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ABSTRACT 
The paper presents research on the online performance-

based diagnostics by implementing a novel methodology, which 

is based on the combination of Kalman Filter, Artificial Neural 

Network, Neuro-Fuzzy Logic and Fuzzy Logic. These methods 

are proposed to improve the success rate, increase the flexibility, 

and allow the detection of single and multiple failures. The 

methodology is applied to a 2-shaft industrial gas turbine engine 

for the automated early detection of single and multiple failures 

with the presence of measurement noise. 

The methodology offers performance prediction and the 

possibility of utilizing multiple schemes for the online 

diagnostics. The architecture leads to three possible schemes. 

The first scheme includes the base methodology and enables 

Kalman Filter for data filtering, Artificial Neural Network for 

the component efficiency prediction, the Neuro-Fuzzy logic for 

the failure quantification and the Fuzzy Logic for the failure 

classification. For this scheme, a performance simulation tool 

(Turbomatch) is used to calculate the thermodynamic baseline. 

The second scheme replaces Turbomatch with the Artificial 

Neural Network, that is used to calculate the deteriorated 

efficiencies and the reference efficiencies. The third scheme is 

identical to the first one but excludes the shaft power 

measurements, which are not available in aero engines or might 

not be usable for some power plant configurations. 

The paper compares the performance of the three 

methodologies, with the presence of measurement noise (0.4% 

reference noise and 2.0% reference noise), and 24 types of 

random single and multiple failures, with variable magnitude. 

The first methodology has been already presented by Togni et al. 

[10], whereas the other two methodologies and results are part 

of the PhD thesis presented by Togni [18] and they extend the 

applicability of the method. The success rate, targeting the 

correct detection of the of the failure magnitude ranges between 

92% and 100% without measurement noise and ranges between 

66% and 83% with measurement noise. Instead, the success rate 

of the classification, targeting the correct detection of the type of 

failure ranges between 93% and 100% without measurement 

noise and between 85% and 100% with measurement noise. 
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NOMENCLATURE 
ANN  Artificial Neural Network 

BBN  Bayesian Belief Network 

ES  Expert Systems 

FL  Fuzzy Logic 

GA  Genetic Algorithms 

GT  Gas Turbine 

HP  High Pressure 

KF  Kalman Filter 

LGPA  Linear Gas Path Analysis 

LP  Low Pressure 

NFL  Neuro Fuzzy Logic 

NLGPA  Non Linear Gas Path Analysis 

 

1. INTRODUCTION 
The performance-based gas path analysis is a topic that has 

been studied in the last 40 years since Urban [1] defined the 

possibility of making diagnostics on the gas turbines 

components, based on the performance parameters. Before 

Urban used the performance to make its predictions on gas 

turbine failures, the consolidated technique that has been used is 

the vibration analysis. The vibration analysis is still the most 

widely used technique to make diagnostics and prognostics and 

is capable, among others, of detecting unbalances, rotor cracks, 

rotor bow, etc. Another technique that is applied, is the lube oil 

analysis that consists of analyzing the oil for debris, caused by 

mechanical friction that can indicate malfunction of the gas 

turbine. 
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• Despite the fact that the vibration analysis and the lube 

oil analysis offer a reliable detection of the 

malfunctions, the performance-based diagnostics has 

two critical advantages. 

• detecting the performance loss of each component. 

• the possibility of detecting malfunctions early on time, 

before the vibration probes can produce a consistent 

vibration, or the lube oil can collect some debris. 

The importance of health monitoring in the gas turbine 

industrial system and in the aero engines has grown in the last 

two decades. One of the motivations behind this growth is the 

economic advantage. As reported by Verbist et al. [2] in the 

recent years, the technical enhancements of the gas turbines 

technology decreased fuel consumption. However, due to the 

fuel price increase over the same period, the fuel cost still counts 

for one-third of the operating expenses. The authors clarify that 

to reduce the operating costs, the engines are demanded to 

operate longer and reduce maintenance costs. For instance, the 

costs of maintenance for gas fired combined cycle plants can 

reach 50% of the total O&M costs [3] and represent 7% of the 

overall project cash flow. Additionally, statistic studies 

conducted over 3000 E and F class engines concluded that the 

unplanned maintenance cost can reach 8% of the O&M costs, or 

2% of net revenue income and the loss of revenue can reach the 

15% of the O&M cost or 5% of net revenue income [4]. 

Any proposed methodology should offer an easy way to 

detect the components failure or their deterioration [5]. The main 

features that a methodology must contain [6] are: 

• be able to work with an increasing amount of data 

available and new sensors 

• be able to model and detect instances both at part load 

and baseload 

• have an easy to use and clear user interface 

• be flexible enough to include automated information, 

but also user experience 

 

Additionally, the methodology should be able to detect the 

failure of single components in a multi component engine and 

should be able to detect any other combination of multiple 

failures. Moreover, a robust methodology should also consider 

the measurement noise, as they are part of the any working 

engine. Instead, the presence of redundant measurements can 

exclude the bias in the measurements [7]. 

In the last decade the problem was approached by utilizing 

single methodologies. The most widely used are the LGPA, 

NLGPA, KF, ANN, GA, FL, BBN and ES. The reason for single 

methodologies was mostly related to the limitation of 

computational power. However, as summarized by Fentaye et. al 

[15], the single methodologies have limitations, that do not allow 

to address all the problems. Given the increase of computational 

power, the combination of methodologies became a feasible 

solution. 

Among the literature published in the last years, Verma et al. 

[8], proposed a genetic fuzzy logic with a radial basis function 

neural network. The aim of the genetic fuzzy is to automatically 

tune the failures based on genetic algorithm analysis while the 

neural network is used to isolate the noise. The methodology is 

tested for a single deterioration case scenario. Kumar et al. [9], 

instead coupled the fuzzy logic with the support vector machine 

not only for the diagnostics but also for the remaining lifetime 

estimation.  

Finally, Togni et. al [10] coupled the Kalman filter, the 

artificial neural network, and the fuzzy logic to detect single and 

multiple failures, also with the presence of measurement noise. 

In this methodology, a reference physical model has been used 

to calculate the differences of the deteriorated model from the 

new model. Moreover, among the measurements, the power has 

been used. This makes the methodology suitable only for the 

detection of power plant gas turbine, with the generator directly 

connected to the gas turbine. Moreover, the presence of the 

physical model limits the applicability in case the model is not 

available. 

The aim of the current paper is to compare what obtained by 

Togni [10] with a scheme without physical model, where the 

ANN is used both as predictor and as reference and with a 

scheme that excludes the power measurement. These structures 

will lead to two additional schemes: scheme 2, where the 

thermodynamic model is replaced by the ANN; scheme 3, where 

the thermodynamic model is used, but the power measurement 

is excluded. These schemes and results are already part of the 

work presented by Togni in his PhD thesis [18]. 

Scheme 2 expands the applicability of the methodology to 

data driven only solutions, or to situations where the 

thermodynamic model is not suitable for online detection. 

Scheme 3, instead, expands the applicability of the 

methodology to aero engines where the power measurement is 

not an option, and to layout that connects multiple components 

to a power generator. 

 
2. METHODOLOGY 

The proposed method compares the application of the 

methodology shown by Togni et al. [10] and composed by the 

Kalman Filter for the noise reduction, the Artificial Neural 

Network for the efficiency prediction, the Neuro Fuzzy Logic for 

the severity quantification and the Fuzzy Logic for the failure 

classification. (Figure 1), with two additional variants, as 

presented by Togni [18] in his PhD thesis.

  



 3  

 
Figure 1: Structure of the methodology. Source [18] 

 

The methodology is divided in three macro areas: 

a. The KF for the data filtering.  

b. The ANN for the efficiency prediction.  

c. The NFL and FL for the failure quantification and 

classification.  

The KF is the first module that the data sees, and it is meant 

to isolate the noise from the data. The KF is not meant to work 

with biased signals. 

The ANN is a feedforward neural network with 3 hidden 

layers. The ANN is trained with values created from a gas turbine 

performance model created in Turbomatch. Turbomatch is a 

software-based Gas Turbine performance simulation tool 

developed by the Propulsion Engineering Centre (formerly 

department of Power and Propulsion), at Cranfield University 

[11]. The simulation data are a favorite choice as compared to 

the field data. As reported by Simon et. al [12], in fact, the 

reliability reached by the engines as per today makes unlikely for 

a gas turbine to experience multiple failures. Therefore, it is 

challenging to have a sufficient palette of real data including 

distinguished failures for testing. Given this, a simulation of gas 

turbine malfunctions has been considered. 

The NFL rank the failures on a scale moving from a good 

status to an alarm level for one or multiple components of the 

gas turbine. The FL is also integrated in the same section and is 

used for the failure classification. The categorization is done 

through two boxes: one for the compressor fouling, turbine 

fouling; another for the turbine erosion. These two boxes are 

proposed for each component in the gas turbine Figure 2. 

 
Figure 2: Chart for the quantification/classification of the results 

The combination of the three blocks combines the strength 

of each module, and the flexibility they offer lead to three 

possible schemes: 

a. Scheme 1: the first scheme is composed by the Kalman filter 

placed at the beginning to filter for noise; after it comes the 

ANN used to predict the performance parameters; the values 

from Turbomatch are used as reference to calculate the 

difference that will be used by the fuzzy logic to make the 

quantification first and the classification after. This scheme 

(Figure 3) is considered as the baseline for this 

methodology [10], whereas the others are considered 

variants [18]. 
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Figure 3: Flow chart representing the concept behind the diagnostics tool – Turbomatch used as reference (Scheme 1 - Scheme 3) – Where X 

are the measurements, n is the noise, rn is the remaining noise, dEta and dX are the delta efficiency and measurement, Amb are the ambient conditions 

and ref is the reference of the non-deteriorated engine. Source of the picture [10] 
 

 
Figure 4: Flow chart representing the concept behind the diagnostics tool – ANN used as reference (Scheme 2) – Where X are the measurements, n 

is the noise, rn is the remaining noise, dEta and dX are the delta efficiency and measurement, Amb are the ambient conditions and ref is the reference 

of the non-deteriorated engine. Source of the picture [18] 

 

b. Scheme 2: the second scheme uses the Kalman filter at the 

beginning as per scheme 1; after it also comes the ANN that 

is used to predict the performance values of the deteriorated 

engine and to predict the performance reference of the new 

engine as well; the difference is then calculated among the 

two ANN values and passed to the fuzzy logic for the 

quantification and classification phase (Figure 4). This 

scheme has the advantage of being faster, since Turbomatch 

must not be called from the routine, and is not requiring the 

ambient signals. 

c. Scheme 3: the third scheme starts also from the Kalman 

filter that is used upfront; the second part, the ANN is built 

without the power measurement. The scheme as such does 

not change, but the block is different. The prediction of the 

deteriorated engine performance is done with the ANN 

while the reference is from Turbomatch as per scheme 1 

(Figure 3). This scheme can be used in case the power 

measurement is not available, or the power measurement is 

not referring only to the gas turbine. 

 

2.1 Gas turbine performance modelling 
The gas turbine considered is a 2-spool industrial gas turbine 

of small size providing 11.9 MWe power output with a pressure 

ratio of 17. The gas turbine has two compressors, one LP and one 

HP, two turbines, one HP and one LP one burner and one 

extraction for the cooling system. The efficiency values of the 

compressor and of the turbine are taken from [13] that proposes 

values of an engine with a pressure ratio of 17. The overall values 

are taken from the freely published values of an engine of that 

size. In particular, the pressure ratio is 17, the power is 11.9 
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MWe, the exhaust temperature is 485°C and the inlet mass flow 

is 41.6 kg/s. The cooling is modelled with one extraction after 

the HP compressor. The amount of cooling air at each pressure 

level has been tuned to match the exhaust gas temperature. The 

performance values are modelled in Turbomatch the 

thermodynamic cycle modeler built and maintained in Cranfield 

[11]. 

 

2.2 Deterioration profile simulation 
The types of deterioration considered are the compressor 

fouling, the turbine fouling and the turbine erosion and this is 

applicable for a total of four components. The combinations of 

the types of failures and the number of components lead to a 

certain number of combinations and among those 24 have been 

selected for this simulation (Table 1). The combinations include 

no failure, meaning that the engine performs as per design, 

failure of single components and failure of multiple components. 

 

  

LP 

comp 

fouling 

HP 

comp 

fouling 

HP 

turbine 

fouling 

HP 

turbine 

erosion 

LP 

turbine 

fouling 

LP 

turbine 

erosion 

Case-0 
      

Case-1 X           

Case-2   X         

Case-3     X       

Case-4       X     

Case-5         X   

Case-6           X 

Case-7 X X         

Case-8 X   X       

Case-9 X     X     

Case-10 X       X   

Case-11 X         X 

Case-12   X X       

Case-13   X   X     

Case-14   X     X   

Case-15   X       X 

Case-16     X     X 

Case-17       X X   

Case-18 X X   X     

Case-19 X X     X   

Case-20 X X       X 

Case 21 X X X   X   

Case 22 X X X     X 

Case 23 X X X   X   

Case 24 X X X     X 

Table 1: Deterioration combination: the deterioration is simulated in 

all the components considering the ratio reported in the literature to 

make the simulation realistic [14].  

The ratio between efficiency and flow capacity is set to 1:2. 

This is well summarized by Fentaye et. al [15] who reports a ratio 

between 1:2 and 1:3. The range of deterioration that is 

considered is between 0.0% and 7.7% to give room to the ANN 

to cover all possible conditions. The deterioration levels that are 

reported from the literature in fact rarely go beyond 5.0%. 

 

2.3 Measurement selection and uncertainty 
The typical measurement equipment for an industrial gas 

turbine has been described by Jiang et al. [16] and they are 

reflected in the 2-spool engine presented here Table 2. The 

measurement noise is equal to the one already presented by 

Togni et. al [10] and is derived by the reference noise presented 

by Joly et. al [17] and referring to an aviation gas turbine. 

 

 

 
  Reference 

noise 

Included 

in ANN 

LP compressor inlet pressure p1 0.1% No 

LP compressor inlet temperature T1 0.4% No 

LP compressor inlet relative humidity RH1 0.4% No 

LP compressor exhaust pressure p2 0.1% Yes 

LP compressor exhaust temperature T2 0.4% Yes 

HP compressor exhaust pressure p3 0.1% Yes 

HP compressor exhaust temperature T3 0.4% Yes 

Mass flow rate mf 0.4% No 

HP turbine exhaust pressure p5 0.1% Yes 

HP turbine exhaust temperature T5 0.4% Yes 

LP turbine exhaust pressure p6 0.1% No 

LP turbine exhaust temperature T6 0.4% Yes 

Power P 0.4% Yes* 

Table 2: Noise level for reference noise level 0.4% and measurements 

included in the ANN network. *Not included in scheme 3  

The measurement location is specified in Figure 5. The 

magnitude of the measurement faults is 0.4% reference and 2.0% 

reference. At each noise level, the ratio between pressure noise 

and temperature noise remains unchanged. For instance, with 

0.4% reference measurement noise, p1 has 0.1% noise and T1 

0.4%. With 2.0% reference measurement noise, the values are 5 

times higher. The aim is to verify how the methodology can react 

and how robust is, with the presence of high measurement noise. 

 
Figure 5: Gas turbine measurements location 

 

3 RESULTS AND DISCUSSION 
To verify the robustness of the methodology, the scenario 

that has been considered is the random deterioration. Here 203 

points with degradation within 0.15% - 7.4%; single, multiple 

and no failures from Table 1 are picked. In this case, the 

measurement noise is also included. The noise levels included 

are the nominal - 0.4% - and the maximum - 2.0%. The results 

present in this article have been presented by Togni in his PhD 

thesis [18] and they are compared to the scheme 1 already 

presented by Togni [10]. 

The output of the tests is the success rate. For the 

quantification, the simulated point is counted if it lies within 3σ 
standard deviation and for the classification is counted if 

classified in the right category (also if the quantification is 

outside the 3σ standard deviation). The standard deviation 1σ is 
calculated from a dry run with nominal noise (0.4%) and 
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constant deterioration of multiple components. The calculated 

value is ±2.06 for 1σ and therefore, ±6.18 for 3σ.  

For the classification, instead, the success rate considers if a 

point falls in the appropriate category. It must be reminded that 

the failures are simulated, therefore it is known what type of 

failure is injected and should be detected afterwards.  

Comparing the three schemes with the random deterioration 

and with nominal noise the quantification success rate is above 

92% with all the schemes (Table 3). Considering the random 

nature of the selected points, there can be a variability between 

the schemes. However, it seems scheme 2 performs slightly 

better than the others. It is showen that scheme 1 has a success 

rate of 92% on the HP compressor, which is remarkable, but it is 

lower than the 97.5% obtained with the scheme 2. 

 
Quantification - Random deterioration 0.4% noise - KF 

 Scheme 1 Scheme 2 Scheme 3 

LP comp 97.0% 100% 99.0% 

HP comp 92.0% 98.5% 97.0% 

HP turb 98.5% 97.5% 99.0% 

LP turb 99.0% 97.5% 95.5% 

Table 3: Quantification success rate with random deterioration and 

0.4% measurement noise and KF 

Considering the classification, the results varied among the 

schemes. This is attributed to the nature of the test case, which 

does not allow to compare the three schemes directly. Another 

reason is the different characteristics of the schemes. With 

regards to the classification rate, it can fall to 93.2% with scheme 

2. This depends on the additional uncertainty created by the 

reference that moved from Turbomatch to the ANN. However, 

with the scheme 1 the classification rate is above 95.1%. The 

absence of the power signal in the ANN in scheme 3, does not 

have a decisive effect in the classification as the success rate 

remains above 95.0% as compared to 95.1% in scheme 1 (Table 
4). 

 
Classification - Random deterioration 0.4% noise – KF 

 Scheme 1 Scheme 2 Scheme 3 

LP comp fouling 98.3% 93.7% 96.8% 

HP comp fouling 97.9% 98.2% 96.2% 

HP turb fouling 100% 100% 100% 

HP turb erosion 95.1% 98.2% 95.0% 

LP turb fouling 100% 100% 100% 

LP turb erosion 96.9% 93.2% 96.2% 

Table 4: Classification success rate with random deterioration and 

0.4% measurement noise and KF 

The results with 2.0% reference noise and constant 

deterioration contradicts what has been seen with 0.4% reference 

noise. With higher noise in fact, the scheme showing best results 

is scheme 3, where the success rate is above 72.1% Table 5. 

With scheme 1, the additional power measurement disturbance, 

introduce additional uncertainties as compared to scheme 3 and 

the success rate is above 70.1%. Scheme 2 instead, includes the 

uncertainty of the reference predicted by the ANN, and is also 

disturbed by the measurement noise, and the uncertainty of all 

the measurement as scheme 1. The success rate is above 65.7% 

and it is the only scheme with success rate below 70%.  

 
Quantification - Random deterioration 2.0% noise - KF 

 Scheme 1 Scheme 2 Scheme 3 

LP comp 76.1% 76.1% 82.1% 

HP comp 73.6% 70.1% 74.1% 

HP turb 70.1% 65.7% 72.1% 

LP turb 83.1% 78.6% 80.1% 

Table 5: Quantification success rate with random deterioration and 

2.0% measurement noise and KF 

The classification success rate is affected less by the 

measurement noise. The single point must fall into the right 

category (fouling vs erosion) as compared to the quantification, 

where the point has to fall within 3σ. With 2.0% reference 

measurement noise, the best results are achieved with scheme 2, 

where the success rate is above 91.7% and generally above the 

success rate of scheme 1 and scheme 3 (Table 6). This means 

that the ANN has a better prediction in terms of reference for the 

failure classification. With scheme 1, the success rate is above 

88.9% and with scheme 3, the results are above 84.7%. This 

means that the power measurement is beneficial for the failure 

classification.  

 
Classification - Random deterioration 2.0% noise – KF 

 Scheme 1 Scheme 2 Scheme 3 

LP comp fouling 97.7% 98.6% 95.2% 

HP comp fouling 100% 98.5% 95.9% 

HP turb fouling 96.0% 100% 100% 

HP turb erosion 90.7% 91.7% 94.4% 

LP turb fouling 100% 100% 100% 

LP turb erosion 88.9% 93.9% 84.7% 

Table 6: Classification success rate with random deterioration and 

2.0% measurement noise and KF 

It is shown that the results with 2.0% reference noise and KF 

show a success rate up to 20% lower than the results with 0.4% 

reference noise. However, KF method plays an important role in 

the overall architecture. This is evident as the quantification 

success rate without KF, falls to 51.7% with scheme 3 (Table 7). 

This means that the KF can recover up to 20% quantification 

success rate. 

 
Quantification - Random deterioration 2.0% noise – no KF 

 Scheme 1 Scheme 2 Scheme 3 

LP comp 56.7% 58.7% 60.2% 

HP comp 56.2% 62.7% 53.2% 

HP turb 59.2% 56.7% 51.7% 

LP turb 74.1% 72.6% 64.7% 

Table 7: Quantification success rate with random deterioration and 

2.0% measurement noise  

Similarly, to what observed with the 2.0% reference noise 

and KF, the classification is affected less by the measurement 
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noise. Even without the KF in fact, the minimum classification 

success rate is 76.5% on LP turbine erosion and scheme 3 (Table 
8). However, most of the results remain above 87% with scheme 

2 outperforming the other schemes and a success rate above 

94.4%. Interestingly, this result is even better than what obtained 

with the KF.  

 
Classification - Random deterioration 2.0% noise – no KF 

 Scheme 1 Scheme 2 Scheme 3 

LP comp fouling 99.1% 94.4% 99.0% 

HP comp fouling 100.0% 97.8% 97.8% 

HP turb fouling 100.0% 100% 100% 

HP turb erosion 86.5% 94.7% 87.0% 

LP turb fouling 100.0% 100% 97.7% 

LP turb erosion 88.3% 96.0% 76.5% 

Table 8: Classification success rate with random deterioration and 

2.0% measurement noise 

Another important aspect, which was evaluated among the 

schemes was the run time. The values that are compared are per 

sample and divided per each block in the schemes: the KF 

section used to pre-process the data, the ANN used to predict the 

performance values of the GT, the calculation section done 

through Turbomatch used to determine the reference values and 

the FL block that includes the NFL for the component health 

estimation and the FL for the failure classification. The total time 

varies depending on the type of the scheme used and on the 

configuration of the KF. Scheme 2, for instance, does not need 

Turbomatch calculation and can process one sample in less than 

half a second (Table 9). The reference scheme 1, requires 1.7s 

per point. Scheme 2, which excludes the Turbomatch prediction, 

reduces the process time per point to 0.4s. Scheme 3 instead, has 

a slightly quicker KF. Turbomatch processing is also faster, but 

that might be related to the computational performance, as the 

process remains the same. 

 
The execution time of the schemes – Time per sample 

 Scheme 1 Scheme 2 Scheme 3 

 [s] [s] [s] 

KF 4.4E-01 3.4E-01 3.5E-01 

ANN 1.7E-03 2.1E-03 1.0E-03 

Turbomatch 1.2E+00 - 1.0E+00 

FL 5.7E-02 5.9E-02 5.3E-02 

Total 1.7E+00 4.0E-01 1.4E+00 

Table 9: Execution time of the schemes 

 

4 CONCLUSION 
The comparison of the three schemes, shows that the 

methodology is adaptable to different GT layout and conditions. 

Moreover, the presented method is also able to perform even in 

the absence of a reference thermodynamic model (scheme 2). 

The time per sample makes all the schemes suitable for online 

diagnostics. Among the key findings: 

• The combination of multiple techniques like the KF, 

ANN, NFL and FL make the methodology flexible, 

performant, and adaptable to multiple problems. 

• The results vary among the schemes, but they remain 

solid and comparable, confirming the applicability of 

the methodology with all the three variants. 

• The methodology can also be applied without a 

reference thermodynamic model, provided there are 

data to train the ANN beforehand. 

• The processing speed makes the methodology suitable 

for online diagnostics with all the schemes. However, 

scheme 2 allow an additional processing time reduction 

as it is excluding the reference calculation. 
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