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Abstract
The aircraft Environmental Control System (ECS) enables the aircraft to maintain a comfortable and safe environment for
its passengers throughout its operating envelope. The Pressurised Air Conditioner (PACK) is the heart of the ECS, and is
composed of multiple sub-systems: heat exchangers, valves, compressor, turbine, and a water separator. The PACK’s
principle function is to enable conditioning of the hot, high pressure bleed air from the engine or APU, for temperature,
pressure and humidity against the cabin requirements. The operation of the PACK is governed by a control system which
has the ability to mask degradation in its component during operation until severe degradation or failure results. The
required maintenance is then both costly and disruptive. The PACK has been reported as major driver of unscheduled
maintenance by the operators. The aviation industry is currently proactively exploring innovative health management
solutions that aid the maintenance of aircraft key systems based on predictive based maintenance approaches using online
condition monitoring techniques. This paper presents a comprehensive review of the simulation and diagnostic meth-
odologies applicable to fault diagnostics of the ECS PACK. The existing literature suggests that model-based and data-driven
methods are effective for conducting fault detection and isolation of the PACK system. The conceived findings indicate that
the model-based diagnostic approach have been extensively employed to conduct PACK diagnostics at component level
only. Their successful implementation requires robust experimental verification and validation against the actual data under
healthy and faulty conditions. Although a substantial amount of work has been reported on developing first principles based
simulation models and diagnostic strategies for the ECS, the acquired findings suggest that there is a compelling need for
a verified and validated ECS simulation model to enable accurate PACK system-level diagnostics based on single and
multiple component level degradation scenarios. It has also been identified that the existing literature lacks the evaluation of
humidity regulation and the effect of the control system on the PACK performance characteristics. Finally, a taxonomy of
diagnostic techniques and simulation models is compiled based on the available literature.
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Introduction

The Environmental Control System (ECS) of an aircraft
provides conditioned air to pressurise the cabin and
regulate the temperature and humidity throughout cabin. It
also supplies the cooling air into the avionics bay to
prevent the electronic equipment from overheating. It
contains two Passenger Air Conditioners (PACK), which
are the primary system for conditioning the airflow within
the ECS.1 Although the system is quite robust, there have
been a few incidents reported due to system failure. A
simple ECS component fault occurrence can escalate and
result in system failure. For example, a Ram air actuator
failure can result in reduction of cold mass flow over the
heat exchanger causing an instant PACK shutdown due to
overheating.2 Overheating can also occur due to a change
of the bleed air source at the PACK input.3 These incidents

of PACK failure affect the pressurisation of the cabin. The
PACK functionality is also crucial for maintaining hu-
midity level in the cabin as overheating of excess moisture
can cause misting in the cockpit, and the cabin, which can
hinder the safety of passengers and crew.4 The operations
of the PACK are governed by the control system which has
the ability to mask degradation in its component during
operation until severe degradation or failure results. The
required maintenance is then both costly and disruptive.
The PACK has been reported as major driver of
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unscheduled maintenance by the operators. The aviation
industry is currently proactively exploring innovative
health management solutions that aid the maintenance of
aircraft key systems based on predictive based mainte-
nance approaches using online condition monitoring
techniques.

The safety of the crew and operational cost was a major
concern when NASA began human space flight.5 After the
Apollo success, the concept of Integrated Vehicle Health
Management (IVHM) began to surface in the 70s to ad-
dress the safety and cost factors. In 1992, NASA defined
the IVHM goals and objectives in a report.6 These ob-
jectives can be summarised as the capability to facilitate
optimised maintenance actions, operational cost re-
duction, improved readiness of the fleet and enhanced
safety.7

Zhang et al.8 suggests that civil aviation maintenance
costs are estimated to make up 10% of airline operating
cost, with spending reported to be around US$83 billion
in 2019. Considering the industry efforts to build and
recover from the Corona Virus 2019 (COVID19), these
costs are anticipated to reach US$115 billion by 2030.
This motivates airliners to take the IVHM concept de-
veloped by NASA further by integrating health moni-
toring technologies into their asset.9 It helps in
monitoring the critical components of a system of their
asset and cuts down on unscheduled maintenance and
downtime.10 Thus, the use of IVHM toolsets is enabling
a shift from preventive maintenance over to the pre-
dictive maintenance.

The data collected from the aircraft are instrumental in
conducting diagnostics and prognostics using the model-
based or data-driven technique. A vehicle level reasoning
system can be used to identify faults considering the in-
teraction between different systems.11 In order to un-
derstand interdependencies between components, and to

enable accurate diagnostics, there is a need to develop
system-level simulation models. The fault detection and
prediction analysis can dictate the supply-chain and lo-
gistics to best prepare for scheduled maintenance, creating
the new manufacturing paradigm supporting predictive
maintenance 12[p. 4].

Environmental control system

Air conditioning systems are designed to provide con-
ditioned air ensuring human comfort. They are applicable
in aircraft, automobile, offices, industries and various
other places. During the mid-1940s, the pioneering
Boeing 307 Stratoliner was the first aircraft equipped with
air conditioning system, ECS, for cabin pressurisation.
This enabled high altitude flights within thin air and sub-
zero temperature regions above the weather and
turbulence.13,14

ECS is a generic term for the subsystems and equip-
ment associated with ventilation, heating, cooling, con-
tamination control, and pressurization in the occupied
compartments, cargo bays and electronic racks. As il-
lustrated in Figure 1, the overall environmental control
system of a typical civil aircraft is composed of several
subsystems, which are the Bleed Air System (BAS), the
Anti-Icing System (AIS), the Pressurized Air Conditioner
(PACK) and the Cabin Pressure Control System (CPCS).
The bleed system provides the pressurised air to the PACK
for conditioning. Part of the bleed mass flow before en-
tering the PACK is taken out to drive the Ram turbofan to
drive cold ambient air over the heat exchangers in the
PACK to enable pre-cooling of the bleed air. After con-
ditioning of the bleed air in the PACK, the air is mixed
with trim and recirculating air from the cabin in the mixing
manifold before it is distributed to different zones of the
aircraft.

Figure 1. ECS schematic.15
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The PACK is the primary system for conditioning the
airflow within the ECS. Figure 2 illustrates the schematic
of a single PACK with HPWS in a B737-400 aircraft. It
consists of Valves, Heat Exchangers, an Air-Cycle Ma-
chine (ACM) and a High-Pressure Water Separator
(HPWS). There are other ECS systems, such as electri-
cally driven ECS (used in modern aircraft)16 [p. 3],
pneumatic ECS with low-pressure water separator
(LPWS) (generally used in older generation aircraft),17

vapour cycle ECS (used for light turboprop aircraft ap-
plication)18 and membrane-based dehumidifier (used in
spacecraft).19

The PACK consists of a PACK valve (PV) and Tem-
perature Control Valves (TCV) which regulate the hot
mass flow through the system and the core. The Primary
Heat Exchanger (PHX) and Secondary Heat Exchanger
(SHX) use the cold Ram air as a heat sink. In between the
heat exchangers sits the refrigeration unit of the PACK.
The ACM drives the air through the core and contributes
to cabin pressurisation. Towards the end of the PACK sits
the HPWS consisting of Reheater (RHX), Condenser
(CHX) and Water Separator (WS) which regulates air
temperature to enable condensation and extraction of
water from the air to regulate humidity. The PACK has
a control system that governs the opening of the valve by
using temperature sensors at the WS outlet (to regulate the
TCVopening) and Compressor outlet (to regulate the Ram
air mass flow modulating door) to meet cabin demand
temperature. In addition to that, there are three temperature
switches: at the compressor outlet, WS outlet and PACK
outlet, which shut down the PV to prevent any damage to
the system in the case of overheating.

Integrated vehicle health management

After the introduction of IVHM by NASA, the aviation
industry started utilising it in accordance with the new
Product Service System (PSS) business model. It helps in
monitoring the critical components of a system of an asset
and cuts down on unscheduled maintenance and down-
time, defining the company’s profit margin.10 Un-
scheduled maintenance plays a key role in increasing
maintenance costs. Deploying IVHM tools on expensive
assets such as the aircraft, raises the profit margin through
the reduction in downtime during maintenance and as
a result enhancing fleet availability.

Figure 3 distinguishes between preventive and pre-
dictive maintenance. The manufacturing sector of the
aviation industry typically follows the preventive main-
tenance approach where the aircraft is grounded fre-
quently for routine maintenance regardless of fault
occurrences. This increases downtime as all critical
components go through thorough inspection. The idea of
IVHM is to monitor the health condition of the critical
systems using sensor technology to detect and predict fault
occurrences. At the fault prognostics stage shown in
Figure 3, the remaining useful life of components is es-
timated, based on that maintenance actions are planned.
The early detection of failure and prognostics helps cut
down on unscheduled maintenance and also ensures the
safety of passengers and crew.

The sensor data collected from the aircraft is in-
strumental in conducting diagnostics and prognostics
using a model-based or data-driven technique. In order to
understand interdependencies between components to
enable accurate diagnostics it requires development of

Figure 2. Schematic of the 737–400 ECS PACK with HPWS.
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system-level simulation model. Then a vehicle level
reasoning system is used to identify faults considering the
interaction between different systems.11 This use of
vehicle level reasoning proposed by Cordelia et al.,11 is a
novel way of using reasoning to enable condition-based
maintenance. The overall analysis of aircraft health
condition and interdependencies between major
systems can then be used to well prepare the maintenance
actions.12 [p.4]

Scope of present work

This paper provides a literature survey on the ECS towards
its diagnosis which includes the following:

(I) Identification of diagnostic methodologies appli-
cable for the ECS

(II) A review on system-level simulation models for the
ECS

(III) Experimental investigation on PACK performance

Diagnostic methodologies

Heat exchangers within the PACK have been extensively
investigated by researchers.20–23 The aircraft ECS heat
exchangers are made of fin and plate assemblies as shown
in Figure 4, which uses cold Ram air as a heat sink to cool
the hot bleed air. The ram air often contains debris which
accumulates at the cold-side of the heat exchanger re-
sulting in a drop in heat exchanger effectiveness.24 Due
to drop in effectiveness, the heat transfer across the hot
and cold side will be impacted and the system will
overheat imposing a risk of immediate PACK shutdown.
Therefore, the heat exchangers were considered to be
critical components of the aircraft ECS system which
requires appropriate diagnostic rules.25 The diagnostic
methodology that has been implemented can be classified
as: (i) Model-based method,26 (ii) Data-Driven method9

and (iii) Hybrid method.27 The hybrid method is
a combination of both model-based and data-driven
methods.

Model-based method

The model-based method relies on a system model with
the mathematical equations defining the input/output
conditions.28 This technique involves installing sensors
at the optimised locations to acquire health defining pa-
rameters and comparing them against the model output.
This sensor set is unique for each system and can be
established by studying the thermodynamic PACK per-
formance characteristics. This study of PACK perfor-
mance characteristic under heat exchanger fouling is
demonstrated by Jennions and Ali.29 The heat exchanger
fouling has been simulated in the model by manipulating
the heat exchanger effectiveness. Their results suggest that
the PACK performance under PHX and SHX degradation
are very different to each other. The deviation between the
model data (healthy baseline under given operating
conditions) and test data can then be used as an indication
of fault occurrences.[p.19]30 Figure 5 demonstrates
a typical model-based approach that relies on residual
evaluation. The difference, or residual, is usually gener-
ated by one of three different methods: (i) Parameter
Estimation, (ii) State-observer and (iii) Parity Space.31

Parameter estimation and state-observer. Fouling in heat
exchanger is due to particulate accumulation. This can

Figure 3. Maintenance flow chart: Preventive (left) and Predictive (right).

Figure 4. Typical fin-and-plate type cross-flow heat
exchanger.24
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occur in both the hot and cold side. Research indicates the
parameters that need to be monitored for diagnosing heat
exchanger fouling are the heat transfer coefficient, the
pressure drop, the mass flow rates, the temperature var-
iation and the weight of the plates.32 Deviation in the
estimated parameters over time is used as an indication of
fault occurrences. To estimate the values of model pa-
rameters using parameter estimation method, a dynamic
model of the system is required. An example of such
dynamic model in the form of physical state space model
representation of a heat exchanger proposed in Reference
32, where the hot inlet temperature (Th, 1), hot outlet
temperature (Th, 2), cold inlet temperature (Tc, 1) and cold
outlet temperature (Tc, 2) are the model state. The model
parameters are α, β, τh and τc .A detailed discussion of the
derivation and parameterisation can be found in the ref-
erence article.20 Shah et al.33 and Jonsson et al.32 used
extended Kalman filter (EKF) on such state space model
of heat exchanger to estimate the required parameters. The
EKF is most commonly used to diagnose heat exchanger
fouling using the model-based technique.32–35

The traditional EKF used to estimate the state pa-
rameters for detecting degradation or fouling can poten-
tially lose its monitoring capability in case of abrupt
changes in the process states. This problem was resolved
using two Kalman filters, simultaneously forming a dou-
ble model filter23 which is used to trace fault-free and
faulty state of a non-linear system. For both the methods,
the selection of the initialisation value for the parameter
can be difficult, for which an adaptive filter such as strong
tracking filter (STF) is developed by Ma et al.,34 to im-
prove the existing EKF that can be used to estimate the
fault parameters. The STF is an extension of the EKF
which has the capability to perform online state estimation
regardless of the system reaching steady-state.36 The
authors also used a modified Bayes classification algo-
rithm to detect and isolate fault.34

Similarly, the state-observer method uses model input
data to estimate state variables, based on suitable esti-
mation method. Once the system output is reconstructed
using the estimated state variables, error between the
simulation and actual output is to be calculated which will
be zero if the system is fault free, and vice versa.30 For
these two methods to be effective, it is essential to

understand the input-output behaviour of the system.37

For this, experimental component performance analysis is
required.

The heat exchanger fouling can also be detected by
analysing the PACK control system. The PV and TCV
regulate mass flow through the system to match cabin
demand temperature. The variation in hot and cold mass
flow affects the heat transfer coefficient. The valves are
regulated by a control signal which drives the motor to
rotate a butterfly valve. Given the ram mass flow is
constant, estimating the deviation of valve command from
fault free condition can also help identify heat exchanger
fault occurrence. Shang and Liu24 proposed that the fault
detection of the heat exchanger can be monitored by
estimating the deviation of valve control command using
Kalman filter. The proposed methodology as shown in
Figure 6 is based on the error (ε) between the output
temperature (Tload) and simulated output temperature
(bTload) and control command ( bubypass).

The valves regulating the mass flows in the PACK are
regulated using series of temperature sensors installed at
various locations across the ECS. These sensors can be
faulty which can affect mass flow through the core of the
PACK. Wang and Wang38 developed a fault diagnosis
strategy by employing a genetic algorithm technique for
parameter estimation which can be used to detect sensor
faults.

Another approach to heat exchanger fouling detection
was proposed and experimentally validated by Palmer
et al.,22 where a manually initiated built-in-test (iBIT)
method was used. Within parameter estimation method
Rajarman.S et al.,39 used Kharitonov’s theory instead of
the EKF, due to its suitability in handling multiplicative
fault detection.31 Furthermore, Matthew D. et al.,40,41

developed a physics-based approach in estimating RUL,
where particle filter based on the parameter estimation
method was implemented for predicting the life-cycle of
a pneumatic valve with limited sensing conditions.

Parity-space. As opposed to the parameter estimation and
state-space observer approach, the parity space approach
works with the state-space representation of dynamic
systems. Without requiring detailed knowledge in ad-
vanced control theory of the system, the parity-space

Figure 5. Concept of model-based diagnostic approach.30 [p. 19]
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diagnostic method works by developing a simple math-
ematical algorithm equating the input–output state vector
and the past state vector.[p.17]37 Due to the use of simple
algebraic equations with state-space equations, the parity
space is deemed to be simpler compared to observer
approach in a study by Yu et al.42

Mostofi et al.43 used this parity-space method to de-
velop a diagnostic algorithm to isolate the actuator and
sensor faults in an automobile engine. The throttle angle
has been taken as an input and engine revolutions,
manifold air-pressure and temperature as the state varia-
bles as outputs. To avoid the complexity of a nonlinear
state-space model, the Jacobian Method was used for
linearization, and a parity matrix was formed which was
then used to design a weight matrix satisfying the residual
matrix. The proposed diagnostic method has been vali-
dated using real engine data. Similarly, Varrier et al.,44

conducted fault detection within a linear parameter
varying systems where parity space approach was used,
including the time-varying parameters in the parity matrix.

The parity-space approach has the capability to detect
additive faults and to check the sensor deviations effec-
tively, however, it is sensitive to noise. Hwang and Huh,45

developed a diagnostic method coupling the parity-space
and observer approaches to achieve effective diagnostic
capability. Numerous other studies exist that used parity-
space for detecting faults when noise has been injected
into the system. These include using the parity-space
approach for handling nonlinear systems and system
behavioural indicative matrix for power trains.46–48

Data-driven method

The data-driven method for diagnostics can be funda-
mentally categorised into the following: (i) Statistical, and
(ii) Artificial-Intelligence.

Statistical. The data-driven method is solely dependent on
the quality and quantity of the data being collected from
the model without having prior domain knowledge on the
physics governing the functionality of the system. The
output of systems such as the ECS is influenced by more
than one parameter, which necessitates multivariate
statistical analysis (MSA). The Principal Component

Analysis (PCA) approach within the MSA framework is
popular due to its efficiency in minimising mean squared
distance between high dimensional and complex data
points to analyse data variability (i.e. deviation between
the healthy case and faulty data sets).49,50

The heat exchanger of the ECS is a complex system in
which the output is dependent on both the inlet temper-
ature on the hot-side and the mass-flow rate and tem-
perature of the Ram air in the cold-side. Najjar et al.51

adapted PCA technique for extracting features to analyse
the output temperature of the heat exchanger. From the
extracted principal components of the heat exchanger,
faults were classified using Support Vector Machine
(SVM) and k-Nearest Neighbor (k-NN) methods to rec-
ognise the pattern within the data set. Similarly, the PCA
approach has been proven to enhance fault detection and
isolation (FDI) capability through automatic identification
of the diagnostic signals obtained.52,53

Artificial-intelligence
Expert system. An expert system is a rule-based

decision-making technique which is often used in the
realm of data-driven diagnostics. It first emerged in the
1970s and was one of the successful forms of AI tech-
niques.54 Bruton et al.55 in their literature review sug-
gested the expert system to be relatively easy to develop,
however, the disadvantage it that it requires complex rules
for complex systems. It is also suggested that rule-based
expert systems FDI method have excellent potential for
market deployment due to its relatively straightforward
development process.

Fuzzy logic. Fuzzy logic, first introduced in 1965, works
by defining partial truth values ranging between 0 and 1.56

These fuzzy sets help to represent imprecise information
in terms of numerical values. Once fuzzy variables are
obtained, if-then rules can be developed for fault
classification.57

The fuzzy-model-based control scheme was developed
to predict performance for the control system of a building
air conditioning system with existing water-side and air-
side fouling on a heat exchanger.58 Fuzzy model and rule-
based methodologies have limitations after a certain point
of accuracy. As highlighted by Najafi et al.,59 as the
complexity of the system develops, it requires substantial
effort in adjusting and tuning fuzzy sets either manually or
through complex algorithms. Subsequently, the com-
plexity in the rule-based method increases with the rise in
complexity of the system failure (to the point when there is
a higher level of uncertainties and measurement errors).
For those circumstances, the machine learning approach
was taken where a behavioural pattern was to be generated
from previous fault knowledge and comparing that with
the observed behaviour of the system.59 This method
heavily depends on the amount of data available for de-
veloping a base-line behavioural pattern for the system.

Artificial neural network. The ANN is a branch of the
machine learning technique in diagnostics of system
failure. The ANN method was developed by depicting
biological neural networks with neurons and the

Figure 6. Heat exchanger fouling detection method based on
TCV control command.24
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connection between them. The ANN model consists of
three layers – input, hidden, and output – of which the
weights and biases need to be parameterised to fit the data
set.60 This method does not require domain knowledge of
the system, but it requires data sets to train the algorithm.61

It can be used to conduct behavioural analysis to develop
patterns which are then used for FDI.62 The ANN tech-
nique was applied in the ECS for system-level fault de-
tection and isolation by developing diagnostic tree
defining the entire system as the input node with the
components as the branches.63 The neural network model
and algorithm was constructed to isolate faults in a top-
down fashion.

Allen et al.64 combined the fuzzy model and ANN
pattern recognition techniques to perform fault detection
and classification. This method was suggested to be ef-
fective due to its capability of solving complicated non-
linear systems. To further improve the fault detection
capability, a dual-neural network structure coupled with
subtractive clustering analysis technique was developed.65

Another approach to machine learning is to implement
Deep Neural Network (DNN), which uses hidden layers
between the input and output layers.66 Data-driven
techniques are now prevalent in the industry and acade-
mia; however, the model-based approach for fault de-
tection has been popular in the past and still used by
researchers.67–69

Hybrid method

A model can either be static or dynamic.70 The dynamic
models are deemed to be more robust, as it can reduce the
difference between the model and the actual system output
by taking into consideration the degradation of the
component through time.28 These types of models are
mostly a set of differential equations. The static models are
developed using polynomial equations, which depends on
the physical process constraints (i.e. effectiveness, re-
sistance and flow rate). These parameters can be partially
known or unknown and need to be estimated and con-
verged to eliminate noise from the residual outcome. Yang
X. et al.,71 suggested further research on using a hybrid
model combining both model-based and data-driven
methods which are predicted to be able to isolate fault
under noise conditions.

The variation of the physical process constraints such
as the heat exchanger effectiveness, resistance and flow
rate, giving a converged residual value from model data
and actual system data can indicate the faulty compo-
nent.70 However, this method is difficult to implement on
dynamic models in which the fault propagates with time.

Finding 1. The FDI capability can be fundamentally ob-
tained through either model-based or data-driven or both
techniques combined. It is noticed that for the aircraft ECS
system, the model-based approach is more popular than
the data-driven approach. This is due to the scarcity of
data available from the aircraft. The classification of the
FDI methods and their advantages/disadvantages which

are deemed applicable to the aircraft ECS system is
highlighted in Figure 7.

Finding 2. The open literature lacks comprehensive study
on the ACM and the HPWS. The ACM can impact the
overall performance of the PACK functionality as dem-
onstrated by Santos et al.72 where the authors conducted
a thermodynamic analysis on a 3 wheel bootstrap ACM.
This study validates the need for investigating the ACM in
greater depth. Furthermore, an in-depth study on the
humidity regulation and the diagnostic of HPWS is
missing in the open literature.

System-level simulation of ECS

Complex systems such as the ECS requires system-level
analysis, as there are components such as valves which can
mask any fault occurrence and fault can also propagate
through the system. There are only a few full-scale
simulation models available for the ECS. They were
mostly developed for assisting in designing a new com-
ponent. These simulation models are cost-effective ways
of testing a model before it goes into manufacturing and
tests. As these simulation models provide a detailed un-
derstanding of the system, they can be used for diagnostic
purposes. This section discusses the existing models of the
ECS and their functionality.

Functional model library of the environmental
control system

FLECS is an ECS modelling library programmed using
MATLAB/Simulink software packages.73 It is a project
conducted by Airbus, Hamburg University of Applied
Science and CeBeNetwork GmbH to construct a system-
level model for the ECS. The library contains healthy
models of different component blocks from BAS, PACK,
valves, mixing manifold and cabin. Each of the sub-
components was taken as an individual module and were
designed based on one dimensional thermodynamic
equations and control system.74

A simulation model of the ECS system was built within
FLECS consisting of ducts and cabin model. After per-
forming a comparison study with other existing simulation
data, the model was verified based on temperature data
collected at the supply duct inlet, PACK outlet and cabin
inlet, during a test flight of Airbus A340-600. The ac-
quired temperature data from the cabin inlet demonstrated
good match.74 The verification did not include pressure
and mass flow data.

Flowmaster

Flowmaster software is commonly used in the aerospace
industry for modelling. It is a 1-D thermo-fluid systems
simulation that linearises model coefficients to achieve
good convergence properties. Tu, Y. and Lin, G. P.75

developed an ECS model using FlowmasterV7, which
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is programmed in C++ language, and the sub-block pa-
rameter method was used for mathematical modelling of
the components. The work focussed mostly on developing
the cabin temperature control system using expert
Proportional-Integral-Derivative (PID) controller, which
uses the fuzzy algorithm to adjust the PID parameters.1

The effect of the specific humidity of the flow to model the
heat exchanger (wet and dry) and ACM was considered.
Both steady-state and dynamic analysis was validated
experimentally with a maximum and minimum deviation
of 4.3°C and 0.2°C.75 It is to be noted that the verification
did not involve pressure and mass flow readings.

Although the simulation models were primarily for
design and development purposes rather than fault de-
tection and isolation, Flowmaster simulation software has
been used for fault detection for another system. Lang
et al.76 researched to detect pipe leakage based on the
feature extracted from the pressure signal. Wavelet
analysis was conducted for noise removal, and Least

Square Twin Support Vector Machine (LSTSVM) method
was used for leakage detection.

Easy5

Back in 1976, The Boeing Company developed Easy4
which later became Easy5. This software was developed
for the need of having one single simulation modelling
platform that can be used to create both nonlinear and
linearised analysis of dynamic systems. The library was
developed based on the SysteMMS a modular modelling
system. Easy5 also supports additional components cre-
ated using Fortran. It is only required for the user to or-
ganise the components to be placed according to the
desired model and the interconnection between the
components are formed by the built-in Model Generation
Program.15 This includes defining the physical driving
quantities such as forces, flow rates, velocities and other
variables depending on the input parameters defined by

Figure 7. Classification of Diagnostic methodologies.
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the user. It also includes an Analysis Program which
permits dynamic, static, linear and nonlinear analysis of
the model after all the required input parameters are set.
This software can run frequency response analysis, steady-
state analysis and optimal controller synthesis.77

Easy5 was later used by Boeing for developing an
aircraft ECS model for simulation analysis. Following
that, Hoffman15,78 reported the use of Easy5 for simulation
of F-14F fighter aircraft ECS. In another study, Gulfstream
Aerospace used this software for developing the ECS
model for G500 and G550 passenger jets.15,79 SAAB
Group collaborated with Linköping Institute of Tech-
nology to model ECS for their fighter jet JAS39 Gripen.
Fault modes identified from the historical data focusing
mostly on the valve jamming was used to develop a state-
observer model-based diagnostic method.15,80

Dymola

SAAB Group later migrated to Dymola as the ECS re-
quired major modifications. S-ECS system was modelled
using the Modelica modelling language, which is then
simulated in the simulation platform Dymola.81 As sug-
gested by Steinkellner82 in a study, the model requires
experimental verification and validation.

MATLAB/Simulink

For more than a decade, simulation modelling was based
on arithmetic operations, integrators and transfer func-
tions.[p.7]83 After Easy5 simulation platform, Mathworks
developed the simulation environment called Simulink
around 1991, which was a major shift to the paradigm of
using ordinary differential equation (ODE).

Romani and De Goes programmed a cabin temperature
control model using ordinary differential equations
(ODEs). The model has been validated by cabin tem-
perature recorded under three different conditions: aircraft
cooling in flight, aircraft heating in flight and pull-down
scenarios.84 The verification did not include Pressure and
Mass flow readings. Although their results matched well
with the data, their study lacks the modelling of the dy-
namic behaviour of the valves that have the potential to
mask fault symptoms.15 Furthermore, humidity has not
been considered for simulation modelling.

Simscape ECS simulation for all conditions

Cranfield University IVHM Centre on a funded project by
the Boeing Company developed a computationally effi-
cient and robust simulation framework for the ECS
called – Simscape ECS Simulation for All Condition
(SESAC).15 The components were constructed with
simple algebraic equations based on their thermodynamic
properties. SESAC is a component library which enables
drag-and-drop component list that can be used to construct
ECS models. This model can be used for analysing PACK
performance characteristics under different operating
conditions (i.e. in flight and on ground). It also supports

both dry and wet simulation analysis. In comparison to
Boeing’s previous simulation model Easy5, SESAC can
be used for fault simulation analysis. This model has been
validated against Easy5 data provided by Boeing.85

This ECS simulation model can be used for di-
agnostic purposes using model-based method by
comparing model data and test data. The fault simu-
lation analysis will provide knowledge of PACK per-
formance under faulty condition which will
subsequently support identification of optimised sensor
location for fault detection. Diego,86 has used the
SESAC and Thermodynamic model to propose five
sensor location shown in Table 1 for identifying fault
modes tabulated in Table 2.

Finding 3. The list of models identified above is sum-
marised in Figure 8. With the exception of SESAC, the
simulation models have been primarily used for design
and analysis purposes. Also, in order to be used for di-
agnostic purposes the models require experimental veri-
fication and validation at a system level.87 It is noted that
the verification and validation of the models have not been
done comprehensively.

Finding 4. The emphasis on the impact of control system
failure (including valve malfunction) on PACK per-
formance at a system level is missing in the open
literature.

Table 1. Optimal sensor set.86

Variable Sensor name

Temperature Temperature at the primary heat exchanger
outlet

Temperature Temperature at the secondary heat exchanger
outlet

Temperature Temperature at the turbine outlet

Pressure Pressure at the temperature control valve marge
outlet

Pressure Pressure at the turbine inlet

Table 2. List of faults in the ECS PACK provided by the
industrial partner.86

Name Failure mode

PACK valve Incorrect valve position
Temperature control valve Incorrect valve position

Primary heat exchanger Fouling or blockage
Secondary heat exchanger Fouling or blockage

Reheater Fouling
Condenser Blockage cold side

Water separator Malfunction
Air cycle machine Compressor or turbine

malfunction

Ram air inlet deflector door Malfunction
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Experimental work on the
ECS diagnostics

The simulation models used for developing diagnostic
rules need to be experimentally verified and validated. In
addition, the sensors used for condition monitoring also
require appropriate calibration and validation. A faulty
model and a misplaced sensor can produce a wrong di-
agnostic result, which can lead towards wrong mainte-
nance action resulting in accidents and increased
maintenance costs.

Honeywell-SECAN conducted an experimental in-
vestigation to validate the performance characteristics of
a new LPWS design.88 In contrast to the classical single
stage water separator, a new two stage system with
a coalescer followed by water separating device was
designed and tested. For experimental testing, a rig was
developed with a compressor air inlet, water injection
nozzle, turbine, diffuser and the coalescer under test. The
rig set-up is shown in Figure 9. During the experimen-
tation, the air flow rate was set, water injected to vary the
humidity value and drop size distribution and pressure
drop at coalescer outlet was measured. While this was to
test the coalescer, for testing the separating device, an
additional aspiration system was added to the rig to collect
the separated water. The amount of water recovered at the
WS outlet, in the turbine and in the air stream was
measured. Data collected were used to calculate the
overall efficiency of the WS for design validation.88

Childs et al.89 developed a rig for testing BAE Systems
fast-jet Hawk military aircraft ECS at Loughborough
University. The two-wheel bootstrap cycle with LPWS
ECS was set up in a lab environment. The rig was in-
strumented with temperature and pressure sensor, at the

input and output of each component. The data collected
from the rig was used to validate the 1D thermodynamic
model by comparing the ECS coefficient of performance
and system heat rejection. To test the diagnostic capa-
bilities, Ram air inlet (to the SHX) was blocked, and the
data collected was analysed. It was highlighted that a re-
duced Ram mass flow predominantly reduces the co-
efficient of performance of the ECS.

This rig was used to simulate faults and to conduct
diagnoses at a system-level. The first failure mode analysis
was on the blockage in the bleed air duct. It was identified
from the research that the blockage does not drastically
affect its performance until cycle mass flow falls below
75% of its unblocked state. The TCV position testing
showed that TCVs would comfortably mask any failure
within the system.90 Similarly, the rig was used to analyse
the effect of humidity on system performance.90 The

Figure 8. Existing ECS simulation models.

Figure 9. Rig set-up for LPWS Coalescer testing.88
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results indicated that humid air impacts the ECS perfor-
mance characteristics particularly at the ACM.91

In collaboration with Boeing, Esperon-Miguez et al.92

developed a thermodynamic model for the ECS capable of
simulating faults in heat exchangers, valves and WS. The
model has been validated using test data collected from
a ground-based B737-200 aircraft which has a LPWS in
the ECS. The ECS PACK was instrumented with ther-
mocouples. The valve angles were measured using po-
tentiometers. The rig set-up is shown in Figure 10. Two
different types of experiments were conducted: healthy
conditions and fault injected cases. Heat exchanger inlets
were blocked using aluminium plates to reduce the ef-
fectiveness of the heat exchangers. Valves were regulated
with potentiometer to fully open and fully closed sce-
narios. The coalescer bag was clogged without exceeding
pressure differential. Using the healthy and fault injected
temperature data collected the thermodynamic model was
verified.92

Finding 5

There is a need to develop a civil aircraft in situ ECS GTF
targeting temperature, pressure, mass flow and humidity
data collection.

Conclusion

The aircraft ECS has been reported as one of the major
drivers of unscheduled maintenance by the operators. ECS
failure, resulting in sudden cabin depressurisation, has
caused a number of aircraft to make emergency landings.
The existing literature suggests that there is a compelling
need to advance the level of scientific understanding of the
ECS system operating under healthy and degraded con-
ditions. An area of interest for the manufacturers is to
investigate diagnostic approaches for detecting and iso-
lating faults within the ECS system.

It has been identified that heat exchanger degradation
has been extensively researched based on the im-
plementation of model-based diagnostic techniques. There
is very limited research available on the air cycle machine
and high pressure water separator component degradation.

This paper has identified different diagnostic methodol-
ogies that are applicable to the ECS system. A taxonomy
of the diagnostic methodologies, including their advan-
tages and disadvantages, are demonstrated Figure 7.

In an integrated and complex system like the ECS, fault
propagates through the system and diagnosing faults
correctly requires knowledge of component inter-
dependencies. To study the interdependencies between
components within a system, a system-level simulation
model is required. Furthermore, the control system gov-
erning the valves needs to be well designed as they can
lead to misleading PACK performance simulation anal-
ysis. The emphasis on control system is missing in the
open literature.

Finally, it was found that the models available for
performing ECS simulation were used primarily for de-
sign and analysis purposes. These models have been
verified with very limited data and have been mostly
dependant on only temperature measurements. Therefore,
it is deduced that there is a compelling need for a full-scale
experimental facility to perform ECS analysis under
different operating conditions and to use temperature,
pressure and mass flow data to verify the models.

Appendix

Acronyms

ACM Air cycle machine
AHU Air handling unit
AI Artificial intelligence
AIS Anti ice system
ANN Artificial neural network
BAS Bleed air system
CHX Condenser
CPCS Cabin pressure control system
DMF Double model filter
DNN Deep neural network
ECS Environmental control system
FCD Fractal correlation method
FDI Fault detection and isolation
FLECS Functional model library of the ECS
HPWS High-pressure water separator
HVAC Heating, ventilation and air
iBIT Built-in-test
IVHM Integrated vehicle health management
k-NN k-Nearest Neighbor
LPWS Low-pressure water separator
MRO Maintenance repair and overhaul
MSA Multivariate statistical analysis
ODE Ordinary differential equation
PACK Passenger air conditioner
PCA Principal component analysis
PHX Primary heat exchanger
PID Proportional integral derivative
PM Predictive maintenance
PSS Product service system
PV Pack valve

Figure 10. Experimental set-up on the B737-200.92
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RHX Reheater
RUL Remaining useful life
SESAC Simscape ECS simulation under all

conditions
SHS Stochastic hybrid system
SHX Secondary heat exchanger
STF Strong tracking filter
SVM Support vector machine
TCV Temperature control valve
WS Water separator
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