Flattening: This process converts the final max pooled
output into a one-dimensional array for inputting to the
next layer. The process is done to create a single long
feature vector suitable for further processing.

• Fully Connected Layers: Fully-connected layers are
often used as final layers of CNN. These Layers consist
of two dense layers; one with ReLU activation, and the
other with Sigmoid or Softmax activation. (Softmax is
used for multi-class classification model that predicts
the obfuscation type). These layers mathematically sum
weights of the previous layer of features, indicating the
precise mixture of “ingredients” to determine a particular
target output result.

G. Hyperparameter setting of CNN

Tuning the hyperparameters refers to the process of choos-
ing the optimal set of parameters during the training process.
These parameters indicate model complexity and how fast the
learning takes place. The parameters include learning rate,
number of layers, number of neurons in a given layer, momen-
tum, no of epochs, batch size, optimizer, etc. The deep learning
model consists of convolutional layers and maxpooling layers
followed by fully connected dense layers, trained for 100
epochs, with batch size of 32, at a learning rate of 0.001,
while using SGD and RMSprob optimizers. We utilized the
RandomizedSearch algorithm from Scikit learn to tune the
hyperparameters, resulting in the selected hyperparemeters as
shown in Table III.

IV. EXPERIMENTAL SETUP

A. System and Software Requirements

Our models were implemented in a system with i7 8th
generation Intel processor with 8 GB DDR4 RAM, 4 GB
VRAM and 1 TB hard disk. All models were run on the
Ubuntu platform, and the pre-processing unit was developed
using Python. Obfuscapk [12] was used to obfuscate the
Android applications. Anaconda was used with the back end
of TensorFlow and Keras to create the CNN models.

B. Experiments performed

• Benign vs malware: The first model we created was
based on binary classification between benign samples vs
malware samples. We split the dataset with five different
ratios namely 50:50, 60:40, 70:30, 80:20 and 90:10. The
majority portion or the first portion was used as the
training set while the rest was used as the test set. Using
different training-test ratios allows us to undertake more
rigorous testing of the CNN model performance. The
proposed model identifies whether an unknown apk is
malware or benign based on the Markov image generated
from its DEX file(s) using the techniques we described
earlier.
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TABLE II
STRUCTURAL ARRANGEMENT OF CNN

Layers Filter
size Input Shape Output Shape Activation

Conv2D#1 64(3*3) (64,64,1) (none,62,62,64) ReLU
MaxPooling2D#1 (2*2) (none,62,62,64) (none,31,31,64) -

Conv2D#2 64(3*3) (none,31,31,64) (none,29,29,64) ReLU
MaxPooling2D#2 (2*2) (none,29,29,64) (none,14,14,64) -

Flatten (none,12544) -
Dense#1 (none,128) ReLU

Dense#2(binary) (none,1) Sigmoid
Dense#2(categorical) (none,14) Softmax

TABLE III
HYPERPARAMETER SETTING OF CNN

Hyperparameters Binary
Classification

Multiclass
Classification

Learning Algorithm SGD RMSprop
Learning Rate 0.0001 0.0001

Momentum 0.9 Default
No. of Epochs 100 100

Batch Size 32 32
Activation of the

last layer Sigmoid Softmax

Class Mode Binary Categorical

• Benign vs Obfuscated Malware: The second model was
created as a binary classifier that determines whether an
apk is simply a benign sample or an obfuscated malware
sample. The Obfuscapk tool was used to apply 14 differ-
ent Obfuscation techniques to the malware samples. In
order to carry out a rigorous assessment of the model,
5 experiments were performed using the same training-
testing ratio as above (50:50, 60:40; 70:30, 80:20 and
90:10). For the obfuscated malware subset, we created
the training sets and test sets from each of the 14 types
of obfuscated malware samples and combined them into
a single folder for the binary classification. Thus model
is trained to classify an apk into a regular benign sample
or an obfuscated malware sample that is utilizing one of
14 different obfuscation techniques.

• Malware vs Obfuscated Malware: The third model was
created as a binary classifier that determines whether
an application is an obfuscated malware sample or a
non-obfuscated one. Thus, a dataset was created con-
sisting of two groups of malware samples, with one
group obfuscated by using 14 different techniques from
the Obfuscapk tool. The same 5 split ratios described
previously were used for the training and testing sets in
the performance evaluation experiments.

• Classification of malware into different types of ob-
fuscation: The fourth model built was a multi-class
classification model that can classify an apk into the 14
different types of Obfuscation categories. The obfuscation
techniques used are: Advanced Reflection, Res String
Encryption, Asset Encryption, Call Indirection, Class
Rename, Constant String Encryption, Debug Removal,
Field Rename, Goto, Nop, Library Encryption, Method
Overload, Random Manifest, and Reorder. The model
is trained to be able to identify the type of obfuscation

Fig. 4. Confusion Matrix and equations

applied to a given obfuscated malware sample.

C. Evaluation Metrics

The evaluation metrics used to measure the performance of
our models include, the F-measure, Accuracy and Area Under
the ROC (AUC). Accuracy (ACC) is the ratio of correctly
predicted samples to the total observations. The F-measure
uses precision and recall to derive a weighted performance
metric that covers both classes in the binary classification.
The metrics are summarized in Fig. 4. True positive (TP) is
the number of malware samples that are correctly classified
as malware. True negative (TN) is the number benign samples
correctly classified as benign. False positive (FP) is the number
of benign samples wrongly classified by the classifier as
malware. False negative (FN) is the number of malware sample
miss-classified as benign.

V. RESULTS

A. Benign vs Malware

In the benign vs malware scenario, we observed similar
results with all experiments performed on all data set splits.
With the image size of 256×256 and data set split of 80:20,
the first model obtained 99.38% accuracy and 99.38% F-
measure. The data set split of 50:50 obtained 99.39% accuracy
and 99.30% F-measure. The data set split of 60:40 obtained
99.61% accuracy and 99.55% F-measure. The data set split of
70:30 obtained 99.56% accuracy and 99.50% F-measure. The
data set split of 90:10 obtained 99.54% accuracy and 99.47%
F-measure. Thus, an average accuracy of 99.49% and average
F-measure of 99.44% was obtained across all the splits. The
accuracy and F-measure values of Model 1 are plotted in
Fig. 5.
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B. Benign vs Obfuscated Malware

In the second model (using image size of 256×256 with 2
convolution and 2 pooling layers followed by a fully connected
layer), with data set split of 80:20 we obtained 99.80%
accuracy and 99.80% F-measure. The data set split of 50:50
obtained 99.67% accuracy and 99.65% F-measure. The data
set split of 60:40 obtained 99.64% accuracy and 99.62% F-
measure. The data set split of 70:30 obtained 99.71% accuracy
and 99.69% F-measure. The data set split of 90:10 obtained
99.92% accuracy and 99.92% F-measure. Thus, an average
accuracy of 99.74% and average F-measure of 99.73% was
obtained across all the splits. The accuracy and F-measure
values of the Model 2 are plotted in Fig. 6.

C. Malware vs Obfuscated Malware

In the third model, with data set split of 80:20, 99.62%
accuracy and 99.63% F-measure was obtained. The data set
split of 50:50 obtained 99.15% accuracy and 98.97% F-
measure. The data set split of 60:40 obtained 99.40% accuracy
and 99.27% F-measure. The data set split of 70:30 obtained
99.16% accuracy and 98.97% F-measure. The data set split
of 90:10 obtained 99.25% accuracy and 99.09% F-measure.
Thus, an average accuracy of 99.31% and average F-measure
of 99.18% was obtained across all the splits. The accuracy and
F-measure values of Model 3 are plotted in Fig. 7.

D. Multi class classification of obfuscation families

In the fourth model, using a data set split of 80:20 obtained
99.64% accuracy and 99.64% F-measure. The data set split
of 50:50 obtained 99.56% accuracy and 99.56% F-measure.
The data set split of 60:40 obtained 99.62% accuracy and
99.62% F-measure. The data set split of 70:30 obtained
99.67% accuracy and 99.67% F-measure. The data set split
of 90:10 obtained 99.67% accuracy and 99.65% F-measure.
Thus, an average accuracy of 99.63% and average F-measure
of 99.63% was obtained across all the splits. The accuracy and
F-measure values of Model 4 are plotted in Fig. 8.

Fig. 5. Performance of Model 1

As the fourth model is based on multi-class classification,
we obtained similar results in all the experiments with different
data set splits. In order to examine the classification perfor-
mance, we use a confusion matrix to depict which classes are
miss-classified. The confusion matrix of Model 4 with dataset

Fig. 6. Performance of Model 2

Fig. 7. Performance of Model 3

Fig. 8. Performance of Model 4

split of 70:30 which obtained a high accuracy and F-measure
is shown in Fig. 9. From the figure, it can be seen that majority
of the obfuscation classes were identified correctly with 100%
F-measure.

E. Time performance estimation
For the first three CNN models, the training was performed

in 100 epochs. The average time taken for evaluating all the
test samples was 14 seconds (in the 90:10 split experiments).
For the fourth CNN model which used less samples (i.e. only
the malware sample were used) in the experiments, the training
was also performed in 100 epochs, and the average time it took
for evaluating all the test samples was 8 seconds.

F. Evaluating the impact of obfuscation on Manifest and
dynamic features.

In the previous subsections we presented the evaluation of
the proposed Markov image-based system, demonstrating high
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Fig. 9. Confusion matrix of Model 4 with Data Set Split 70:30

capability for obfuscated malware detection. In this section
we will examine the impact of the obfuscation techniques on
Manifest features and dynamic features. This will give us a
baseline for comparative analysis with our proposed image-
based approach.

To study the effect of obfuscation on Manifest features,
we extracted permissions, services, activities, receivers, and
intents using Androgaurd [55]. For the dynamic features we
extracted system calls by executing Apps in an emulator using
strace utility. Each application was provided with random
inputs using Monkey Runner. The random inputs included
swipes, modifying locations, making calls, sending SMS and
modifying the battery power. We utilized the same 12,000
apps (6,500 benign and 5,500 malware) used in previous
experiments, without applying any obfuscation to the apps, and
trained 5 machine learning classifiers to detect non-obfuscated
malware and benign apps. The results of predictions attained
through the different machine learning classifiers (using a
70:30 training-test split) are shown in shown in Table IV.
As can be seen, the highest F-measures were obtained with
Random Forest (RF), for both static and dynamic features,
and these were 98.85% and 93.06%, respectively. By con-
trast, our CNN model for non-obfuscated malware vs benign
identification yielded 99.5% for the 70:30 split. Thus, we
can conclude that the image-based approach with CNN, has
a better performance on non-obfuscated apps compared to
the static and dynamic feature-based approach using machine
learning.

In the second stage of the experiment, we randomly selected
250 malicious applications from the test set, and obfuscated
them using Obfuscapk [12] by applying 14 obfuscation trans-
formation techniques. These modified apps were used to re-
test the already trained static and dynamic ML models. The
evaluation was performed only with the RF models, as they
had the best outcomes in the first experiment compared to

TABLE IV
F-MEASURE OF STATIC AND DYNAMIC FEATURES (WITHOUT

OBFUSCATION)

Features DNN SVM RF DT KNN
Static 98.83 98.42 98.85 98.08 97.44
Dynamic 90.72 88.06 93.06 90.35 84.91

the other models. We found that all obfuscated samples were
detected with 100% detection rate using the model trained
on the static features (i.e. manifest features). On the contrary,
with the model trained on the dynamic features (i.e. system
calls) obtained a detection rate of only 72.7%. This experiment
reveals that the applied obfuscation techniques did not appear
to have an impact on the manifest file features. On the other
hand, Obfuscapk introduces modifications in app bytecode that
causes the difference in statistical distribution of system calls
to occur, hence dropping the performance of the classifier
trained using system call traces. This experiment can also
lead to the conclusion that the proposed Markov-image based
approach is more resilient to obfuscation than the dynamic
features.

G. Sustainability of the Markov image-based approach

Sustainability is defined as the ability of the classifier to
sustain its capabilities over time without frequent retrain-
ing [28]. Sustainability of the malware detection model M
can be formulated as follows. Each Android apk sample can
be represented as Si = (fi, ci), where fi = (fi1, fi2....fin) is
the feature vector of length n and ci ∈ {M,B,O} is the target
class. Two samples Si and Sj are chosen from the same class
Ci during two time stamps Ti and Tj , where (j > i) with data
distribution Di and Dj respectively. For the model, M trained
with samples Si in Ti to be sustainable, it should correctly
classify Sj in Tj provided the difference between Ti and Tj is
greater than constant time period τ , and the difference between
Fi and Fj must be less than constant γ.

In our system, the Markov images embed the spatio-
temporal characteristics of the applications. Also, the byte
stream is represented in a low-rank Markov image that reduces
processing time, while avoiding distortions that can be added
by slicing or increasing the file structure. As the variants of a
family evolve by adding extra functionality or adopting new
obfuscation techniques, these variations will also be reflected
in the Markov image. Since the new variants corresponding
to a family inherit base malware signatures, these sequences
will be present in all subsequent generations of a given family.
This idea can be used to identify apks that re-use code during
their evolution. Thus, the convolutional neural network will
identify these unchanged patch of bytes representative of a
target class, using the convolution and maxpool operations.
As our classification model is trained to recognize changes
induced in the code structure, it can handle sustainability, since
the model is trained on the probabilities of bytes recorded in
the transition probability matrix.

The authors of DEXRAY [30], also included an evaluation
of sustainability of image-based detectors in their paper. They
investigated model ageing by training a CNN model with
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grayscale images derived from app samples from 2019, and 
then used images extracted from 16,364 benign and malware 
samples from 2020 for testing. The experiment achieved 
performance scores of 0.97, 0.97, 0.98 and 0.98 for accuracy, 
precision, recall and F-measure respectively. Additionally, the 
ROC curve showed an AUC of 0.995 in the experiment. These 
results confirmed t he e ffectiveness o f D EXRAY w hen tested 
in a temporally consistent evaluation. Note that from these 
findings, i t could be i nferred t hat t he system may not require 
frequent re-training and may be effective for at least a year, 
based on the results of the experiment. We also note that 
DEXRAY utilized a simpler image visualization technique 
than the Markov image approach that we have used in our 
proposed system. This implies that our Markov image-based 
system will likely possess similar or higher robustness to 
DEXRAY against model ageing and will therefore be a fairly 
sustainable approach to obfuscated malware detection.

Another way to maintain sustainability of our proposed 
approach is to adopt a method similar to DroidEvolver [56]. 
This can be achieved by maintaining a pool of different 
models that are not likely to experience the ageing at the same 
pace, and a weighted voting amongst more recent (younger) 
detection models can be used to classify new applications 
based on our Markov image approach. We can utilize a 
Juvenilization Indicator (JI), as described in [56], to determine 
which models in the pool are considered ‘young’ and also 
when to update a model with a new Markov image. However, 
it is important to realize that unlike with DroidEvolver, where 
the API calls feature set also needs to be updated to keep 
up with the Android evolution, our approach will not require 
feature set update since the CNN will automatically extract 
any new patterns that may arise from evolving Android apps. 
In [57] performance drift of Android malware detectors was 
also studied using time labelled apps from 2012 to 2016. This 
study was based on 350 hand-engineered features consisting 
mainly of API calls, Permissions, Intents, and Commands. 
The machine learning models built from these features showed 
significant concept drift. Hence, the findings of existing studies 
on concept drift such as [56], [57], and Tessaract [58], suggest 
that hand-engineered or manually derived Android features 
seem more vulnerable to concept drift, compared to non-
intuitive features derived from image-based approaches as 
demonstrated in DEXRAY. Nevertheless, more empirical re-
search is needed to quantify the level of drift and determine the 
sustainability of image-based approaches. In the next section 
we present a framework for detecting concept drift within 
our system, to determine when action (such as re-training) is 
required to maintain the suitability of our proposed obfuscated 
malware detection models.

H. Framework for concept drift detection in our ML models

In this section, we propose a theoretical drift detection
framework to identify new malware variants exhibiting highly
distinct distribution compared to the samples used for model
training. Let L = {l1, l2, , lk} represent the layers of deep
neural network, ajli is the activation of neuron j in layer li.
During the training phase for each target class ck ∈ C and

for each neuron we compute activation ajli . The activation of
neuron j is expected to be distinct for all classes ck [33].
Hence, the activations for a neuron j and a class ck follows
a distribution (say Gaussian distribution, with mean µk and
standard deviation σk ). This will allow us to train a parallel
substitute detector in conjunction with a deep learning network
which will explain the drift in the distribution of test samples
relative to the trained model. In particular, we propose to train
the substitute detector with mean µk and standard deviation
σk for all classes ck ∈ C (see Fig. 10). The role of substitute
detector is to notify us when to retrain the original CNN-based
models (used for feature extraction and prediction).

Initially, we train our model with labelled malware samples
Mt at time t along-with large collection of benign applications
B. The malware and benign samples in test set i.e., M

′

t and B
′

t

published at time t are expected to be detected by the model
as the activation will lie within the Gaussian distributions
of one of the target classes. On the contrary samples like
M

′

t+j and B
′

t+j published at a later time t + j will have a
disparate distribution. Therefore, it will not lie in the Gaussian
distribution with mean µk and standard deviation σk for
classes ck ∈ C. Thus, at that point in time t + j the trained
substitute model will tend to miss-classify new test samples.
We use this estimation to verify that a drift has occurred, which
implies that the models need to be retrained with the corrected
labels. The retraining will update the Gaussian distributions
of every neuron to comply with the detection of new malware
variants.
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Fig. 10. Detection of drift by estimating variations in distributions of each
neuron.
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TABLE V
COMPARISON WITH EXISTING WORKS

Publication Approach Dataset Accuracy
(%)

F-measure
(%)

Yadav
et al.
(2022) [31]

RGB images;
EfficientNet-
B4; binary
classification

R2D2 95.7 -

Almomani
et al.
(2022) [29]

byteplot images;
22 CNN models;
malware classifi-
cation

Drebin
& AMD

97.49 97.48

Albahar
et al.
(2022) [28]

byteplot images;
modified
ResNext;
malware
classification

Drebin 95.82 95.78

Yerima
& Bashar
(2022) [24]

byteplot images;
HOG + byte
histograms;
malware
classification

ISCX
botnet
dataset

96 96

DEXRAY
(2021) [30]

byte plot, 1D
CNN; binary
classification

158k
samples

98 98

SAVORTAM
(2020) [27]

RGB images;
EfficientNet-
B4; binary
classification

R2D2 92.9 -

This paper markov images;
CNN; binary
classification;
obfuscation
detection &
classification

12k
samples;
Drebin
& CIC-
InvesAnd-
Mal2019

99.49 99.44

I. Comparison with existing works

In this section, we present a comparison of our results with
recently published works on image-based Android malware
detection. We note that although most of the existing were
not focused on detecting obfuscation or their types, neverthe-
less our benign vs malware classification scenario can still
provide a basis for a comparative analysis with state-of-the-
art works. The comparison is summarized in Table V. Our
system obtained an average accuracy of 99.49% across all the
splits, in the results of malware vs benign classification. This
result exceeds all of the accuracy and F-measures reported in
the research work shown in Table V. We have taken the best
results from each of the papers and depicted them in the table.
Comparing our results with these previous works show that our
proposed system has achieved results that are competitive with
the state-of-the-art.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new approach to proactively
detect obfuscated malware on Android IoT platforms. Ob-
fuscation not only hampers malware analysis, but it also
diminishes the performance of machine learning based systems
that rely on features extracted from the DEX file of Android
applications. Our proposed method is based on converting the
Hex representation of the application bytecode into a Markov
image. We then apply CNN models to identify whether an ap-
plication is Benign (B), Malware (M) or Obfuscated malware
(O). Additionally, our approach can classify an obfuscated

sample into 14 different types of obfuscation techniques,
which is useful for remedial actions. Through extensive exper-
iments, we also demonstrate that detection of obfuscated apps
using system call increases misclassification rate. In future
work, we aim to explore RGB images instead of grayscale
representation of the bytecode characteristics. Additionally, we
would like to undertake a comprehensive empirical study on
the time decay of various types of image-based obfuscated
malware detectors, in order to better quantify the sustainability
of such approaches. Another research direction that we would
like to explore is to integrate feature fusion with deep learning.
This approach will permit adoption of deep learning features
to be fused with handcrafted attributes and use traditional
machine classifiers during the prediction phase. Finally, we
would investigate enhancing the models to identify or generate
obfuscation signatures from the image representations.
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Zain, R. Damaševičius, and K. H. Abdulkareem, “Image-based malware
classification using vgg19 network and spatial convolutional attention,”
Electronics, vol. 10, no. 19, 2021.

[26] S. Kumar, S. Meena, S. Khosla, and A. S. Parihar, “Ae-dcnn: Autoen-
coder enhanced deep convolutional neural network for malware classi-
fication,” in 2021 International Conference on Intelligent Technologies
(CONIT), 2021, pp. 1–5.

[27] J. Singh, D. Thakur, F. Ali, T. Gera, and K. S. Kwak, “Deep feature
extraction and classification of android malware images,” Sensors,
vol. 20, no. 24, 2020.

[28] M. A. Albahar, M. S. ElSayed, and A. Jurkut, “A modified resnext
for android malware identification and classification,” Computational
Intelligence and Neuroscience, 2022.

[29] I. Almomani, M. Ahmed, and W. El-Shafai, “Android malware analysis
in a nutshell,” PLOS ONE, 2022.

[30] N. Daoudi, J. Samhi, A. K. Kabore, K. Allix, T. F. Bissyande, and
J. Klien, “Dexray: A simple, yet effective deep learning approach to
android malware detection based on image representation of bytecode,”
in International Workshop on Deployable Machine Learning for Security
Defense. MLHat 2021. Communications in Computer and Information
Science, vol 1482. Springer, 2021, pp. 81–106.

[31] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan, and T. D. Pham,
“Efficientnet convolutional neural networks-based android malware
detection,” Comput. Secur., vol. 115, no. C, apr 2022. [Online].
Available: https://doi.org/10.1016/j.cose.2022.102622

[32] O. Mirzaei, J. M. de Fuentes, J. Tapiador, and L. Gonzalez-Manzano,
“Androdet: An adaptive android obfuscation detector,” Future Genera-
tion Computer Systems, vol. 90, pp. 240–261, 2019.

[33] X. Wang, Z. Wang, W. Shao, C. Jia, and X. Li, “Explaining concept drift
of deep learning models,” in International Symposium on Cyberspace
Safety and Security. Springer, 2019, pp. 524–534.

[34] A. Guerra-Manzanares, H. Bahsi, and M. Luckner, “Leveraging the
first line of defense: a study on the evolution and usage of android
security permissions for enhanced android malware detection,” Journal
of Computer Virology and Hacking Techniques, pp. 1–32, 2022.

[35] A. Guerra-Manzanares, M. Luckner, and H. Bahsi, “Android malware
concept drift using system calls: Detection, characterization and chal-
lenges,” Expert Systems with Applications, p. 117200, 2022.

[36] X. Pei, L. Yu, and S. Tian, “Amalnet: A deep learning framework based
on graph convolutional networks for malware detection,” Computers &
Security, vol. 93, p. 101792, 2020.

[37] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and explaining concept drift samples for

security applications,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2327–2344.

[38] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[39] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: having a deeper look into android applications,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing,
2013, pp. 1808–1815.

[40] L. Taheri, A. F. A. Kadir, and A. H. Lashkari, “Extensible android
malware detection and family classification using network-flows and
api-calls,” in 2019 International Carnahan Conference on Security
Technology (ICCST). IEEE, 2019, pp. 1–8.

[41] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking of
android apps,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 2017, pp. 358–369.

[42] X. Zhang, F. Breitinger, and I. Baggili, “Rapid android parser for
investigating dex files (rapid),” Digital Investigation, vol. 17, pp. 28–
39, 2016.

[43] P. Miller, “Hexdump,” Online publication, 2000.
[44] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,

and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[45] T. Guo, J. Dong, H. Li, and Y. Gao, “Simple convolutional neural
network on image classification,” in 2017 IEEE 2nd International
Conference on Big Data Analysis (ICBDA)(. IEEE, 2017, pp. 721–
724.

[46] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 International Conference on
Engineering and Technology (ICET). IEEE, 2017, pp. 1–6.

[47] H. Zheng, J. Fu, T. Mei, and J. Luo, “Learning multi-attention convolu-
tional neural network for fine-grained image recognition,” in Proceed-
ings of the IEEE international conference on computer vision, 2017, pp.
5209–5217.

[48] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep con-
volutional neural network for inverse problems in imaging,” IEEE
Transactions on Image Processing, vol. 26, no. 9, pp. 4509–4522, 2017.

[49] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” Ieee Access, vol. 7, pp. 41 525–41 550, 2019.

[50] H. M. Fayek, M. Lech, and L. Cavedon, “Evaluating deep learning
architectures for speech emotion recognition,” Neural Networks, vol. 92,
pp. 60–68, 2017.

[51] Y. Zhang, Y. Yang, and X. Wang, “A novel android malware detection
approach based on convolutional neural network,” in Proceedings of the
2nd International Conference on Cryptography, Security and Privacy,
2018, pp. 144–149.

[52] A. Abderrahmane, G. Adnane, C. Yacine, and G. Khireddine, “Android
malware detection based on system calls analysis and cnn classification,”
in 2019 IEEE Wireless Communications and Networking Conference
Workshop (WCNCW). IEEE, 2019, pp. 1–6.

[53] C. Hasegawa and H. Iyatomi, “One-dimensional convolutional neural
networks for android malware detection,” in 2018 IEEE 14th Inter-
national Colloquium on Signal Processing & Its Applications (CSPA).
IEEE, 2018, pp. 99–102.

[54] M. Eickenberg, A. Gramfort, G. Varoquaux, and B. Thirion, “Seeing it
all: Convolutional network layers map the function of the human visual
system,” NeuroImage, vol. 152, pp. 184–194, 2017.

[55] “Androgaurd,” https://github.com/androguard/androguard, 2022 (ac-
cessed August 2, 2022).

[56] K. XU, Y. Li, C. K. Deng, R, and J. Xu, “2019 ieee european symposium
on security and privacy (euros p),” in 28th Usenix Security Symposium.
IEEE, 2019, pp. 47–62.

[57] S. Y. Yerima and S. Khan, “Longitudinal performance analysis of ma-
chine learning based android malware detectors,” in 2019 International
Conference on Cyber Security and Protection of Digital Services (Cyber
Security). IEEE, 2019.

[58] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“Tesseract: Eliminating experimental bias in malware classification
across space and time,” in 28th Usenix Security Symposium. Usenix,
2019.


