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"...Actually, the sea is bluer than this and the
waves are playful but gentle....Long cool
evenings full of moussaka, local fish, wine and

ouzo. Is a Ph.D worth it? Two Ph.D's even?..."

Phil and Sue Roe, on the back of a
postcard sent from the Greek
Island of Lesbos (1988).



SUMMARY

Many computational problems of theoretical and practical
interest are not naturally bounded by physical boundaries.
Aerodynamic examples include flow calculations past aerofoils or past
wing-body configurations, semi-bounded channel flows etc. Other
examples include simulations of Turbomachinery flows, problems in
Underwater Acoustics etc. To obtain a numerical solution, the problem
has first to be converted to a finite region, by introducing an
artificial boundary at some finite distance. Boundary conditions must
be specified at the artificial boundary for well-posedness of the
truncated problem. They should simulate an open boundary across which
the fluid flows and should ideally allow outgoing waves to pass
through without generating reflections. Indeed, reflections at the
boundary not only degrade the accuracy of transient solutions but also
inhibit convergence to steady-state. 1In many problems of practical
interest, perfect absorption cannot be achieved. Instead one aims at
minimizing the amount of reflected energy using asymptotic expansions
based on various asymptotic arguments. The more accurate the boundary
statements, the closer the artificial boundaries can be located to the
regions of aerodynamic interest, thereby reducing the computational
domain and costs.

We present a thorough numerical study of the efficiency of
several widely used boundary conditions in absorbing outgoing waves.
We identify the key parameters upon which the level of absorption at
the boundaries depends and expose the limitations of some of the
existing recipes. We show that substantial reflections may occur even
under conditions which are considerably milder than those encountered
in practical calculations. - We then introduce an unconventional
approach to the treatment of artificial boundaries. It is proposed
that in ‘the far field the governing equations are modified in a
boundary-layer 1like manner. Two closely related far field
modifications are derived and analysed: (a) Slowing down the outgoing
waves and (b) Attenuating the outgoing waves. Under the first
modification the outgoing waves are prevented from reaching the
boundary hence from reflecting. Under the second, the outgoing waves
are attenuated to practically zero strength before reaching the
boundary. Both modifications do not alter the propagation of the
incoming waves to allow the launching of correct information from the
boundary into the interior. Analytic conditions are derived to ensure
that no reflections are generated due to the change of coefficients in
the governing equations. Reflection analysis is also performed on the
discrete level. Well-posedness of the modified systems is established
as well as stability of the resulting interface problen. The
nmodifications are extended to two space dimensions and are applied to
a variety of one and multidimensional test problems. Results indicate
that the proposed far field modifications are attractive in genuinely
time-dependent calculations. Preliminary steady state calculations
with the unsteady 2D Euler equations show significantly improved
convergence properties.
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NOTATION
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It has proved necessary to define the notation within the text cn a
sectional basis. The following however make frequent and largely
consistent appearances throughout. The list is not comprehensive.
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Slowing down coefficient
Jacobian matrices

Modified Jacobian matrices
Wave strengths

Attenuation coefficients

Speed of sound
Damping matrix
Group velocity

Phase velocity

Spatial and temporal grid spacings

Specific total energy

Specific heat ratio

Specific enthalpy

Identity matrix

Space amplification factors

Space shift operator

Left and right eigenvectors of the Jacobian matrix

Matrices of left and right cigenvectors respectively
Characteristic speed
Eigenvalues of the Jacobian matrix

Diagonal matrix of eigenvalues

Diagonal matrix of modified eigenvalues
Mach number

= Acos (#)+Bsin(¥) Jacobian matrix in the (¥) direction
Courant or CFL number

Pressure

Radial velocity

Radial distance

Density

Entropy function

Time coordinate

Transmission and Reflection coefficients
Angle of incidence

Velocity components in the x and y directions
Solution function of the wave equation
Scalar variable

Vector of variables

Wave fregquency

Cartesien space coordinates

Wave numbers in the x and y directions
Time amplification factor

Time shift operator



_IV._
Superscripts and Subscripts:
.V Numerical solutions at node j and time level n

Linearised conditions about a mean state

Free stream conditions



INTRODUCTION

In a large class of CFD applications it is required to solve
problems which are not naturally bounded by physical boundaries.
Aerodynamic examples include flow calculations past aerofoils or past
wing-body configurations ( infinite in 2 and 3 space dimensions ),
calculations of semi-bounded channel flows ( infinite in 1 space
dimension ) etc. Other examples include the simulation of
Turbomachinery flows, problems in Underwater Acoustics, Elasticity,
Numerical Weather Prediction etc. In order to obtain a numerical
solution, the problem first has to be converted to a finite region.
For a certain class of problems, this can be achieved by coordinate
mapping techniques, provided the sclution is simple at infinity and
that it is smooth in the transformed coordinate [24]. The transformed
problem requires boundary conditions at infinity which are available
and can be specified without introducing errors. However, if the
solution in the far field ic oscillatory, mapping techniques fail.
The outgoing waves cannot be resolved accurately—~in the transformed
coordinate and reflections occur at criti&gijiiié points. For this
large class of problems, the only means of Timiting the unbounded
physical region is by introducing an artificial boundary at . some
finite region. This, however, is at the price of having to specify
boundary conditions (BCS) at the artificial boundary to ensure
well-posedness of the truncated problem. To appreciate the difficulty
in specifying BCS, consider the steady state calculation of transonic
flow past an aerofoil. In the far field the flow is subsonic,
implying that the solution at every point depends on the solution at
every other point in its neighbourhood. If a boundary is introduced,
part of this neighbourhood is discarded and the only means of
conveying the infinite amount of lost information is through a finite
number of BCS, often just a single one. " Boundary Conditions are a
mathematical model for the rest of the Universe" (G. Moretti) and the
task of their specification is often far from trivial.

Clearly, even if physical conditions at infinity are'known; they

are unlikely tc be correct at the artificial boundary itself, unless
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the boundary is located at a very large distance. Imposing infinity
conditions at the artificial boundary usually results in reflections
of the outgoing waves which should ideally pass through the boundary
and leave the domain of computation. This obviously degrades the
accuracy of the solution during the time-dependent phase. In problems
where steady state solutions are sought by means of integrating the
time-dependent equations, the reflected waves carry energies which are
damped very slowly and inhibit convergence to steady state [66].
Moreover, the solution is knowingly inaccurate although it is hoped
that the inaccuracies are confined to the neighbourhood of the remote

boundary.

The number of required BCS is dictated by the theory of
characteristics, which is strictly valid in one space dimension. In
one dimensional problems, the theory also establishes the actual
analytic BCS that perfectly absorb outgoing waves. When discretized
and incorporated into a numerical model, truncation errors are
introduced. In multidimensional problems the situation is more
complex and one usually resorts to 1 Dimensional arguments normal to
the boundary, to asymptotic expansions or to procedures guided by
practical experience. The errors in this case are due to neglecting
terms in the asymptotic expansions as well as due to the

discretisation procedure.

The philosophy of constructing absorbing BCS is to match them to
a known (asymptotic) behaviour of the outgoing waves. This behaviour
can either be deduced from the governing equations or directly from
its discrete approximation. Clearly, if the BC is exactly satisfied
by an outgoing wave, no other waves are generated at the boundary
which may propagate back into the domain of computation. It should
also be apparent that artificial boundaries do not constitute a
difficulty in problems where all characteristic speeds are pointing
out of the computational domain (ie supersonic boundaries). 1In such
cases, even 1if errors are generated at the boundary, there is no
mechanism by which the errors can propagate back into the interior of

the domain. The diffibulty thus lies in the subsonic case, where
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there is at least one characteristic speed pointing into the interior.

The present work is devided into two main parts, each of which
is preceded by an introduction which is more specific to the content
that follows. In broad terms, the first part surveys existing open
boundary treatments, emphasising the different strategies and the
degree of approximation involved in each of the recipes. This is
followed by a thorough numerical study of the absorbing features of
several of the proposed recipes. The aim of the study is to expose
the limits of the conventional far field treatments and to identify
the parameters upon which the level of absorption depends. It is
found that even under mild conditions, substantial reflections may
occur, which although classified as high-order effect, can become
quite troublesome. Acquaintance with two closely related theories is
vital for the understanding of artificial boundary treatment: The
theory of Well-posedness of mixed Initial Boundary Value Problens
(IBYPS) and the theory of Stability of discrete numerical models in
the presence of boundaries. The first part of this work begins by
glancing at some illuminating aspects of both theories, which are
viewed in the light of the Theory of Wave Propagation. This by no
means is intended to be a comprehensive account of the theories. 1Its
aim is to familiarise the reader with the predominant concepts and to
assist 1in introducing notations and terminology which are 1later
referred to. The second part of this work contains its mgin original
contribution. It presents a 1less conventional strategy to handle
remote boundaries, based on modifying the governing equations in an
outer absorbing 'sponge' layer and forcing the solutidn to a desirable
far field behaviour. Two new far field modifications are proposed:
(i) To slow down the outgoing waves and (ii) To attenuate the outgoing
waves. Both modifications are analysed on the continuous and discrete
levels, well-posedness of the modified systems is established and
stability of the numerical model 1is proved. The proposed
- modifications are implemented in a variety of one and multidimensional
test cases. Results show improved time accuracy of solutions and
indicate significant acceleration in rate of convergence to steady

state.
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PART ONE

Introduction

The study of numerical solutions to hyperbolic mixed IBVPS
involves analysis on various levels. Hyperbolic systems of equations
are characterised by the existence of a set of channels, ie
characteristic curves, along which information may propagate. In one
space dimension only a finite number of such curves exists, while in
nultidimensional problems information may be carried in an infinite
number of directions. The solution inside a given domain Q 1is
determined partly by the initial conditions and partly by the data on
the boundary oK. Similarly, the solution on the boundary itself
usually depends both on the boundary data and on information arriving
from the domain Q. It is therefore clear that the manner in which
boundary data are specified at the boundary must be consistent with
that arriving at the boundary, if it is to yield a mathematically
well-rosed protlem. The physical significance of the boundary data is

a completely separate issue.

Apart from very simple cases, sclutions to IBVPS are obtained

numerically, by applying a discrete model to approximate the analytic

problen. Numerical solutions, by nature, cannct be obtained on
infinite domains and therefore always involve boundaries. Some -
problems are naturally limited by physiczl beoundariecs. In other

cases, artificial boundaries have to be introduced in order to
truncate the unlimited physical domain so that a numerical solution
can be obtained. Numerical schemes of sufficient order of accuracy
always break down in the neighbourhood of a boundary and in either

situation, special measures are required.

In order to update the numerical solution at the boundary, one
‘needs to make a sufficient number of independent statements. This to
some extent 1is analogous to the analytic situation. However,
'sufficient’' very often results in more conditions that would have

‘been allowed analytically, and self-consistency becomes more
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complicated. 1Instead of well-posedness oné talks about the stability
of the mixed IBVP. Clearly well-posedness and stability are closely
related to one another. Yet stability is inherently more complicated
because numerical approximations are always dispersive even when the

analytic problem is not.

Over the last 15 years a substantial effort has been devoted to
the modelling of open boundaries. An adequate account of the related
published studies would occupy many pages and is beyond the scope of
the present work. The admirable versatility of approaches reflects
not merely differences of tastes. It also portrays the 1lack of
sufficient generality in each of the individual approaches and
accordingly the lack of consensus over the issue. In order to be
numerically applicable, the BCS must yield a well-posed problem and
their discrete numerical approximation must be stable. We therefore
begin Chapter I by discussing well-posedness of hyperbolic problems
with bcundaries. We highlight the particular difficulty of numerical
boundary treatment and move on to discuss the concept of stability in
the ©presence of beundaries. Both well-posedness and stability
thecries are related to the theory of wave propagation and are viewed
in this light. Chapter I continues by surveying existing recipes for
the mpdelling of open boundaries and emphasises the degree of
approximation involved in each of the individual recipes. 1In Chapter
IT we select a particular dissipative scheme, namely the Lax-Wendroff
scheme, and énalyse its dispersive and dissipative properties in more
detail. 'The analysis predicts a pathological behaviour which is
confirmed by experiments. Chapter II concludes with a thorough
numerical study of the (in)efficiency of various recipes in absorbing
outgoing waves. Reflections from artificial boundaries are studied,
exposing the key parameters upon which the 1level of absorption
depends. Internal reflections due to grid expansion are presented.
Strong focussing of an error generated at the boundary is demonstrated
in a multidimensional setup. The need for nonreflecting upwind
boundaries naturally emerges, upwind BCS following [35] ahd [86] are
adapted to systems but fail to perform as satisfactorily as they do in

the scalar case.



(1.1) Well-Pcsedness cof Hyperbolic Initial Boundary Value Problens,

Characteristic Curves and Boundary Conditions

Consider the 1st order hyperbolic linear system of equations in

one space dimension

I}
o

w + Aw
-t X
(1.1.1)

w(x,0) f(x)

where w = w(x,t) is the vector of N depsndent variables and A is a
constant coefficient NxN matrix. Hyperbolicity dimplies that A
possesces  real eigenvalues [Xj}, and a complete set of right
elgenvectors {511' Let [ﬁi} denote the (complete) set of left

eigenvectors, then the following relations hold

Ar =Ar. i=1,.....1
J 37
(1.1.2)
£L£a =x4L i=1,....,N
- J7)
Lor, =9,

Let R be the matrix with columns gj; let L be the matrix with rous 4

and let A be the diagonal matrix with kj along its diagonal.

A = diag (kj...,kN) (1.1.3)

Then it follows from (1.1.2) that

LR = RL =1 LAR = A (1.1.4)
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If (1.1.1) is to be solved on the 1limited domain [0,®), then in
addition to the initial distribution w(x,0) one often needs to specify
BCS at x=0. These BCS may or may not arise £from physical
considerations (eg solid walls, open boundaries etc.). In either
situation they cannot be specified arbitrarily. 1A theory has been
developed (eg Kreiss [48]) to determine whether a given set of

equations and boundary conditions are to yield a well-posed problem:

Definition
An IBVP is said to be well-posed if it possesses a unique solution

continuously dependent on-the initial and boundary data

According to the theory in [48], testing for well-posedness
amounts to ensuring that the combination of governing equations and

set of BCS do not admit expenentially growing solutions,

W _UeSHI‘Ex with Real(s) 2z 0 (1.1.5)

This theory has recently been reviewed by Higdon [34], and interpreted

in terms of wave propagation.

Not every set of BCS yields a well-pcsed problem. This can be
appreciated from the following example. Let (1.1.1) be premultiplied

by the matrix L, which in the linear case is constant

Lw + LAw =0
—-t -x
(Lg)t + LAR (Lg)x =0 (1.1.6)
v o+ Aw =0
-t -x

with i = Lw. Equation (1.1.6) is in fact a set of N scalar equations

) +x () =0 j=1,...,N : (1.1.7)
’.) t J ) X



inplying that

(W) =4 +w = constant on dx/dt = lj : (1.1.8)

EJ are called the characteristic variables or the Riemann Invariants,
and the curves along which they remain constant are the characteristic
curves. In the linear case Xj = const and characteristic curves are
straight lines. Initial values of gj are supplied by the data, which
then propagate along the characteristics. 1If 1))0, the propagation is
from left to right (in our case incoming). Similarly, if 1j<0,
propagation is from right to left (outgoing).

t A t?

2 >
(a) (b)

I}11. (I.1) - (a) Incoming and (b) outgoing characteristic curves
for the left hand IBVP.

For the left hand IBVP, it is clearly not allowed tc prescribe
the values of Ej for xj<o, as those are pre-determined by initial
data. An attempt to do so may result in a contradiction in which case
a solution cannot exist. On the other hand, the solution requires
information about the incoming Ej,. to ensure uniqueness. It is
obvious then, that one is only free to impose as many BCS as there are
incoming characteristics at the boundary. A general set of BCS
defines the incoming Ej in terms of the outgoing ﬁj and possibly some
forcing terms.
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x
*®
x Vv

(a) (b) (c) (d)
111. (1.2) - Required number of boundary conditions - Impose 0,1,2

and 3 bc’s respectively.

In the non linear case we have

L(w)y, + L(w)w =0
t x

L(w) (gt + A(g)zx) =0 (1.1.9)
inplying
£,-dy = 0 along dz/dt = xj(g) (1.1.10)

which is an Ordinary Differential Equation (ODE) obeyed along the
characteristic curve. Eéuation (1.1.8) is a particular case of
(1.1.10) where the ODE can be integrated along the characteristic
curve to yield the Riemann Invariant. Charecteristic equations like
(1.1.8) and (1.1.10) are often used as BCS at open boundaries.
Exanmples shall be given in the following sections. A common practice
in many applications is to locally linearise the system with respect
tc a mean state ¥, and to use (1.1.8) instead of (1.1.10).

i

(1.2) Numerical Solutions and Boundary Conditions

The simplest hyperbolic equation (Eqn. (1.1.6)) is the linear

advection equation
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W o+ AW =0 (1.2.1)
w(x,0) = £(x) - (x| w

with solution
wix,t) = f(x-2t) (1.2.2)

Let the infinite domain be truncated by introducing boundaries at
X =0 and at x = X,. Let us also assume, without loss of generality,
that A > 0. Characteristic analysis suggests that a BC is required

at x = 0 but not at x = XO.

One may attempt to solve (1.2.1) numerically, using a two level

explicit schene
n+1 R N
v, = ) CFW ’ (1.2.3)

The stencil of (1.2.3) is of width L+R+1. If L > 0 (R > 0) the scheme
cannot be used to update the leftmost (rightmost) point and a special
boundary treatment is needed. V¥hile at x = 0, this is consistent with
the analytic requirement, at x = X, it is not, yet cne is forced to
supplement (1.2.3) by a boundary procedure (BP) where analysis forbids
to impose a BC. In view of (1.2.2) the BP should simulate right
travelling wavec propagating at a speed A > 0. Ideally, the boundary
should allow the oncoming waves to pass through without reflections.
In practice, particularly in multidimensional problems, this is very

difficult to achieve.

Note that while an analytic boundary consists of a single point,
a numerical boundary may stretch over several grid points depending on
“the stencil of the numerical scheme. If R = 1, the numerical Right
Hand Boundary (RHB) consists of one point, but if R > 1, a BP has to
be apprlied to more than one point. R = 0 implies a one sided stencil,
and no BP is required at all at the RHB. At first sight, this appears

to have solved the problen. However, unless L = 1, reducing the
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scheme to first order accuracy, a BP will be required at the LHB.

(1.3) Finite Representation of the Solution on the Grid

Investigating the features of a linear numerical scheme is best
done by means of Fourier or Normal Mode Analysis in the frequency
domain. The initial data can be expressed in terms of its Fourier

Transformn.

[s 9] - .
w(z,0) = £(x) = [ £(8)e % a (1.3.1)

=

where €& 1is the wave number of dimension 1ength_1, and E(E) its
amplitude. Small & implies long waves while large & implies short
waves. Let a grid be defined by xj=jAg, with Ax the grid spacing and
consider a single Fourier mode f(xf = elg‘X . When sampled at a finite
number of grid points it has the representation

- . j
£(jox) = e GIAE _ ( 1E4X,

(1.3.2)
This seemingly harmless sampling procedure introduces an error which
is best appreciated by noticing that the highest possible frequency
representable on the grid is ]EAX} = 7, and 1in general, only

frequencies in the range
EAv € (-3, 1] : (1.3.3)

can be represented. Frequencies outside the band (1.3.3) are folded
into it, and get misinterpreted. This is illustrated in I11. (I.3).
Note thaf in the discrete context, the terms low and high frequencies
refer to the grid spacing Ax and not to the space coordinate xz. It is
often said that low frequencies are the physics while high frequencies
are the numerics. Indeed, it is due to the finite size of the grid
that waves appear as high frequencies, with an increasing number of
poorly resolved frequencies as the grid gets coarser. If one could
afford infinitely fine grids, all frequencies would be well resolved

hence physically meaningful (excluding of course discontinuities).
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T cntnr

- - =~
-
- =~
-
,f \\\
4 + t o
111 (I1.3) - Misinterpretation of waves on a coarse grid -

(a) Low frequency interpreted as high frequency.
(b) High frequency interpreted as low frequency.
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(1.4) Stability of Finite Differences Models and Boundary Conditions

Sfability of a finite difference model depends on the
combination of the interior numerical scheme and the numerical
boundary procedures. Even when the analytic problem is well-posed, it
sometimes takes more than good will to make it numerically stable. We
therefore glance very briefly at several stability conditions,
presented in a gradual degree of severity, starting from the
well-known Von Neumann stability criterion for pure Iritial Value
Problems (IVPS) through the Godunov-Ryabenkii necessary stability
condition in the presence of a boundary, and to the Gustafsson Kreiss
and Sundstrom (GKS) stability condition which is both necessary and
sufficient. As mentioned in the introduction, this by no means is
intended to be a comprehensive account of stability theory. Its aim
is to gently lead the reader through the tangle of stability theory to
the physical concepts of travelling waves and energy distributions
which have proved very revealing in the analysis to follow. It also
provides an opportunity to appreciate the degree of complexity
involved in rigorous stability analysis. For the sake of simplicity

we concentrate on schemes of the form (1.2.3).

Advancing the solution from one time step to the next can be

viewed as the act of the solution operator S on the vector of data g"
W =S¥ =S¥ = ... =8 v (1.4.1)

E? being the vector of initial data. In the course of the numerical
calculation, errors may be introduced (eg computer rounding errors),
which in view of linearity also satisfy (1.4.1), and should clearly
not be allowed to grow unboundedly. Suppose that we want to obtain
the solution at a fixed time T, and are trying to get there by a
sequence of calculations letting the time step At become increasingly
smaller. As T = N-At is fixed, the required number of steps, N, is
becoming increasingly larger, and by (1.4.1) we need to consider

operators of the form Sn, as n - o
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Definition
The schemne is said to be stable in some norm N I if
s I <clhwl (1.4.2)

V admissible w, for some constant C > 0 as n » .

By the Lax Equivalence Theorem [60], stability of a consistent
numerical approximation guarantees convergence to the analytic
solution in the same norm |l I, as the mesh is refined (Ax,At— 0).

The Kz norm

2 2 .
hw W = § W | (1.4.3)

is sometimes regarded as a natural norm in that it can be related to
amplification factors through Parseval's Equality [78]. 1In practical
calculations, however, it is often n»t clear which norm is best for

stability measurements and other norms may be found preferable.

Substituting a single Fourier mode

W= Qlut+itx t = nAt E = 5Ax (1.4.4)

into (1.2.3), we obtain

iwAt _ i&kAx
e = c e

k
-L

(1.4.5)

"t ™M=

k

Equation (1.4.5) is called the dispersion relation of the numerical
approximation, relating the wave number & to the frequency w. Note
that although equation (1.2.1) 1is non-dispersive, its finite
difference approximation always 1is. Misinterpreted frequencies,
mentioned in the previous section, then become a major source of

trouble.
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The Von Neumann Stability Condition

Let a finite difference model (1.2.3) admit solutions of the form
(1.4.4) with E€R. A necessary condition for stability is

1WAt
e

i I <1 VE € R (1.4.6)

For later purposes it is useful to introduce the notations

7 = elwAt X = e (1.4.7)

The travelling wave solution (1.4.4) then reads
wj = 2" (1.4.8)

and the dispersion relation
R . ‘
Z = Z c X (1.4.9)
k=-L
In these notations the Von Neumann condition becomes

1IZ) <1 ( + 0(4t) ) V ixl =1 (1.4.10)

In the absence of boundaries, Ixl = 1 are the only admissible modes.
Indeed, modes with Ixi1>1 grow unboundedly as j - ® and those with
Ixl<1 do so as j - =-®. Numerical calculations, however, are not
performed on infinite domains. Let the domain be truncated so that j
assumes positive values j 2z 0. It is immediately apparent that modes
with Ixl¢1 are now perfectly admissible, having a finite €2 norm.
This leads to a natural extension of (1.4.10) in the presence of a

boundary.
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Godunov Ryabenkii Stability Condition

A necessary condition for the left hand IBVP to be stable is that no

modes of the form (1.4.8) are admitted which have
Ixl=1 1Z1>1 (1.4.11)a

Likewise, the right hand IBVP should admit no modes which have
Ixlz1 1Z1>1 : (1.4.11)b

(Admissible modes here are modes of finite norm which satisfy both the

interior scheme and the boundary conditions).

The Godunov-Ryabenkii stability condition rules out modes which are
growing exponentially with time. Usually this criterion is not
sufficient to ensure stability. The only theory which provides a
condition both necessary and sufficient for stability of IBVPS is the
GKS stability theory [27]. The condition is obtained at the expense
of choosing a very complicated and restrictive norm I I in (1.4.2)
vhich accounts for initial, boundary and forcing data. GKS
instability does not imply £2 instability and it is only conjectured
that GKS stability implies £2 stability [76]. Testing for GKS
stability may become extremely laborious even in relatively simple
problems. It is an extension of the Godunov-Ryabenkii condition in
that it considers modes of the form (1.4.8) with 1ZI>1 in the limit
1zl = 1.

Definition
Consider the left hand IBVP. An Eigensolution of (1.2.3) is a mode
(1.4.8) with

12121 Ixi<1 (1.4.12)a

A Generalised Eigensolution is a mode (1.4.8) with
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1z 1=1 Ixl=1 ' (1.4.13) 5

so that when Z is perturbed Z— Z+AZ and 1Z+AZJ>1, x is perturbed

X —> x+Ax with Dx+dxli<l.

Similarly, consider the right hand IBVP. - An Eigensolution is a mode
(1.4.8) with

1zl Ixl>1 _ (1.4.12)b
A Generalised Eigensolution is a mode (1.4.8) with
121=1 Jxl=1 (1.4.13)b

so that when Z is perturbed Z — Z+AZ and 12+AZI1>1, x is perturbed

X— x+hAx, with bx+Ax|>1.

Thus a Generalised Eigensolution is a 1limit of Eigensolution as
1z |~1.

The GKS Stability Condition

A necessary and sufficient condition for an IBVP to be stable is that

it does not admit Eigensolutions or Generalised Eigensolutions.

This concludes our brief review of stability conditions. The
reader is referred to [60,47,27] for a comprehensive discussion of
stability theory. Ref. [9] is very instructive in the implementation
of the various stability criteria to a test problem. We move on to
introduce the concept of group velocity which is associated with the

perturbation test of the GKS stability condition.
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(1.5) GKS Stability and Group Velocity

Although the GKS stability theory was developed in the early
70's, its physical interpretation and in particular that associated
with the search for Generalised Eigensolutions, remained obscure. It
was not until quite recently [75] that a connection has been
established between the perturbation test involved with finding
Generalised Eigensolutions and the fundamental concept of Group
Velocity in the theory of dispersive waves. This has been the work of
Trefethen [74-78], which shed much light on the important role of
Group Velocity in the analysis of numerical approximations to

hyperbolic problems.

Associating a direction of propagation with a given normal mode
is important not only for understanding the underlying mechanisms of
instability, but also for energy distribution analysis [21,84] and for
the assessment of rate of convergence to steady state [41,65].
Associating such a direction with the Godunov Ryabenkii unstable modes
(1.4.11) can be achieved in a natural way. 1A mode with |zZ1>1 and
Ix1¢1 can be thought of being shifted to the right as n increases.
Similarly, a mode with |ZI1>1 IxI>1 as moving to the left. A stable
numerical model should clearly not admit such modes since they grow
exponentially in time. It 1is 1less obvious why Generalised
Eigensolutions (1.4.13) are unstable. Assigning a direction of
propagation with such modes can only be accomplished through the
notion of Group Velocity. It can then be established [76] that they

represent a much milder instability and grow only linearly in time.

It is interesting to observe how the concept of group velocity
keeps emerging in the theory of dispersive waves in a surprisingly
versatile manner. Consider the simple example of a superposition of

two sinusoidal waves of neighbouring frequencies and wave numbers

wix,t) = cos(wlt—gix) + cos(wzt—sz) (1.5.1)
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€
L1}

0, + Aw go + AE

g, - A

L}

U
1]

w = - A
0 0

By a known trigonometrical identity
wix,t) = 2cos(Aw-t—A&-x)cos(wot-on) (1.5.2)

which describes a wave of the original frequency and wave number
cos(w0t~&ox) multiplied by a slowly varying sinusoidal envelope
2cos (Aw-t-AE-x), giving rise to 'groups' of waves (see Ill. (I.4)).
An observer that fixes his attention on a particular point on the wave

train, say point A, moves his eyes with the Phase Velocity

wot—on =0 C x/t = w0/§0 (1.5.3)

An observer that follows a particular point on the envelope, say

point B, moves his eyes with the Group Velocity

Aw-t-AE-x=0 Cg x/t = Aw/AE > dw/dE (1.5.4)

I11. (1.4) - Groups of waves

Even from this simple example it is clear that if one is not

interested in the details of the motion but rather in some average
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distribution of the amplitude, then it is Cg rather than Cp that
determines the speed of propagation. This argument can be made more

precise, by using variational methods (see Whitham [87], p.390).

In general, any PDE that admits travelling wave solutions
(1.4.4) also defines a dispersion relation w=w(f) from which the phase
and group speeds can be deduced

Cp = (&) /& Cg = dw(&)/dE

Unless w is a homogeneous linear function of &, the two speeds are not
equal and we may either have Cﬁ > Cg or Cp < Cg. We have seen Cg
emerging from a simple example (1.5.1). In the more general case

1Ho(E) t=Ex) 4 (1.5.5)

[sV]
wix,t) = [ £(&)e
-
and one may ask which values of & contribute most to the integral in

(1.5.5) fer a given (x,t). Denote by #(x,t) the phase
J(x,t) = 0t-Ex = t (w-&-x/t) (1.5.6)

and exanine the behaviour of (1.5.5) at large times when the ratio x/t
is held fixed,rthus concentrating on waves which are moving at that
particular speed. For large t, the phase ¥ oscillates very rapidly
and most wave numbers make very little or no net contribution at all.
The predominant contribution to the integral comes from points where
the phase is varying slowly so that neighbouring Fourier modes tend to

reinforce one another. These points satisfy.
d38/d€ = 0 =_— x/t = dw/dE = Cg

This method is known as the method of stationary phase [7,87]. It
~implies that after sufficiently long time, that is after the waves
have dispersed and separated, we shall see a local wave number of £
moving with speed Cg= dw/d&. (For a full discussion see Brillouin [7]
and Whitham [87], pp.363-402).
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In terms of % and Z

Cg: ——d—é: - Ezd—x | (1.5.7)

Returning now to the perturbation test of the GKS stability condition
(1.4.13), it «can be shown (Trefethen [76]) that Generalised
Eigénsolutions (1.4.13) have real group velocity which points into the
interior of the domain (ie positive for (1.4.13)a and negative for
(1.4.13)p). If admitted, such modes represent spontaneous radiation
of energy from the boundary and clearly constitutes a source of

instability.

(1.6) Absorbing Boundary Conditions in One Space Dimension

Consider the 1D scalar wave equation
2 2 _
(Q——x‘?a—Jw:o (1.6.1)

which adnits left and right moving single frequency sclutions

e1w(x+kt) e1(0(x—lt)

p(x,t) = a +b (1.6.2)

and requires for well-posedness two initial conditions ¢(x,0) and
wt(x,O). If an artificial ©boundary 1is introduced at X=X,
and the problem is solved on xsxo, well-posedness of the truncated
problem requires a BC at x=x . A single frequency right moving wave

iw(x-At)

is of the form g¢=ae and exactly satisfies

3 ) _
[55”5{](,)-0 (1.6.3)

Equation (1.6.3) is a perfectly absorbing BC for the truncated

problem. To appreciate it we define the Reflection Coefficient R=a/b
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and substitute (1.6.2) into (1.6.3). R=0 immediately follows.

Equation (1.6.3) is known as the Sommerfeld Radiation Condition
[69] and has been implemented in a variety of ways to simulate open
boundaries (eg Orlanski [56] and references therein). It repeatedly
emergeé as a first order approximation to absorbing BCS in several

space dimensions.

A slightly different approach to the same end has been taken by
Hedstrom [33] who considers first order hyperbolic systems

Let the eigenvalues of A be ordered k1<~'-<km< 0 <« <---<xN,

m+ 1
implying that the system admits (m) left moving waves and (N-m) right

, th . . e
moving waves. A k simple wave disturbance satisfies

If a boundary is successively crossed by right moving waves, then

changes on the boundary satisfy

2

N
- Z Sl
k=m+1

or equivalently

A2

N
T dt= } cr (1.6.4)
: k=m+1
For well-posedness, (m) BCS are required at the RHB corresponding to
the (m) incoming Riemann Invariants. Using the orthogonality property
(1.1.2)c it can be verified that

£ .

=J

e

1,---,m (1.6.5)

are exactly satisfied by a general outgoing solution (1.6.4).
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Equation (1.6.5) can be viewed as a negative statement, namely, that
no left running waves are crossing the RHB. In the linear case fj is
constant and (1.6.5) can be integrated to give

£ w=const. j=1,---,m (1.6.6)

implying the constancy of the incoming characteristic variables often

referred to as the Zero Incoming Riemann Invariant condition.

As a specific example, consider the 1D Euler equations

[y u p 0 P
u + 10 u 1/p ul| =0 (1.6.7)
P, 0 pc u p

with left eigenvectors

£1 = (0, pc, -1) X1 =y~ c
2, = (-¢®, 0, 1) A, = u (1.6.8)
£,= (0, pc, 1) A,sute

Let w0. At the LHB (inflow boundary) the perfectly absorbing BCS are

Qe _ Op . 290p _
L5t = 56 ¢ 55 =0
aw a (1.6.9)ab
£ 2 = 22y o0 Su _
3 Ot ot ot
and at the RHB (outflow)
oW op _ . %u _
’Cl ET: -a—t pc 3t 0 (1.6.9)¢c

As a side remark we note that if the wave equation (1.6.1) is written
as a first order system in o, and =y . the zero incoming Riemann

Invariant condition at x=x0 reads
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which is precisely the time derivative of the Sommerfeld Radiation

condition {(1.6.3) in the linear case A = const.

It is BCS (1.6.9), derived from one dimensional.principles, that
are the most commonly used in multidimensional applications. Their
implementation does not require apriori knowledge of conditions at
infinity which are not always available. However, when used in
connection with a marching algorithm towards a steady state limit, the
gradient form (1.6.9) determines the solution only up to a constant
which renders the converged solution dependent on initial data. To
drive the far field pressure towards its free stream value, Rudy &
Strikwerda [65,66] suggest to modify (1.6.9)c

Sp _ du - -
3¢ - PC 37 +o(p p) =0 (1.6.10)

The parameter « is determined by linear 1D analysis to yield most
rapid decay of the transient solution, and may need adjustments in
multidimensional setups. Another drawback to (1.6.10) is that in the

steady state limit P=p, at the boundary itself which is inaccurate.

Instead of matching the BC to the outgoing part of the analytic
solution, it can be matched to that of the discrete solution. This is
the approach taken in the early work of Lindman [51]. Let a grid be
defined by X = jAx, t =nAt, with Ax and At the grid spacing. Let w? ey

w(xj,tn) and consider the discrete approximation to (1.6.1)

n+1 n n-1 n n n
o - 20 + ¢ p. .- 20+ @
J 1 - TG L. — 1 - 9 (1.6.11)
(At) (Ax)

with the discrete dispersion relation

( 21 ]Zsinz(egs) -[ %%i )zsin2(§§§> = 0 C (1.6.12)
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For each frequency w, equation (1.6.12) defines two admissible wave
nunbers £ (w)

0] = lUmAt (o 183Ax , p m1Eihx, | (1.6.13)
(compare (1.6.2)). As a boundary operator, Lindman considers a
specific discrete approximation of the Sommerfeld Radiation condition

and the results are thus restricted to this form of boundary operator

+
j=1 i-1 -1
J -1 _ 3 J i _ _J J =0

(pn+1+ ‘Pm” ‘pr'u . ‘01—\_1 (p'?+1+ (px,‘ (pn-rl 'pr.\
2 + VG
2 2

2 ‘ 2
v=AAt/Ax is the CFL number and G is an operator yet to be chosen that

yvields optimal absorption at the RHB. To determine G substitute
(1.6.13) into (1.6.14). The reflection coefficient is

, tan QQE - ua tan §é§

_ -iEbx 2 2 .
R=c¢e OAT — EAw (1.6.14)

tan - + VG tan —54

If G is chosen so that its symbol in the frequency domain 50 satisfies

s - 1 wit E&x
G = > (tan > )/ (tan 3

) (1.6.15)
then the boundary operator (1.6.13) vyields perfect absorption.
Unfortunately 50 does not represent any finite difference operator GO
and the problem reduces to finding useful approximations to Go' which
are given in [51]. It is interesting to note that although a
perfectly absorbing analytic BC exsists, namely equation (1.6.3), the

discrete strategy leads only to a sequence of approximate BCS.

A similar approach was taken by Engquist & Majda [15, section 5]

who factorize the symbol of the difference operator (1.6.12) into

=0

2, oAt 2 . EAx (28 wAt , 2M _,  EAx
( AtSit 3 At St 53 )( AtSiM 5t Tpp sim 3 )



27

describing left and right moving waves respectively. Thﬁs, if a

boundary operator is such that its dispersion relation is

( &sin 9§£ + B sin §§5 ) =0 (1.6.16)
it would yield perfect absorption. Again, equation (1.6.16) is not
directly realisable on the grid and is replaced by high order

approximations.

Vichnevetsky and Pariser [85] investigate the semi-discrete form

of the advection equation

n

W, - W,
th PN LT Lokt S (1.6.17)

dt ; 2Ax

Based on centered differences, equation (1.6.17) admmits two spatial

modes &1 and &2 with the same frequency,

 Qi0t (g lBiAx L 1E2]hx, (1.6.18)

in contrast with the analytic equation which admits only one.
Associating a direction of propagation with each mode is less straight
forward and is established by applying group velocity analysis. The

authors then consider a semi-discrete boundary operator

dw
— - + + .
(dt]j awj + bwj_1 W2

and choose the coefficients to yield optimal reflection coefficient.

Finally Higdon [35,36] considers boundary operators for the
discrete wave equation (1.6.11) and attacks the problem from a
slightly different angle. In terms of x and Z defined in section
(1.4), equation (1.6.11) reads
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1 1

(Z—2+z’)=v2(x—2+x')

and admits two solutions xland %, for any fixed ZO. Let K and Z be

the shift operators in space and time Kw?=w" ZIw',‘:w"+1 then a

j+1 ii 7
general finite difference boundary operator is a polynomial in these

operators B(Z ',K ')=0 and the reflection coefficient is given by

-1 -1

B(Z0 X,

R = -

)

For the boundary to be perfectly absorbing (Zgi,xél) must be roots of

1 -1 . .
% )=0. Since B can only possess a finite number

the polynomial B(Z~
of roots, the corresponding boundary operator can only annihilate a
finite number of modes, depending on the degree of B. To absorb, for
example, low frequency waves (Z2,x)=(1,1), the problem reduces to
constructing polynomials with (Z,x)=(1,1) as roots. Not all such
boundary operators lead to a stable model but it can be shown [35]

that

P
-1 -1
(1) {I-I+Z I+K }w’j‘=o (1.6.19) a
2 2
-1 1 P .
(1i) {1 - 77K } w'j‘:o (1.6.19)b

combined with the interior scheme (1.6.11) are GKS stable. Although
the suggested boundary operators have one dimensional stencils, they
are analysed in the context of the multidimensional wave equation. It
is shown that the reflection coefficient in both cases is

R = - ( A - cos?d

P
')TC-B—SG— ] + O(wAt)

where A=At/Ax and ¢ is the angle of incidence. Best absorption is

thus at some non-zero angle of incidence.

An advantage of the direct discrete approach over the analytic
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approach is that it can be targetted at absorbing non-physical
parasitic modes, typically modes of saw-tooth character, which cannot

be handled by any analytic approach. For example, to absorb a mode

(Zz,%x)=(-1,-1) one can apply

P
-1 -1
{I-I'Z I-K }(p'.‘=o (1.6.20)

This adavantage has also been realised by Vichnevetsky and Pariser
[86] who design high frequency nonreflecting BCS for the semi discrete
form (1.6.17). Clearly, the left running mode in this case is totally
spurious, being a direct consequence of the central differences
approximation of the spatial derivative. Such spurious waves are of
saw-tooth nature and are easily recognisable as numerical noise. Yet,
when reflected from a (upwind) boundary they become smooth waves which
are indistinguishable from consistent numerical solutions. Their
absorption can become quite vital in some applications (see also

review paper [84]).

(1.7) Absorbing Boundary Conditions in 2 and 3 Space Dimensions

Engquist and Majda [14,15] consider the 2D wave equation

2 2 2

('8—'5-9—2- 'a—}lp=0 (2.7.1)
ot ox

solved on a strip OSXSXO with an absorbing boundary at X=X . Plane

wave solutions ¢=exp(ifx+iny+iwt) satisfy the dispersion relation
v§2+nz=w2 or equivalently §i= wz-nz, wz—WZZO. Like in the 1D case,
for fixed (w,n) the solution is a superposition of left and right
moving waves

. R .
0 = el(ny+wt) ( aelE X, b1§ X
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A BC that exactly annihilate right moving waves is thus

a 2 2 _
[ Y e -n ) p=0 (1.7.2)

2 2 E
3 3 3 _
[5}4' —2 - —2 ] Q= 0. ' (1.7-3)

Unless 9/0y=0 (corresponding to n=0 ie normal incidence), equation
(1.7.3) is not a rational function in (8/9t,8/3y) and yields a BC
which is non-local in both t and y. To be numerically useful, it has
to be approximated in a well-posed manner. Approximations about
normal incidence naturally lead to BCS which are perfectly absorbing
in that direction. For waves in other directions the pth order
approximation yields reflections of order O(Q/w)2P The essential

requlrement of well-posedness turns out to be less trivial than
———-1

anticipated. Taylor expansions of //1 -1 /w2 for small n/w yield an
ill-posed second order approximation, admitting solutions of the form
(1.1.5). Approximating the square root by a rational function based
on Padé expansion can be proved well-posed [14,15]. The first members

of this family are

. a .8 _
(i) ( FT T ] =20

_ 2 (1.7.4)
(i1) [62+"” -2 ](p:O
ot oxdt 4 9y

If equation (1.7.1) is used to eliminate the y derivatives in (1.7.4),
the pth order boundary operator in (1.7.4) is equivalent to the pth
order generalised Sommerfeld radiation condition
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[a_t*‘&}}“"(’

with a reflection coefficient

R = - | L= cosd P
1 + cos3

The same approach was applied to the Transonic Small Perturbation
equation in [16] and have been thoroughly studied numerically by Kwak
in [49,50]. The theory is extended to the elastic wave equation
[11,14] but well-posedness is not established. Several subsequent
papers by various authors report instabilities encountered in their

implementation [13,53].

Also in [14], a general theory is developed for first order
symnetric systems which uses the complicated theory of
pseudo-differential operators. A recent extremely elegant report by
Giles [20] treats the same class of equations using the language of
eigenvectors, Taylor expanded about normal incidence. Consider the

NxN linear hyperbolic system of equations

W o+ Agx + Bgy =0 (1.7.5)
Plane wave solutions w = Eoei(EX+nyfwt) satisfy

(@I + EA +1B) W, = 0
or equivalently

(T + @™’ + m™'B) ¥ =0 (1.7.6)
Non-trivial solutions exist provided

det(EI + v + ma"'B) = 0 (1.7.7)

which is the dispersion relation for the system (1.7.5). For fixed

(n,w), equation (1.7.7) defines N roots Ek and N corresponding right
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eigenvectors gk=gk(n,w)

-1 -1 —4 — -— » o
(A" + mA B)_z;k = Ekgk k=1, N
and admits a general solution
X i(ny+ut)
W= [ E ak!‘k exp(iEkx) } e 4 (1.7.8)
k=1

The main difficulty is to establish which of the modes in (1.7.8) are
incoming and which are outgoing. Assume that 51""'Em are incoming
modes. Denote by £ =€ (n,w) the k*" left eigenvector and recall the
orthogonality property (1.6.5)c. The perfectly absorbing BCS

expressing the constancy of the incoming Riemann Invariant are
ék(n,w)-y =0 k=1,---,m (1.7.9)
(compare (1.6.5) & (1.6.6)). In their exact form, BCS (1.7.9) are
impractical since their implementation requires a Fourier transform in
both y and t. Approximations are sought for angles close to normal

incidence. Denote n/w = 3, then

2

L o, _ 3 9% 8°
£k(n.w) = fk(ﬁ) = £k(0) + 955 (ék(O)) o 555 (&k(O)) + e
The pth order approximation is given by
(£ ) ]-g -0 k=1,---,m (1.7.10)
‘C:‘l ! g —k .

The corresponding BC is obtained by identifying ¢ with the operator
(8/38y)/(3/3t) and multiplying by (8/8t)® to clear all denominators.
Well-posedness is established if it is not possible for incoming waves
alone to Satisfy (1.7.10) implying spontaneous radiation of energy
from the boundary. This general derivation is applied to the Euler
equations and it is found thét the second order inflow conditions are

ill-posed, admitting one unstable mode while the outflow condition is
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well-posed.

A hierarcy of far field BCS based on a different asymptotic
argument is derived by Bayliss & Turkel [4,5] for equations which
display a wave-like far field behaviour. The same approach was
extended to elliptic problems in [6] (see also {[19]). Instead of
expanding the solution about normal incidence, they consider an.
expansion of the solution in inverse powers of the radial distance r.

A spherical outgoing wave solution has the form

and is exactly annihilated by the boundary operator

a 8 1)
(-a—t-r-é?+;]tp—0 (1.7.11)

A more general outgoing wave has the form

f ,(r-t,3,¢)

al J
p= ) ——
j=1 rJ

where fj may be treated as arbitrary functions. One can verify that

P (a8 a8 . 2841 _
"Ja—r*aﬁr Jo-of

2p+1
) (1.7.12)

Lo Bl oud

becoming better approximations as r— o and yielding well-posed

problems [4].
BCS (1.7.12) are employed in the 2D linearised Euler equations

2 —
L ) (ux+vy) =0

0 (1.7.13)

-1
+ +
ut u ux pO px

0

v +u
t

-1
va + p0 py =0
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It can be shown that under a suitable coordinate transformation,

=~ Pge~ P = 0.
tt “EE Tmn
Conditions (1.7.12), slightly modified for circular outgoing waves,

pressure deviations from the mean pressure satisfy p

are transformed back into physical coordinates. The first member of
this family reads

PoC

0
P, + B

(ut—u &y)

)4

0
P-P,

- Y 9o _
POCOB q (Vt+u0vx) + cOB 53 = 0 (1.7.14)

where Bz= 1—M§ and d°= XZ/BZ + yz. In steady state calculations, the
spatial variations of y were ignored, enforcing P=p, in the steady
state limit (compare (1.6.10)). An equivalent formulation involving
pressure derivatives only is [64]

BZc
0 ap .
Py + Bd-Mox [ % ty

& P, _ (pp) ] =0 (1.7.15)

oy 0

In a recent paper by Roe [64], the Euler equations are combined »
in ratios (i) + pococosﬁ (1i) + pocosinﬁ (iii) to yield a ¢ dependent
equation in which all directional derivatives act in one plane. Each

of these characeristic planes is spanned by the vectors

+ 3 ind
(1, u te cosd , c sin )

{ 0, sin® , -cos?d )

in the (t,x,y) directions. The first operator acts along a particular
bicharacteristic while the second acts in space only. Specifying &
implies considering disturbances in that' specific characteristic
plane. Roe takes lead from the BC (1.7.15) and chooses ¥ so that the
direction of the bicharacteristic coincides with the direction of the
derivative in (1.7.15), obtained from global far field asymptotic

considerations. This is accomplished by setting
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. By
51n8=m0_x
With this choice of ¥, substituting (1.7.15) into the characteristic

equation results in another outgoing characteristic equation involving
velocity derivatives only

du 3 ou -’
(x-FMod) 37 + Bde, 3%
2 av v av__l Py
+ B Y (a—t: +UO 'é;) + CO(Bd-MOX) 'a—y = _25(; (1.7.17)

which can be used to update the combination (x-BMOd)u + Bzyv at the
boundary. Roe's BCS applied to simpler equations are presented in
Appendix A.

The statement of zero reflection at the boundary is not aécurate
in quasi one dimensional flows. Writing the equations in terms of the
incoming and outgoing characteristic variables reveals that the two
are coupled through the presence of a source-like term which accounts
for the non-Cartesien geometry. As a consequence, an outgoing wave
generates an incoming wave as it propagates. At the boundary, this
interaction should be modelled and the BC should in fact be
reflecting. In [28], Hagstrom & Hariharan derive a reflecting BC for
the spherically symmetric isentropic Euler equations, based on
expanding the characteristic variables as a series in inverse powers

of the radial distance r.
The linearised Euler equations with spherical symmetry read

p,tq +2q/r=0
, (1.7.18)
q tp =0

In terms of the outgoing and incoming characteristic variables R=g+p

and S=g-p, the equations become
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= - Rt
Rt+Rr- r
. (1.7.19)
S - 8 = Ei'g
t r r

In the far field, R and S tend to constants and can therefore be

expanded in a series

L
]

R, + R1/r + Rz/rz +o-
s s (1.7.20)
Ro + 1/} + z/rz oo

tn
L}

It follows from the definition of R and S and from the fact that ¢— 0
in the far field that R0= - S0 = p, Substituting (1.7.20) into
(1.7.19) and collecting 1like terms 1leads to the first order

approximation

1l
o

(R)), + (R)_ ——— R (r,t) = R (r-t,0)

|

(), - (s)

1 Sl(r,t)

S1(r+t,0)

implying that R1 and 51 are genuine Riemann Invariants. Since S1 is
initially =zero, 515 0 at all 1later times. The first non-zero
correction to the incoming characteristic variable is obtained through

the second order approximation -

(52)L - (52)r = Ri(r-t) : ’ (1.7.21)‘

Expressed in terms of T = r-t and r, equation (1.7.21) reads

-2(Sz)r - (Sz)r = R1(T)

At the boundary r=a, (Sz)r= 0 (l/a) and can be neglected. Also at the
boundary 9t/8t = -1 yielding

-1 -
(Sz)t T2 R1(a t)

or equivalently up to O (1/a)2
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|
b [

- 1 -
= 3 (R(a,t) RO)
which is the proposed reflecting BC.

An interesting, yet not numerically practical strategy was taken
by Smith [67] who proposed to solve the wave equation twice, once with
Dirichlet BC and once with Neumann BC. The superposition of both
solutions leads to cancellation of all reflections. Opén BCS for the
steady 2D Euler equations based on a Fourier expansion of the solution
at the boundary were obtained in [18] and [17]. Other open BCS can be
found in references [3,25,30,73].

We end here the brief survey of the modelling of open
boundaries. We hope to have given a flavour of the predominant
concepts in the design of nonreflecting BCS as well as of the rather
involved analysis required to establish well-posedness and stability.
Although establishing well-posedness 1is sometimes regarded as
unecessary formalism of mainly cosmetic value, the above examples show
that often, when wellonsedness cannot be established, instabilities
are encountered in practice. They also show that not all sensible

strategies yield well-posed problems.

(2.1) The Lax-Wendroff (LW) Scheme and Group Velocity

The main drawback of the concept of group velocity is that it is
strictly valid in non-dissipative cases only (ie ®w is a real function
if ). 1In the presence of dissipation (1.5.5) becomes an integral in
the complex plane and the argument of stationary phase needs to be
extended to the method of steepest descent or saddle point [87]. As a
result, group velocity analysis strictly applies to non-dissipative .
numerical approximations. It is also valid for dissipative models
which admit isolated non-dissipative modes [74]. 1Indeed, modes with

1Z1<1 do not grow with time, hence cannot generate an instability.
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Dissipation, thus, reduces the number of potentially unstable modes.
In some cases, dissipativity of either the interior scheme or boundary
condition is sufficient to guarantee stability [22]. 1In an elegant
article [78], the stability of a difference model is presented as the
consequence of a competition between the destablising mechanism of

dispersion, and the stablising mechanism of dissipation.

It 1is precisely because of its stablising nature that
dissipation 1is regarded as a desirable feature in ‘practical
applications. Even if the basic scheme is non dissipative, some level
of dissipation is always added to prevent non-linear instabilities.
Examples include various variants of the LW scheme [29,52,55,61,62],
Runge-Kutta (RK) type schemes [39,40] and others [32,57].

As is often the case in practical calculations, one is seeking
steady state solutions by means of marching the time dependent
equations for sufficiently long time until steady state is reached.
For this class of problems, although modes with 121¢1 are not
unstable, if 1Z] &~ 1 they are dissipated very slowly, and inhibit
convergence to steady state. Group velocity analysis in these cases,
though strictly not applicable, will still make good predictions,
provided dissipation levels are sufficiently weak. As a typical
representative of the class of dissipative schemes we select the LW
scheme, variants of which are in wide practical use. The pathological
behaviour predicted by the analysis that follows has wider
implications and encompasses the class of symmetric twe-level explicit
schemes of optimal accuracy, the class of RK schemes (see Appendix F)
and others [38].

The LW scheme to approximate the advection equation (1.2.1) is

. 7 .
n+l _ . n _ Pi n _ D [ n _ n n
W=y Z{Wj+1 wj_1] t3 [yj+1 2wj + wj_i] (2.1.1)‘

with

v o= A At/ (2.1.2)



39

the CFL number. The scheme is Cauchy stable (ie stable as a pure IVP)
if lvl s 1. The dispersion relation for (2.1.1) is

iwAt N 2

e = 1 + ivsinEAx + v (cosEAx - 1) (2.1.3)

which is both non-linear and complex reflecting both its dispersive

and dissipative nature. For small w and & both sides of (2.1.3) can

be Taylor expanded to give as expected
® = AE + higher order terms

In terms of Z and x (2.1.3) reads

2

v, -1 v, ‘ -1
Z=1- E(x -x) + g(x 2 + x

) (2.1.4)

o Z = Zu is fixed and (2.1.4) is a

quadratic equation in x yielding two solutions

For a given frequency w =

_ 1 2 _
X = oy WOty
x = —2 _ w¥irz -1-4 (2.1.5)
2 p(v+l) 0 i

2 _ o 12 2 _
8% = (1-2))" + v (22 - 1)

That every frequency W, has two distinct roots xland xzis a direct
result of using 3 grid points (j-1,j,j+1) to approximate the 8/3x tern
in (1.2.1). In the steady state limit wAt > 0 (Z - 1) we observe that

-1
x, = 1 X, 2o T (2.1.6)

Indicating that x, solutions are consistent solutions to (1.2.1) while
x, are spurious numerical by-products of sawtooth character (lvlsl).

Inspecting (2.1.3), two extreme cases are observed
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EAx = 0 wAt = 0 ® is real
Ehx = 7 © is purely imaginary
In the latter case emAt = 1—21)2 ~ 1 for very small CFL numbers. 1In

the intermediate range E€R let ® be complex
W= wR+1wI wR,wleR

The dispersion relation can be separated into its real and imaginary

parts
-0 At -
e coszAt =1 + v (cosEAx-1)
e sianAt = psinfAx
Eliminating W, in (2.1.7) yields
tan w At = vsinEhx (2.1.8)

1+v2(cosEAx-1f

Figure (II.1) gives W and w, o as a function of EAx. As expected, for
p <1, CHI 0 over the whole range of EAx. In fact wlAt is maximal

when EAxX = 7, hence

© At < max(w At) = -1n(1-20%) ~ 202 (2.1.9)

-for all EAx. Implicit differentiation of (2.1.8) yields the

approximate group velocity

C (EAx) = d_w_'? =2 cosEAx+v° (1-cos EAx)
g

dg [1—vz(l-cos§Ax)]2+Uzsin2§Ax

(2.1.10)

with the understanding that (2.1.10) is valid only in the limit of

small CFL numbers. We observe that
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0)

n
>

Cg(EAx
(2.1.11)
-2/ (1-2v%)

n)

Cg(EAx

As expected, well resolved waves propagate at the correct speed, while
poorly resolved waves not only travel with the wrong speed but may

also move in the wrong direction, if

<
~
[NEESY

(2.1.12)

For intermediate values of EAx, Cg may also assume negative values
depending on whether

2
v
cosEAx ¢ - 152 : (2.1.13)

The same result can be obtained by implicit differentiation of (2.1.3)

cosEAx + ivsinfAx

C(EAx) >
1 + ivsinEAx-v"(1-cosEAx)

(2.1.14)

R feature common to many practical calculations is stretching
grids. The grids are fine in regions where large gradients need to be
resolved (eg near a shock wave or at leading and trailing edges in a
flow past an aerofoil), while in the far field they become coarser.
Highly stretched grids introduce the combination of small CFL numbers
vwhich "prolong the 1life" of the high frequencies with an increasing
number of poorly resolved frequencies as the grid gets coarser. 1In
view of the large dispersion errors in the high frequencies, this

combination is highly undesirable.

We novw turn to a series of numerical experiments which were set
up in order to investigate the behaviour of discrete travelling waves
in the far field, and to expose the parameters upon which the

efficiency of the bc's in absorbing the waves depends.
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(2.]) Numerical Experiments

(2.].1) Boundary Conditions

In the following experiments five BCS are tested:

(1) Specify the pressure P=P . use outgoing characteristic equations

to update the remaining quantities.

(ii) Specify Zero incoming Riemann Invariant, extrapolate outgoing
Riemann Invariants using characteristic equations.

(iii) Specify Roe's conditions for the treatment of the acoustic waves
(See Appendix A).

(iv) Over specify - Impose free stream conditions at the far field

boundary.

(v) Under specify - all variables are obtained through oth order
extrapolation from the interior of domain.

(1)-(ii1) (iv) (v)
111. (I1.1) - stencils of boundary conditions (i) - (v).
The stencils for BCS (i)-(v) are sketched in I11. (II.1). Those are

imposed at X=X in the 1D case and at r=r_. . in the quasi 1D case.
(see I11. (II.2).
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t1 boundary

!
L= boundary
__f\~/’\“,—4> : \\:::>

X

.
ot

I1l1. (I1.2) - Computational domains in the (a) 1D and (b) quasi 1D
setups. :

‘Several comments should be made about the above choice of BCS:

(a) Multidimensional disturbances decay as they move away from the
origin. At sufficiently large distances conditions are therefore not
far off those at infinity, and it is hoped that no 'great harm' is
done by imposing infinity conditions at the boundary itself. For that
reason, specifying p=p, at a finite distance is physically wrong.
Yet, various variants of bc (i) where Pep, is either explicitly
specified or implicitly implied are widely used. Among those we find
the BCS derived by Rudy & Strikwerda [65,66], Bayliss & Turkel [4,5]
(see discussion in sections (1.6) & (1.7) ), Hall [29] and others.
Although 1local error estimates incurred by imposing this BC can be
obtained, its overall effect on the solution remains to be
investigated numerically. 1D disturbances do not decay, hence
specifying P=p, at the Dboundary in 1D problems, although
mathematically well-posed, is usually not physically sensible.

(b) Bc (ii) uses the theory of characteristics which is correct for 1D
problems. In genuinely multidimensional flows, 1D analysis is only
valid for disturbances normal to the boundary and asymptotic
expansions are required for waves in other directions. The gradient
form of the BCS implies that converged steady state solutions are weak
linmits in that they depend on initial data. See discussion in Chapter
I section (1.7) and the references cited therein. See also remark in
[64] p. 222.

r
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(c) All the information required in bc (iii) is supplied by interior
points. No assumption is required as to the state prevailing outside
the region of computation which is not always available. The

converged steady state solutions are again weak limits.
(d) Both BCS (iv) and (v) violate the Theory of Characteristics hence

are mathematically ill-posed. (v) 1is also wunstable as it is

encompassed by the theorem in [72].

(2.2.2) Numerical Tests

Test A (Figure (II.2)a-e)

The governing equations are the 1D unsteady Euler equations

which have the conservation form

W +F(w) =0 (2.2.1})a

1 X

¥ = (p,pue’ FE = (pu,pu’+p, uetup) "

Using the ideal gas assumption p is found from
1

e = —“— ¢+ SPu (2.2.1)b
In the above, p represents density, u velocity, p pressure, e energy
and y the specific heat ratio. Let ¢ be the sound speed, h the

"specific enthalpy and s the entropy.

The eigenstructure of the Jacobian matrix A(w) = OF/3w is given by

R=(,r ,;d) = | u-c u utc . (2.2.3)a
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A = diag (xl,kz,la) = diag (u-c , u, u+c) (2.2.3)p

The characteristic equations are (see (1.1.10)

dp-pcdu = 0 on dx/dt = u-c
dp-c°dp = 0 on dx/dt = u (2.2.4)
dp+pcdu = 0 on dx/dt = u+tc
and similarly the wave strengths
2
«, = (Ap - pchu)/2c
«, = (c®bp - 8p)/c (2.2.5)
a = (Ap + pcAu)/Zc2

Initial data is the uniform state (p,u,p)=(1,0,1). High pressure is
fed through the LHB (p,e}=(2,4) -giving rise to a moderate right
moving shock wave followed by a contact discontinuity. The wavés are
expected to disappear through the RHB, and the new state is expected
to occupy the whole domain. The test is conducted on a regular grid
at CFL number = 0.5. The method of solution is Roe's field
decomposition [62], with LW scheme applied to each characteristic
field. No flux limiter is used. BC (i) is inappropriate in a 1D
set-up. Indeed figure (II.2)a shows a typical reflection of a shock
wave from a surface of constant pressure. BCS (ii) seem to have
completely absorbed both waves. Both (iii) and (v) give similar
results with a slight over estimate of u by BC (v). The performance
of (v) is ©particularly surprising, being formally unstable.
Conditions (iv) are again inadequate leading to strong reflections of
a sawtooth character. These are typical numerical rather than
physical reflections, and can be confirmed as (u) waves travelling in
the wrong direction. Owing to dissipation, the reflections are
confined to the neighbourhood of the boundary and the solution is

rescued from complete contamination.
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Test B (Figure (II1.3)a-e)

The same test is repeated with v = 0.0625. Larger phase errors
are expected with lower level of dissipation particularly at high
frequencies. As a result, wave propagation is much more oscillatory.
Bc's (ii) (iii) and (v), while coping reasonably well with the shock
wave, fail to absorb the contact discontinuity. A strong reflected
(u) wave travelling in the wrong direction can be observed. 1In the
absence of dissipation, the contaminated region is much larger. BCS

(iv) generate reflections which completely contaminate the solution.
Test C (Figure (II.4)a-c)

The same test is repeated on a mildly expanding grid. Unless
expansion is very mild, the effect of grid stretching is the formal
loss of accuracy [58,59,63,81]. In Appendix B we present an adaptation
of the L-W scheme to non uniform grids which is conservative and
preserves second order accuracy. Grid expansion rate is ij+1/ij =
1.05. With a total of 50 grid nodes, Axmax/Aghin = 11.47. Both rate
of expansion and consequently the range of CFL numbers in the problenm
are not as severe as encountered in practical flow computations. Yet
such conditions are sufficient to expose the inadequacy of all BCS

to absorb the waves.
Test D (Figure (II.5)a,b)

The governing equations are (2.2.1). The grid is stretched at a
rate of 2% in both directions and is illustrated below.

expanding grid '; + expanding grid
U | 1 i PO S 2 Y P
= *
o X

111. (I1.3) - Grid set-up for internal reflection test.
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Initial data correspond to a (u) wave and a (u-c) wave
respectively. The initial wave, while moving in the correct
direction, gradually penetrates the coarse part of the grid. At some
critical point, the 1local wave number becomes such that the
corresponding group velocity changes sign. For Ivl « 1 this
corresponds to a wave length = 4Ax. The wave is internally reflected
and propagates as a sawtooth wave, until it reaches the coarse region
- where it reflects again and the low frequency is recovered. This
trapped wave continues to bounce back and forth until it dissipates.
In computations which march in time towards a steady state 1limit,
internal reflections can be quite troublesome as steady state cannot
be reached before these waves have dissipated. Trapped waves under
non-dissipative schemes have been studied in [21,84]. Analysis
suggests and experiments confirm that in far field conditions,

dissipative schemes behave in much the same way.
Test E (Figure (II.6)a,b)

The governing equations are the 2D linearised Euler equations (see

Appendix D)

W + AW +Bw =0 (2.2.7)
t X y
b 0 1 0 0 0 1
¥ = u A=1(1 0 O B = 0 0 O
4 0 0 O 1 0 O

Second differentiation of (2.2.7) shows that

-p -p =0

ptt XX vy

(2.2.8)

(uy - vx)t =0

Axi-symmetric flows satisfy
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RNV WRE

with ¢=g(r) the radial velocity. The emergence of a non-homogeneous
source-like term is due to the non-Cartesian geometry. The simple
wave structure of (2.2.9) is

1 1
R = A = diag (-1 , 1) (2.2.10)

The characteristic equations are

[}
o
i
1
[y

dp-dg - g/rdr on dr/dt

(2.2.11)

I}
o

dp+dg + q/rdr on dr/dt

n
[

and the wave strengths due to the homogeneous and source-like terns

are respectively

-1 =1
% = JAFA@ B1 2 q/r
(2.2.12)
-1 =1
% = z(Ap+Aq) Bz 2 q/r
Initial data are
) 2
plr,0) = 1+e™ " g(r,0) =0

Due to symmetry, the problem is solved on [O,rmax] with reflection
conditions at the origin. The initial pressure hump is expected to
decay as it moves away from the origin. The expected free boundary

solution is

(p.q) = (1,0) (2.2.13)
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The method of solution is again Roe's field decomposition, with both

flux and source-like terms projected onto the eigenvectors (2.2.10).

BC (i) is now appropriate. Aithough specifying p = Py is not
far off the true situation, the wave partially reflects at the
boundary and then focusses very strongly as it converges towards the
origin, reaching an intolerable error at the origin itself. The wave
continues to bounce back and forth and requires a good number of
'round trips' before the solution converges. Moving the artificial
boundary to a very large distance (200 nodes) compared with the region
occupied by the initial disturbance (5 nodes) seems to have only a

limited effect. This is summarised in the tables below.

No. of grid Signal's amplitude Max. reflected
points near the RHB amplitude at origin
30 1.080 1.627
40 1.063 1.522
50 1,051 1.500
60 1.043 1.459
80 1.033 1.400
100 1.023 1.357
200 1.013/4 1.247
Table I: Focussing of pressure wave against boundary distance
No. of .
Points 1st focussing 2nd 3rd 4th
30 1.627 1.511 1.416 1.381
40 1.552 1.443 1.360 1.312
50 1.500 1.396 1.320 1.276
60 1.459 1.360 1.291 1.251
80 1.400 1.309 1.248 1.213
100 1.357 1.274 1.220 1.189
200 1,247 1.185 1.142 -
Table Il - Maximal Reflected amplitude at the origin for successive

reflections.
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This example constitutes a worst case. Due to symmetry éll
disturbances reflect from the faf field boundary to meet at the origin
and focussing is particularly strong, becoming even more pronounced in
a 3D set-up (figure (II.6)b). A similar behaviour, albeit in a less
pronounced manner, is expected whenever p = P, is specified. BCS
(ii)-(v) completely absorbed the wave including BC (iv) which in a way

is a more strict version of (i).
Test F (Figure (II.7)a-d)

The governing equations are (2.2.9) and the method of solution is the
. same as in Test E. The initial state

-O(r-r0)2
p(r,0) = e cosnr q(r,0) =0 ’ (2.2.14)

is expected to break into two wave packets of half the original
strength moving in opposite directionms. This can be observed to
happen in the figures. Yet, both wave packets are moving 'backwards',
resulting in the situation where the designated left running (p-q)
wave reaches the RHB. The BCS, being unable to absorb waves of the
wrong family, reflect the oncoming waves disguised as friendly smooth
solutions, which can no longer be distinguished from consistent
physical solutioﬁs. 'BCS (iii) and (v) displayed similar behaviour.
BCS targetted at absorbing waves which 'ldst their way' can be
designed. Since such waves are a numerical phenomenon which is
entirely scheme dependent, the BCS are derived directly from the

numerical dispersion relation.

(2.2.3) Upwind or High Frequency Boundary Conditions

We choose to follow the procedure suggested by Higdon [35],
aimed at absorbing high frequencies (see discussion in section (1.6)).
The saw-tooth wave has = -1 and by the discrete dispersion relation
(2.1.4) Zoél- 20% ~ 1 for Ivi« 1. The proposed BC therefore takes the

form
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-1 ~1 '
{1 JI+Z 1K }w““ =0 (2.2.15)

Test G (Figure (II.8)a,b)
We have adapted (2.7.15) to systems in two ways:

(a) To the Riemann Invariants in BC (ii), neglecting the

non-homogeneous term near the far field boundary.

-1 -1
I1+72 I K n+1
{I - 2 2 } (p q)Imax =0
{(2.2.16)
-1
1+7 I-K n+l
{I - 2 2 } (p+q)lmax

(b) To Roe's condition (iii}, neglecting again the non-homogeneous

term near the far field boundary (see Appendix RA)

-1 -1
I1+7Z I-K n+l
{I - 2 2 } plmax =0

(2.2.17)
-1 -1
I - I+7Z I-K n+l
2 2 qlmax -
Absorption in both cases is greatly improved.
Test H (Figure (II.9)a,b)
It is easy to see that (xO,ZO) = (1,1) are bounded away from

zero in (2.7.15) hence 1low frequencies cannot be absorbed by this

procedure. This is confirmed in the figures.
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Test I (Figure (II.10)a,b)

A natural way to absorb both low and high frequencies is

-1 -1
I1+7Z 1I-K n+1
{I 2 2 (p c‘I)Imax =0
(2.2.18)
-1 -1
I +Z I+K n+1
I- 2 2 (p+q)1max -

The first of these equations is constructed to absorb high frequency
(p—q) waves travelling ’backwards’, ie to the right. The second is
constructed to absorb (p+q) waves moving in the physically correct
direction, ie also to the right. These combined low-high frequency
boundary procedures thus cover the extreme cases of right moving waves
~ the lowest and the highest possible frequencies. However, by the
same construction, they are also expected to be sensitive to wave
number. Indeed, the Figures show wave packets centred about €h=0 and
&h=n being absorbed by the BCS (2.2.18). Wave packets are not pure
Fourier modes. They also contain neighboring frequencies tb the ones
they have been centred about. This explains the weak reflections

which can be noticed in the Figures.
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PART TWO

Introduction

Having presented a variety of examples where absorbing BCS give
rise to strong reflections, we now present a new and less conventional
approach to the treatment of far field boundaries. It is proposed to
introduce an outer absorbing layer in which the governing equations
are modified in a boundary-like manner, so that by the time waves have
reached the boundary itself they are easy to handle. For example, one
may gradually decrease the value of the specific heat ratio y, speed
so that the outer boundaries become supersonic [S. Abarbanel, private
communication], or one may force the equation to a desirable solution

in the far field ([46]), discussed in more detail in Chapter IV ).

Any attempt to modify the governing equations in the far field
creates an interface to one side of which the original equations are
solved, and to the other, the modified equations. The interface, just
like the far field boundary itself, should behave as it it were not
there, allowing waves to cross it without reflections. It is
therefore vital to ensure full transmission of waves across the

interface, certainly of outgoing waves but also of incoming ones.

Common to the above mentioned far field modifications is that
théy do not distinguish between incoming and outgoing disturbances and
treat both in the same manner. In problems of genuine time
dependence, however, correct physical information should be allowed to
propagate from the boundaries into the interior. To be applicable to
this class of problem, the far field modification needs to be of a
one-way character and act on the outgoing waves without affecting the
incoming ones. In one dimensional problems, the task of
‘distinguishing between incoming and outgoing disturbances is
straightforward. In multidimensional problems, it is a lot more
complicated as waves may propagate in an infinite number of
directions. In either case, characteristic field decomposition and

simple wave analysis is required for the construction of one-way far
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field modifications.

The notion of replacing an isotropic equation by a modified
equation which have the same properties in some directions but
different properties in others has been used before. One Way Wave
Equations (OWWEs), sometimes referred to as Parabolic or Paraxial Wave
Equations have long been applied to describe wave propagation with a
preferred direction. Applications are widely ranging in Seismology,
Geophysics, Underwater Acoustics (eg [1,2] and references therein).
OWWEs have also been applied as absorbing BCS at artificial boundaries
[14]. The above One Way approximations have all been derived from the
second order scalar wave equation. The modifications presented in
this section are based on formulating the wave equation as a first
order system. This 1is shown to offer a wider choice of far field
modifications some of which are no longer equivaleht to a modified

second order scalar equation hence 'beyond its reach’.

Although the proposed modifications have one-way absorbing
mechanisms and are therefore suitable for far field boundary treatment
in their own right, they may also be used in conjunction with

absorbing BCS to enhance the performance of either of them.

Two closely related far field modifications are presented in
Part Two of this werk. In Chapter III, one-way absorbing boundaries
by slowing down outgoing waves are studied. In section (3.1) the
concept of slowing down the outgoing waves is presented in one and two
space dimensions. The 1D modification is analysed in sections (3.2)
and (3.3) on both the continuous and discrete levels, transmission
conditions are derived and stability is established. In sections
(3.4) - (3.7), several 2D extensions are presented and analysed, their
well-posedness is established and their ©physical grounds are
validated. Numefical experiments are given in section (3.8) for one
and two space dimension problems. Conservation aspects are studied in
section (3.9) and in section (3.10) the relation between the proposed
modifications and preconditioning techniques is commented upon. In

Chapter IV, we discuss one-way absorbing boundaries by gradual wave
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attenuation. In sections (4.1) and (4.2), the modification is
analysed on the continuous level and full transmission of waves is
established. 1In section (4.3), the modification is analysed on the
discrete level and stability is prooved. The modification is extended
to 2D is presented in section (4.4). The two proposed far field
treatments, namely slowing down and attenuating the outgoing waves are
combined into a single far field modification is section (4.5).
Numerical experiments in both one and two space dimensions are

presented in section (4.6).
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(3.1) The Concept of Slowing Down Outgoing Waves

Consistent boundary conditions do not generate waves unless
being hit by outgoing waves, trying to leave the computational domain.
Starting from a uniform initial state, and since propagation speeds
are finite, there is a period of time during which those BCS are
inactive and have no influence on the solution throughout the flow
field. They do not play a role until the first disturbances generated
at the aerofoil or at any other obstacle, have reached the outer
boundary, and if the solution is required only in the immediate
vicinity of the aerofoil, until they have propagated back. Meanwhile,
the flow field around the aerofoil may have already started to
converge to steady state, which will be destroyed by the reflected

waves as soon as they reach the aerofoil.

This period of time can be prolenged by setting the outer
boundaries very far away from the aerofoil. This implies a larger
computational domain, and if the grid is to remain of a manageable
size, it is usually highly stretched on which second order accuracy is
likely to be lost [58,59,63,81]. Alternatively one can modify the set
of governing PDEs so that the outgoing waves are slowed down. Upon a
suitable choice of slowing down rate, one can ensure that within a
given time T (possibly T — ®) the outgeing waves will not have

reached the outer boundary hence not reflect back.

Slowing down the waves is a mathematical device to prevent waves
from reflecting at the far field boundary. The modified set of
equations has partially lost its physical significance, in that some
disturbances no longer propagate at the correct physical speed.
Mathematically, this is achieved by modifying the coefficients of the
governing equations and by doing so creating an interface.
Reflections from the interface clearly defeat the object of the whole
exercise. Conditions ensuring full transmission of all waves across
the interface for general hyperbolic systems are derived in section
(3.2). Perhaps not surprisingly, the same conditions also turn out to

retain, though in a limited sense, the physical structure of the
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unmodified system - The Riemann Invariant and simple wave structure,
the jump conditions etc. In that respect, the physical significance of
the modified system is only partially lost.

Consider the 1D wave equation

o . - 2% =0 (3.1.1)

tt xx

to be solved on « € [0,m), Denote by AT the two families of
characteristics, with respective slopes dx/dt = £, For
well-posedness, equation (3.1.1) requires initial data and one BC at
x=0. Let an artificial boundary be introduced at x=X0 and assume that
we are only interested in the solution near x=0. In the absence of a
numerical boundary at x=x0, the solution at x=0 is completely
determined by the BC at x=0 and by the information propagated along
the A characteristics. In the presence of a numerical boundary at
x=XU, disturbances originally travelling in the positive x direction
may reflect £from x=X0 and reach x=0 at a later timg. (See 1Il1l.
(111.1)).

‘ Reflected A/

+ -
111. (111.1) - A and A characteristics of equation (3.1.1)

Let Tmin indicate the time the first non-zero X+ wave reaches the RHB.

By slowing down the right going waves, Tmin can be increased, possibly
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even T  — @ (see I11. (I11.2)).
miln

(a)

-7 min

()

(c)

b e e e e = e — —— —— wwe

v

x

J11. (I11.2) - Patterp of wave propagation (a) & (b) Piecewise
constant and (c) Smoothly varying coefficients.
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In two space dimensions, the wave equation reads

2
(ptt -2 ((pxx + (pyy) =0 | v (3.1.2)

The domain of influence of every point (xo,yo) is enclosed by a
characteristic cone whose radius grows 1like At. Projecting the
characteristic cone into the X-Y plane, we obtain the envelope of wave
fronts emerging from (xo,yo). (I11. (111.3)). In each direction
9€[0,n) there are two wave speeds A at which signals may or may not
travel, depending on initial and boundary data. The range of ahgles
d€[n,2n) does not have an independent meaning. That the envelope of
wave fronts form a circle, reflects the isotropic nature of (3.1.2),
i.e. that waves propagate at the same speed A in all directioms.
Non-isotropic cases are illustrated in Ill. (III.4): In (a), waves
travel at a speed A in the positive x-direction, but at a reduced
speed aX 0<a<l in the negative x direction. Similarly in (b) and (c)
waves are being slowed down in the negative y direction and in the

negative ¢ direction.

»

(y-¥o)/y

6 ’
-1 1
J \" (x-x.),t

-1

v

(a) (b)

I1}. (111.3) - (a) The domain of influence of (xo,yo), (b) The

envelope of wave fronts emerging from (xo,yo).
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Identifying the outgoing waves 1is evidently dependent on the
geometry of the problem. In fully exterior problems, disturbance in
the far field travel very nearly radially, hence wave speeds may be
modified in the radial direction. The match of wave fronts of both
original and modified equations in the inward radial direction

indicates that incoming wave propagation is unaltered.

111. (I11.4) - Non-isotropic envcliopes of wave fronts.

A gradual slowing down process as a function of, say, radial distance
results in the Mach Cone becoming increasingly ‘'squashed’, and may

end up totally one sided, corresponding to Tmin—+ o (I11. (1II.6)).

fYMx

v

X fix

\\'czntre '

111, (111.5) - Modified pattern of wave fronts in circular
geometry.
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(b)

(x-x.)/t

111. (111.6) - Envelope of wave fronts - (a) The outgoing speed is
a decaying function of r. (b) Totally one sided
wave propagation.

(3.2) Slowing Down Waves in 1D - The Continuous Level

The 1D wave equation with characteristic speeds iki, can be

written in operator form

a a |la a |
{'é—t - fﬁJ l§? A ﬁJ'p =0 (3.2.1)
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Slowing down the right going waves on, say, x>0 is accomplished by

replacing (3.2.1) with the interface problem

4 \Nf \

3 CRIE a-| _

3t " Moaxllar TrMaE[PT0 x<0
\ )L J

4 Y ( )

3 REER 3

+ A =—lp=0 x>0

(el _, = [Op/0x] _ =0

with 0 < k2/x1 < 1. Single frequency solutions read

iw(t+x/l1) iw(t-x/x1)

o + <
.€ 81e %<0

o(x,t)

iw(t+x/ki) iw(t—x/xz)

+ p
e Bze x>0

p(x,t)

Continuity requirements across x=0 implies

R

+
™

[}

+
o, B

1 2
A1
@ - B =, -5 B
2
and the following hold
o | [ 1 25:21 17 « ]
%y 212 2

x1+x2
B 0 2x2 Bz

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)a
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A=A
lod 1 1.2 o
2 A A 1
1
22
2
Bz ° x1+1 Bl

(3.2.5)b

(3.2.6)a

passes through the interface without reflections (I11l. (III.7)a)

However, a

(3.2.6)pb

(3.2.6)¢c

is partially reflected and partially transmitted (Ill. (III.7)b)

A, - A
1 2

1 5% +
1 2

0 (3.2.6)d

[

Z))N

(o)

Y

O I T
viranyvmivion

(b) Partial reflection

s

going wave

going wave at x=0.
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As expected, if lkz—k1l<<1, reflections are very weak. Gradual
slowing down process can be thought of as taking lz to be a piecewise
constant monotonically decreasing function of X, with jumps at nodes
X, - At each interface X . partial reflection takes place with
amplitude

D g
(XZ)R * (xZ)L

with R and L denoting conditions to the right and to the left of the
interface respectively. This modification, dillustrated in Ill.

(III1.8), is not a very attractive far field boundary treatment.

R= (" 2)R -(AZ)L

xY

111. (111.8) - Partial reflection at interface points xk in a
gradual slowing down process.

Why do we get reflections?

An insight is gained by transforming the second order scalar wave

equation into a first order system through the transformation
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I p, = u . (3.2.7)

¥ +Avw =0 x<0

1—x :
W, +Ay =0 x>0 (3.2.8)
[E] x=0 =0

with

The eigenstructure of Ai and AZ is respectively

1 1
1 1, _ | = a4 _
R = (51'52) = 1/)‘1 1/)\1 A1 diag( xi,xi)
(3.2.9)
1 1
R, = (£5,£2) = |-1/, 1/ A. = diag(-r_,1.)
2~ ‘=r=2’ T xl xz 2 = G1agizAA,
with single frequency solutions
iw(t+x/X1) X iw(t-xlki) )
W= e r, + Ble r, x<0
(3.2.10)
io(t+x/2 ) io(t-x/2)
_ 1’2 2’ 2
¥=oae r, + ﬁze r, x>0
Continuity reads
1 1 1 1
a |l 1| +B8 |1 |=o]|1]|+B|1 (3.2.11)
R Hx 2l 3 21%
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(3.2.11) is identical to (3.2.4), hence (3.2.6) are solutions.

The reason for reflections has now become clear - the set of
eigenvectors is not preserved across the interface. The matrix A2 in
(3.2.8)b should possess the same eigenvectors as A1’ with respective

eigenvalues A2 = diag(-li,xz).' Such a matrix is easily constructed

12—X1 N 12+11
. 2 1 2
A=R AR =
2121 A 42 Y (3.2.12)
1 72 2 "1
i le 2 |

and reduces to A1 upon the choice l1=12.

A count of degrees of freedom confirms that a modified wave
equation (3.2.2)b has two free coefficienfs to completely determine
the wave motion, while the modified first order system (3.2.8)b has
four free entries in the matrix Az to be specified. The modification
which preserves the eigenvectors is 'beyond the reach' of the second

order scalar.

In the general case, consider the N x N interface problenm

W + Aw =0 x <0
=t 4
x
W +Avw =0 x>0 (3.2.13)
t x
[‘_V] x=0 =0

A necessary and sufficient condition for full transmission of all
waves across the interface is that A and 2 possess the same set of
eigenvectors, or equivalently that A ani A* comnute. Indee%: let r
be the eigenvectors shared by A and A., and let lk and lk be the

*x
eigenvalues of A and A respectively. Solutions of (3.2.13) are
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N
Wiz, t) =k§1ak(t-x/xk)gk x<0
(3.2.14)
N o
wix,t) =) B (t-x/2)r x>0
k=1
continuity reads
N N _
Lo, M), = Tt (3.2.15)
k=1 k=1

lgkl is a complete set with respect to which the representation of any

vector is unique, hence
uk(t) = Bk(t) k=1,...,N (3.2.16)

implying full transmission of all waves.

(3.3) Slowing Down the Waves in 1D - The Discrete Level

Presérvation of the eigenvectors 1is essential for full
transmission of waves at the differential equation level. Numerical
solutions, however, are not merely'a discrete image of the continuous
solutions. They tend to display additional features which cannot be
directly associated with any analytic behaviour. Consequently,
analytic properties do not automatically carry over to the discrete

level.
Consider the linear advection equation

W, tw =0 (3.3.1)
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with the analytic dispersion relation
w= - (3.3.2)

A general 2-level explicit scheme to approximate (3.3.1) has the fornm

w. = Yaw (3.3.3)

z= Fax" (3.3.4)

For a fixed frequency ®, Z is fixed, and relation (3.3.4) is a
polynomial of degree r+l in the variable x admitting r+l1 solutionms.
Although not all solutions are necessarily different from one another
(ie simple roots) we shall assume that to be the case, and denote the

roots by
cees X (3.3.5)

A general single frequency numerical solution is given by

r+l

n_ ,n J
LR (k¥1akxk) (3.3.5)

In contrast to the analytic dispersion relation (3.3.2), where
each © admits a single wave number E, the discrete dispersion relation
adnits r+l wave numbers Ek, each of which travels at a possibly
different speed. The number of admissible modes is directly related
to the width of the stencil of the numerical scheme. Paradoxically,
~the more accurate the scheme, the larger the stencil it uses, and the

more non-physical modes X, it admits.

It can be shown [47,27,76], that for a fixed Z with IZ1>1, the
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roots x split into two well defined groups. There are precisely 1
modes with Ixl<1 and r modes with Ixl»1. Furthermore, if the schene
is dissipative the inequalities remain strict in the 1linit 121> 1,

Z #1 (ie real non-zero frequency).

The discrete interface problem reads

r
n+l n .
L X LY j=0
k=-1
n+1 : n
v, ) bV j>0 - (3.3.7)
k=~L .
who= " j==L+l,...,r
j i

with (3.3.7)c expressing the identification of w? and v? in the
overlapping region. (see Ill. (III.9)).

Two questions have to be addressed. First, is (3.3.7) stable, and

second are discrete waves fully transmitted across the interface?

VYZ v!l 0 er
[ -1 1 I 1 I 1 A < 3 Y
“ -2 -1 0 1 2 >
v Vv, Vv, V,

111. (I11.9) - The overlapping region for the interface
problem (3.3.7).
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n n '
Let wj and vj possess solutions

<
i
N

=

j<0
(3.3.8)
j>0

Assume (3.3.7) is dissipative. Let [Zl21 and assume that

ka|<1 k=1,....1
kal>1 k=1+1,...,1+r
(3.3.9)
Iuk|<1 k=1,...,L
Iukl>1 k=L+1,...,L+R
Admissible solutions of bounded £2 norm are of the form
l+4r j
¢ (3) = ) o X j=0
k=1+1
(3.3.10)
- J
® (3) = Y BM, i»0

k=1

Stability of the interface

solutions of the form

n_ _.n .
wj = Z @1(3)
n _ _,n .
vj = 7 ¢2(J)
n n
W, =V
j B

with 1zZl21.

problem follows if it possesses no

3§50
(3.3.11)
3§50

j=~L+1,...,r
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It was shown [10] that if the schemes to both sides of the
interface are dissipative, (3.3.7) is stable. Crucial to the proof is
that the inequalities in (3.3.9) remain strict in the limit 1Z1— 1,
Z #1. To put the proof in the relevant context, let us assume
(3.3.7) represents two LW schemes under a sudden change of CFL number.
In this case L=R=1l=r=1, and if |Z|21 there is only one admissible mode

to either side of the interface.

w? = oz™d Ixl>1 j<0

v'j‘ = gz"y’ Iul< j>0 ©(3.3.12)
n = n .=

wj vJ 3=0,1

a =8 ax = By

leading to a contradiction x = u, since by assumption Ix|>»1 and
ful<i. Equation (3.3.12), thus, possesses no solutions with [zl21
except for the trivial solution and stability is established. In the
general case, (3.3.12)c is written as a homogeneous system of
Vandermonde type, to be solved for the coefficients o and Bk, which

again possesses only the trivial solution.

The stability of interface problems is closely linked to the
stability of IBVPs, whereby a folding principle may be used to convert
the two semi-infinite regions joined by an interface, to a single
semi-infinite region of twice the number of variables. The conditions
at the interface become BCS for the converted problem. These types of
problems have been studied by Trefethen [77]. See also [26,22].

Transmission and reflection analysis gets more complicated with
the increased number of admissible modes. Obviously, the more
admissible modes, the more (3.3.7) is prone to partial reflectionms.
Bearing with the example of the LW scheme under a sudden change of CFL
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number, we show in Appendix C that a right going wave is partially
reflected from the interface, and in fact

R = 0([¥]) T =1 +0([v])

vwhere [V] = %%(x*-l) is the jump in the CFL number. If thevchange in

v is gradual, [v] is small and reflections are weak. In addition, the

natural dissipation of the scheme rapidly damps out the reflectionms.

If the scheme used is non-dissipative, the reflected waves persist.
This can be observed in I1l. (III.10), taken from Trefethen [74], where
a wave of given time frequency fed through the LHB propagates through
an abrupt change of grid size.

WWI——

111. (111.10) - Undamped reflections under non-dissipative scheme
(Trefethen [74)).

teeee

tteee

In summary, although the conditions derivéd in section (3.2)
ensure full transmission of continuous waves, reflections‘of discrete
waves may occur, due to approximating the 8/0x term in (3.3.1) using
more than the 2 necessary grid points. In practice, owing to
dissipativity, the weak reflections are damped out very rapidly.

-(3.4) Slowing Down Waves in 2D

As a model system, consider the 2D Euler equations, linearised
about a state of rest u= v=0, and p=1, c¢c=1
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W, +A¥ + By =0 (3.4.1)
t X y

(=N o)
| R—
s <}

"
= 0O o

[=NeNe]

(==l
et

The transformation which recovers the Euler equations, given in
Appendix D, allows far field modifications of (3.4.1) to automatically
carry over to the Euler equations. ]

In a transformed set of coordinates (x',y’), rotated at an angle
¥ about (x,y), (3.4.1) takes the form

+

(Acosd + Bsinﬂ)ﬂx, + (-Asin?d + Bcosﬂ)zy, =0 (3.4.2)

xcosd + ysind

-xsind + ycos?d

[
n

Plane waves in an arbitrary direction & satisfy 8/8y' = 0, yielding

v, + M3 , =0 (3.4.3)
t x
0 cosd sind
M(3) = Acosd + Bsind = cosd O 0
sind O 0

The eigenstructure of M(3) is

-1 0 1
A = diag (-1,0,1) R(¥) = | cos® -sin® cos? (3.4.4)
sind cos¥ sind

By construction (3.4.4) recovers the eigenstructure of A for ¥=0, and
that of B for ¥=n/2.
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In the far field (3.4.1) is to be replaced by

¥+ M (Du ., =0 (3.4.5)
t x

* * *
M (8) = A cos® + B sind
x *
A and B are constant matrices chosen to yield the desired pattern of
wave fronts (Ills. (III.5),(III.6)). Following the 1D analysis, the

*
condition for full transmission of plane waves is that M (8) and M(J)

share the set of eigenvectors. The modified set of eigenvalues is
*
A = diag(-1,0,a) 0<ax1. (3.4.6)
* .
M (3) is obtained from the matrix product

* L |
M (3) =R(ANAR (§) =

[ a-1 a+l a+l

T —Z—COS'S —2—'511'1'3
3%1c058 E%lcoszﬁ i—;—lcosﬁsinv? (3.4.7)
éilsinﬁ a-1 os9sind a-1.in2s

L 2 2 2 )

* x

If A and B in (3.4.5) are to be constant coefficient ¥-independent
*x

matrices, M (¥) should only have linear entries in cos$ and sind.

This implies a=1 and we are back to square one.

Conclusion

’ * *
A general far field modification of the form (3.4.5) with A and B

constant coefficient ¥#-independent matrices cannot preserve the

eigenvectors in all directions 9.
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A sensible alternative is to drop the requirement that
eigenvectors are preserved in all directions, and to settle for
eigenvectors being preserved in one preferred direction, say the x
direction. By using a rotating system of coordinates this direction
can be made to coincide with the outward direction. In semi-bounded
channel flows, no rotation is needed, while in fully exterior
problems, the x-direction can be matched with the radial direction

since waves in the far field travel very nearly radially.

We return to system (3.4.1) and modify it by preserving the
eigenvectors in the x-direction, leaving B unchanged for the time

"~ being
*x
W +Avw +Bw =0 (3.4.8)
x y
a- a+l
|2 7 0
x x -
2" = R(O)AR™1(0) = a—;“i iil 0
0 0 0

*x
The characteristic polynomial of (3.4.8), det(kI-H (8)]=0 reads

ls-xz(a-l)cosﬁ—k(sinzﬂ + acoszﬂ) + Eélcosﬁsinzﬂ =0 (3.4.9)

An immediate result is that A=0 is no longer an eigenvalue of the
system except in the main directionms. In terms of propagation
pattern, the speed of the central wave A=0 (the shear wave in the
case of fhe Euler equations) depends on the speed of the deformed
acoustic envelope. I11. (III.11) shows a typical. pattern of such a
wave system.

To avoid such a coupling, the matrix B has to be modified as
well. Note that preservation of the eigenstructure of B 1is
unimportant, since this is the direction which is 1least likely to

propagate information at all.
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Y/t

X/t

111. (I11.11) - Typical envelope of wave fronts of (3.4.8) with
a=0 (Roe, private communication)

Considering a reduced quadratic characteristic polynomial
A2 - A(a-1)cos? - (acos®d + p°sin?9) = 0 (3.4.10)

The relation between a general gquadratic characteristic polynomial and
the conic it describes, given in Appendix E, confirms that (3.4.10)

represents an ellipse

2
[ _.__J 2 ~ (3.4.11)

centred at (i%l, ) with axes E%l and p fespectively. Different values

of p imply different stretching rates in the y-direction, and in
particular different curvature in the incoming direction. For the

modified curvature to match that of the unmodified circle at (-1,0),
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P == (3.4.12)

The importance of this second order match of incoming waves shall
become clearer when the eigenvectors are Taylor expanded about the
preferred direction. With this choice of p, (3.4.10) reads

22 - A(a-1)cos? - (acos3s + %lsina) =0 (3.4.13)

Returning to equation (3.4.1) we seek a modification
+Avw +Bw =0 (3.4.14)

* * *
vhere A 1is given by (3.4.8) and B is such that when combined with A

yields the characteristic polynomial

l[hz»— A(a-1)cosd -v(acoszﬁ + iglsinﬁ)] =0 (3.4.15)

Equation 3.4.15) describes a wave systenm consisting of a central wave
X
A=0 and an elliptic acoustic envelope (compare (3.4.13)). Let B be

symmetric, then the problem has a unique solution,

% *
W, +A¥W +Bw =0 (3.4.16)
t x y
a1 atl o o '/5;1
2 2
x| atl a-1 *+ | o o &t
S e R R B s 2
yatl  Ja-1
0 0 o 2 2 0

The envelope of wave fronts of (3.4.16) for various choices of slowing
down parameter 'a' is illustrated in I11. (IXII.12).
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(Y'yo)lt ‘

(x-x,)/t

N
v

111. (111.12) - Envelope of wave fronts of (3.4.16) for 0Sas1.

The complete eigenstructure of (3.4.16) is

( 3
€ 3%lcosﬁ - A

g:(a) Y E%lcosfi - €A X: = 2—;-g‘-cosﬂ - A

at+l .
——sin¢
L 2 J

€ sind
-y sind A- =0 (3.4.17)
Ya cos®

8
*
"

\
rc E%lcosﬁ + YA

7 “‘Tﬂcoss + €A 1’; %osw A

El-%lsinx‘}

*(9
53( )

\
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with
2
y = Ja;l c = {a;l AZ = (a;l] cos?s + a;l in29

Setting a=1 recovers the unmodified eigenstructure (3.4.4).

Finally, (3.4.16) is assumed to hold in a rotated system of
coordinates (x’',y’), inclined at an angle ¢ to the fixed set of
coordinates (x,y). Let u’ and v’ denote the velocity components in
the x' and y’ directions, and let u and v denote those in the fixed
directions, then the following relations hold

x’ cosd sind ) ({x
z' = Tw =
y' ~sind cosd |y

p p : 1 0 0
woo=|u w=|u T = |0 cosd sind (3.4.18)
v v 0 -sind cos?d

The modified equations in the fixed system read

* % * %
+A w +B w =0 (3.4.19)
-t x -y
A" = 7 (a%coss - B sin®) T
Bt = T'l(A*sinﬁ + B*cosﬁ) T

Specifying the value of ¢ implies slowing down the waves in that
preferred direction. A possible recipe for choosing ¥ for the problem
of flow past an aerofoil is depicted in I11. (III.5) p.60.
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k ?byﬂx
Y\ _ ;'7
-~ - Q\ -~
/ A\ - -
] \‘
L L' d /\ 6 )
(TR Xtix .
A N
~ \ K
P - ~ - / \
\
\

T11. (111.13) - A rotating set of coordinates (x',y’) and an
underlying fixed set (x,y).

Asymptotic expansion for small angles & about the preferred direction

By construction, eigenvectors are preserved in the preferred
direction. Close to that direction, however, they are not, and it is
interesting to see to what order they match. For that purpose we need
to compare the eigenvectors in (3.4.4) with those in (3.4.17),
expanded for small angle #. For (3.4.4) we find

r, ~ 11 -‘§ (3.4.20)a
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4 O 3\
& -9
=2
3
1 - =
\ 2 P
4 1 3
2
¢
L, |13
\ 19 J

for (3.4.17) we find

r 2 3

-1
3 a+l
- ’:Z“("z") + el
2 -1
* . -3 [atl
21_ 1 2[5[2] +7]
\8 P,
)
Se/va
*
r, = |-9//a
2
3
1-3

and the error for small angle ¥ is

0(8%)
Agi(ﬁ) = {0(s%) Incoming waves

0

(3.4.20)b

(3.4.20)¢

(3.4.21)

(3.4.22)a
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(0(9)
0(9) Stationary waves
L 0

(3.4.22)b

n

Ar (%)

0(9%)
0(82) Outgoing waves (3.4.22)c
0(9)

Ar (%)

We observe that incoming waves are matched to second order in ¢, which
is a result of the high order match (3.4.12).

*% X%k
Eigenstructure of A and B in (3.4.19)

For computational purposes we shall need the eigenstructure of

* - * *
* T 1(A cos? - B sind) T

|-
1}

(3.4.23)

Xk -1, % *
=T (A sind + B cosd) T

w
|

Since eigenvalues are preserved under a similarity transformation and
eigenvectors are related through the similarity matrix T, all we
really need is the eigenstructure of the matrices in brackets in
equation (3.4.23)

* *
The eigenstructure of (A cosd - B sind) is

r \
€ 2%1 cosd - YA

atl a-1

51(8) =5~ cos¥ - €A A, = =5~ cosd-A (3.4.24)a

n
-

a+l .
: -5 sin?d
e€sind
-ysind A =0 (3.4.24)p

L /2 cos? )

"

~

2
n
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re Egl cos? + 1A\
ga(ﬁ) = |7 §§l cosd + €A 13 = i%l cosd + A
: 5%1 sind J
with A% = {E%i}coszﬁ + Eglsinzﬁ
The eigenvectors of 2*" are g:(ﬁ) = T'igk(ﬁ).

* *
Similarly, the eigenstructure of (A sind + B cosd) is

r 3\
€ E%l sind - yA
= |y 3tl oo o - a1 -
;1(3) =73 sind - €A .11 == cosd - A
a+l
‘ 5 cosd )
( € cosd )
;2(8) = -y cosd A, =0
. v/a sin® |
( 3
€ E%l sind + yA
R _atl
53(8) =113 sind + €A A, = 3 cos? + A
atl
— cos¥
\ 2 7/
2 a+l 2 2 a+l 2
with A" = (—2—') sin8+——2—~cos 3.

*x %k * -
The eigenvectors of B  are gk(ﬁ) =T 1gk(x‘}).

(3.4.24)c

(3.4.26)
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(3.5) Alternative 2D Far Field Modifications

Two alternative far field modifications have been derived which .
are given below together with a brief account of their respective
attractive features. For convenience of comparison, the far field
modification proposed in the last section is repeated here. All
systems are of the form

* *
v, + A L +Bw =0

t y

and shall be referred to as System No. I, II and III.

System No. I

s 3
(a) a-1 atl o 0 0 '/5‘2“1
2 2
* a+tl a-1 * a-1
A = = T 0 B = 0 0 - (3.5.1)
o o0 0 fatt Sl
\ 2 2 /

{(b) Characteristic polynomial is

l[lz - A(a-1)cos? - (acoszﬁ + E%lsinzﬁ)] =0 (3.5.2)

(c) Eigenvectors in the =x-direction are preserved.

[

01
01 A = diag (-1,0,a) (3.5.3)
1 0

(= 2

(d) Eigenvalues in the y-direction (compare (3.4.12))

A = diag [ /3l o, /9-’2‘—1] (3.5.4)

(e) The acoustic wave fronts form an ellipse centred at (351, 0] with
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major and minor axes respectively §%l and E%l,
(f) The speed of central wave A=0 is decoupled from that of the
’ acoustic envelope.
(g) pressure does not satisfy a modified wave equation.

(h) Vorticity is not preserved.

System No. II

(a) a-1 a 0 atl

o
i}
w
[}
o O o

2
0 - (3.5.5)
0

(b) Characteristic polynomial same as for System No. I..

(c) Eigenvectors in the x-direction are not (yet nearly) preserved.

[y

A = diag(-1,0,a) (3.5.6)

(=T
= o O
(=T

(d), (e) & (f) Same as system No. I.

(g) Pressure satisfies a modified second order wave equation

a+l _
Pt (a l)pxt -ap - 5 pyy =0 | (3.5.7)
(h) Vorticity is preserved
(uy - Vx)t =0
System No. III
(a) (a-1 a1l ) ( atl )
3 5 0 0 0 5
*x -— *
2t = 9-;—1- 3—2-1- 0 5= o o 0 (3.5.8)
a-1 at+l
0 0 —_— _ 0 0
\ 2 J \ 2 J
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(b) Characteristic polynomial

1

[ —EZlcosﬁ][XZ—R(a-l)cosﬁ-(acoszﬁ+§i— sin® }] =0

2 2

(c) Eigenvectors in the x direction are preserved.

Eigenvalues are respectively
= [ a1
A= ( 1, 5 a]

(d) & (e) Same as System No. I.

(3.5.9)

(3.5.10)

()  The speed of central wave is coupled with that of the

acoustic envelope, i.e. 'moves' to the centre of the ellipse.

(g) & (h) Same as System No. I.

Transforming back to the 2D unsteady Euler equations (see

Appendix D) we obtain

System No. 1

H=5=c —3 ¢ 0

* _|atl1 a-1
A = 2 p ut 2 c 0
0 0 u

14 0 ZE%l pcz
B = 0 v a;l c
Ya+l 1 Ya-1 .
L 2 P 2 J
pc 0 pc 1 -pc O
R = |-1 1 R-1=2‘1)c 0 0 2pc

(3.5.11) a

(3.5.11)p

(3.5.12)



System No. II

[ wt(a-1)c apc”
* 1
A = =
5 u
Lo 0
[ a+l
v 0 3
*x
B = 0 v 0
1
= 0 v
. P
pc 0 apc
R = |-1 1
0 0
System No. III
rmi:_c .a+_1c2
2 2 P
S T
A = 2 p ut 2 c
0 0
\
v 0
*x
B = 0 v
atl 1
/29 ©
R and R~} are the same as in (3.5.12)

R-i

0

87

= @+l pc

{(3.5.13)a
(3.5.13)b
1 -apc 0
0 0 (at+l)pc (3.5.14)
1 pc 0
(3.5.15)a
(3.5.15)b

Setting a=1, all three systems recover the unmodified system (3.4.2).
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(3.6) Well-Posedness of the Far Field Modifications

To establish that hyperbolic systems of the general form
W, +Av + By =0 ’ (3.6.1)
1 X -~y .

are well-posed as IVPs, the matrices A and B in (3.6.1) should be
simultaneously symmetrisable by a non-singular similarity
transformation [88], ie there should exist a non-singular matrix §
such that
sas’!
SBS

symmetric (3.6.2)

1 .
symmetric

Obviously, this can only be achieved if A and B can each be separately
symmetrised. Hyperbolicity guarranties that this is possible and in
fact that A can be diagonalised by the similarity transformation

-1 .
R AR = A = diag (A r o) (3.6.3)

Following a general technique suggested by ([23] cited in [82],
we start by diagonalizing A using the transformation in (3.6.3). We

then consider the transformed B

R™BR (3.6.4)
and seek a diagonal matrix D = diag(di,dz,d3) such that

PR BRD = symmetric (3.6.6)

Under this further transformation, the transformed A remains diagonal,

hence symmetric and well-posedness is established.

We proceed in two stages; We first establish well-posedness in
the rotated system of coordinates. This amounts to proving that
Systems I,II and III, all of which have the form
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* *
W +Aw +Bw = 0 (3.6.7)
t X y ‘

are simultaneously symmetrisable,
*x -
sa's™?

x .
~SB S

diagonal ' (3.6.8)
1

symnetric

Well-posedness in the fixed system of coordinates immediately follows
* % *% .

on physical grounds. More formally, A and B in (3.4.19) can be

symmetrised by

1 1

*x _

SA S
*

SA S

*k .4 o
STA T 'S

*k _4q -
STB T 'S

cosd - SB*S'isinﬂ (3.6.9)

X -
1 sind + SB S 1cos«?

1

It is therefore sufficient to prove that (3.6.7) is symmetrisable for
systems I, II and III.

vSystem No. I

R and R™! are given by (3.5.12)

v %(7-e)c 0
R-BR = | (y-0)c v (7+€) ¢
0 giv+e)c v
(3.6.11)
4 d W
1 2
| %4 '2-(7"8) (.‘d—‘1 0
d d
p 'R 8*Rp = (y-€) e~ v (1+e)c5g
2 2
1 2
0 E(,-’-C) Ca— v
\ 3 /

is symmetric if
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2 2 '
A (3.6.12)
dz dz

~ System No. II

N

R and R™* are given by (3.5.14)

v =¢ 0
—1_% , .
R_-BR=|c v ac (3.6.13)
0 —c v

- - *
and D 1R 1B RD is symmetric if

2 2
41 G _ s (3.6.14)
o

System No. III

N |-

R and R™' are given by (3.5.12)

r » )

- *
R-pR = | LB, atl (3.6.15)
2 2
1 /a+l
L 0 273 ¢ v

2 2
El _ iﬁ 1 (3.6.16)
d T |d T2 :
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(3.7) Physical Validation of the Far Field Modifications

All three far field modifications proposed in section (3.5) are
based on a linearized form of the 2D Euler equations, (3.4.1),
stripped of their physical dimensions. The modifications are
performed to meet requirements which are purely mathematical, and
there is a danger that when carried back to the full 2D Euler
equations, the modified systems will lose their physical grounds. In
particular it seems wise to establish that the velocity components u
and v continue to display a vector-like behaviour with regard to
coordinate transformations.

System No. I

Equations (3.5.11) are assumed to hold in the rotated system of
coordinates (x',y’). Let the velocity components in those directions
be denoted by qR and qj respectively and let u and v be the velocity
components in the fixed directions. Then

qR = ucosd + vsind (3.7.1)
(,rT = -ysind + vcosd

To confirm that v and v transform in a vector-like manner, we
write (3.4.19) in cylindrical coordinates (r,9). By further assuming
axial symmetry we expect to recover the properties of each of the
individual modifications in the radial direction. In terms of (r,9),
equation (3.4.19) reads

0 (3.7.2)

I8

*%k x%k *%x | *%
L (A cosd+B smﬂ)gr + (-A sind+B cosﬁ)r

with

*k k% | -1 %
A cos®+B sind =T AT-=
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q 3

q’R+E%l c Eglcosﬁpcz 2%lsim?pc2
E%lcosﬁ% qR+E%lcoszﬁc i%lcosﬁsim?c (3.7.3)a
éilsinﬁl 2-_-lcos&sinx‘ic qR+§:lsin28c
L 2 P 2 2 J
X% k% -1, %
-A sind+B cos¥ = T BT=
4 3
q'T Zgglsinﬂpcz igglcosﬂpcz
-/gglsinﬂ% qj-/;zl in2%c ig%lcOSZGC (3.7.3)b
/Eglcosﬁ% /g§1c0528c qI+/§:lsin28c
\ 7

Using relation (3.7.1) and the symmetry assumption, equations
(ii) and (iii) in (3.7.3) can be combined into a single equation in

the radial velocity qR, yielding the reduced 2 x 2 system

- + +

b Faacl, a2 ) ) /g_lpczqn

+ 2 2 + 1 2 =0 (3.7.4)
R .a_+.];.!'. qR+.a;1_c qR r @:lc . ) )
N 2 p 2 . 2
The eigenstructure of the matrix in (3.7.4)

pc pe R R

R=11 1 A = diag(g -c, g +ac) (3.7.5)

recovers the expected properties, namely reduced outgoing speed

and preserved eigenvectors.

.System No. II reduces to

p qR+(a-1)c apcz P
R + l R R +
qa), o q qa),

atl 2 R
% [T"" q} =0 (3.7.6)
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System No. III reduces to

p 773 2 P p Yarl 2 R
+ M R A I (3.7.7)
R atl 1 R,a-1 R r °
atl ! &+ |4 0
t 2 p 2 r

Both (3.7.6) and (3.7.7) possess the expected eigenstructure in the

radial direction, this time with account for the physical dimensions.

(3.8) Numerical Experiments

(3.8.1) One Dimensional Tests

In the following 1D tests, it is assumed that the RHB is the
artificial boundary and waves travelling from left to right are
accordingly outgoing.

Test A  (Figure (III.1)a-q)

The governing equation is the modified 1D wave equation

n
+
[y

a-1

p (3.8.1)

-

i
[ -]
i)

+

2
a+l
u 2

t x

]

formulated as a first order system. The parameter 'a' controls the
speed of the right moving wave, assuming values between 0 and 1. The

eigenvectors and eigenvalues of (3.8.1) are

rR=|1 1 A = diag (-1,a) (3.8.2)
101

The numerical method is Roe's field decomposition [61,62] with LW

scheme applied to each characteristic field. No flux limiter is usead.
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"Initial data are

-o(x~-x )2 -0 (x-x )2
Pj = (i]e o [_i]e ! (3.8.3)

generating two waves moving in opposite directions with respective
speeds -1 and a. Clearly the choice of parameter 'a' does not alter
the propagation of the left running wave. The right going wave is
propagating at various reduced speeds a=1, 0.8, 0.5 and a=1-x. A
slight compression of the slowed down wave can be observed in the last

case due to the gradual change in the speed of propagation.
Test B (Figure (III.2)a-d)

The governing equations are the 1D Euler equations given in
(2.2.1) with eigenstructure given in (2.2.3). The equation is
replaced by the modified equation

+A (ww =0 (3.8.4)

* x .k _k %
where A = RAR A = dlag(li,xz,la)

.
A, = al(u-c)
*

A, =au

*
A, = a (utc)

The numerical algorithm is again Roe's field decomposition with LW
scheme and Superbee flux limiter on each characteristic field ([71].

Initial data correspond to the shock tube problem [68]
¥, = (1,0, 287 W, = (0.1, 0, 0.25)"

generating a left running expansion fan and a right running shock

followed by a contact discontinuity. Evolution with time of momentunm
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profiles is shown in figure (III.2), for the choices

a =a_=a_=1 (unmodified)

-]
n
[y
L
n

a, = 0.8, 0.5, 0.2

Comparison of the figures confirms that the left moving fan is not
distorted by the choice of a, and a. The right moving waves preserve
their respective profiles, yet propagate at reduced speeds.

Test ¢ (Figure (III.3)a,b)

The governing equations are the 1D Euler equations, and the test
is the one described in Section (2.2.2) Test A, where a high pressure
is fed through the LHB, giving rise to right moving shock wave and a
contact discontinuity. The method of solution is the same as in Test
B. Figure (III.3)a shows the evolution of density profiles under
several sudden changes of coefficients. Although theoretical analysis
predicts weak reflections from interfaces - across which the
coefficients change, the natural dissipation of the scheme results in
a very rapid decay of the reflected waves, and consequently to a

smooth passage of waves.

Finally figure (III.3)b repeats the same test with smoothly
varying slowing-down coefficients. The right moving waves are, in
fact, brought to a complete rest before reaching the RHB. This is

accomplished by letting a_ and a, be a decaying function of x. The

gradual slowing down pro:ess is the limit of a multiple interface
problem, as the interfaces are brought close together. It is known
~that mild instabilities may be strongly amplified by multiple
reflections from either boundaries or interfaces [77]. The problem is
particularly acute when the boundaries or interfaces are close to one
another, rendering the travelling time between them tend to zero. 1In
the present example, there is no evidence of such a process happening,
and the right moving waves are brought to rest gradually, without

generating any leftgoing disturbances.
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(3.8.2) Two Dimensional Tests

The experiments were conducted using the 2D linearized Euler
equations (3.4.1) for which three far field modifications have been
derived (3.5.1), (3.5.5) and (3.5.8). The results presented in this
section were obtained by (3.5.1). A comparison between the

performance of (3.5.1) and (3.5.5) is also presented.
Test A (Figures (III.4)a,b, (III.5)a-d)

Initial data is a Gaussian high pressure distribution centred at

the origin
2, 2
p(x,y,0) = (X ¥ (3.8.5)
u({x,y,0) = v(x,y,0) = 0.0

Due to symmetry, the problem is solved in the quarter plane (x20, y20)

with reflecting conditions on the boundaries x=0 and y=0.

“Second differentiation of the unmodified equations (3.4.1) shows
that pressure satisfies the 2D wave equation P .~ P .~ p&y= 0, for

which an exact solution exists in the integral form

* *
=1 98 px .,y (0) . *. *
pixyt) = =5 ] ax"dy (3.8.6)

2 2
rst t -r

Figure (III.4) shows the exact solution for the initial data (3.8.5),
obtained by numerically integrating (3.8.6) using Simpson's rule.

“The numerical algorithm uses a two stage space operator



97

splitting
%%k
(i) w +A w =0
t x
*x %
(ii) w, + B wy =0

In each direction, Roe's field decomposition is performed and the LW
scheme is applied to each characteristic field. The eigenstructure of
. k% * %k

A and B is given in section (3.4). Figure (III.5) presents the

numerical solution for various choices of radial speed.
a=1.0, 0.8, 0.6, 1-r

The important feature to note is that the outgoing waves do not
generate any incoming disturbances as they propagate. They leave
behind a quiet state which asymptotically approaches the undisturbed
state. A slight compression of the outgoing wave is observed 1in
Figure (III.5)d, which is due to the non-uniform radial speed (compare
Figure (III.l)d), Since our interest does not lie with the precise
details of the outgoing f£flow, this slight distortion does not
constitute a problem as long as no incoming waves are generated as a

result.
Test B (Figure III.6)a,b)

We repeat the same test and compare the performance of system No. I
and II. Recall that in the 1latter, eigenvectors in the radial
directions are not preserved, and as a result incoming waves are

generated vhen the outgoing ones are gradually slowed down.
Test C (Figure (IXII.7)a-b,Figure (III.8)a,c)

The test is similar to (3.8.5), with the high pressure now

centred at (x,y) = (xo,yo)
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e—G((x-xo)2 + (Y'Yo)z)

1]

p(x,y,0)

u(x,y,0) = v(x,y,0) = 0.0 . (3.8.%)

Under the unmodified equations, the expected solution is a circular
pressure wave decaying like 1//T as it moves away from (xo,yo) leaving
behind a quiet region. Figure (III.7) shows the exact solution.
Figure (II11.8) shows the numerical solution for a = 1.0, 0.8, 0.6,
vwhich slows down the outgoing waves vwhile not altering the incoming
ones. In fact what we see is precisely the envelope of wave fronts

originated at (xo,yo) under different slowing down rates.

poe e e il - — -

1 4

111. (111.14) - Envelope of wave fronts corresponding to figure
(111.8).
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(3.9) The Proposed Modification and Conservation

It seems only natural to expect that the proposed modified
systenm

W o+ A*(g)g =0 (3.9.1)
t x

corresponds to a modified set of conservation laws

wo+E (W) =0 ©(3.9.2)
t x .

*
The question is, can a flux function f always be associated with a
*
Jacobian matrix A ? In support of this expectation we have Euler's
Theorem on homogeneous functions ([12], p.108).

Definition

A function f(x,y,z) is homogeneous of degree k in x,y and z if
f (hx,hy,hz) = h*f (x,y,2)

Euler's Theoren

f(x,v,z) is homogeneous of degree k iff it satisfies

of of of _
x;}-{ + Y-a_j; + z-a-z = kf (3.9.3)

The vector of physical flux functions of the 1D Euler equations is

homogeneous of degree k=1 in the conserved variables. When extended
to systems, setting k=1, (3.9.3) reads

(3.9.4)

PR

cw=1f

That is, if f is homogeneous of degree k=1 in w, and A = 3f/0w, then f

can be reconstructed from its Jacobian matrix A by the product f = Aw.
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N ,

On dimensional grounds, the matrix A is homogeneous of degree k=0.
*

Let £ be defined by

£ =Aw (3.9.5)

*x
which by construction is homogeneous of degree k=1l. 1Is A necessarily

*
the Jacobian matrix of £ ? Let

* %

A = of/ow : (3.9.6)

by (3.9.4) it follows that

* * %
f =A w (3.9.7)
inplying
* % %k
Aw=A ¥ (3.9.8)

*x%k *
Unfortunately, this does not imply A = A, since W = (p,pu,e)T is

‘pot an arbitrary vector. The only conclusion from (3.9.8) is
* %k x
W € ker(A - R)

Sinple examples can be constructed for which

Since the existence of a modified flux function is not
guaranteed, we now turn to the Euler equations and check whether or
not the modified equations correspond to a modified comnservation law.

For simplicity, we consider the Isothermal Euler equations

p pu
{ ] + [ 2 4 2 } - 0 (3'9.9)
pu ), pu pc .

X
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the sound speed c is constant. The eigenstructure of the system is

(1, u-c) ll u-c

(1, utc) A

+
L 2 = Ute

* * *
For general eigenvalues A = diag(xi,lz)

2" = rA"R?
vwith
* 1 '&* + X*
A11 = 33_ l(u c) 2(u c)
* 1 k* + 7\*
Re=2e[™ %
*_L-*_* z-.z
A21 = 2c_(11 12)(u c )]
* 1] k* + x* +
Azz = 52_ 1(u c) 2(u c)

For the particular choice

A = AY = a_ (u+
. = ai(u c) , = alu c)

with arbitrary constants a,.a, we obtain

* 1 | 2 2
Ail = EE[(ai— az)(u ~-c )]
* 1
A= EE[(az— adu+ (a+ az)c]

If A* is to be a Jacobian matrix we must have

jA* dp = j A" d(pw = £
119P = 124PY = 1,

Integrating (3.9.12) we find

(3.9.10)

(3.9.11)

(3.9.12)
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(3.9.13)
IA:zd(PU) - -faiaz pgz + a’;az pu + h(p)
clearly
g(pu) = ai:;azpu ~ h(p) = a‘;ipc

yet no choice of ai and a, can match the first term unless a=a, which

recovers the unmodified equations up to a scaling factor.

Similar result is obtained if we choose

Conclusion: The modified equations are not modified conservation laws.

This result carries over to more complete formulations of the
equations of flow. Indeed if we write System No.II in conserved
variable, we obtain

1

P pu pux+(7-1);px

pul + |pu®+p| + (a-1) puu_+Mp_ =0
c 11

E . uB+up . (e+p)ux+7:I(1+H2 3 px)

Obviously by setting a=1 we recover the lost conservation.

The loss of conservation chiefly bears on flows which contain
shocks, where conservation is essential for accurate predictions.
Since the modification is to be applied only in the far field, where
the flow is not only smooth but in fact can be regarded as locally
linear, this may have only a minor effect, if at all, on the solution
in the inner region. From the practical point of view, the additional
term in (3.9.14) can be treated as a correction source-like term.

Schemes that are based on characteristic field decomposition (eg Roe
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[59,60], Van Leer [80], Osher [55]) can absorb the correction term
into the decomposition algorithm. Shock fitting techniques [eg The
A-scheme [54]) do not make explicit use of conservation and may also
absorb the correction term into a modified set of characteristic
equations.

(3.10) The Proposed Modification and Preconditioning

Preconditiohing is a technique applied to accelerate the
convergence of the transient solution to steady state. Starting from
initial conditions, the rate of convergence to steady state is
determined by how quickly one can march toward t — ®, ie by the size
of the allowable At. Bounded by the CFL condition for stability, it
is always the largest wave speed that places the constraint on At

At
A mixllkl <K (3.10.1)

with K a scheme dependent constant; In problems involving different
time scales, (3.10.1) seems particularly wasteful on the slow waves,
which could be advanced a lot faster. Furthermore, with most explicit
schemes, small time steps, 1ie small CFL numbers, imply very weak
dissipation and large dispersion errors, which further decreases

convergence rate to steady state.
As a remedy, one usually replaces the hyperbolic system
¥, +Ar =0 (3.10.2)
t x
with (Xk) the significantly different wave speeds, by
1

P w +Aw =0 (3.10.3)
t X

where P'1 is a non singular preconditioner. Clearly (3.10.2) and

(3.10.3) possess the same steady state solution, yet the time accuracy
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of (3.10.3) is destroyed by the introduction of additional time
derivatives. The rate of convergence to steady state of (3.10.3) now

is determined by
L PAgx =0 (3.10.4)

and P is chosen so that the eigenvalues of PA are of a éomparable
. *
size, ie that PA has a condition number of unity and Ilkl=1 for all k.

If, for example, all the eigenvalues of A are positive,

P=RA R Y=12"" (3.10.5)

The modification proposed in section (3.2) can be viewed as a

preconditioned system in that
+AwW =0 (3.10.6)
is equivalent to
P v +2w =0 (3.10.7)
t x
where PA ='A*. P is a non singular matrix and in fact
1

* .1 -
P=RAA R (3.10.8)

* x
with A = diag(xk) the original wave speeds and A =diag (Xk) are the

modified ones.
In 2D, the preconditioned system takes the form
P v +2w +Bw =0
=t ~x ~y

w +PAw + PBw =0 . (3.10.9)
t X y

*
Choosing a matrix P such that PA= A possesses certain features, eg a

* *
desirable eigenstructure, completely determines B , B =PB. Upon the
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one-dimensional choice (3.10.5) P=A '

B =A B (3.10.10)

The modifications proposed in section (3.5) are in a sense more
general than the class of preconditioned system of the form (3.10.9),
and are equivalent to

W o+PAW + Pzngy =0 (3.10.11)

where P1 and P2 are not necessarily identical. Obviously choosing
P1=P2 ensures that in the steady state, the system is fully
conservative. This property is lost under the present modifications
(see section (3.9)), which take care of the details of the transient
phase ie conforming to a strict physically 'realistic' wave pattern,
at the expense of not maintaining conservation.
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(4.1) Gradual Wave Attenuation in 1D - The Continuous Level

One dimensional disturbances maintain a constant profile as they
propagate, unless they interact with one another (eg a rarefaction fan
overtaking a shock wave). 1In contrast, multi-dimensional disturbances
decay as they move away from the origin (like r'“2 in 2D and r"l in
3D) and tend to zero strength as they approach infinity. Placing the
far field boundaries at a large distance usually renders all boundary
statements more accurate and results in weaker reflectioms. An
attractive far field modification is to force the waves to decay to
their far field values more rapidly than they naturally do, thus

. avoiding the need for large computational domains and excessive costs.

If the 1D wave equation

-2% =0 (4.1.1)

wtt XX

with solutions

o(x,t) = aeim(t+x/k)‘+ Beiw(t—x/k) (4.1.2)
is replaced in the far field by

Py kzwxx + 2c<pt + czw =0 (4.1.3)
it now possesses solutions

ox,t) = aeCX/Xeiw(t+X/l) + Be-cx/xeim(t-x/x) (4.1.4)

representing one dimensional waves exponentially attenuated in space.
The rate of attenuation, determined by the value of c, is the same for
all frequencies ®, so that the propagating wave does not distort or

disperse. The resulting interface problem is
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2 2
¢, ~ 2 pxx + 2c1<pt + (ci) =0 x<0
2 2 _ '
9., - ? Pt 2.9 + (cz) =0 x>0 (4.1.5)
o} _, = [0p/0x] =0
Respective solutions are
cix/A iw(t+x/A) —cix/X iw(t-x/2)
o(x,t) = ae e + 319 e %<0
(4.1.6)
czx/l iw(t+x/2) —czx/l i0(t-x/2)
p(x,t) = o e e + B.e e x>0
2 2
Continuity at the interface reads
o, + B1 = o+ Bz
(4.1.7)
c, + jw
-~ B = c +1io («, = B,)
A right running wave approaching x=0 from the left has
a1 =R az =
31 =1 BZ =
Solving for T and R we obtain
2(c. + iw)
T = 1 :
c1 + c2+ 2iw
c, - c, (4.1.8)
R -

- + c_+ 2iw
c, c, 21

If él # C, T and R are both complex expressions indicating that right
moving waves undergo a change of phase across the interface. Note
also that
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4(c1)2 + 402

= ' (4.1.9)
(c1+cz) 2+4(,o?‘

and for c1< c ITI< 1 consistent with the choice of attenuation

2!
rates. By symmetry we have for left running waves

2{(c_ + iw)
T = z
c1 + c2+ 210
c, - c1 (4.1.10)
R =

c, + c2+ 2iw
Allowing c¢ to vary with the space coordinate x in a, say, piecewise
constant manner, gradually increases the rate of decay but at the same
time creates more interfaces across each of which partial reflections

occurs.

This was the approach taken by Kosloff and Kosloff in [46], and
its main drawbacks are:(a) Waves are not fully transmitted across
interfaces, (b) As the distinction is not made between incoming and
outgoing waves, the same attenuation rate is applied to both, which
immediately renders this modification inapplicable to a certain class
of time dependent problems as discussed in the introduction to Part
II. In the next section an alternative modification is proposed which

is advantageous in both those respects.

(4.2) A Remedy to Partial Reflections at Interfaces

; As seen in Chapter III, a better way to go about the problem of
partial reflections is by considering first order systems instead of

second order scalars.
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If the advection equation (1.2.1) with solution (1.2.2) is
replaced by

W o+ A +cAw=0 (4.2.1)
t x
it now possesses solutions
wix,t) = e ° f(x-2t) (4.2.2)

This readily generalizes to first order systems. The systenm

with solutions

N .
Wiz t) = ¥ a ei@E%/A) r, (4.2.3)
k=1
is replaced by
W, +Av +Cw=0 (4.2.4)
t X
The matrix C is chosen so that solutions are now of the form
N -c X iw(t-x/%k)
wix,t) =) « e e r, (4.2.5)
k=1 ’

By considering simple wave solutions it is found that C should possess
same eigenvectors as A, with respective eigenvalues A = diag(ckkk).
It can thus be easily constructed

C = RAR™? (4.2.6)

with R the matrix of eigenvectors of A. The resulting interface

problen reads
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w, + Aw + C1H =0 x<0
w +Aw +Cw=20 x>0
[E] x=0 =0
with
-1 .
C1 = RA1R A1 = diag (cklk)
-1 .
C2 = RAZR A2 = diag (dkkk)
The respective solutions are
N -C X
k
wix,t) =) e a (t-x/A ) r %<0
k=1
N —dkx
wix,t) = ) e B (t-x/2 ) r x>0
k k k
k=1
Continuity requirement becomes
N N
k? w (t) r, = E_zlﬁk(”-%

1 k
Uniqueness of representation again implies

ak(t) = Bk(t) k=1,...,N

-and full transmission of all waves is established.

(4.2.7)

(4.2.8)

(4.2.9)

Like in the previous chapter, formulating the problem as a first

order system rather than as a second order scalar,

offers a wider

choice of far field modifications as a count of degrees of freedom

will confirm. Some of these modifications are no longer equivalent to
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a modified wave equation, including the one presented here. ~The
proposed modification appears advantageous to the one in [46] in two
respects:

(a) Full transmission of the analytic solution is guaranteed by
construction.

(b) Different attenuation rates may be chosen for different simple

| waves, including the choice of not attenuating certain waves at
all. Thus we can identify and selectively damp the outgoing
waves only.

(4.3) Gradual Wave Attenuation in 1D - The Discrete Level

The analysis required in this section is nearly identical to the
one carried out in section (3.3), and will therefore be discussed very

briefly. The problem to analyse is

u + 21 +Acu=20 x<0
t X 1
u +2A +Acu=0 x>0 o (4.3.1)
t X 2
[ul 0 =0
vwhich is approximated by
n - n 7
uy = P L 30
k=-1
n X L 1}
v, = Y Bkvj+k ; j>0 (4.3.2)
k=-L
n n

uj =v j ==L+l,...,r
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First and foremost stability of (4.3.2) needs to be established. Only
then the question of reflections may be addressed. As pointed out,
full transmission of discrete waves across an interface does not
automatically follow from full transmission of continuous waves, and
in fact in most circumstances, discrete waves do suffer partial,
though weak, reflections. This is due to the increased number of

modes admitted by the discrete dispersion relation.

As shown in section (3.3), if (4.3.2)a and (4.3.2)b are both
dissipative, their match across the interface is stable [10]. In
Appendix C, we show that for a particular 3-point approximation to
(4.3.1), both (4.3.2)ab are dissipative hence stability follows. We
also show that for the same approximation, transmission and reflection

coefficients are respectively

T=14+ 0[c])
(4.3.3)
R = 0([c])
where [c] = c,-c, is the jump in the attenuation rate across thé
interface.

In practice, however, the reflected part is of small amplitude
and of high wéve number and is very rapidly damped out. In the
numerical results, presented in section (4.6), there is no evidence of
any noticeable reflections at all.

(4.4) Gradual Wave Attenuation in 2D

Consider the 2D linearised isentropic Euler equations

W'+ AW + Bw =0 (4.4.1)
-t X y
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P 01 0 0 0 1
W= |u A=1]1 0 0 B={0 0 0
v 0 0 0 1 0 0

Following the derivation in section (3.4), plane wave disturbances in
a direction x’' inclined at an angle & to the positive x direction, are
governed by the equation '

W, + M)y, =0 . (4.4.2)

t

0 cosd sin?d
M(8) = Acosd + Bsind = | cos® O 0
sind O 0

The eigenvectors and eigenvalues of M(¥d)

-1 0 1

R(3) = (51'2-’53) = cos¥ -sind cos?d (4.4.3)

2
sind cosd sind

A = diag (-1, 0, 1)

which by construction recovers the eigenstructure of A for ¥=0, and
that of B for ¢ = g. Equation (4.4.2) possesses exact solution of the
form

3 iw(t—x'(ﬁ)/kk)
wix,t) = Yae r, (9 (4.4.4)
k=1

with x' (%) = xcosd + ysind, r and lk given by (4.4.3). In the far
field (large x"), (4.4.2) is replaced by

wot M(ﬂ)gx, + C(HNw =20 (4.4.5)
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and by the one dimensional analysis of section (4.2)
C(8) = RMART(H A= diaglrc,) (4.4.6)
Exact solutions of the modified system are of the form

3 —ckx' iw(t-x’/lk) ,
w(x,t) = Yoe e r, (%) (4.4.7)
k=1

des¢ribing plane. waves, exponentially attenuated as they propagate in

the x’ direction. The matrix C(¥9) is given by

c_-¢C c_+c c_+c

3 "2 3 1 3 71 .,
—c0s?d ————=sind
2 2 2
c_+c c.c c_-c
c(9) = —23—10058 —gilfcoszﬁ —35—3cosﬂsin8 (4.4.8)
c_+c ' c_~c c_-c¢
—gi—lsinS —gf—lcosﬁsinﬁ 32 lsinzﬂ
\ V

The presence of entries in (4.4.8) which are not linear in cosd and
sind imply that C(3¥) cannot be of the simple form

c(d) = Alcosﬁ + Bisinﬁ (4.4.9)

unless we choose ¢ =c=c, ie same decay rate for both incoming and

outgoing waves. The far field modification in that case reduces to

Wt Ay + Bgy + c(Acos¥ + Bsind)w =0 (4.4.10)

7

However, there is no need to restrict all waves to the same rate of

decay and C(¥) can remain in its general form, yielding

Ww +A¥ +Bvw +C(3)w=0 (4.4.11)
t x y
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The choice of ¥ is again problem dependent, and is to coincide with
the direction of the main disturbance at each position. (See section
(3.1) for details).

It is interesting to note, though perhaps not surprising, that
(4.4.11) emerges again, if the equations are modified in one preferred
direction, say the x-direction, and then rotated so that the preferred
direction coincides with a general direction indicated by &. The
modification then takes the form

W, + Ry + By + T7'c(0) Ty = 0 (4.4.12)

T is the rotation transformation (3.4.18), C(0) = R(O)AR'i(O) with
R(0) given by (4.4.3) setting & = 0, and A = diag (cklk). Explicitly

( 3
c,-c, c_tc .
2 2
c_+c c_-c
_ 3 1 3 1
c(0) = 2 2 0 (4.4.13)
| o 0 0

and it can be vetified that
c(® =71 'co)r (4.4.14)

Finally, since the modification is based on a 1-dimensional
argument, we verify that properties are recovered in genuinely quasi
one dimensional problens. Indeed, transforming (4.4.11) into

cylindrical coordinates (r,¥) and assuming axial symmetry, we obtain

c_-C c_tc
p 0 1117 32 1 7t Lole
+ + r
o +c . =0 (4.4.15)
1 0 q 3- 1 q :
? 2 2

t r
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here g = ucos? + vsind is the velocity in the radial direction.

Equation (4.4.14) has general solutions of the form

representing travelling waves in the positive and negative radial
direction which, which in addition to their natural decay, are further

exponentially attenuated with decay rates c, and c,.

(4.5) Combination of the Two Approaches

The two proposed far field modifications (a) slowing down and
(b) gradually attenuating the outgoing waves, are clearly‘ closely
linked to one another. The respective modifications are constructed
to conform to a desirable far field wave structure. In both cases the
outgoing waves are identified using characteristic field
decomposition. Preservation of simple wave structure ensures full
transmission of all waves across interfaces. Both approaches can be
combined into a single far field modification under which the outgoing

waves are slowed down and attenuated at the same time.

Indeed, the 1D system

* *
W +Aw +Cw=0 (4.5.1)
t X
* -1 * . *
A =RAR A = dlag(kk)
* -1 * . *
C =RAR A = d1ag(cklk)
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*
where the Xk are the modified speeds and ¢, are the attenuation rates,

possesses exact solutions

ak(t-x/x*) r, (4.5.2)

and full transmission of all waves is easily verified. In two space

dimensions, consider the system
+ AW +Bw +Cw=0 (4.5.3)

* x
with A and B given by any of the modifications of section (3.5), R,
*
Xk and c, are the eigenvectors, the modified speeds and the

attenuation rates in the x'-direction respectively and

* *x -1 * \ *
C =RAR A = diag (ckkk)
Viewed from the x and y fixed set of coordinates, equations (4.5.3)
take the fornm

* % * %k * %k
W +A w +B w +C w=0 (4.5.4)
t x y
* % -1, % *
A =T (A cos? - B sind)T
* - * * )
B * s T 1(A sin& + B cosd)T
*% -1 %
C =T CT

T is given by (3.4.18). Numerical results for the combined far field
modification in both one and two space dimensions are presented in the
next section.
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(4.6) Numerical Experiments

(4.6.1) One Dimensional Tests

In the following one dimensional tests, it is assumed that the
RHB is the artificial boundary and waves travelling from left to right

are accordingly outgoing.
Test A (Figure (IV.1)a-c)

The governing equation is the advection equation (4.2.1) with

initial data

2
w(x,0) = e 71X %) (4.6.1)

The numerical scheme is a LW adaptation to (4.2.1)

(4.6.2)

- cAt [1— 2 Atc}w'? + pcAt (w'.' - W, ]
2 j j+1 j-1

The interface is located at a given grid point j=j0 to the right of
which waves are attenuated. Results are for ¢ = 0.00, 0.01, 0.02.
Reflections from the interface, although theoretically present, are
unnoticeable. By the time the wave has reached the RHB, it is of

practically zero strength.
Test B (Figure (IV.2))

The governing equations are the 1D wave eduation written as a

- first order system
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_ (4.6.3)
A= diag(cklk)

The method of solution is Roe's field decomposition, with LW
scheme applied to each characteristic field. The non-homogeneous term

in (4.6.3) is projected onto the eigenvectors of A, generating waves
of strengths

ptu
2

p - e-()(xfxo)2 1 + e-()(x—x‘l)2 1 (4.6.4)
u 1 : -1

The 1left running wave 1is undamped c1=0,0, while the damping
coefficient for the right moving wave is c, = 0.02.

Test C (Figure (IV.3)a,b)

The governing equations are the modified 1D isothermal Euler
equations (3.9.9)

W, +t AWy + Cw(v-w ) =0 (4.6.5)

The method of solution is the same as in Test B, for which

™
]

cj(u-c)[(p-pm)c - pylu-u)l/2c
(4.6.6)

™
[}

cz(u+c)[(P-P&)c + plu-u)]/2c
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Initial data is

-0(x-x )2
0
Py, t €

p(x,0)

u(x,0) + c-log(p/pm)

giving rise to a right (left) running compression wave gradually

steepening up to form a shock wave. Damping coefficients are

c, = 0.00, c = 0.03.
Consequently, the right moving wave (figure (IV.3)a) is damped out
before the shock wave has been formed. Note that the steepening up

and propagation of the 1left moving wave (figure (IV.3)b) is not

affected by the far field modification.

(4.6.2) Two Dimensional Tests

Test D (figures (IV.4)a-d,(IV.5)a,b)

.The governing equations are the 2D linearised Euler equations
(4.4.11) with initial data (compare section (3.8.2) Test RA)

2 2
p(x,vy,0) e 0 YY)

v(x,y.0) = 0.0

u(x,y,O)

The numerical algorithm uses a two stage space operator splitting. In
each direction Roe's field .decomposition is performed. The rate of

attenuation of the outgoing waves is

c3 = 0.0, 0.01, 0.02, 0.03
resulting (figure (IV.4)) in strong decay of the outgoing wave.
Figure (IV.5) shows the evolution with time of pressure profiles along

the main diagonal for the same problem, with c, = 0.00, 0.03.
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Test E (Figure (IV.6)a,d)

The two far field modifications are combined. The same test

problem is repeated with

slowing down coefficient a

0.8

attenuation rates c 0.0, 0.01, 0.02, 0.03

[}

Test F (Figures (IV.7),(IV.8))

In this test, the steady state solution for flow past a circular
arc in sought by means of integrating the 2D unsteady Euler equations
until convergence is obtained (nodal changes < 10'6). The circular

arc is of normalised 1 unit length and of 10% thickness.

Grid features: The numerical grid is aligned with the arc with
32 evenly spaced cells on the bump and 16 linearly stretching cells
over one chord length to either side of the bump and in the vertical
direction, at a stretching ratio of 3. This part of the grid remains
unchanged. To obtain a larger domain of computation, additional
points are inserted, using geometric expansion at a rate of 10% on
either side of the basic grid and in the vertical direction (See Ill.
(Iv.1)).

The method of solution and BCS: The method of solution is
Hall's variation of Ni's scheme [29], which is a cell vertex scheme
with LW time integration. In all tests, the far field boundaries are
subsonic. The boundary procedures used are the ones recommended by
Hall, adapted to the extended 4x4 system. At inflow, tangential
~velocity, entropy and specific enthalpy are specified and normal
velocity is extrapolated wusing one-sided version of the interior
scheme. At outflow, velocity components and enthalpy are extrapolated
using the interior scheme and pressure in specified. On the solid
wall, a simple tangency condition is applied [29].
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2D Grid for Flow Past a Circular Arc

AERE
=111 11
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111. (IV.1) - Numerical grid for 2D flow past a circular arc

'Accuracy' study: To assess the effect of the far field
boundary procedures on the accuracy of the converged solution, a
series of tests were conducted with varying boundary distances. The
solution is considered ‘'accurate' when further enlargement of the
domain gives rise only to small changes (of order '10'4) in the

converged values of the computed drag and lift coefficients

¢ - (p,- pIOY,
D 2
i pmuw
(p,- py)lx,
C =
L 2
i p@uw

Numerical tests: Fully subsonic (M&= 0.5) and transonic (M6= 0.75)
.tests were conducted. The results are summarised in the table below.

Note that the overall number of iterations increases with the grid
size. This is due to the increased number of error modes that need to
be damped before steady state can be reached. Yet, the amount of work
per node decreases, which is partly a result of the far field BCS

becoming more accurate as the boundaries are moved further out.
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(5) (11)
depicted in figures (IV.1) and (IV.2) respectively.

Solution of tests and were considered accurate and are

Test Boundary|{Numerical c c No. of iterations
Number |distance grid»size L D to steady state
|
A&f 0.5
1 ~1.0 65x17 |-0.281787 |0.001360 5390
2 2.64355 85%x27 |-0.313781 |0.000478 5168
3 4.70732 97x33 -0.317904 |0.000363 6358
4 6.90649| 105%37 -0.318964 (0.000353 6503
5 10.12629| 113x41 -0.319406 [0.000358 6418
6 12.25938| 117x43 -0.319529 |0.000342 6289
M@F 0.75
1 1.0 65x17 -0.355310 {0.005332 1673
8 2.64355 85x27 -0.437400 {0.012209 3919
9 4.707321 97x33 -0.450744 (0.013626 4540
10 6.90649| 105x37 -0.460982 10.014580 5342
11 10.12629| 113x41 |-0.462811 |0.014788 5528
12 12.25938| 117x43 }-0.463335 |0.014851 5879
Tabel (4.6.1) - Converged values against boundary distance

Gradual far field damping was applied to tests (5) and (11), and
the influence of boundary thickness and rate of attenuation was
studied (See Tables (4.6.2)a,b),

indicates the number of points across the modified region; Direction

In the tables, Boundary Thickness

of Modification indicates the direction in which waves were damped (X
Table
(4.6.2)a is for the transonic case, ¥ = 0.75, and Table (4.6.2)b is

for inflow and outflow boundaries and Y for top boundary).
for the subsonic case, M= 0.5. The first line in each table refers
to the case where no far-field damping was applied, and should serve
In all

cases, the far field damping accelerates convergence to steady state.

to assess the performence of the far-field boundary treatment.

Comparison of Test (1) and Test (6) in Table (a) reveals that in the
the of to

considerably reduced by some 35%.

transonic case Number Iterations steady state was

N were far

Absolute changes in both

Relative changes in c

less than 1% and those in c, were within 2%.
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were far less than 1%. These very small changes in the solution may
be attributed to very weak reflection mechanisms due to change of
coefficients in the far field. In the fully subsonic case, the number
of iterations dropped quite dramatically by over 60% (compare Test (1)
and Tests (3) and (4) in Table (b)), while the normal force and drag
coefficients changed by less than 1%. While far-field damping is
relatively insensitive to the damping strength and to the boundary
thickness, its efficiency in accelerating convergence depends strongly
on the direction of modification. The results indicate that it is
mostly reflections from the top boundary that inhibit convergence
wvhile inflow and outflow boundaries generate weaker reflection
mechanisms. Applying far-field damping in both X-Y directions proved
best in both transonic and subsonic cases. An explanation as to why
far-field damping is more efficient in the subsonic case than it is in
the transonic case, is provided by noting that reflections from
far-field boundaries are only one of the mechanisms that inhibit
convergence to steady state. The formation of shock waves is another
such mechanism. tonvergence rate in the transonic case is influenced

by both mechanisms, hence the reduced effect of far-field damping.

Test| Damping| Boundary Dir, Number of c c

No. Coef. Thickness| of Mod. Iterations N D

1 0.0 0 - 5528 -.46281 .01479
2 0.5 6 X 5886 -.46443 .01515
3 0.5 6 Y 4799 -.46116 .01462
4 0.4 5 Y 4926 -.46158 .01466
5 0.6 5 Y 4884 -.46144 .01465
6 0.5 6 X-Y 3621 -.46355 .01510
7 0.4 6 X-Y 3646 -.46355 .01510

Table (4.6.2)a - Parameter study of far-field damping
Transonic case.
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Test| Damping| Boundary Dir. Number of c c
No. Coef. Thickness| of Mod. Iterations N D

1 0.0 0 - 6418 -.31941 .00036
2 0.5 6 X 5573 -.31976 .00036
3 0.5 6 X-Y 2404 -.32007 .00036
4 0.4 6 X-Y 2418 ~.32005 .00036
5 0.5 6 Y 3192 -.31985 .00036
6 0.4 5 Y 3383 -.31995 .00036
7 0.5 5 Y 3352 -.31997 .00037

Table (4.6.2)b - Parameter study of far-field damping
Subsonic case. '
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CONCLUSIONS
This work was devided into two parts.

In PART I, the problem of far-field artificial boundaries, arising in
external flow calculation, was introduced and discuséed. The
conventional approach for treating far-field boundaries, namely
deriving BCS of absorbing type, was presented. Mathematical
backgroung in the theories of Well-Posedness and Stability of mixed
IBVPs was also presented, familiarity with which is necessary for
understanding the philosophy in constructing such BCS. A survey of
existing recipes for absorbing BCS was conducted. PART I concluded
with a thorough numerical study of the efficiency of several, widely
used, BCS, in absorbing outgoing disturbances. The performance of
these BCS strongly depends on key numerical parameters such as local
CFL number, local wave number and grid stretching. This dependence
was theoretically analysed and cbmputationally studied. The
limitations of all boundary recipes were exposed. It was found that
under conditions prevailing in the far-field, ie small CFL numbers and
small local wave numbers, strong reflections may occur and that grid
stretching tends to enhance reflection mechanisnms. Although
classified as higher-order effects, these reflections may reach

intolerable levels as demonstrated by the numerical results.

In view of these results, PART II presented a less conventional
approach for treating reflections from artificial boundaries, which to
some extent circumvents the problem of reflections from the boundary
itself. It was proposed to introduce an outer 'sponge' layer of
one-way absorbing character, in which the governing équations are
modified to conform to a desirable far-field behaviour. Two such
far-field modifications were presented: (a) Slowing down the outgoing
waves and (b) Damping the outgoing waves. The two are closely related
in that both require very similar chracteristic field analysis and
make use of simply wave theory. Under the proposed modifications, the

propagation of the incoming waves is unaltered while the outgoing
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waves either do not reach the boundary (a), or by the time they do so,
they are of practically zero strength (b). Reflections from the
actual boundaries are thus avoided. Conditions were derived to ensure
that no reflections are generated at interfaces due to change of
coefficients in the governing equations. The modifications were
analysed and were - shown to be mathematically well-posed and
numerically stable. They were extended to 2D and tested in a variety
-0of 1D and 2D time-dependent test problems. Both were found to offer
gains in accuracy of transient solutions, due to reduced 1levels of
reflectioné from far-field boundaries. Although originally designed
for time-dependent problems, far-field damping was successfully
applied to 2D steady-state Euler calculations and was found to
dramatically accelerate convergence of transient solutions to
steady-state 1leading to «costs reductions of between 35%-60%.
Far-field damping is expected to accelerate convergence to
steady-state, probably in a 1less dramatic way, when combined with
other acceleration strategies such as multigrid and enthalpy damping.
Finally, the proposed modifications can be extended to 3D along very
similar lines to the 2D extentions and if fact retaiﬂ a very similar
structure.
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Appendix A: Roe's Boundary Conditions

Roe's far field BCS are demonstrated in two simple cases. The
reader is referred to [64] for extensions to 2D and 3D . Euler
equations. The strategy is to obtain one outgoing characteristic
equation from global considerations and to substitute it into the
governing equations to yield another outgoing characteristic equation.

~In the case of the 1D wave equation
p 0 1 p _ '
+ =0 (A1)
u 1 0 u
t X )

Second differentiation yields p, ~ P, = 0. Hence a right moving
pressure wave approaching the RHB must be of the fornm

p(x, t) = f(x-t) (A2)
satisfying
p tp =0 (A3)a

u +u =0 (A3)b

Both (A3)ab are outgoing characteristic equations. Generalized to
the 1D Euler equations, (A3) reads

p, * (u+c)px

u + (u-cu (24)
t X

The 2D linearised Euler equations with axial symmetry read

NI WARS

r
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Second differentiation shows that

1 —
pt.t - prr - 'r_ pr - 0 . (As)
An outwardly radiating wave satisfies (to order (r °’%))
Pp,
PPt =0 (A8) a

Substituting into (RA5) gives

2¢ - ( pp))
9 * q. * 2r =0 ‘ (A7)

Both (A7)ab are outgoing characteristic equations.

Discrete one-sided approximations to either (A3) or (A7) should
be stable since they use the correct domain of dependence. No
assumptions are required on the state prevailing outside the

computational domain.
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Appendix B: Adaptation of the LW Scheme to Non Uniform Grids

Let a non-uniform grid be defined by ij+1 = xj+1— xj and assume
that wj occupies the interval
Ax,_1 + Ax
1 =2 , (B1)
j 2 »

Consider the LW appfoximation to the advection equation (2.2.1)

=
il

n n n n n
v (Mt/Ij)[o:j_l(wj wo ot Bj(wj+1 wj)] (B2)

x = — B = —3 v = Mt/bx,

Using the consistency relation aj + B 1, equation (B2) can be

written in conservation form

W™ - wMI, = - At(f? - £" J (B3)
J b)) Jf% J-%
n n n
= 2 +
fj+% (“jwj ijj+1)

and conservation of the marching procedure immediately follows.

Definition:

The scheme is said to be p—t-E order accurate if it recovers polynomials -

of degree p with an error of order (Ax)p+1.

Let theidata be
W' o= (x—xj)p (B4)
For which the exact solution after one timé step is
n+1

W) = (-aat) P ‘ (B5)

Substituting (B4) into (B3) gives
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Wt = (xAt/L.)[‘a. (-ax . )P+ B.(Ax.)p] , (B6)
j J ji-1 ji-1 J J

th
For p— order of accuracy

n+1
)

W
()|

- w7 = ofam) P | ' (B7)

For p=1 (B7) is an identity. For p=2 the error is Ax? - Ax?_l, which
for a geometric grid expansion

&x /Ax =1+ 0(Ax%) (B8)
j+1 J
is 0(Ax)>.  The present adaptation of the LW scheme is therefore

conservative and retains second order accuracy on geometrically
expanding grids that satisfy (B8).
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Appendix C The Discrete Interface Problenm

I. Slowing down the outgoing waves

Consider the discrete interface problen

2
n+1 n Pl n n 12 n n n .
W =W, - =|W -W + —l|w - 2w+ W <0
j . 2( j+1 j—1] 2 ( j+1 j j-1] J

(c1)

v v
n+1 n i n n 1 n n n .
= - — + - + >
v, v 3 [v v J [v.+1 2vj vj_l) >0

o]

= »'=0’1
W vj J

v and v1 are the possibly different CFL numbers to both sides of the

interface. A single frequency mode is of the form (3.3.11)

w’; = 2" (a0 + B_xi) §<0
_ (c2)
vi=z" (' + ) >0
with
. 1 [ 2 e A
X1 = m _D + Z 1 A ]
.1 [ 2 _ A
x, = S _u +Z2-1+4A ]
_ . (c3)
_ ____]_.____ 2 ~ _ At
B =+ Y tz-1-4A
171 L .
= 1 [ 2 _ +
My = oo [t ET LA

(A7) (1-2) % + (2z-1) %

(8% 2

(1-2) % + (22—1)uf
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It follows from (Cl)3 that

A" +B =1+t
) . R (c4)
A +B'x, =RApu +Byu

A right moving X mode

- R + (C5)
B =1 B = .
gives
X X U_-x
172 2 "2
T = - R =-— (C6)
S KTH, Ham%y
Denote by [V] = p,P- To first order it follows from (C3) that
p/x. = 1+ c[l] +o(?
2' "2
_ _2v+l 1+(27-1) /24
v(v+1) p24z-1+4"
Also
T = kK, _ kX,
kM, k= (u/k )k,
LT
xi—xz-csz[v]
' x, -1
= [1-c vy [V]] (€7
172
%,
21+ co—m [V]
1 72

It follows from (C4)
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II Gradual Attenuation of Outgoing Waves

Assume that the finite difference
interface problem (4.3.1) is using time
following two half steps

(I) u + Au
t x

il n
o o
S —rt

(II) u, + kc1u

(1) v, + kvx

n L}
o o
N —r

(11) \ + kczv

(C8)

approximation to solve the

operator splitting with the

x<0

(C9)

x>0

Assume further that (I) is approximated by the LW scheme and (II) by

the first order forward differencing. The discrete interface problenm

then reads

- 2
n+1 n Pl n n P

v =C_|v., - =|v - + = |V
j 2l j 2[ j+1 j-l] 2 [
n n

u = v

n n n

je1 " Zuj + u _1]] 3<0

n n n

je1 " v+ vj_l)] 3>0
j=0,1

with € = (1 - c At) and C, = (1 - c,At). Since |c1|s1 and |Cz|sl,
both schemes in (C10) are dissipative and stability of the interface

problem follows. Single frequency modes are of the form (C2) with
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7 - Ci(l-vz) -4
x1 = C1u(u+1)
7 - c1(1-u2) + A
Xz = Clv(v+1)
(c11)
7 - Cz(l-vz) - a*
By = CZV(D+1)
7 - c2(1-u2) + At
My = I
-y2 _ _ 2 2 _
(A)" = (Z C1) + C1" (22 C1)
2 _ _ 2 2 _
(A7)" = (2 cC)"+cCp (22 Cz)

Continuity requirements imply (C4) with (C5) and (C6) to follow.
Denote by [C] = C2 - C1’ To first order it follows from (C11) that

2
pz/x2 ~ 1+ d[C] + o([C])

(z-C.) (v3-1) - (1-pHA~
d = 1

1
(z-c, (1-v"))A" + (A2 ¢y

Following (C7) and (C8)

-3
I

1 + 0([C])

o
n

o([c])
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Appendix D: Linearizing the Euler Equations

The 2D linearized Euler equations in primitive variables (p,u,v,s) is

P c2 0 D v 2

p 6)1 © © s ] pwc(n ‘p
ul + p& u, O ul + {0 v, © ul = 0 (D1)
-1
v, 0 0 u v/, Pe 0 Ve v v
with the entropy equation completely decoupled.
s, tus + VeS, = 0 (D2)
under the coordinate transformation
E = x-ut
= y-v t (D3)
T = c&t
equation (D1) becomes
b p
ul + [a7? 0| ju| + ul =0 (D4)
v 0 v -1 v
T 13 n
with A = P,C,- By further transformation of the dependent variables
P 0 P
‘u| = u
v 0 v

we obtain system (3.4.1). Far field modifications of (3.4.1) can be
carried over to the Euler equations by the inverse of the present
transformation, and systems I, II and III are easily obtained.
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Appendix E: Point Equation and Line Equation of a Conic

The line equation of a conic is a representation of the conic in
terms of the envelope formed by its tangents. Let a general line be
described by

nx +my+1=20 : : (E1)
and consider the family of such lines that satisfy

2

An° + 2Hnm + BmZ + 26n + 2Fm + C = 0 (E2)

The envelope formed by these lines is a conic whose point equation is
given by [70]

ax® + 2hxy + by° + 2gx + 2fy + ¢ = 0 (E3)

where a,b,c etc are the A,B,C etc. minors of the matrix

A H G
M=|H B F (E4)
F C

Consider now the characteristic polynomial (3.4.10)
xz—l(a-l)cosﬂ-(acoszﬁ + pzsinzﬁ) ; 0 (E5)
In terms of the intersection points with the x and y axes
X = A cosd Y = Asind | (E6)
Equation (E5) reads

XY - (a-1)Y - a¥/X - pX/¥Y

n
o

(E7)

For the line described by (El), X = -1/n, Y = -1/m, and (E7) becomes

an® - (a-1)n + pzm2 = 0  (E8)
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for which the point equation, using minors of (E4), is

at1) p°
2

. . - . . +
representing an ellipse centred at (iil, 0] with respective axes atl

2
and p.
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Appendix F: On the Group Velocity of Symmetric and Upwind Schemes

Consider the 2-level explicit model to approximate (1.2.1)

n+1

r
e e, ], - (F1)

k=-1
Let Z= elwk

The amplification factor Z is given by

and substitute in (F1) a trial solution u?= Znexp(iﬁjh).

r .
z= ¥ c, (1) o1 EkD

k=-1

(F2)

and for Cauchy stability the model must satisfy 1Z1< 1 for all EeR.
WVhere applicable, the group velocity is given by

r .
G=-F2=-—= 7Y ke, (v) e1Ekh

k=-1

(F3)

Symmetric Schemes

In the symmetric case we have l=r=s and the stencil of (F1) stretches
over 2s+l grid points. The maximal order of accuracy is 2s and is

attained by choosing c, that satisfy

s
Y kpck(v) =v? p=0,1,...,2s (F4)

k=-s

Equation (F4) is a linear non-homogeneous systeh of Vandermonde type

which can be solved using Cramer's rule

_ ° (v-3)
ck(v) = ] TE:ET (F5)

I;2i°
Using the generalised factorial notation

v-3) .= (v-3) (n=3+41) +++ (v-j+n)
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equation (F5) simplifies to read

¢ (v)=(-1)°** V) 201 (F6)
“k (s-k) ! (s+k) ! (v-k)
It follows from (7) that:
- (a) ck(V) = c_k(-v)
(b) The amplification factor, defined in (3), for Eh=
8
z= Y (-1)kck(v) is a symmetric function in the CFL number v.
k=-s
{(c) Assuming Cauchy stability, then for v sufficiently small
2
Z ~ 1-cp (F7)

for some positive constant c.

(d) The group velocity for Eh=n reads

8
G = - ;% Z (-1)k kck(u). Substituting (F6) and rearranging we
k=-s
obtain
c-2 (l-u)s(v+1)s i (23 ) k2 (58)
Z (2s)! yoq etk 2 2

It follows from (F7) that for sufficiently small v, Z is positive.
For»lvls 1, all the v-dependent terms in (F8) are positive, leading to
group velocity that points in the wrong direction.

{e) Since at small CFL numbers, waves propagate through fewer grid
cells, the true implication of (F8) has to be assessed in the double
linit vl > 0, N> ® so that T=Nk=Nvh/a is fixed. After a fixed time

T, assuming a=1 and h=1, a mode with Eh=r will have dissipated by

2
1/¢cv ) -cbT
Vo (1-c?) ~ (1-cp?) (/Y C

z
~ o VT > 1 | (F9)
[vjca

T/ T/v

and in the limit of small v the mode is not dissipated at all. An

example of a scheme in this class is the LW scheme (2.1.1)
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Upwind Schemes

Even Order Schemes

These have the general form
u = Y O ¢ )u " (F10)
j k j+

and of which the symmetric schemes are a particular case s =0. In
order for v=0 to be inside the stability region so=0,188, but we shall
keep the genmeral notation s_ .  Let c:(u) and c:(v) denote the
coefficients in the upwind and central (symmetric) cases respectively.

For optimal accuracy

(v-so—j)

———— = c° (v-s ) (F11)
(k—SO-J) k-s = "0

u + . 8

¢, ) = &35 -

# ' #

where c:(u) are given by (F6). The coefficients are thus related
through a simple shift operator. It can be shown that:

(a) c: +k(so+u) = c: _k(so—u).

(b) The amplification factor of the mode Eh=n is not symmetric in v

hence for sufficiently small v inside the stability region
% ~1 - o + 09 o | (F12)

vhere ¢ 1is a positive constant. In general there is no reason to
assume c¢=0 although if the requirement for optimal accuracy is
dropped, the resultiﬂg degrees of freedom can be used to construct
schemes for which c¢=0, 1leading tovamplification factor of the form
(F7). A simple relation holds between the amplification factors in

the upwind and symmetric cases. Let p=v-s

u ¢&’o kK _u °0 < kK _c
z"(v) = Yo (1) e ) = (-1) L 17 e (w

k=-8+8 k=-s
(0]
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S
= (-1) % z%w (F13)

It follows from (F7) that Z" is symmetric in Y. Assuming Cauchy
stability, for sufficiently small u

2'w) ~ (-1) ° (1 - cpd) (F14)

for some positive constant c.
(c) It follows from (b) that group velocity analysis is applicable
for either u=0 (vgso) or V0. The general expression for the group

velocity reads

__a .
¢ = - Jpul-1) @s) ]

ie high frequency modes in this range of CFL numbers move in
the correct direction.
In the limit of small v, (F15) takes the form

¢ = lé) ?8 (ijk) /(zjso)

k=

and is strictly positive. High frequencies ih this rangév of CFL
numbers move in the wrong direction.

(d) The fundamental difference between the symmetric and upwind cases
lies in their respective long time behaviour. After a fixed time
T=Nk, high frequencies will have dissipated by

Zz(l-cv)T/v—————e e-Tc

This suggests that in the upwind case, high frequency parasitic modes
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do not constitute a severe problem since even at small CFL numbers

all waves will eventually be damped out. In the symmetric case the

accunulative damping factor tends to 1 in the limit of small v and

vwaves will persist. This is confirmed by simple numerical tests.

An example of a scheme in this class is the second order upwind scheme

with s=1, so=1

un+1 - (1-v) (2-V) n

. u,. + v(z—v)u? - gilZZLu“
j 2 j i+

1 2 j+2

0dd Order Schemes

These have the general form

+1 0

n n
u = E (o] 1% u

j k( ) i+

k=-s8+s_+1
=~-8+8
(v

and we assume 5250+1z 1. For optimal accuracy

k j =-s+s_+1 (k—J) j =-s+1 (k-s -J)
i#k j k-so
k-s + s
= —2 _ c° (v-s )
v—so+ S k-s 0

(a) The amplification factor of the mode Eh=m reads

i s+8 8 E
2"(v) = PO ntelm = (1 ° p (ptEs
k=-s+s0+1 : k=-s+1 H
8+s0 (u_S)ZS i 2s k +s
= (1) (2s)! ) (s+k) p-k

k=-s+1
It can be verified that for small p (v = so)

S
7 =~ (-1) %(1-cp)

(F17)

(F18)

c(p)

k
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for some positive constant c. Likewise, for small v inside the
stability region

Z =~ 1-cv

for some other positive constant. Group velocity analysis is thus
applicable in those two ranges of CFL numbers.

(b) The expression for the group velocity of the mode Eh=mn reads

s+s . ([J"S)28 s

e
(2s)! k=-s+1

G = - %Z(_l) (Zs ) (k+s)(k+so) (F19)

s+k (u-k)

For v~0, the main contribution to G comes from k=0, leading to
approximate group velocity which points in the correct direction

G ~-a. For v>0, the group speed reads

k-]
L5 (e

"S5 0k=-s¢1

(2]
R
T I

which is strictly positive hence points in the wrong direction.
{(c) - Schemes in this class will display a long time behaviour similar
to (F16). An example of a scheme in this class is the first order
upwind scheme with s=1, s0=0

n+1

u, - = H—Mu?+tm?
J J jit+1

RK Type Schemes

Consider the (s) stage RK algorithm to approximate (1.2.1)
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i =u e A 2K - Kh
J J s 2 j
' =y e Bk - ke (F20)
j j s-1 2 j
' =" a Bk - K Y)Y
j J 12 j
n+1 (s)
0T Y
where K is the shift operator Ku? = ug+1-and Xk are arbitrary positive
k k
constants. Let Ak=(g) 15111' then (F20) may be written explicitly as
n+1 i k m ., k-2m n
% =(1+LA LCD"K )uj (F21)
k=1 m=0
d n
= ) c (v) v,
Keos k j+k
It can be shown that:
(a) ck(v) = c_k(u) k=even
ck(v) = -c_k(v) k=o0dd
and for k=20
s-k
[ 2 ] n k+2n
c, = L (-1) Ak+2n( n ) (F22)

n=0

where [x] denotes the integer part of x.

(b) The amplification factor for Eh=n is Z=1 for which group velocity
analysis strictly applies. _ ,

(c) Using (a) and (b) the group velocity for high frequency modes

reads

S S
c=-—f‘;( T o+ 3 ](-1)kkck(u)

=-S =-S
=odd =even

The even order terms cancel out and the odd order terms yield

2a
v

G = kck(v) (F23)

un M
=)

k
k=odd
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with c, given by (F22). For specific choices of (s) we obtain
(1) s=1 (s=2)

oo =22, [}

. (i1) s=3 (s=4)

(iii) s=5 (s=6)

con -2 0]

etc. It is claimed that

T (1) * (2me1- 2%) () =0 m1,2,-e- (F24)
k=0

The proof is due to P.L. Roe. Consider
ami1 "M amen K
(1-%) . 2 ( ) =

Then

2m+1

d 2m+1 2m+1 k-1
3, (17%) - .Eo( 1) k( ) (x) %1 =f (x)
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~and

2m+1

£ =0= 3 (-0
k=0

using (*3*")=(,2710,) we get
m ’ .

k 2m+ 1 2m+1-k 2m+1

0= k§0 (-1)" k ( K ] + (-1) (2m+1-k) (Zm+1-k]

= T 0¥ em-2m

2m+1)
k=0

k

This implies that the group velocity of high frequency modes under a

general (s) stage RK scheme is

For consistency of (F20) 11=1 and the group speed always points in the

wrong direction. This is confirmed by simple numerical tests.
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Figure (I1.3) - 1D Euler Equations at small CFL numbers - A

Reflection study with boundary conditions
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0 EUER FOUATIONS -  INTERNAL  REFALECTION  TEST
EVOLUTION OF OFNSTTY FPROF7LES
INITIAL DATA — (U0 WAVE




0 FUER FOUATIONS - INTERMAL REFLECTION  TEST
EVOLUTION OF DENSTTY FROFILES
INITIAL DATA - (U-C) WAVE
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Figure (II1.5)b




20 L INFARIZED FULER FOUATIONS WITH RADIAL SHITETRY
FPRESSURE 1S SPECIFTED OV THE KHE
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Figure (I1.6) - Stkong focussing of an error generated at the
boundary (a) 2D linearised Euler Equations.
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Figure (II.6) - Strong focussing of an error generated at the
boundary (b) 3D linearised Euler Equations.
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Figure (II.7) - 2D linearised Euler Equations - High frequency
initial data : (a) p profiles.



20 LINFARIZED FULER FOUATIONS WITH RADIAL SHIIETRY
ZERO  INCOITING  RIEITAMY — INVARIANT
LHL=8.8995 IIMAX= 58 N=19999

Figure (II.7) - 2D linearised Euler Equations - High frequency
initial data (b) : g profiles.







Figure (I1.7) - 2D linearisec Euler Equations - High frequency
initial data: (d) p+q profiles.



2D L INFARIZED FULER FOUATIONS WITH RADIAL SHIIETRY
HIGH FREGUENC Y BOUNDARY COMDITIONS [
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Figure (11.8) - 2D linearisec Euler Equations - High frequency
boundary conditions (a).
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Figure (II.8) - 2D linearised Euler Equations - High frequency
boundary conditions (b).
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HIGH FREGUENCY BOUNOARY COMDTT7ONS 7
(FL=8.985 [IAX= 58 N=189989

Figure (I1.9) - 2D linearised Euler Equations - Reflection of a
smooth wave from a high frequency boundary (a).
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Figure (11.9) - 2D Tinearised Euler Equations - Reflection of a
smooth wave from a high frequency boundary (b).
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Figure (II.10) - 2D linearised Euler Equations - Combined
Low-High frequency boundary conditions. (@)
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Figure (II1.1) - 1D wave equation: (c) Constant slowing down
coefficient.
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0 FULER FOUATIONS -  SHOCK TUBE FROBLET
EVOLUTION OF /TITENTUNT PROFILES
SLOWING JOWNV FACTOR=7.8

Figure (II1.2) - 1D Euler equations with various constant slowing
down coefficients (a).



10 EUER FOUATIONS -  SHOCK TUBE FPROBLEY!
EVOLUTTON OF 1IVIENTUT PROFILES
SLOWING JOWN FACTOR=G.8

Figure (II1.2) - 1D Euler equations with various constant slowing
down coefficients (b).
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Figure (II1.2) - 1D Euler equations with various constant slowing
down coefficients (c).
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' EVOLUTION OF 1TOITENTUNT PROFILES
SLOWING DOWN FACTOR=G.2

Figure (III.2) - 1D Euler equations with various constant slowing
down coefficients (d).




70 FULEFR FOUATIONS — SLOWING DOWN RIGHT GOING WAVES

EVOLUTION OF DENSITY FROF/LES
§ SLOWING DOWYV FACTOR=

s
e
ﬂa

| 1
T il
)

otauill

M

Figure (I1I1.3) - 1D Euler equations - (a) Piecewise constant
slowing down coefficients.
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Figure (III.3) - 1D Euler equations - (b)
down coefficients.
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Figure (I11.4) - 2D Tinearised Euler equations - Exact solution
for initial data (3.8.5).
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for initial data (3.8.5).
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Figure (II1.5) - 2D linearised Euler equations - Numerical solution
for initial data (3.8.5).
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Figure (II1.7) - 2D linearised Euler equations - Exact solution
for initial data (3.8.%). .
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LINEAR ADVECTION FOUATION — GRADUAL WAVE OA/PING
CFL=8.75 SI6IN=8. 82 N=128

__*_//////*\\\\\\\:4/727%%%ZYZM//GVCVQZP = 4.89

Figure (IV.1) - Linear advection equation - gradually attenuated
' solution (a).



LINEAR ADVECTION FOUATION ~ GRADUAL WAVE DAIPING
CHL=8.75  S/6IM=4.9° N=128

—/\/ﬂ TENUATION FACTOR = 4.47

Figure (IV.1) - Linear advection equation - Gradually attenuated
solution (b). :
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Figure (IV.1) - Linear advection equation - Gradually attenuated
solution (c).
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10 ISOTHERTAL EULER FOUATIONS - GRADUAL KAVE DA/PING
EVOLUTION OF DFNSTTY FROFLES
ATTENUATION FACTOR = 8.83

Figure (IV.3) - (a) Gradual attenuation of a outgoing compressidn
wave.



10 ISOTHERTAL EFULER FOUATIONS — GRADUAL WAVE OA/PING
' EVOLUTION OF DENSTTY FPROFILES
ATTENUATION FACTOR = 8.87

Figure (IV.3) - (b) Incoming compression wave unaffected.
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2 L IMEARIZED FULER FOUATIONS WITH RADIAL SITHIETRY
FROFILES ALONG  1TAZN  DITAGONAL
ATTENMUATION FACTOR = 8.8

Figure (IV.5) - 2D linearised Euler equations with gradual
attenuation - Profiles along main diagonal (



2D L INFARIZED FULER FOUATIONS KITH RADIAL SHHETRY
FROFILES ALONG TN DITAGONAL
ATTEMUATION FACTOR = 8.85

S

Figure (IV.5) - 2D linearised Euler equation with gradual
attenuation - Profiles along main diagonal (b).
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