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SUMMARY

Many computational problems of theoretical and practical 
interest are not naturally bounded by physical boundaries. 
Aerodynamic examples include flow calculations past aerofoils or past 
wing-body configurations, semi-bounded channel flows etc. Other 
examples include simulations of Turbomachinery flows, problems in 
Underwater Acoustics etc. To obtain a numerical solution, the problem 
has first to be converted to a finite region, by introducing an 
artificial boundary at some finite distance. Boundary conditions must 
be specified at the artificial boundary for well-posedness of the 
truncated problem. They should simulate an open boundary across which 
the fluid flows and should ideally allow outgoing waves to pass 
through without generating reflections. Indeed, reflections at the 
boundary not only degrade the accuracy of transient solutions but also 
inhibit convergence to steady-state. In many problems of practical 
interest, perfect absorption cannot be achieved. Instead one aims at 
minimizing the amount of reflected energy using asymptotic expansions 
based on various asymptotic arguments. The more accurate the boundary 
statements, the closer the artificial boundaries can be located to the 
regions of aerodynamic interest, thereby reducing the computational 
domain and costs.

We present a thorough numerical study of the efficiency of 
several widely used boundary conditions in absorbing outgoing waves. 
We identify the key parameters upon which the level of absorption at 
the boundaries depends and expose the limitations of some of the 
existing recipes. We show that substantial reflections may occur even 
under conditions which are considerably milder than those encountered 
in practical calculations. We then introduce an unconventional 
approach to the treatment of artificial boundaries. It is proposed 
that in the far field the governing equations are modified in a 
boundary-layer like manner. Two closely related far field 
modifications are derived and analysed: (a) Slowing down the outgoing 
waves and (b) Attenuating the outgoing waves. Under the first 
modification the outgoing waves are prevented from reaching the 
boundary hence from reflecting. Under the second, the outgoing waves 
are attenuated to practically zero strength before reaching the 
boundary. Both modifications do not alter the propagation of the 
incoming waves to allow the launching of correct information from the 
boundary into the interior. Analytic conditions are derived to ensure 
that no reflections are generated due to the change of coefficients in 
the governing equations. Reflection analysis is also performed on the 
discrete level. Well-posedness of the modified systems is established 
as well as stability of the resulting interface problem. The 
modifications are extended to two space dimensions and are applied to 
a variety of one and multidimensional test problems. Results indicate 
that the proposed far field modifications are attractive in genuinely 
time-dependent calculations. Preliminary steady state calculations 
with the unsteady 2D Euler equations show significantly improved 
convergence properties.
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NOTATION

It has proved necessary to define the notation within the text on a 
sectional basis. The following however make frequent and largely 
consistent appearances throughout. The list is not comprehensive.

a Slowing down coefficient
A,B Jacobian matrices
* *

A ,B Modified Jacobian matrices
cxk,0k Wave strengths
c1'c2 Attenuation coefficients
c Speed of sound
C Damping matrix
Cg Group velocity
C Phase velocityp
Ax,Ay,At Spatial and temporal grid spacings
E Specific total energy
y Specific heat ratio
h Specific enthalpy
I Identity matrix
x,/j Space amplification factors
Ik Space shift operator

r Left and right eigenvectors of the Jacobian matrix
L,R Matrices of left and right eigenvectors respectively
X Characteristic speed
X. Eigenvalues of the Jacobian matrix
A Diagonal matrix of eigenvalues
*

A Diagonal matrix of modified eigenvalues
M Mach number
M (0) = Acos (#) +Bsin (t>) Jacobian matrix in the {d) direction
i; Courant or CFL number
p Pressure
q Radial velocity
r Radial distance
p Density
S Entropy function
t Time coordinate
T,R Transmission and Reflection coefficients
# Angle of incidence
u, v Velocity components in the x and y directions
<P Solution function of the wave equation
w Scalar variable
w Vector of variables
co Wave frequency
x,y Cartesien space coordinates

Wave numbers in the x and y directions 
Z Time amplification factor
Z Time shift operator
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Superscripts and Subscripts:

Wj»v" Numerical solutions at node j and time level n
( ) Linearised conditions about a mean state
( )(X) Free stream conditions
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INTRODUCTION

In a large class of CFD applications it is required to solve 
problems which are not naturally bounded by physical boundaries. 
Aerodynamic examples include flow calculations past aerofoils or past 
wing-body configurations ( infinite in 2 and 3 space dimensions ), 
calculations of semi-bounded channel flows ( infinite in 1 space 
dimension ) etc. Other examples include the simulation of 
Turbomachinery flows, problems in Underwater Acoustics, Elasticity, 
Numerical Weather Prediction etc. In order to obtain a numerical 
solution, the problem first has to be converted to a finite region. 
For a certain class of problems, this can be achieved by coordinate 
mapping techniques, provided the solution is simple at infinity and 
that it is smooth in the transformed coordinate [24]. The transformed 
problem requires boundary conditions at infinity which are available 
and can be specified without introducing errors. However, if the 
solution in the far field is oscillatory, mapping techniques fail. 
The outgoing waves cannot be resolved accurately^in the transformed 
coordinate and reflections occur at critiis^Qgridj points. For this 
large class of problems, the only means of limiting the unbounded 
physical region is by introducing an artificial boundary at some 
finite region. This, however, is at the price of having to specify 
boundary conditions (BCS) at the artificial boundary to ensure 
well-posedness of the truncated problem. To appreciate the difficulty 
in specifying BCS, consider the steady state calculation of transonic 
flow past an aerofoil. In the far field the flow is subsonic, 
implying that the solution at every point depends on the solution at 
every other point in its neighbourhood. If a boundary is introduced, 
part of this neighbourhood is discarded and the only means of 
conveying the infinite amount of lost information is through a finite 
number of BCS, often just a single one. " Boundary Conditions are a 

v'  ̂ mathematical model for the rest of the Universe" (G. Moretti) and the 
task of their specification is often far from trivial.

Clearly, even if physical conditions at infinity are known, they 
are unlikely to be correct at the artificial boundary itself, unless
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the boundary is located at a very large distance. Imposing infinity 
conditions at the artificial boundary usually results in reflections 
of the outgoing waves which should ideally pass through the boundary 
and leave the domain of computation. This obviously degrades the 
accuracy of the solution during the time-dependent phase. In problems 
where steady state solutions are sought by means of integrating the 
time-dependent equations, the reflected waves carry energies which are 
damped very slowly and inhibit convergence to steady state [66]. 
Moreover, the solution is knowingly inaccurate although it is hoped 
that the inaccuracies are confined to the neighbourhood of the remote 
boundary.

The number of required BCS is dictated by the theory of 
characteristics, which is strictly valid in one space dimension. In 
one dimensional problems, the theory also establishes the actual 
analytic BCS that perfectly absorb outgoing waves. When discretized 
and incorporated into a numerical model, truncation errors are 
introduced. In multidimensional problems the situation is more 
complex and one usually resorts to 1 Dimensional arguments normal to 
the boundary, to asymptotic expansions or to procedures guided by 
practical experience. The errors in this case are due to neglecting 
terms in the asymptotic expansions as well as due to the 
discretisation procedure.

The philosophy of constructing absorbing BCS is to match them to 
a known (asymptotic) behaviour of the outgoing waves. This behaviour 
can either be deduced from the governing equations or directly from 
its discrete approximation. Clearly, if the BC is exactly satisfied 
by an outgoing wave, no other waves are generated at the boundary 
which may propagate back into the domain of computation. It should 
also be apparent that artificial boundaries do not constitute a 
difficulty in problems where all characteristic speeds are pointing 
out of the computational domain (ie supersonic boundaries) . In such 
cases, even if errors are generated at the boundary, there is no 
mechanism by which the errors can propagate back into the interior of 
the domain. The difficulty thus lies in the subsonic case, where



there is at least one characteristic speed pointing into the interior.

The present work is devided into two main parts, each of which 
is preceded by an introduction which is more specific to the content 
that follows. In broad terms, the first part surveys existing open 
boundary treatments, emphasising the different strategies and the 
degree of approximation involved in each of the recipes. This is 
followed by a thorough numerical study of the absorbing features of 
several of the proposed recipes. The aim of the study is to expose 
the limits of the conventional far field treatments and to identify 
the parameters upon which the level of absorption depends. It is 
found that even under mild conditions, substantial reflections may 
occur, which although classified as high-order effect, can become 
quite troublesome. Acquaintance with two closely related theories is 
vital for the understanding of artificial boundary treatment: The 
theory of Well-posedness of mixed Initial Boundary Value Problems 
(IBVPS) and the theory of Stability of discrete numerical models in 
the presence of boundaries. The first part of this work begins by 
glancing at some illuminating aspects of both theories, which are 
viewed in the light of the Theory of Wave Propagation. This by no 
means is intended to be a comprehensive account of the theories. Its 
aim is to familiarise the reader with the predominant concepts and to 
assist in introducing notations and terminology which are later 
referred to. The second part of this work contains its main original 
contribution. It presents a less conventional strategy to handle 
remote boundaries, based on modifying the governing equations in an 
outer absorbing 'sponge' layer and forcing the solution to a desirable 
far field behaviour. Two new far field modifications are proposed: 
(i) To slow down the outgoing waves and (ii) To attenuate the outgoing 
waves. Both modifications are analysed on the continuous and discrete 
levels, well-posedness of the modified systems is established and 
•stability of the numerical model is proved. The proposed 
modifications are implemented in a variety of one and multidimensional 
test cases. Results show improved time accuracy of solutions and 
indicate significant acceleration in rate of convergence to steady 
state.
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PART ONE

Introduction

The study of numerical solutions to hyperbolic mixed IBVPS 
involves analysis on various levels. Hyperbolic systems of equations 
are characterised by the existence of a set of channels, ie 
characteristic curves, along which information may propagate. In one 
space dimension only a finite number of such curves exists, while in 
multidimensional problems information may be carried in an infinite 
number of directions. The solution inside a given domain Q is 
determined partly by the initial conditions and partly by the data on 
the boundary dO. Similarly, the solution on the boundary itself 
usually depends both on the boundary data and on information arriving 
from the domain 0. It is therefore clear that the manner in which 
boundary data are specified at the boundary must be consistent with 
that arriving at the boundary, if it is to yield a mathematically 
well-posed problem. The physical significance of the boundary data is 
a completely separate issue.

Apart from very simple cases, solutions to IBVPS are obtained 
numerically, by applying a discrete model to approximate the analytic 
problem. Numerical solutions, by nature, cannot be obtained on 
infinite domains and therefore always involve boundaries. Some 
problems are naturally limited by physical boundaries. In other 
cases, artificial boundaries have to be introduced in order to 
truncate the unlimited physical domain so that a numerical solution 
can be obtained. Numerical schemes of sufficient order of accuracy 
always break down in the neighbourhood of a boundary and in either 
situation, special measures are required.

In order to update the numerical solution at the boundary, one 
needs to make a sufficient number of independent statements. This to 
some extent is analogous to the analytic situation. However,
'sufficient' very often results in more conditions that would have 
been allowed analytically, and self-consistency becomes more
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complicated. Instead of well-posedness one talks about the stability 
of the mixed IBVP. Clearly well-posedness and stability are closely 
related to one another. Yet stability is inherently more complicated 
because numerical approximations are always dispersive even when the 
analytic problem is not.

Over the last 15 years a substantial effort has been devoted to 
the modelling of open boundaries. An adequate account of the related 
published studies would occupy many pages and is beyond the scope of 
the present work. The admirable versatility of approaches reflects 
not merely differences of tastes. It also portrays the lack of 
sufficient generality in each of the individual approaches and 
accordingly the lack of consensus over the issue. In order to be 
numerically applicable, the BCS must yield a well-posed problem and 
their discrete numerical approximation must be stable. We therefore 
begin Chapter I by discussing well-posedness of hyperbolic problems 
with boundaries. We highlight the particular difficulty of numerical 
boundary treatment and move on to discuss the concept of stability in 
the presence of boundaries. Both well-posedness and stability 
theories are related to the theory of wave propagation and are viewed 
in this light. Chapter I continues by surveying existing recipes for 
the modelling of open boundaries and emphasises the degree of 
approximation involved in each of the individual recipes. In Chapter 
II we select a particular dissipative scheme, namely the Lax-Wendroff 
scheme, and analyse its dispersive and dissipative properties in more 
detail. The analysis predicts a pathological behaviour which is 
confirmed by experiments. Chapter II concludes with a thorough 
numerical study of the (in)efficiency of various recipes in absorbing 
outgoing waves. Reflections from artificial boundaries are studied, 
exposing the key parameters upon which the level of absorption 
depends. Internal reflections due to grid expansion are presented. 
Strong focussing of an error generated at the boundary is demonstrated 
in a multidimensional setup. The need for nonreflecting upwind 
boundaries naturally emerges, upwind BCS following [35] and [86] are 
adapted to systems but fail to perform as satisfactorily as they do in 
the scalar case.
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(1.1) We-ll-Posedness of Hyperbolic Initial Boundary Value Problems, 
Characteristic Curves and Boundary Conditions

Consider the 1st order hyperbolic linear system of equations in 
one space dimension

w + Aw = 0—t —X

w (x, 0) = f (x)
(1.1.1)

where w = w(x,t) is the vector of N dependent variables and A is a
constant coefficient NxN matrix. Hyperbolicity implies that A
possesses real eigenvalues { X J , and a complete set of right
eigenvectors |r }. Let K  } denote the (complete) set of left ) — )
eigenvectors, then the following relations hold

Ar, h

JM j If... .,N

i,A = X -€ j— j j — If... .,N

5,-Sk = 5 ,k

Let R be the matrix with columns
withand let A be the diagonal matrix

(1.1.2)

R = (r i, —  # rN) L =
f t 1— i

A = diag (X^...,X )̂ (1.1.3)

Then it follows from (1.1.2) that

LR = RL = I LAR = A (1.1.4)
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If (1.1.1) is to be solved on the limited domain [0,<x>), then in 
addition to the initial distribution w(x,0) one often needs to specify
BCS at x=0. These BCS may or may not arise from physical
considerations (eg solid walls, open boundaries etc.). In either 
situation they cannot be specified arbitrarily. A theory has been 
developed (eg Kreiss [48]) to determine whether a given set of 
equations and boundary conditions are to yield a well-posed problem:

Definition
An IBVP is said to be well-posed if it possesses a unique solution
continuously dependent on the initial and boundary data

According to the theory in [48], testing for well-posedness
amounts to ensuring that the combination of governing equations and
set of BCS do not admit exponentially growing solutions,

w = woest4i^x with Real (s) k 0 (1.1.5)

This theory has recently been reviewed by Higdon [34], and interpreted
in terms of wave propagation.

Not every set of BCS yields a well-posed problem. This can be 
appreciated from the following example. Let (1.1.1) be premultiplied 
by the matrix L, which in the linear case is constant

Lw + LAw = 0
—  t — X

(Lw)t + LAR (Lw)^ = 0 (1.1.6)

w + Aw = 0
—  t — X

with w = Lw. Equation (1.1.6) is in fact a set of N scalar equations 

(w )t + X.(w ,)x = 0 j = 1----,N (1.1.7)
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implying that

(Ëj) = i j ’ï = constant on dx/dt = X (1.1.8)

w are called the characteristic variables or the Riemann Invariants, 
and the curves along which they remain constant are the characteristic 
curves. In the linear case = const and characteristic curves are 
straight lines. Initial values of w are supplied by the data, which 
then propagate along the characteristics. If X^>0, the propagation is 
from left to right (in our case incoming). Similarly, if X <0, 
propagation is from right to left (outgoing).

t 4

x x
(a) (b)

111. (I.l) - (a) Incoming and (b ) outgoing characteristic curves
for the left hand IBVP.

For the left hand IBVP, it is clearly not allowed to prescribe 
the values of w^ for X^<0, as those are pre-determined by initial 
data. An attempt to do so may result in a contradiction in which case 
a solution cannot exist. On the other hand, the solution requires 
information about the incoming w^, to ensure uniqueness. It is 
obvious then, that one is only free to impose as many BCS as there are 
incoming characteristics at the boundary. A general set of BCS 
defines the incoming w^ in terms of the outgoing w^ and possibly some 
forcing terms.
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» XX X
a

ü

X

111. (1.2) - Required number of boundary conditions - Impose 0,1,2
and 3 bc's respectively.

In the non linear case we have

i
w + A (w) w = 0—  t —  — x

L(w)w + L(w)w = 0
~  — t —  — x

L(w) (wt + A(w)wx) = 0 (1.1.9)

implying

^j-dw = 0 along dx/dt = (w) (1.1.10)

which is an Ordinary Differential Equation (ODE) obeyed along the 
characteristic curve. Equation (1.1.8) is a particular case of
(1.1.10) where the ODE can be integrated along the characteristic 
curve to yield the Riemann Invariant. Characteristic equations like
(1.1.8) and (1.1.10) are often used as BCS at open boundaries. 
Examples shall be given in the following sections. A common practice 
in many applications is to locally linearise the system with respect 
tc a mean state wo, and to use (1.1.8) instead of (1.1.10).

y

(1.2) Numerical Solutions and Boundary Conditions

The simplest hyperbolic equation (Eqn. (1.1.6)) is the linear 
advection equation
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w + Xw = 0 (1.2.1)t X

w(x,0) = f(x) <& < x < co

with solution

w(x,t) = f(x-Xt) (1.2.2)

Let the infinite domain be truncated by introducing boundaries at 
x = 0 and at x = x^. Let us also assume, without loss of generality, 
that X > 0. Characteristic analysis suggests that a BC is required 
at x = 0 but not at x = x .

One may attempt to solve (1.2.1) numerically, using a two level 
explicit scheme

The stencil of (1.2.3) is of width L+R+l. If L > 0 (R > 0) the scheme 
cannot be used to update the leftmost (rightmost) point and a special 
boundary treatment is needed. While at x = 0, this is consistent with 
the analytic requirement, at x = x q it is not, yet one is forced to 
supplement (1.2.3) by a boundary procedure (BP) where analysis forbids 
to impose a BC. In view of (1.2.2) the BP should simulate right
travelling waves propagating at a speed X > 0. Ideally, the boundary
should allow the oncoming waves to pass through without reflections. 
In practice, particularly in multidimensional problems, this is very 
difficult to achieve.

Note that while an analytic boundary consists of a single point, 
a numerical boundary may stretch over several grid points depending on 
the stencil of the numerical scheme. If R = 1, the numerical Right 
Hand Boundary (RHB) consists of one point, but if R > 1, a BP has to 
be applied to more than one point. R = 0 implies a one sided stencil, 
and no BP is required at all at the RHB. At first sight, this appears
to have solved the problem. However, unless L = 1, reducing the

o

w n + 1
j (1.2.3)
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scheme to first order accuracy, a BP will be required at the LHB.

(1.3) Finite Representation of the Solution on the Grid

Investigating the features of a linear numerical scheme is best 
done by means of Fourier or Normal Mode Analysis in the frequency 
domain. The initial data can be expressed in terms of its Fourier 
Transform.

* - iExw(x,0) = f(x) = f f (Ç)elçx dÇ (1.3.1)
-00

where Ç is the wave number of dimension length’1, and f (Ç) its
amplitude. Small Ç implies long waves while large Ç implies short
waves. Let a grid be defined by x .=jAx, with Ax the grid spacing and

i Fxconsider a single Fourier mode f(x) = e J . When sampled at a finite 
number of grid points it has the representation

£(jAx) = eiÇjte = (eiÇAx)J (1.3.2)

This seemingly harmless sampling procedure introduces an error which
is best appreciated by noticing that the highest possible frequency
representable on the grid is |ÇAx| = n, and in general, only
frequencies in the range

5Ax e (-%,%] (1.3.3)

can be represented. Frequencies outside the band (1.3.3) are folded 
into it, and get misinterpreted. This is illustrated in 111. (1.3). 
Note that in the discrete context, the terms low and high frequencies 
refer to the grid spacing Ax and not to the space coordinate x. It is 
often said that low frequencies are the physics while high frequencies 
are the numerics. Indeed, it is due to the finite size of the grid 
that waves appear as high frequencies, with an increasing number of 
poorly resolved frequencies as the grid gets coarser. If one could 
afford infinitely fine grids, all frequencies would be well resolved 
hence physically meaningful (excluding of course discontinuities) .
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(a)

111. (1.3) - M i si n te r pr e ta t io n  of waves on a coarse grid -
(a) Low frequency interpreted as high frequency.
(b) High frequency interpreted as low f r e q u e n c y .
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(1.4) Stability of Finite Differences Models and Boundary Conditions

Stability of a finite difference model depends on the 
combination of the interior numerical scheme and the numerical 
boundary procedures. Even when the analytic problem is well-posed, it 
sometimes takes more than good will to make it numerically stable. We 
therefore glance very briefly at several stability conditions, 
presented in a gradual degree of severity, starting from the 
well-known Von Neumann stability criterion for pure Initial Value 
Problems (IVPS) through the Godunov-Ryabenkii necessary stability 
condition in the presence of a boundary, and to the Gustafsson Kreiss 
and Sundstrom (GKS) stability condition which is both necessary and 
sufficient. As mentioned in the introduction, this by no means is 
intended to be a comprehensive account of stability theory. Its aim 
is to gently lead the reader through the tangle of stability theory to 
the physical concepts of travelling waves and energy distributions 
which have proved very revealing in the analysis to follow. It also 
provides an opportunity to appreciate the degree of complexity
involved in rigorous stability analysis. For the sake of simplicity 
we concentrate on schemes of the form (1.2.3).

Advancing the solution from one time step to the next can be 
viewed as the act of the solution operator S on the vector of data wn

wn+1 = Swn = S2wn_1 = ... = Sn+1w° (1.4.1)

w° being the vector of initial data. In the course of the numerical
calculation, errors may be introduced (eg computer rounding errors), 
which in view of linearity also satisfy (1.4.1), and should clearly 
not be allowed to grow unboundedly. Suppose that we want to obtain 
the solution at a fixed time T, and are trying to get there by a
sequence of calculations letting the time step At become increasingly 
smaller. As T = N- At is fixed, the required number of steps, N, is 
becoming increasingly larger, and by (1.4.1) we need to consider 
operators of the form Sn, as n -> cu
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Definition

The scheme is said to be stable in some norm II II if

II Snw II £ C II w II (1.4.2)

V admissible w, for some constant C > 0 as n -* <x>.

By the Lax Equivalence Theorem [60], stability of a consistent 
numerical approximation guarantees convergence to the analytic 
solution in the same norm II II, as the mesh is refined (Ax,At -> 0). 
The & norm

Il ï n; = £ (1.4.3)
j

is sometimes regarded as a natural norm in that it can be related to
amplification factors through Parseval's Equality [78]. In practical
calculations, however, it is often not clear which norm is best for 
stability measurements and other norms may be found preferable.

Substituting a single Fourier mode

w" = t = nAt Ç = jAx (1.4.4)

into (1.2.3), we obtain

eitiAt - I c ei5kAx (1.4.5)
k = - L

Equation (1.4.5) is called the dispersion relation of the numerical 
approximation, relating the wave number Ç to the frequency w. Note 
that although equation (1.2.1) is non-dispersive, its finite
difference approximation always is. Misinterpreted frequencies,
mentioned in the previous section, then become a major source of 
trouble.
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The Von Neumann Stability Condition

Let a finite difference model (1.2.3) admit solutions of the form 
(1.4.4) with £dR. A necessary condition for stability is

In the absence of boundaries, IxI = 1  are the only admissible modes. 
Indeed, modes with lxl>l grow unboundedly as j -» oo and those with 
lxl<l do so as j -> -co. Numerical calculations, however, are not 
performed on infinite domains. Let the domain be truncated so that j 
assumes positive values j ^ 0. It is immediately apparent that modes 
with lxl<l are now perfectly admissible, having a finite £ norm. 
This leads to a natural extension of (1.4.10) in the presence of a 
boundary.

iuAt 1 * 1  VÇ e IR (1.4.6)e

For later purposes it is useful to introduce the notations

Z = eiwAt (1.4.7)

The travelling wave solution (1.4.4) then reads

(1.4.8)j

and the dispersion relation

R
(1.4.9)

k = - L

In these notations the Von Neumann condition becomes

IZl £ 1 '( + O(At) ) V 1 x 1 = 1 (1.4.10)



Godunov Ryabenkii Stability Condition

A necessary condition for the left hand IBVP to be stable is that no 
modes of the form (1.4.8) are admitted which have

IxUl IZI >1 (1.4.11) a

Likewise, the right hand IBVP should admit no modes which have

IxUl lzl>l (1.4.11)b

(Admissible modes here are modes of finite norm which satisfy both the 
interior scheme and the boundary conditions).

The Godunov-Ryabenkii stability condition rules out modes which are 
growing exponentially with time. Usually this criterion is not 
sufficient to ensure stability. The only theory which provides a 
condition both necessary and sufficient for stability of IBVPS is the 
GKS stability theory [27]. The condition is obtained at the expense
of choosing a very complicated and restrictive norm II II in (1.4.2)
which accounts for initial, boundary and forcing data. GKS
instability does not imply instability and it is only conjectured 
that GKS stability implies stability [76]. Testing for GKS
stability may become extremely laborious even in relatively simple
problems. It is an extension of the Godunov-Ryabenkii condition in 
that it considers modes of the form (1.4.8) with IZ I >1 in the limit 
IZl-> 1.

Definition
Consider the left hand IBVP. An Eigensolution of (1.2.3) is a mode
(1.4.8) with

IZlkl 1x1(1 (1.4.12)a

A Generalised Eigensolution is a mode (1.4.8) with
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IZ1=1 1x1=1 (1.4.13)a

so that when Z is perturbed Z Z+AZ and IZ+AZI > 1, x is perturbed 
x -» x+Ax with Ix+AxI<1.

Similarly, consider the right hand IBVP. An Eigensolution is a mode
(1.4.8) with

so that when Z is perturbed Z -> Z+AZ and I Z+AZ I >1, x is perturbed 
x. -» x+Ax, with I x+Ax I>1.

Thus a Generalised Eigensolution is a limit of Eigensolution as 
IZ|-»1.

The GKS Stability Condition

A necessary and sufficient condition for an IBVP to be stable is that 
it does not admit Eigensolutions or Generalised Eigensolutions.

This concludes our brief review of stability conditions. The 
reader is referred to [60,47,27] for a comprehensive discussion of 
stability theory. Ref. [9] is very instructive in the implementation 
of the various stability criteria to a test problem. We move on to 
introduce the concept of group velocity which is associated with the 
perturbation test of the GKS stability condition.

IZI>1 lxl>l (1.4.12)b

A Generalised Eigensolution is a mode (1.4.8) with

IZ 1=1 I x 1=1 (1.4.13)b
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(1.5) GKS Stability and Group Velocity

Although the GKS stability theory was developed in the early 
70's, its physical interpretation and in particular that associated 
with the search for Generalised Eigensolutions, remained obscure. It 
was not until quite recently [75] that a connection has been 
established between the perturbation test involved with finding 
Generalised Eigensolutions and the fundamental concept of Group 
Velocity in the theory of dispersive waves. This has been the work of 
Trefethen [74-78], which shed much light on the important role of 
Group Velocity in the analysis of numerical approximations to
hyperbolic problems.

Associating a direction of propagation with a given normal mode 
is important not only for understanding the underlying mechanisms of 
instability, but also for energy distribution analysis [21,84] and for
the assessment of rate of convergence to steady state [41,65].
Associating such a direction with the Godunov Ryabenkii unstable modes
(1.4.11) can be achieved in a natural way. A mode with IZI > 1 and
lxI <1 can be thought of being shifted to the right as n increases. 
Similarly, a mode with IZI >1 IxI >1 as moving to the left. A stable 
numerical model should clearly not admit such modes since they grow 
exponentially in time. It is less obvious why Generalised 
Eigensolutions (1.4.13) are unstable. Assigning a direction of 
propagation with such modes can only be accomplished through the 
notion of Group Velocity. It can then be established [76] that they 
represent a much milder instability and grow only linearly in time.

It is interesting to observe how the concept of group velocity 
keeps emerging in the theory of dispersive waves in a surprisingly 
versatile manner. Consider the simple example of a superposition of 
two sinusoidal waves of neighbouring frequencies and wave numbers

w(x,t) = cos (w^t-^x) + cos (w2t-£2x) (1.5.1)
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to = w  + Aw

w = w - Aw 2 0
1 0

By a known trigonometrical identity

w(xrt) = 2cos(Aw-t-AÇ-x)cos(wot-ÇQx) (1.5.2)

which describes a wave of the original frequency and wave number 
cos(wot-Çox) multiplied by a slowly varying sinusoidal envelope 
2cos(Aw-t-AÇ-x), giving rise to 'groups' of waves (see 111. (1.4)).
An observer that fixes his attention on a particular point on the wave 
train, say point A, moves his eyes with the Phase Velocity

An observer that follows a particular point on the envelope, say 
point B, moves his eyes with the Group Velocity

(1.5.3)

Aw-t-AÇ-x=0 C = x/t = Aw/AÇ -> dw/dÇg (1.5.4)

/

\
/

111. (1.4) - Groups of waves

Even from this simple example it is clear that if one is not 
interested in the details of the motion but rather in some average



distribution of the amplitude, then it is C rather than C thatg p
determines the speed of propagation. This argument can be made more
precise, by using variational methods (see Whitham [87], p.390).

In general, any PDE that admits travelling wave solutions
(1.4.4) also defines a dispersion relation w=w(£) from which the phase 
and group speeds can be deduced

Unless w is a homogeneous linear function of the two speeds are not
equal and we may either have C > C or C < C . We have seen Cp g p g g
emerging from a simple example (1.5.1). In the more general case

and one may ask which values of Ç contribute most to the integral in
(1.5.5) for a given (x,t). Denote by #(x,t) the phase

and examine the behaviour of (1.5.5) at large times when the ratio x/t 
is held fixed, thus concentrating on waves which are moving at that 
particular speed. For large t, the phase # oscillates very rapidly 
and most wave numbers make very little or no net contribution at all. 
The predominant contribution to the integral comes from points where 
the phase is varying slowly so that neighbouring Fourier modes tend to 
reinforce one another. These points satisfy.

This method is known as the method of stationary phase [7,87]. It 
implies that after sufficiently long time, that is after the waves 
have dispersed and separated, we shall see a local wave number of Ç 
moving with speed C = dw/dÇ. (For a full discussion see Brillouin [7]

Cp = w(Ç)/Ç Cg = dw(Ç)/dÇ

(1.5.5)

#(x,t) = wt-Çx = t (u-Ç-x/t) (1.5.6)

da/dt = 0 x/t = dw/dÇ = Cg

g
and Whitham [87], pp.363-402).
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In terms of x and Z

Returning now to the perturbation test of the GKS stability condition
(1.4.13), it can be shown (Trefethen [76]) that Generalised 
Eigensolutions (1.4.13) have real group velocity which points into the 
interior of the domain (ie positive for (1.4.13)a and negative for
(1.4.13)b). If admitted, such modes represent spontaneous radiation 
of energy from the boundary and clearly constitutes a source of 
instability.

(1.6) Absorbing Boundary Conditions in One Space Dimension

Consider the ID scalar wave equation

2—  \ <p = o (1.6.1)
dt dxJ '

which admits left and right moving single frequency solutions

V(x.t) = aeiM(x+Xt) +beiy(x-Xt> (1.6.2)

and requires for well-posedness two initial conditions <p(x,0) and 
<Pt(x,0). If an artificial boundary is introduced at x=xy, 
and the problem is solved on x^xq, well-posedness of the truncated 
problem requires a BC at x = x q . A single frequency right moving wave 
is of the form v^ae^0 ^  ^  and exactly satisfies

<P = 0 (1.6.3)

Equation (1.6.3) is a perfectly absorbing BC for the truncated 
problem. To appreciate it we define the Reflection Coefficient R=a/b
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and substitute (1.6.2) into (1.6.3). R=0 immediately follows.

Equation (1.6.3) is known as the Sommerfeld Radiation Condition 
[69] and has been implemented in a variety of ways to simulate open 
boundaries (eg Orlanski [56] and references therein). It repeatedly 
emerges as a first order approximation to absorbing BCS in several 
space dimensions.

A slightly different approach to the same end has been taken by 
Hedstrom [33] who considers first order hyperbolic systems

w + Aw = 0
- t  - x

Let the eigenvalues of A be ordered X <•••<X < 0 <X <•■•<X ,3 m m + 1 N
implying that the system admits (m) left moving waves and (N-m) right 
moving waves. A kth simple wave disturbance satisfies

dw = c r—  k-k

If a boundary is successively crossed by right moving waves, then 
changes on the boundary satisfy

N
*  = I c k-k

k =m+ 1

or equivalently

I f  dt = E  c kr k (1.6.4)
k=m+ 1

For well-posedness, (m) BCS are required at the RHB corresponding to 
the (m) incoming Riemann Invariants. Using the orthogonality property
(1.1.2)c it can be verified that

j = 1,•••,m (1.6.5)

are exactly satisfied by a general outgoing solution (1.6.4).



Equation (1.6.5) can be viewed as a negative statement, namely, that
no left running waves are crossing the RHB. In the linear case £ is- j
constant and (1.6.5) can be integrated to give

£ •w = const. j = 1, • • • ,m (1.6.6)

implying the constancy of the incoming characteristic variables often 
referred to as the Zero Incoming Riemann Invariant condition.

As a specific example, consider the ID Euler equations

' p ' ' u p  0 ' ' P '
u + 0 u 2 1/p u

. p . t . 0 pc u . p ,
= 0 (1.6.7)

with left eigenvectors

= (0 , pc , -1) 
£ 2 = (-c2 , 0 , 1 )  
£ = (0 , pc , 1)

A = u - c
X2 = u 
X_ = u + c

(1.6.8)

Let u>0. At the LHB (inflow boundary) the perfectly absorbing BCS are

£> dw

dp .
'z dt

dp 2 dp 
dt ~ C dt

p dw
*■3 at a t * pc at

(1.6.9)ab

and at the RHB (outflow)

p dw dp du
V a t  = at “ pc at = 0 (1.6.9)c

As a side remark we note that if the wave equation (1.6.1) is written 
as a first order system in Pc=<Pt and u=<p̂ , the zero incoming Riemann 
Invariant condition at x=x reads
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which is precisely the time derivative of the Sommerfeld Radiation 
condition (1.6.3) in the linear case X = const.

It is BCS (1.6.9), derived from one dimensional.principles, that 
are the most commonly used in multidimensional applications. Their 
implementation does not require apriori knowledge of conditions at 
infinity which are not always available. However, when used in 
connection with a marching algorithm towards a steady state limit, the 
gradient form (1.6.9) determines the solution only up to a constant 
which renders the converged solution dependent on initial data. To 
drive the far field pressure towards its free stream value, Rudy & 
Strikwerda [65,66] suggest to modify (1.6.9)c

The parameter a is determined by linear ID analysis to yield most 
rapid decay of the transient solution, and may need adjustments in 
multidimensional setups. Another drawback to (1.6.10) is that in the 
steady state limit p=p^ at the boundary itself which is inaccurate.

Instead of matching the BC to the outgoing part of the analytic 
solution, it can be matched to that of the discrete solution. This is 
the approach taken in the early work of Lindman [51]. Let a grid be 
defined by x .= jAx, t^=nAt, with Ax and At the grid spacing. Let </>" * 
<p(x.,t ) and consider the discrete approximation to (1.6.1)

(1.6.10)

J n

0 (1.6.11)
(At)2 (Ax) 2

with the discrete dispersion relation

(1.6.12)
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For each frequency w, equation (1.6.12) defines two admissible wave 
numbers ±Ç((o)

„n = eiunAt (aei?jAx + be'iÇjûx (1.6.13)

(compare (1.6.2)). As a boundary operator, Lindman considers a 
specific discrete approximation of the Sommerfeld Radiation condition 
and the results are thus restricted to this form of boundary operator

■ r *  '7 : ’’1 • » 7 , + PG
1 n

= o

t^=XAt/Ax is the CFL number and G is an operator yet to be chosen that 
yields optimal absorption at the RHB. To determine G substitute
(1.6.13) into (1.6.14). The reflection coefficient is

R = e
-iÇAx tan ^  - *5 tan ^  

tan + vG tan
(1.6.14)

If G is chosen so that its symbol in the frequency domain Gq satisfies

(1.6.15)

then the boundary operator (1.6.13) yields perfect absorption. 
Unfortunately Gq does not represent any finite difference operator Gq 
and the problem reduces to finding useful approximations to G^, which 
are given in [51]. It is interesting to note that although a 
perfectly absorbing analytic BC exsists, namely equation (1.6.3), the 
discrete strategy leads only to a sequence of approximate BCS.

A similar approach was taken by Engquist & Majda [15, section 5] 
who factorize the symbol of the difference operator (1.6.12) into
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describing left and right moving waves respectively. Thus, if a 
boundary operator is such that its dispersion relation is

( 5Fsin ^  + sin ) - 0 d.6.16)

it would yield perfect absorption. Again, equation (1.6.16) is not 
directly realisable on the grid and is replaced by high order 
approximations.

Vichnevetsky and Pariser [85] investigate the semi-discrete form 
of the advection equation

fdw
lat.

w" - w"
+ x = 0 (1.6.17)

2 Ax

Based on centered differences, equation (1.6.17) admmits two spatial 
modes Ç and ^  with the same frequency,

in contrast with the analytic equation which admits only one. 
Associating a direction of propagation with each mode is less straight 
forward and is established by applying group velocity analysis. The 
authors then consider a semi-discrete boundary operator

= aw. + bw. + cw .  ̂+
j J J J

and choose the coefficients to yield optimal reflection coefficient.

Finally Higdon [35,36] considers boundary operators for the 
discrete wave equation (1.6.11) and attacks the problem from a 
slightly different angle. In terms of x and Z defined in section 
(1.4), equation (1.6.11) reads
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(Z - 2 + Z"1) = t/(x - 2 + x"1)

and admits two solutions x^and x^ for any fixed ZQ. Let K and Z be

general finite difference boundary operator is a polynomial in these

of roots, the corresponding boundary operator can only annihilate a 
finite number of modes, depending on the degree of B. To absorb, for 
example, low frequency waves (Z,x)=(l,l), the problem reduces to 
constructing polynomials with (Z,x)=(l,l) as roots. Not all such 
boundary operators lead to a stable model but it can be shown [35] 
that

combined with the interior scheme (1.6.11) are GKS stable. Although 
the suggested boundary operators have one dimensional stencils, they 
are analysed in the context of the multidimensional wave equation. It 
is shown that the reflection coefficient in both cases is

where X=At/Ax and -9 is the angle of incidence. Best absorption is 
thus at some non-zero angle of incidence.

the shift operators in space and time Kwn=wn Zwn=wn+1, then aj j + i j j

operators B(Z 1,K 1)=0 and the reflection coefficient is given by

For the boundary to be perfectly absorbing must roots of
the polynomial B(Z 1,x 1)=0. Since B can only possess a finite number

(i) (1.6.19)a

(ii) (1.6.19)b

An advantage of the direct discrete approach over the analytic



approach is that it can be targetted at absorbing non-physical 
parasitic modes, typically modes of saw-tooth character, which cannot 
be handled by any analytic approach. For example, to absorb a mode 
(Z,x)=(-1,-1) one can apply

This adavantage has also been realised by Vichnevetsky and Pariser 
[86] who design high frequency nonreflecting BCS for the semi discrete 
form (1.6.17). Clearly, the left running mode in this case is totally 
spurious, being a direct consequence of the central differences 
approximation of the spatial derivative. Such spurious waves are of 
saw-tooth nature and are easily recognisable as numerical noise. Yet, 
when reflected from a (upwind) boundary they become smooth waves which 
are indistinguishable from consistent numerical solutions. Their 
absorption can become quite vital in some applications (see also 
review paper [84]).

(1.7) Absorbing Boundary Conditions in 2 and 3 Space Dimensions 

Engquist and Majda [14,15] consider the 2D wave equation

solved on a strip 0^x^xQ with an absorbing boundary at x=xQ. Plane 
wave solutions <p=exp ( i Çx+i rry+iwt ) satisfy the dispersion relation

for fixed (w,r?) the solution is a superposition of left and right 
moving waves

p
I -i I - K-iI (1.6.20)

2 2

2 2 ,2
(2.7.1)

Ç2+r)2=u2 or equivalently Like in the ID case

v = ei(rlY+t,t) ( aeiÇ+x + biÇ'x )
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A BC that exactly annihilate right moving waves is thus

§£ + /  u2 - n2 j <P = 0 (1.7.2)

which formally corresponds to the Pseudo-Differential Operator

Unless d/dy^O (corresponding to rj=0 ie normal incidence), equation
(1.7.3) is not a rational function in {d/dt,d/dy) and yields a BC 
which is non-local in both t and y. To be numerically useful, it has 
to be approximated in a well-posed manner. Approximations about 
normal incidence naturally lead to BCS which are perfectly absorbing 
in that direction. For waves in other directions the p th order 
approximation yields reflections of order 0(q/w)2P. The essential 
requirement of well-posedness turns out to be less trivial than

ill-posed second order approximation, admitting solutions of the form
(1.1.5). Approximating the square root by a rational function based 
on Fade expansion can be proved well-posed [14,15]. The first members 
of this family are

(1.7.3)

anticipated. Taylor small r]/o) yield an

(1.7.4)

dxdt 4 dy

If equation (1.7.1) is used to eliminate the y derivatives in (1.7.4), 
the pth order boundary operator in (1.7.4) is equivalent to the p th 
order generalised Sommerfeld radiation condition
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[ &  + &  ) v = 0

with a reflection coefficient

R = 1 - cos#
1 + COS#

The same approach was applied to the Transonic Small Perturbation 
equation in [16] and have been thoroughly studied numerically by Kwak 
in [49,50]. The theory is extended to the elastic wave equation 
[11,14] but well-posedness is not established. Several subsequent 
papers by various authors report instabilities encountered in their 
implementation [13,53].

Also in [14], a general theory is developed for first order 
symmetric systems which uses the complicated theory of 
pseudo-differential operators. A recent extremely elegant report by 
Giles [20] treats the same class of equations using the language of 
eigenvectors, Taylor expanded about normal incidence. Consider the 
NxN linear hyperbolic system of equations

w + Aw + Bw = 0 (1.7.5)—t —x —y

Plane wave solutions w = w ei{£x+rJY+t)t) sa|.̂ sfy
—  — o

(col + ÇA +T7B) W Q = 0 

or equivalently

(ÇI + coA"1 + T7A-1B) wQ = 0 (1.7.6)

Non-trivial solutions exist provided

det (ÇI + coA'1 + nA^B) = 0 (1.7.7)

which is the dispersion relation for the system (1.7.5). For fixed 
(r],co), equation (1.7.7) defines N roots and N corresponding right
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eigenvectors Lk~Lv(Hfw)

(wA-1 + = -Ç, r,—k k—k k=l,•• - ,N

and admits a general solution

r n > .
” = I E akEk exp(iÇkx) e

k = 1
i (r)y+wt) (1.7.8)

The main difficulty is to establish which of the modes in (1.7.8) are 
incoming and which are outgoing. Assume that are incoming

(compare (1.6.5) & (1.6.6)). In their exact form, BCS (1.7.9) are 
impractical since their implementation requires a Fourier transform in 
both y and t. Approximations are sought for angles close to normal 
incidence. Denote rj/w = d, then

The corresponding BC is obtained by identifying $ with the operator 
(d/dy) /{d/dt) and multiplying by {d/dt)p to clear all denominators. 
Well-posedness is established if it is not possible for incoming waves 
alone to satisfy (1.7.10) implying spontaneous radiation of energy 
from the boundary. This general derivation is applied to the Euler 
equations and it is found that the second order inflow conditions are 
ill-posed, admitting one unstable mode while the outflow condition is

modes. Denote by (n,w) the kth left eigenvector and recall the
orthogonality property (1.6.5)c. The perfectly absorbing BCS 
expressing the constancy of the incoming Riemann Invariant are

(71,u) -w = 0 k=l,•••,m (1.7.9)

(I (0)) + •••— k

The pih order approximation is given by

Z  JL
(1.7.10)
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well-posed.

A hierarcy of far field BCS based on a different asymptotic 
argument is derived by Bayliss & Turkel [4,5] for equations which 
display a wave-like far field behaviour. The same approach was 
extended to elliptic problems in [6] (see also [19]). Instead of 
expanding the solution about normal incidence, they consider an 
expansion of the solution in inverse powers of the radial distance r.

A spherical outgoing wave solution has the form

V = r

and is exactly annihilated by the boundary operator

= 0 (1.7.11)

A more general outgoing wave has the form 

n f . (r-t ,#,<*>)
» =  l -1---- ;----

j = i r

I t  + I? + r

where f . may be treated as arbitrary functions One can verify that

> ' 1 ' 2p+ 1
(p - 0 (1.7

becoming better approximations as r -» w and yielding well-posed 
problems [4].

BCS (1.7.12) are employed in the 2D linearised Euler equations

p t + uop, + Poco

ut + uou, + PÔlp, ■ 0

vt + V x  + p0lpy = 0

= 0

(1.7.13)
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It can be shown that under a suitable coordinate transformation, 
pressure deviations from the mean pressure satisfy Ptt~ p ^ -  p ^  = 0. 
Conditions (1.7.12), slightly modified for circular outgoing waves, 
are transformed back into physical coordinates. The first member of 
this family reads

ft + n r  # ( V V V

- p oc oP a ' V o ? * '  + ° o P " 2 r  = 0 (1.7.14)

where j32= 1-M2 and d2= x 2//?2 + y2. In steady state calculations, the 
spatial variations of y were ignored, enforcing P=P0 in the steady 
state limit (compare (1.6.10)). An equivalent formulation involving 
pressure derivatives only is [64]

t 0d-Mox = 0 (1.7.15)

In a recent paper by Roe [64] , the Euler equations are combined 
in ratios (i) + p^c^cos# (ii) + p^c^sin# (iii) to yield a ^ dependent 
equation in which all directional derivatives act in one plane. Each 
of these characeristic planes is spanned by the vectors

( 1 , u0+cQCQsd , CqSin# )

( 0 , sin# , -cos# )

in the (t,x,y) directions. The first operator acts along a particular 
bicharacteristic while the second acts in space only. Specifying # 
implies considering disturbances in that specific characteristic 
plane. Roe takes lead from the BC (1.7.15) and chooses # so that the 
direction of the bicharacteristic coincides with the direction of the 
derivative in (1.7.15), obtained from global far field asymptotic 
considerations. This is accomplished by setting
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A
sin* =

With this choice of substituting (1.7.15) into the characteristic 
equation results in another outgoing characteristic equation involving 
velocity derivatives only

m + P3dco B

+ P2y ( fi +“o B  ) + Co(Pd"Mox) %  = ™2^  (1.7.17)

which can be used to update the combination (x-pM^d) u + p2y v at the 
boundary. Roe's BCS applied to simpler equations are presented in 
Appendix A.

The statement of zero reflection at the boundary is not accurate 
in quasi one dimensional flows. Writing the equations in terms of the 
incoming and outgoing characteristic variables reveals that the two 
are coupled through the presence of a source-like term which accounts 
for the non-Cartesien geometry. As a consequence, an outgoing wave 
generates an incoming wave as it propagates. At the boundary, this 
interaction should be modelled and the BC should in fact be 
reflecting. In [28], Hagstrom & Hariharan derive a reflecting BC for 
the spherically symmetric isentropic Euler equations, based on 
expanding the characteristic variables as a series in inverse powers 
of the radial distance r.

The linearised Euler equations with spherical symmetry read

p + g + zg/r =0
(1.7.18)

<7t + Pr = 0

In terms of the outgoing and incoming characteristic variables /?=g+p 
and S=q-p, the equations become
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(1.7.19)
St - Sr =

In the far field, R and S tend to constants and can therefore be 
expanded in a series

R = Rn + Ri/ + Rz/ 2 +
S r S r (1.7.20)

S = R + U  + 2 / 2  + •••

It follows from the definition of R and 5 and from the fact that #-» 0 
in the far field that Rq= - 5q = pQ . Substituting (1.7.20) into
(1.7.19) and collecting like terms leads to the first order 
approximation

(V t  + {R\] v = 0 ^(r,t) = a,(r-t,0)

(5i)t " (5i)r'as 0 ' 1 ■» 4,(r,t) = 5’1 (r+t,0)

implying that and are genuine Riemann Invariants. Since is 
initially zero, 0 at all later times. The first non-zero
correction to the incoming characteristic variable is obtained through 
the second order approximation

(52)i " (52) r = ^(r-t) (1.7.21)

Expressed in terms of t = r-t and r, equation (1.7.21) reads

- 2 ( 5 2>T - <5 2 >r = * 1 (x)

At the boundary r=a, (^2)r= 0 (1/a) and can be neglected. Also at the
boundary dx/dt = -1 yielding

(s2)t = \

or equivalently up to 0 (1/a)2
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| f =  |  <*<a,t> -  V

which is the proposed reflecting BC.

An interesting, yet not numerically practical strategy was taken 
by Smith [67] who proposed to solve the wave equation twice, once with 
Dirichlet BC and once with Neumann BC. The superposition of both 
solutions leads to cancellation of all reflections. Open BCS for the 
steady 2D Euler equations based on a Fourier expansion of the solution 
at the boundary were obtained in [18] and [17]. Other open BCS can be 
found in references [3,25,30,73].

We end here the brief survey of the modelling of open 
boundaries. We hope to have given a flavour of the predominant 
concepts in the design of nonreflecting BCS as well as of the rather 
involved analysis required to establish well-posedness and stability. 
Although establishing well-posedness is sometimes regarded as 
unecessary formalism of mainly cosmetic value, the above examples show 
that often, when well-posedness cannot be established, instabilities 
are encountered in practice. They also show that not all sensible 
strategies yield well-posed problems.

(2.1) The Lax-Wendroff (LW) Scheme and Group Velocity

The main drawback of the concept of group velocity is that it is 
strictly valid in non-dissipative cases only (ie w is a real function 
if Ç). In the presence of dissipation (1.5.5) becomes an integral in 
the complex plane and the argument of stationary phase needs to be 
extended to the method of steepest descent or saddle point [87]. As a 
result, group velocity analysis strictly applies to non-dissipative 
numerical approximations. It is also valid for dissipative models 
which admit isolated non-dissipative modes [74]. Indeed, modes with 
IZI <1 do not grow with time, hence cannot generate an instability.
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Dissipation, thus, reduces the number of potentially unstable modes. 
In some cases, dissipativity of either the interior scheme or boundary 
condition is sufficient to guarantee stability [22]. In an elegant 
article [78], the stability ot a difference model is presented as the 
consequence of a competition between the destablising mechanism of 
dispersion, and the stablising mechanism of dissipation.

It is precisely because of its stablising nature that 
dissipation is regarded as a desirable feature in practical 
applications. Even if the basic scheme is non dissipative, some level 
of dissipation is always added to prevent non-linear instabilities. 
Examples include various variants of the LW scheme [29,52,55,61,62], 
Runge-Kutta (RK) type schemes [39,40] and others [32,57].

As is often the case in practical calculations, one is seeking 
steady state solutions by means of marching the time dependent 
equations for sufficiently long time until steady state is reached. 
For this class of problems, although modes with IZI<1 are not 
unstable, if IZl * 1 they are dissipated very slowly, and inhibit 
convergence to steady state. Group velocity analysis in these cases, 
though strictly not applicable, will still make good predictions, 
provided dissipation levels are sufficiently weak. As a typical 
representative of the class of dissipative schemes we select the LW 
scheme, variants of which are in wide practical use. The pathological 
behaviour predicted by the analysis that follows has wider 
implications and encompasses the class of symmetric two-level explicit 
schemes of optimal accuracy, the class of RK schemes (see Appendix F) 
and others [38].

The LW scheme to approximate the advection equation (1.2.1) is

n+1 n P n n n - n , nw , = w . - - w. - W + 7T w - 2w + wJ j 2 , J + l 2 i+

with

u = X At/Ax (2.1.2)



the CFL number. The scheme is Cauchy stable (ie stable as a pure IVP) 
if \p \ £ 1. The dispersion relation for (2.1.1) is

^iuAt _  ̂ + i^sinÇAx + t>2(cos£Ax - 1) (2.1.3)

which is both non-linear and complex reflecting both its dispersive 
and dissipative nature. For small w and £ both sides of (2.1.3) can 
be Taylor expanded to give as expected

w = XÇ + higher order terms 

In terms of Z and x (2.1.3) reads

For a given frequency w = Z = Z^ is fixed and (2.1.4) is a
quadratic equation in x yielding two solutions

A2 = (1-Z0)2 + v 2{2Zq - 1)

That every frequency has two distinct roots x^and x^is a direct 
result of using 3 grid points (j-l,jfj+1) to approximate the d/dx term 
in (1.2.1). In the steady state limit wAt -» 0 (Z -> 1) we observe that

Z = 1 - ^(x_1-x) + ^(x - 2 + x™1) (2.1.4)

(2.1.6)

Indicating that x^ solutions are consistent solutions to (1.2.1) while 
x are spurious numerical by-products of sawtooth character (M £1). 
Inspecting (2.1.3), two extreme cases are observed
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ÇAx = 0 wAt = 0 (o is real
ÇAx - n w is purely imaginary

In the latter case e*0̂  = l-2^2 w' 1 for very small CFL numbers. In 
the intermediate range £eR let w be complex

w — («) +iw o) ,o eFR I R I

The dispersion relation can be separated into its real and imaginary 
parts

-o)̂ At 2
e coswRAt = 1 + p (cosÇAx-1)

- « A t (2.1.7)
e sinwRAt = ^sin^Ax

Eliminating in (2.1.7) yields

tan (0 At =   (2.1.8)
l+î  (cosÇAx-1)

Figure (II. 1) gives wR and as a function of ÇAx. As expected, for 
i>> < < 1, (0i to 0 ove
when ÇAx = n, hence
v << 1, w i to o over the whole range of ÇAx. In fact w^At is maximal

WjAt 3 max(w^At) = -In(1-2p 2) % 2m 2 (2.1.9)

for all ÇAx. Implicit differentiation of (2.1.8) yields the 
approximate group velocity

C ((Ax) 1 cos(Axtt>2(l-cosgAx) (2.1.10)
9 [l-i> (1-cosÇAx) ] +î  sin £Ax

with the understanding that (2.1.10) is valid only in the limit of 
small CFL numbers. We observe that
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C (ÇAx = 0) = X g

C (ÇAx = n) = -X/(l-2u2) g

As expected, well resolved waves propagate at the correct speed, while 
poorly resolved waves not only travel with the wrong speed but may 
also move in the wrong direction, if

" < - (2.1.12)

For intermediate values of £Ax, may also assume negative values 
depending on whether

2
cosÇta <> - J^ 2  (2.1.13)

The same result can be obtained by implicit differentiation of (2.1.3)

C(çAx) = C°S^  + iPSziDgte  (2.1.14)
1 + iusin^Ax-p (1-cosÇAx)

A feature common to many practical calculations is stretching 
grids. The grids are fine in regions where large gradients need to be 
resolved (eg near a shock wave or at leading and trailing edges in a 
flow past an aerofoil), while in the far field they become coarser. 
Highly stretched grids introduce the combination of small CFL numbers 
which "prolong the life" of the high frequencies with an increasing 
number of poorly resolved frequencies as the grid gets coarser. In 
view of the large dispersion errors in the high frequencies, this 
combination is highly undesirable.

We now turn to a series of numerical experiments which were set 
up in order to investigate the behaviour of discrete travelling waves 
in the far field, and to expose the parameters upon which the 
efficiency of the he's in absorbing the waves depends.
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(2.|) Numerical Experiments

(2.|.1) Boundary Conditions

In the following experiments five BCS are tested:

(i) Specify the pressure P=P0D, use outgoing characteristic equations 
to update the remaining quantities.

(ii) Specify Zero incoming Riemann Invariant, extrapolate outgoing 
Riemann Invariants using characteristic equations.

(iii) Specify Roe's conditions for the treatment of the acoustic waves 
(See Appendix A).

(iv) Over specify - Impose free stream conditions at the far field 
boundary.

(v) Under specify - all variables are obtained through 0th order 
extrapolation from the interior of domain.

•  #-----  O

( i v )  (v)

111. (II.1) - stencils of boundary conditions (i ) - (v ).

The stencils for BCS (i)-(v) are sketched in 111. (II.1). Those are 
imposed at x=x in the ID case and at r=r in the quasi ID case.max max
(see 111. (II.2).

i i i i
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| boundary

boundary

» r

111. (II.2) - Computational domains in the (a) ID and (b) quasi ID

Several comments should be made about the above choice of BCS:
(a) Multidimensional disturbances decay as they move away from the 
origin. At sufficiently large distances conditions are therefore not 
far off those at infinity, and it is hoped that no 'great harm' is 
done by imposing infinity conditions at the boundary itself. For that 
reason, specifying p=pœ at a finite distance is physically wrong. 
Yet, various variants of be (i) where is either explicitly 
specified or implicitly implied are widely used. Among those we find 
the BCS derived by Rudy & Strikwerda [65,66], Bayliss & Turkel [4,5] 
(see discussion in sections (1.6) & (1.7) ), Hall [29] and others. 
Although local error estimates incurred by imposing this BC can be 
obtained, its overall effect on the solution remains to be 
investigated numerically. ID disturbances do not decay, hence 
specifying p=p(X) at the boundary in ID problems, although 
mathematically well-posed, is usually not physically sensible.

(b) Be (ii) uses the theory of characteristics which is correct for ID 
problems. In genuinely multidimensional flows, ID analysis is only 
valid for disturbances normal to the boundary and asymptotic 
expansions are required for waves in other directions. The gradient 
form of the BCS implies that converged steady state solutions are weak 
limits in that they depend on initial data. See discussion in Chapter 
I section (1.7) and the references cited therein. See also remark in 
[64] p. 222.

s e t u p s .
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(c) All the information required in be (iii) is supplied by interior 
points. No assumption is required as to the state prevailing outside 
the region of computation which is not always available. The 
converged steady state solutions are again weak limits.

(d) Both BCS (iv) and (v) violate the Theory of Characteristics hence 
are mathematically ill-posed. (v) is also unstable as it is 
encompassed by the theorem in [72].

(2.2.2) Numerical Tests

Test A (Figure (II.2)a-e)

The governing equations are the ID unsteady Euler equations 
which have the conservation form

w + F(w) = 0
— t —  —  X (2.2.1)a

w = (p,pur e)T F = (pu,pu2+p, ue+up)T

Using the ideal gas assumption p is found from

e = h : + lp“2 (2.2.1)b

In the above, p represents density, u velocity, p pressure, e energy 
and y the specific heat ratio. Let c be the sound speed, h the 
specific enthalpy and s the entropy.

The eigenstructure of the Jacobian matrix A(w) = ôF/dw is given by

R = (s ,'E2'£3>

1
u-c

1
u+c

. 1 2 . ,  
h-uc -u h+uc2

(2.2.3)a
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A = diag ( X ^ X ^ X ^  = diag {u-c , u, u+c) (2.2.3)b

The characteristic equations are (see (1.1.10)

dp-pcdu = 0  on dx/dt = u-c
dp-c2 dp = 0 on dx/dt = u
dp+pcdu = 0  on dx/dt = u+c

(2.2.4)

and similarly the wave strengths

w = (Ap - pcLu)/2c2

«2 = (c2A p  - A p ) / c2 (2.2.5)

fAp + pcLu) /2c2a3

Initial data is the uniform state (p, ufp) = (1,0,1). High pressure is 
fed through the LHB (p,e) = (2,4) giving rise to a moderate right 
moving shock wave followed by a contact discontinuity. The waves are 
expected to disappear through the RHB, and the new state is expected 
to occupy the whole domain. The test is conducted on a regular grid 
at CFL number = 0.5. The method of solution is Roe's field
decomposition [62], with LW scheme applied to each characteristic 
field. No flux limiter is used. BC (i) is inappropriate in a ID 
set-up. Indeed figure (II.2)a shows a typical reflection of a shock 
wave from a surface of constant pressure. BCS (ii) seem to have 
completely absorbed both waves. Both (iii) and (v) give similar 
results with a slight over estimate of u by BC (v). The performance 
of (v) is particularly surprising, being formally unstable. 
Conditions (iv) are again inadequate leading to strong reflections of 
a sawtooth character. These are typical numerical rather than
physical reflections, and can be confirmed as (u) waves travelling in 
the wrong direction. Owing to dissipation, the reflections are 
confined to the neighbourhood of the boundary and the solution is 
rescued from complete contamination.
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Test B (Figure (II.3)a-e)

The same test is repeated with v - 0.0625. Larger phase errors 
are expected with lower level of dissipation particularly at high 
frequencies. As a result, wave propagation is much more oscillatory. 
Bc's (ii) (iii) and (v), while coping reasonably well with the shock 
wave, fail to absorb the contact discontinuity. A strong reflected 
(u) wave travelling in the wrong direction can be observed. In the 
absence of dissipation, the contaminated region is much larger. BCS
(iv) generate reflections which completely contaminate the solution.

Test C (Figure (II.4)a-c)

The same test is repeated on a mildly expanding grid. Unless
expansion is very mild, the effect of grid stretching is the formal
loss of accuracy [58,59,63,81]. In Appendix B we present an adaptation
of the L-W scheme to non uniform grids which is conservative and
preserves second order accuracy. Grid expansion rate is Ax /Ax =

j +1 j
1.05. With a total of 50 grid nodes, Ax /Ax . = 11.47. Both ratemax min
of expansion and consequently the range of CFL numbers in the problem 
are not as severe as encountered in practical flow computations. Yet 
such conditions are sufficient to expose the inadequacy of all BCS 
to absorb the waves.

Test D (Figure (II.5)a,b)

The governing equations are (2.2.1). The grid is stretched at a 
rate of 2% in both directions and is illustrated below.

expanding grid **- - - - - - - 1 - » expanding grid

4 L.......   J-------- 1--- 1— 4— »---- 1---------1------------ 1— to.
0 X

111. (II.3) - Grid set-up for internal reflection test.
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Initial data correspond to a (u) wave and a (u-c) wave 
respectively. The initial wave, while moving in the correct 
direction, gradually penetrates the coarse part of the grid. At some 
critical point, the local wave number becomes such that the 
corresponding group velocity changes sign. For M  « 1 this
corresponds to a wave length * 4Ax. The wave is internally reflected 
and propagates as a sawtooth wave, until it reaches the coarse region 
where it reflects again and the low frequency is recovered. This 
trapped wave continues to bounce back and forth until it dissipates. 
In computations which march in time towards a steady state limit, 
internal reflections can be quite troublesome as steady state cannot 
be reached before these waves have dissipated. Trapped waves under 
non-dissipative schemes have been studied in [21,84]. Analysis 
suggests and experiments confirm that in far field conditions, 
dissipative schemes behave in much the same way.

Test E (Figure (II.6)a,b)

The governing equations are the 2D linearised Euler equations (see 
Appendix D)

w + Aw + Bw = 0 (2.2.7)_t — x — y

p '0 1 O' o o 1—1

w = u A = 1 0  0 B = 0 0 0

zo o o oot—*y

Second differentiation of (2.2.7) shows that

(2.2.8)
( u ~ v ) = 0y x t

Axi-symmetric flows satisfy
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V ' 0 1 ' V V r
+ +

A t . 1 o , A r . o ,
= 0 (2.2.9)

with cpqir) the radial velocity. The emergence of a non-homogeneous 
source-like term is due to the non-Cartesian geometry. The simple 
wave structure of (2.2.9) is

R =
1 1

-1 1
A = diag (-1 , 1) (2.2.10)

The characteristic equations are

dp-dq - q/rdr = 0  on dr/dt - -1

dp+dq + q/rdr = 0  on dr/dt = 1
(2.2.11)

and the wave strengths due to the homogeneous and source-like terms 
are respectively

« 1 = -(Ap-Ag)

«2 = — (ApfAg)

P, = % <sr/r

P2 = I  î / r

(2.2.12)

Initial data are

p(r,0) = 1+e -O r g(rf0) = 0

Due to symmetry, the problem is solved on [0,r ] with reflectionmax
conditions at the origin. The initial pressure hump is expected to 
decay as it moves away from the origin. The expected free boundary 
solution is

(p,q) = (1,0) (2.2.13)
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The method of solution is again Roe's field decomposition, with both 
flux and source-like terms projected onto the eigenvectors (2.2.10).

BC (i) is now appropriate. Although specifying p = is not 
far off the true situation, the wave partially reflects at the 
boundary and then focusses very strongly as it converges towards the 
origin, reaching an intolerable error at the origin itself. The wave 
continues to bounce back and forth and requires a good number of 
’round trips' before the solution converges. Moving the artificial 
boundary to a very large distance (200 nodes) compared with the region 
occupied by the initial disturbance (5 nodes) seems to have only a 
limited effect. This is summarised in the tables below.

No. of grid 
points

Signal's amplitude 
near the RHB

Max. reflected 
amplitude at origin

30 1.080 1.627
40 1.063 1.522
50 1.051 1.500
60 1.043 1.459
80 1.033 1.400

100 1.023 1.357
200 1.013/4 1.247

Table I: Focussing of pressure wave against boundary distance

No. of 
Points 1st focussing 2nd 3rd 4th

30 1.627 1.511 1.416 1.381
40 1.552 1.443 1.360 1.312
50 1.500 1.396 1.320 1.276
60 1.459 1.360 1.291 1.251
80 1.400 1.309 1.248 1.213

100 1.357 1.274 1.220 1.189
200 1.247 1.185 1.142 -

Table II - Maximal Reflected amplitude at the origin for s uc cessive  
reflections.
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This example constitutes a worst case. Due to symmetry all 
disturbances reflect from the far field boundary to meet at the origin 
and focussing is particularly strong, becoming even more pronounced in 
a 3D set-up (figure (II.6)b). A similar behaviour, albeit in a less 
pronounced manner, is expected whenever p = p^ is specified. BCS 
(ii)-(v) completely absorbed the wave including BC (iv) which in a way 
is a more strict version of (i).

Test F (Figure (II.7)a-d)

The governing equations are (2.2.9) and the method of solution is the 
same as in Test E. The initial state

2-C7( r - rQ )
p(r,0) = e CQSJtr g(r,0) = 0 (2.2.14)

is expected to break into two wave packets of half the original 
strength moving in opposite directions. This can be observed to 
happen in the figures. Yet, both wave packets are moving 'backwards', 
resulting in the situation where the designated left running (p-g) 
wave reaches the RHB. The BCS, being unable to absorb waves of the 
wrong family, reflect the oncoming waves disguised as friendly smooth 
solutions, which can no longer be distinguished from consistent 
physical solutions. BCS (iii) and (v) displayed similar behaviour. 
BCS targetted at absorbing waves which 'lost their way' can be 
designed. Since such waves are a numerical phenomenon which is 
entirely scheme dependent, the BCS are derived directly from the 
numerical dispersion relation.

(2.2.3) Upwind or High Frequency Boundary Conditions

We choose to follow the procedure suggested by Higdon [35], 
aimed at absorbing high frequencies (see discussion in section (1.6)). 
The saw-tooth wave has x = -1 and by the discrete dispersion relation
(2.1.4) Zo=l- 2p 2 s 1 for Iw! « 1. The proposed BC therefore takes the 
form
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I - 1 - I- \ wntl = 0 (2.2.15)

Test G (Figure (II.8)a,b)

We have adapted (2.7.15) to systems in two ways:

(a) To the Riemann Invariants in BC (ii), neglecting the
non-homogeneous term near the far field boundary.

(2.2.16)

(b) To Roe's condition (iii), neglecting again the non-homogeneous 
term near the far field boundary (see Appendix A)

I - ^ r 1  c : .  ■ «

4 4  CL - «
Absorption in both cases is greatly improved, 

Test H (Figure (II.9) a,t>)

(2.2.17)

It is easy to see that (xo,Zo) = (1,1) are bounded away from 
zero in (2.7.15) hence low frequencies cannot be absorbed by this 
procedure. This is confirmed in the figures.
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Test I (Figure (II.10)a,b)

A natural way to absorb both low and high frequencies is

I + Z I - K-iI 2 2 I max
(2.2.18)

1 + 2 -1 I + K
2I 2 I max

The first of these equations is constructed to absorb high frequency 
(p-q) waves travelling 'backwards', ie to the right. The second is 
constructed to absorb (p+q) waves moving in the physically correct 
direction, ie also to the right. These combined low—high frequency 
boundary procedures thus cover the extreme cases of right moving waves 
- the lowest and the highest possible frequencies. However, by the 
same construction, they are also expected to be sensitive to wave 
number. Indeed, the Figures show wave packets centred about £h=0 and 
%h=n being absorbed by the BCS (2.2.18). Wave packets are not pure 
Fourier modes. They also contain neighboring frequencies to the ones 
they have been centred about. This explains the weak reflections 
which can be noticed in the Figures.
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PART TWO

Introduction

Having presented a variety of examples where absorbing BCS give 
rise to strong reflections, we now present a new and less conventional 
approach to the treatment of far field boundaries. It is proposed to 
introduce an outer absorbing layer in which the governing equations 
are modified in a boundary-like manner, so that by the time waves have 
reached the boundary itself they are easy to handle. For example, one 
may gradually decrease the value of the specific heat ratio y, speed 
so that the outer boundaries become supersonic [S. Abarbanel, private 
communication], or one may force the equation to a desirable solution 
in the far field ([46], discussed in more detail in Chapter IV ).

Any attempt to modify the governing equations in the far field 
creates an interface to one side of which the original equations are 
solved, and to the other, the modified equations. The interface, just 
like the far field boundary itself, should behave as it it were not 
there, allowing waves to cross it without reflections. It is 
therefore vital to ensure full transmission of waves across the 
interface, certainly of outgoing waves but also of incoming ones.

Common to the above mentioned far field modifications is that 
they do not distinguish between incoming and outgoing disturbances and 
treat both in the same manner. In problems of genuine time 
dependence, however, correct physical information should be allowed to 
propagate from the boundaries into the interior. To be applicable to 
this class of problem, the far field modification needs to be of a 
one-way character and act on the outgoing waves without affecting the 
incoming ones. In one dimensional problems, the task of 
distinguishing between incoming and outgoing disturbances is 
straightforward. In multidimensional problems, it is a lot more 
complicated as waves may propagate in an infinite number of 
directions. In either case, characteristic field decomposition and 
simple wave analysis is required for the construction of one-way far
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field modifications.

The notion of replacing an isotropic equation by a modified 
equation which have the same properties in some directions but 
different properties in others has been used before. One Way Wave 
Equations (OWWEs), sometimes referred to as Parabolic or Paraxial Wave 
Equations have long been applied to describe wave propagation with a 
preferred direction. Applications are widely ranging in Seismology, 
Geophysics, Underwater Acoustics (eg [1,2] and references therein). 
OWWEs have also been applied as absorbing BCS at artificial boundaries 
[14]. The above One Way approximations have all been derived from the 
second order scalar wave equation. The modifications presented in 
this section are based on formulating the wave equation as a first 
order system. This is shown to offer a wider choice of far field 
modifications some of which are no longer equivalent to a modified 
second order scalar equation hence 'beyond its reach'.

Although the proposed modifications have one-way absorbing 
mechanisms and are therefore suitable for far field boundary treatment 
in their own right, they may also be used in conjunction with 
absorbing BCS to enhance the performance of either of them.

Two closely related far field modifications are presented in 
Part Two of this work. In Chapter III, one-way absorbing boundaries 
by slowing down outgoing waves are studied. In section (3.1) the 
concept of slowing down the outgoing waves is presented in one and two 
space dimensions. The ID modification is analysed in sections (3.2) 
and (3.3) on both the continuous and discrete levels, transmission 
conditions are derived and stability is established. In sections
(3.4) - (3.7), several 2D extensions are presented and analysed, their 
well-posedness is established and their physical grounds are 
validated. Numerical experiments are given in section (3.8) for one 
and two space dimension problems. Conservation aspects are studied in 
section (3.9) and in section (3.10) the relation between the proposed 
modifications and preconditioning techniques is commented upon. In 
Chapter IV, we discuss one-way absorbing boundaries by gradual wave



55

attenuation. In sections (4.1) and (4.2), the modification is 
analysed on the continuous level and full transmission of waves is 
established. In section (4.3), the modification is analysed on the 
discrete level and stability is prooved. The modification is extended 
to 2D is presented in section (4.4). The two proposed far field 
treatments, namely slowing down and attenuating the outgoing waves are 
combined into a single far field modification is section (4.5). 
Numerical experiments in both one and two space dimensions are 
presented in section (4.6).
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(3.1) The Concept of Slowing Down Outgoing Waves

Consistent boundary conditions do not generate waves unless 
being hit by outgoing waves, trying to leave the computational domain. 
Starting from a uniform initial state, and since propagation speeds 
are finite, there is a period of time during which those DCS are
inactive and have no influence on the solution throughout the flow
field. They do not play a role until the first disturbances generated 
at the aerofoil or at any other obstacle, have reached the outer 
boundary, and if the solution is required only in the immediate
vicinity of the aerofoil, until they have propagated back. Meanwhile, 
the flow field around the aerofoil may have already started to 
converge to steady state, which will be destroyed by the reflected 
waves as soon as they reach the aerofoil.

This period of time can be prolonged by setting the outer
boundaries very far away from the aerofoil. This implies a larger 
computational domain, and if the grid is to remain of a manageable 
size, it is usually highly stretched on which second order accuracy is 
likely to be lost [58,59,63,81]. Alternatively one can modify the set 
of governing PDEs so that the outgoing waves are slowed down. Upon a 
suitable choice of slowing down rate, one can ensure that within a 
given time T (possibly T -» #) the outgoing waves will not have 
reached the outer boundary hence not reflect back.

Slowing down the waves is a mathematical device to prevent waves 
from reflecting at the far field boundary. The modified set of 
equations has partially lost its physical significance, in that some 
disturbances no longer propagate at the correct physical speed. 
Mathematically, this is achieved by modifying the coefficients of the 
governing equations and by doing so creating an interface. 
Reflections from the interface clearly defeat the object of the whole 
exercise. Conditions ensuring full transmission of all waves across 
the interface for general hyperbolic systems are derived in section
(3.2). Perhaps not surprisingly, the same conditions also turn out to 
retain, though in a limited sense, the physical structure of the
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unmodified system - The Riemann Invariant and simple wave structure, 
the jump conditions etc. In that respect, the physical significance of 
the modified system is only partially lost.

Consider the ID wave equation

© - X2ç) = 0  (3.1.1)
It XX

to be solved on a e [0,a>). Denote by X* the two families of 
characteristics, with respective slopes dx/dt = ±X. For
well-posedness, equation (3.1.1) requires initial data and one BC at 
x=0. Let an artificial boundary be introduced at x=Xo and assume that 
we are only interested in the solution near x=0. In the absence of a 
numerical boundary at x=Xo, the solution at x=0 is completely 
determined by the BC at x=0 and by the information propagated along 
the X~ characteristics. In the presence of a numerical boundary at 
x=X , disturbances originally travelling in the positive x direction 
may reflect from x=X^ and reach x=0 at a later time. (See 111. 
(III.D).

Reflected X x
t

x = 0 x = X

1 1 1 . ( I I I . 1 ) - X+ and X c h a ra cteristics of equation ( 3. 1.1)

Let T indicate the time the first non-zero X+ wave reaches the RHB.m i n
By slowing down the right going waves, can be increased, possibly
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even T .m i n
œ (see 111. (113.2)).

-T mint

(a)

t
T min

(b)

t

(III.2) - Pattern of wave propagation (a) & (b ) P iecewise
constant, and ( c ) Smoothly varying coefficients.
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In two space dimensions, the wave equation reads

(3.1.2)

The domain of influence of every point (x0fY0) is enclosed by a 
characteristic cone whose radius grows like Xt. Projecting the 
characteristic cone into the X-Y plane, we obtain the envelope of wave 
fronts emerging from (x0'Y0)• (111- (III.3) ). In each direction
# e [0,Ji) there are two wave speeds ±X at which signals may or may not 
travel, depending on initial and boundary data. The range of angles 
5e[ji,2Jt) does not have an independent meaning. That the envelope of 
wave fronts form a circle, reflects the isotropic nature of (3.1.2), 
i.e. that waves propagate at the same speed X in all directions. 
Non-isotropic cases are illustrated in 111. (III.4): In (a), waves 
travel at a speed X in the positive x-direction, but at a reduced 
speed aX 0<a<l in the negative x direction. Similarly in (b) and (c) 
waves are being slowed down in the negative y direction and in the 
negative -9 direction.

(y-y-)/t

+/-  .)
// 

z__ x

C O O ( b)

111. ( I I I . 3) - (a) T h e  d o m a i n  of i n f l u e n c e  of ( ) ,  (b) T h e

e n v e l o p e  of w a v e  f r o n t s  e m e r g i n g  f r o m  * X q  > y 0 *•
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Identifying the outgoing waves is evidently dependent on the 
geometry of the problem. In fully exterior problems, disturbance in 
the far field travel very nearly radially, hence wave speeds may be 
modified in the radial direction. The match of wave fronts of both
original and modified equations in the inward radial direction 
indicates that incoming wave propagation is unaltered.

-a
-o

(a)

111 .  ( I I I . 4) - N o n - i s o t r o p i c  e n v e l o p e s  of w a v e  f r o n t s .

A gradual slowing down process as a function of, say, radial distance 
results in the Mach Cone becoming increasingly 'squashed', and may 
end up totally one sided, corresponding to > 00 (111. (III.6)).

-centre'

111, ( 1 1 1 , 5 )  - M o d i f i e d  p a t t e r n  of w a v e  f r o n t s  in c i r c u l a r
g e o m e t r y .
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Origin

(b)

11 1 .  ( I I I . 6) - E n v e l o p e  of w a v e  f r o n t s  - (a) T h e  o u t g o i n g  s p e e d  is
a d e c a y i n g  f u n c t i o n  of r . (b) T o t a l l y  o n e  s i d e d
w a v e  p r o p a g a t i o n .

(3.2) Slowing Down Waves in ID - The Continuous Level

The ID wave equation with characteristic speeds ±X^, can be 
written in operator form

- X —at i dx It * xi 55 <p = o (3.2.1)
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Slowing down the right going waves on, say, x>0 is accomplished by 
replacing (3.2.1) with the interface problem

It " xi !b
a . % a 
at + \  a5 (/> = 0 x<0

d - d  
at z ax (p = 0 x>0 (3.2.2)

[*>] x=0 = tap/ax] x=0 = o

with 0 ^ X2/>i 5 1. Single frequency solutions read

iw(t+x/X ) iw(t-x/X )
<p(x, t) = « ie + Pie x<0

iw(t+x/X^) io)(t-x/X2)
(p(x,t) = «2e + P2e x>0

(3.2.3)

Continuity requirements across x=0 implies

“ i " pi = “2 " r  p22

and the following hold

(3.2.4)

a V xi
2X_

Xl+X2
2X.

a

(3.2.5)a



63

‘
(X2

K

V X2
X1+X2

2X2
X ,+X2

‘
ai

e,
(3.2.5)b

P, = 0 «2 = 1

A wave approaching the interface from the right

(3.2.6)a

passes through the interface without reflections (111. (III.7)a)

(3.2.6)b

However, a wave approaching the interface from the left

0 = 1  « = 0  (3.2.6)c'i 2

is partially reflected and partially transmitted (111. (III.7)b)

2X.

P2 = ° c 1 = 1

2 X1 ' X2 
(3 = -— rr- < 1  a. =---- :— —  < 02 X1+X2 X, + X2

(3.2.6)d

r Æ l

(a) (b )

ill. (iïï.7) - (a) Full tranvmi t ion of left going wave
(b ) Partial reflection of right going wave at x=0,
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As expected, if IA-A I<<1, reflections are very weak. Gradual 
slowing down process can be thought of as taking to be a piecewise 
constant monotonically decreasing function of x, with jumps at nodes 
x . At each interface x^, partial reflection takes place with 
amplitude

= < V . + (V l

with R and L denoting conditions to the right and to the left of the 
interface respectively. This modification, illustrated in 111.
(III.8), is not a very attractive far field boundary treatment.

t

1 1 1 . (III.8) - Partial reflection at interface points in a
gradual slowing down process.

Why do we get reflections?

An insight is gained by transforming the second order scalar wave 
equation into a first order system through the transformation
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(pt = p <Px = -u (3.2.7)

The interface problem then reads

if + A w  = 0—t 1—X
w + A w  = 0—t 2“x

X<0

x>0 (3.2.8)

with

w =
V

A, =
' 0

A =
A

1
. 1 0 .

2
, 1 0 ,

The eigenstructure of A ’ and A^ is respectively

1
-1/.

1
1/. A t = diag(-Xi,X1)

1
-1/.

1
1/. A2 = diag(-Xi,X2)

(3.2.9)

with single frequency solutions

iw(t+x/X^) i(o(t-x/Xi)
w = a e r, + 8 e r^ x<0_ 1 — 1 1 “ 2

iw(t+x/X ) iw(t-x/X )
w = a2e r i + ^ e  r2 x>0

Continuity reads

(3.2.10)

a
r 1 ' rl ' ' 1 ' 1 '
1 + p. 1 = « -1 + p2 1

fcj
1
N

dIN 6
N

(3.2.11)
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(3.2.11) is identical to (3.2.4), hence (3.2.6) are solutions.

The reason for reflections has now become clear - the set of 
eigenvectors is not preserved across the interface. The matrix in
(3.2.8)b should possess the same eigenvectors as A ^  with respective 
eigenvalues = diag(-A^^A^). Such a matrix is easily constructed

v w ; 1 =
. X2+Xl 

2 1 2

X l+ X 2 X 2_ X 1
2X

(3.2.12)

and reduces to A^ upon the choice

A count of degrees of freedom confirms that a modified wave 
equation (3.2.2)b has two free coefficients to completely determine 
the wave motion, while the modified first order system (3.2.8)b has 
four free entries in the matrix A^ to be specified. The modification 
which preserves the eigenvectors is 1 beyond the reach' of the second 
order scalar.

In the general case, consider the N x N interface problem

w + Aw = 0-t ~x

w + A w = 0— t “ X

M x = 0  = °

x < 0 

x > 0 (3.2.13)

A necessary and sufficient condition for full transmission of all
A

waves across the interface is that A and A possess the same set of
*

eigenvectors, or equivalently that A and A commute. Indeed, let r
* * k

be the eigenvectors shared by A and A , and let X and X be the* k k
eigenvalues of A and A respectively. Solutions of (3.2.13) are
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N
w(x,t) = Y, ak(t~x/V - k x<0

(3.2.14)

w(xft) = Ÿ Pk(t“x/\ ^ k x>0

continuity reads

N N
Z « k (t)tk = I Pk(t)rk
k = 1 k = 1

(3.2.15)

(r )̂ is a complete set with respect to which the representation of any 
vector is unique, hence

implying full transmission of all waves.

(3.3) Slowing Down the Waves in ID - The Discrete Level

Preservation of the eigenvectors is essential for full
transmission of waves at the differential equation level. Numerical
solutions, however, are not merely a discrete image of the continuous
solutions. They tend to display additional features which cannot be 
directly associated with any analytic behaviour. Consequently,
analytic properties do not automatically carry over to the discrete 
level.

Consider the linear advection equation

«k(t) = Pk(t) k=l N (3.2.16)

w + w = 0t x (3.3.1)
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with the analytic dispersion relation

0) = - Ç (3.3.2)

A general 2-level explicit scheme to approximate (3.3.1) has the form

with the discrete dispersion relation

For a fixed frequency w, Z is fixed, and relation (3.3.4) is a 
polynomial of degree r+1 in the variable x admitting r+1 solutions. 
Although not all solutions are necessarily different from one another 
(ie simple roots) we shall assume that to be the case, and denote the 
roots by

A general single frequency numerical solution is given by

In contrast to the analytic dispersion relation (3.3.2), where 
each w admits a single wave number Ç, the discrete dispersion relation 
admits r+1 wave numbers £k, each of which travels at a possibly 
different speed. The number of admissible modes is directly related 
to the width of the stencil of the numerical scheme. Paradoxically, 
the more accurate the scheme, the larger the stencil it uses, and the 
more non-physical modes it admits.

Z = £ a x"
k = - 1

(3.3.4)

r + 1
(3.3.6)

It can be shown [47,27,76], that for a fixed Z with IZI>1, the
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roots x split into two well defined groups. There are precisely 1 
modes with lxl<l and r modes with Ixl>1. Furthermore, if the scheme 
is dissipative the inequalities remain strict in the limit IZl-> 1, 
Z * 1 (ie real non-zero frequency).

The discrete interface problem reads

j£0

j>0 (3.3.7)

w" = v" j=-L+l,... ,r

with (3.3.7) c expressing the identification of w" and v" in the 
overlapping region, (see 111. (III.9)).

Two questions have to be addressed. First, is (3.3.7) stable, and 
second are discrete waves fully transmitted across the interface?

-2

-L+1

n + 1 t-i n 
j =. ^.akw j.i

r 1 =. ï v ; . ,

k = - 1 

R

k = -L

111. (III.9) - The o verlapping region for the interface 
p r o b 1em (3.3.7).
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Let w" and v" possess solutions

w" = ZnxJ j£0
(3.3.8)

v" = Z V  j>0

Assume (3.3.7) is dissipative. Let IZUl and assume that

I I (1 k—1

Ixkl>l k=l+l,...,l+r

l/Jkl>l k=L+l,...,L+R

Admissible solutions of bounded ^  norm are of the form

(3.3.9)

4\(j) = Z 3^0
k = 1 +1

(3.3.10)

* <i) = z p y  j>o
k = 1

Stability of the interface problem follows if it possesses no 
solutions of the form

w" = Z n*1(j) jzO

vn = Z"$ (j) j>0J ^

w" = v" j=-L+l,...,r

(3.3.11)

with IZl&l.
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It was shown [10] that if the schemes to both sides of the 
interface are dissipative, (3.3.7) is stable. Crucial to the proof is 
that the inequalities in (3.3.9) remain strict in the limit IZI -> 1, 
Z t 1. To put the proof in the relevant context, let us assume
(3.3.7) represents two LW schemes under a sudden change of CFL number. 
In this case L=R-l=r=l, and if |z|kl there is only one admissible mode 
to either side of the interface.

w" = <xZnxj lxl>l j£0

v" = 0 z V  I/jI<1 j >0 (3.3.12)

W j = v j 3=0,1

(3.3.12)c becomes

a = ft ax = fin

leading to a contradiction x = /j, since by assumption Ixl>1 and 
I/jI<1. Equation (3.3.12), thus, possesses no solutions with IZl^l 
except for the trivial solution and stability is established. In the 
general case, (3.3.12)c is written as a homogeneous system of 
Vandermonde type, to be solved for the coefficients «k and 0k, which 
again possesses only the trivial solution.

The stability of interface problems is closely linked to the 
stability of IBVPs, whereby a folding principle may be used to convert 
the two semi-infinite regions joined by an interface, to a single 
semi-infinite region of twice the number of variables. The conditions 
at the interface become BCS for the converted problem. These types of 
problems have been studied by Trefethen [77]. See also [26,22].

Transmission and reflection analysis gets more complicated with 
the increased number of admissible modes. Obviously, the more 
admissible modes, the more (3.3.7) is prone to partial reflections. 
Bearing with the example of the LW scheme under a sudden change of CFL
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number, we show in Appendix C that a right going wave is partially
reflected from the interface, and in fact

R = 0([P]) T = 1 +0([i>])

where [i>] = ~(X*-A) is the jump in the CFL number. If the change in
p is gradual, [y] is small and reflections are weak. In addition, the
natural dissipation of the scheme rapidly damps out the reflections. 
If the scheme used is non-dissipative, the reflected waves persist. 
This can be observed in 111. (III.10), taken from Trefethen [74], where 
a wave of given time frequency fed through the LHB propagates through 
an abrupt change of grid size.

111. ( II I .10) - Undamped reflections under n o n - di s si p at i ve  scheme 
(Trefethen [74]).

In summary, although the conditions derived in section (3.2) 
ensure full transmission of continuous waves, reflections of d iscre te  
waves may occur, due to approximating the d/dx. term in (3.3.1) using 
more than the 2 necessary grid points. In practice, owing to 
dissipativity, the weak reflections are damped out very rapidly.

(3.4) Slowing Down Waves in 2D

As a model system, consider the 2D Euler equations, linearised 
about a state of rest u = v = 0, and p = 1, c = 1
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ït + Awx + Bwy = 0 (3.4.1)

p '0 1 O' '0 0 1'
w = u A = 10 0 B = 0 0 0

X [o 0 oj [l 0 oj

The transformation which recovers the Euler equations, given in
Appendix D, allows far field modifications of (3.4.1) to automatically 
carry over to the Euler equations.

In a transformed set of coordinates (x',y'), rotated at an angle 
$ about (x,y), (3.4.1) takes the form

wt + (Acos-9 + Bsin#)wx, + (-Asin# + Bcos#)wy, = 0 (3.4.2)

x' = xcos# + ysin#
y' = -xsin# + ycos#

Plane waves in an arbitrary direction $ satisfy d/dy' s 0, yielding 

-t + = 0 (3.4.3)

' 0 cos# sin#
M(#) = Acos# + Bsin# = cos# 0 0

sin# 0 0

The eigenstructure of M(tf) is

A = diag (-1,0,1) R(#) =
-1
cos#
sin#

0
-sin#
cos#

1
cos#
sin#

(3.4.4)

By construction (3.4.4) recovers the eigenstructure of A for #=0, and 
that of B for #=ti/2.
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In the far field (3.4.1) is to be replaced by

+ M (#)w , = 0— t —X (3.4.5)

M (#) = A cos# + B sin#

* *A and B are constant matrices chosen to yield the desired pattern of
wave fronts (Ills. (III.5),(III.6)). Following the ID analysis, the

*
condition for full transmission of plane waves is that M (#) and M(#) 
share the set of eigenvectors. The modified set of eigenvalues is

A = diag(-l,0,a) O^a^l. (3.4.6)

M (#) is obtained from the matrix product

M*(#) = R(#)A*R~1(#) =

r aj, 
2

a+1cos# ^ A : o s 2#

a+1

a-1

sin#

cos#sin#

^^sin# ^^cos#sin# ^^sin2#

(3.4.7)

* *If A and B in (3.4.5) are to be constant coefficient #-independent 
matrices, M (#) should only have linear entries in cos# and sin#. 
This implies asl and we are back to square one.

Conclusion

&A general far field modification of the form (3.4.5) with A and B 
constant coefficient #-independent matrices cannot preserve the 
eigenvectors in all directions #.



A sensible alternative is to drop the requirement that 
eigenvectors are preserved in a ll directions, and to settle for 
eigenvectors being preserved in one preferred direction, say the x 
direction. By using a rotating system of coordinates this direction 
can be made to coincide with the outward direction. In semi-bounded 
channel flows, no rotation is needed, while in fully exterior 
problems, the x-direction can be matched with the radial direction 
since waves in the far field travel very nearly radially.

We return to system (3.4.1) and modify it by preserving the 
eigenvectors in the x-direction, leaving B unchanged for the time 
being

An immediate result is that X=0 is no longer an eigenvalue of the 
system except in the main directions. In terms of propagation 
pattern, the speed of the central wave X=0 (the shear wave in the 
case of the Euler equations) depends on the speed of the deformed 
acoustic envelope. 111. (III.11) shows a typical pattern of such a 
wave system.

To avoid such a coupling, the matrix B has to be modified as 
well. Note that preservation of the eigenstructure of B is 
unimportant, since this is the direction which is least likely to 
propagate information at all.

*w + A w + Bw = 0— t — x — y (3.4.8)

v 0 0 0

The characteristic polynomial of

X3-X2(a-1)cos#-X(sin2# + acos2#) + a-1 os#sin2# = 0 (3.4.9)
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*/t

111. ( I I I. 11) - Typical envelope of wave fronts of (3.4.8) with  
a=0 (Roe, private communication)

Considering a reduced quadratic characteristic polynomial

X2 - X(a-l)cos# - (acos2# + p2sin2#) = 0 (3.4.10)

The relation between a general quadratic characteristic polynomial and 
the conic it describes, given in Appendix E, confirms that (3.4.10) 
represents an ellipse

Hr)
M

(3.4.11)

centred at ,Ô  with axes and p respectively. Different values 
of p imply different stretching rates in the y-direction, and in 
particular different curvature in the incoming direction. For the 
modified curvature to match that of the unmodified circle at (-1,0),
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(3.4.12)

The importance of this second order match of incoming waves shall 
become clearer when the eigenvectors are Taylor expanded about the 
preferred direction. With this choice of p, (3.4.10) reads

X2 - X(a-l)cos# - (acos2# + —^ s in#) = 0 (3.4.13)

Returning to equation (3.4.1) we seek a modification

* * w\ + A w + B w  = 0— 1 — X — y (3.4.14)

* * £ 
where A is given by (3.4.8) and B is such that when combined with A
yields the characteristic polynomial

x|x2 - X(a-l)cos# - (acos2# + ^tsin#) ] - (3.4.15)

Equation 3.4.15) describes a wave system consisting of a central wave 
X=0 and an elliptic acoustic envelope (compare (3.4.13)). Let B* be 
symmetric, then the problem has a unique solution,

* * w + A w + B w = 0— t ~x — y (3.4.16)

a-1
2

a+1
2 0 0 0

*A = a+1
2

k o

a-1
2
0

o 
o

*B = 0
Æ + 1

. 2

0
/a-1
2

/E+i 1 
2

✓a-l 
2

The envelope of wave fronts of (3.4.16) for various choices of slowing 
down parameter ’a' is illustrated in 111. (III.12).
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11 1 .  ( I I I . 12) - E n v e l o p e  o f  w a v e  f r o n t s  o f  ( 3 . 4 . 1 6 )  f o r  O ^ a ^ l

The complete eigenstructure of (3.4.16) is

r*(*) eA

a+1sin-8

* a—1—̂cos8 - A

r2(̂ ) =
e sin8 

-y sin# 
/a cos#

. *X = 02 (3.4

r > >

e ^~^cos# + yA 

y ~^cos# + eA X3 = ^~cos#+ A

.17)
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with

, , æ i ■ m cos2# + —!psin2#

Setting a=l recovers the unmodified eigenstructure (3.4.4).

Finally, (3.4.16) is assumed to hold in a rotated system of
coordinates (x',y'), inclined at an angle # to the fixed set of
coordinates (x,y). Let u' and v' denote the velocity components in 
the x' and y' directions, and let u and v denote those in the fixed
directions, then the following relations hold

w' = Tw
' x1 ' cos# sin# X

-sin# cos# ^

w
P ' V '1 0 0 '
u' w = u T = 0 cos# sin#
y. 0 -sin# cos#.

(3.4.18)

The modified equations in the fixed system read

** ** w + A  w + B w = 0— t — x — y (3.4.19)

** _ i , * *A = T (A cos# - B sin#) T

B** = T-1(A*sin# + B*cos#) T

Specifying the value of # implies slowing down the waves in that 
preferred direction. A possible recipe for choosing # for the problem 
of flow past an aerofoil is depicted in 111. (III.5) p.60.
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111. ( I I I . 13) - A r o t a t i n g  set of c o o r d i n a t e s  ( x',y  ) and an 
u n d e r l y i n g  f i x e d  set (x ,y ).

Asymptotic expansion for small angles # about the preferred direction

By construction, eigenvectors are preserved in the preferred 
direction. Close to that direction, however, they are not, and it is 
interesting to see to what order they match. For that purpose we need 
to compare the eigenvectors in (3.4.4) with those in (3.4.17), 
expanded for small angle #. For (3.4.4) we find

-i i

> - r (3.4.20)a
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~ 2  “ -•9

- I

(3.4.20)b

E3 “ i - r (3.4.20)c

while for (3.4.17) we find

*

-1 -

1 - 

9

-i

-i

+ E]

+ y]

9e//â

-9y//â

. - r

(3.4.21)

*
“3 “

1 + 2 

i + 

l»/A

and the error for small angle ^ is

Ar ̂ (9) =

0(fl2)
0(»2) Incoming waves (3.4.22)a
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Ar^,)

A V * )

CO (3)1 
0(3)

0
Stationary waves (3.4.22)b

'0(»2)’ 
0(fl2) 
O(fl) ,

Outgoing waves (3.4.22)c

We observe that incoming waves are matched to second order in 3, which 
is a result of the high order match (3.4.12).

** **
Eigenstructure of A and B in (3.4.19)

For computational purposes we shall need the eigenstructure of

A = T 1(A cos3 - B sin3) T
(3.4.23)

B** = T’1(A*sin3 + B*cos3) T

Since eigenvalues are preserved under a similarity transformation and 
eigenvectors are related through the similarity matrix T, all we 
really need is the eigenstructure of the matrices in brackets in 
equation (3.4.23)

The eigenstructure of (A cos3 - B sin3) is

r a+1 1
c -y~ cos3 - yA

II y cos3 - eA

- sin3 
L z J

esin3
r2<9) = ~ysin3

/a cos3

X1 = cos3-A

X = 02

(3.4.24)a

(3.4.24)b
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r3<*>

o + l
G -y- cos# + yA 

y cos# + gA

a+1 sin#

X3 = cos# + A (3.4.24)c

with
■  (t )+^ c o s 2# + ^ ~sin2#

The eigenvectors of A are r,(#) = T ar (#).

* *
Similarly, the eigenstructure of (A sin# + B cos#) is

rt(#) =

G sin#

y sin#

yA

gA

a+1 cos#

Xi = “2“ cos# - A

r,(#)
G COS#

-y cos# 
/a sin#

X = 02 (3.4.26)

r3(«)

g ^y- sin# + yA 

y ^y- sin# + gA

a+1 cos#

X3 = ^y- cos# + A

with A2 = (i|l)2sin2» + Slices^.

The eigenvectors of B are r (#) = T 1r (#).
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(3.5) Alternative 2D Far Field Modifications

Two alternative far field modifications have been derived which 
are given below together with a brief account of their respective 
attractive features. For convenience of comparison, the far field 
modification proposed in the last section is repeated here. All 
systems are of the form

* *
w + A w  + B w  = 0— t — x — y

and shall be referred to as System No. I, II and III, 

System No. I

(a)

*
A =

f a-1 
2

a+1
2 0 0 0 /i+1 Ï 

2
a+1
2

a-1
2 0

*
B = 0 0 /a-1

2

. o 0 o , /a+1
I 2

/a-1
2 0

(3.5.1)

(b) Characteristic polynomial is

*[*2 - A(a-l)cos# - (acos2# + ™ ^ s i n 2#)j = 0

(c) Eigenvectors in the x-direction are preserved,

f-1 0 ll 
1 0  1 
0 1 0

A = diag (-1,0,a)

(d) Eigenvalues in the y-direction (compare (3.4.12))

(3.5.2)

(3.5.3)

A = diag 'a+1 /a+1
2 ' / 2 (3.5.4)

(e) The acoustic wave fronts form an ellipse centred at p T '  °) wiwith
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major and minor axes respectively and
(f) The speed of central wave X=0 is decoupled from that of the 

acoustic envelope.
(g) pressure does not satisfy a modified wave equation.
(h) Vorticity is not preserved.

System No. II 

(a)
*

A =
a-1 a 0 1
1 0 0
0 0 0

B =
»
0 0

1 0  0
(3.5.5)

(b) Characteristic polynomial same as for System No. I.
(c) Eigenvectors in the x-direction are not (yet nearly) preserved

R =
f-1 0 a 
1 0  1 
0 1 0

A = diag(-l,0,a) (3.5.6)

(d), (e) & (f) Same as system No. I.

(g) Pressure satisfies a modified second order wave equation

a+1
*tt + (a- 1 ) p xt - aJ,„  - 1 "  p yy =  ° (3.5.7)

(h) Vorticity is preserved

( u - v ) = 0y x t

System No. Ill

(a)

A =

r a-1
2

a+1
2 0 0 0 Æ + Ï  ' 

/  2
a+1
2

a-1
2 0

*
B = 0 0 0

0 0 a-1
2 J

/5+Ï 
1 /  2

0 0

(3.5.8)
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(b) Characteristic polynomial

sin2^jj = 0

(c) Eigenvectors in the x direction are preserved. 
Eigenvalues are respectively

(3

A = (-1, a) (3

(d) & (e) Same as System No. I.
(f) The speed of central wave is coupled with that of 

acoustic envelope, i.e. 'moves' to the centre of the ellipse,
(g) & (h) Same as System No. I.

Transforming back to the 2D unsteady Euler equations 
Appendix D) we obtain

System No. I

A =

ufSr c
a+1 1
2 P
0

utâr c
0

(3.5

*
B = 0 v

/â+1 1 /a-l
2 p 2

/a+l
2

/a-l
2

c v

pc

(3.5

R =
'pc 0 pc

-i l
Ï -pc 0

-1 0 1 R = 2pc 0 0 2pc

z—
 

O 1 o. 1 pc 0 ^
(3.Ï

5.9)

5.10)

the

(see

11) a

11) b

.12)
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System No 

*
A : 

*
B

R : 

System No 

*
A : 

*
B

R and R-1 

Setting a

II

irt-(a-l)c 2ape 0 '
1
P u 0 (3.5.13)a

0 0

v 0
a+1
2 PC2 ’

0 v 0 (3.5.13)b

o«HI Q. r

pc 0 ape '1 -ape 0 '
-1 0 1 R”1 - 1 K (a+1)pc 0 0 (a+1)pc

, o 1 o . 1 pe 0 ,
(3.5.14)

III

sf pcZ
a+1 1 
2 P

0

v 

0
'i+ï 1 
2 P

0

0

v

0

0

0

0

(3.5.15)a

(3.5.15)b

are the same as in (3.5.12)

=1, all three systems recover the unmodified system (3.4.2).
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(3.6) Well-Posedness of the Far Field Modifications

To establish that hyperbolic systems of the general form 

w + Aw + Bw = 0  (3.6.1)—t —x —y

are well-posed as IVPs, the matrices A and B in (3.6.1) should be 
simultaneously symmetrisable by a non-singular similarity 
transformation [88], ie there should exist a non-singular matrix S 
such that

S A S"1 = symmetric (3.6.2)
S B S-1 = symmetric

Obviously, this can only be achieved if A and B can each be separately 
symmetrised. Hyperbolicity guarranties that this is possible and in 
fact that A can be diagonalised by the similarity transformation

R -1AR = A = diag ( X ^ A ^ X ^  (3.6.3)

Following a general technique suggested by [23] cited in [82], 
we start by diagonalizing A using the transformation in (3.6.3). We 
then consider the transformed B

R-1BR (3.6.4)

and seek a diagonal matrix D = diag(d^,d^,d^) such that

D”1R”1B R D = symmetric (3.6.6)

Under this further transformation, the transformed A remains diagonal, 
hence symmetric and well-posedness is established.

We proceed in two stages. We first establish well-posedness in 
the rotated system of coordinates. This amounts to proving that 
Systems I,II and III, all of which have the form
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* * 
w + A w + B w  = 0— t — x — y (3.6.7)

are simultaneously symmetrisable,

* -iSA S - diagonal
* -1SB S = symmetric

(3.6.8)

Well-posedness in the fixed system of coordinates immediately follows
** **

on physical grounds. More formally, A and B in (3.4.19) can be 
symmetrised by

** _ i _ 1 * _ i * _ 1
STA T S SA S cos# - SB S sin#

** -i _1 * -i * —i
STB T S = SA S sin» + SB S cos#

(3.6.9)

It is therefore sufficient to prove that (3.6.7) is symmetrisable for 
systems I, II and III.

System No. I

-iR and R are given by (3.5.12)

v
(y-e)c 
0

-(r-e)c

-(?+c)c

0

(y+e)c

(3.6.11)

-1 -1 *D R B RD = (>-e)cjp
2

3

( 7 + 6 )

is symmetric if
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(3.6.12)

System No. II

R and R are given by (3.5.14)

- 1 *R B R =
rv 0 1
c v ac
0 i c v .

(3.6.13)

and D~1R-1B*RD is symmetric if

V 2 1
2a

(3.6.14)

System No. Ill

R and R-1 are given by (3.5.12)

i /a+1

R"1B*R =

v 

'a+l
2/ 2 

c v

1 /â+ï
2 2

0

'aTl
2

v

and again D’1R”1B*RD is symmetric if

(3.6.15)



(3.7) Physical Validation of the Far Field Modifications

All three far field modifications proposed in section (3.5) are 
based on a linearized form of the 2D Euler equations, (3.4.1), 
stripped of their physical dimensions. The modifications are 
performed to meet requirements which are purely mathematical, and 
there is a danger that when carried back to the full 2D Euler 
equations, the modified systems will lose their physical grounds. In
particular it seems wise to establish that the velocity components u

and v continue to display a vector-like behaviour with regard to 
coordinate transformations.

System No. I

Equations (3.5.11) are assumed to hold in the rotated system of 
coordinates (x#,y'). Let the velocity components in those directions 
be denoted by q and q respectively and let u and v be the velocity
components in the fixed directions. Then

qR - ucos# + vsinfl (3.7.1)
Tq = -usin# + vcosd

To confirm that u and v transform in a vector-like manner, we 
write (3.4.19) in cylindrical coordinates (r,#). By further assuming 
axial symmetry we expect to recover the properties of each of the 
individual modifications in the radial direction. In terms of (r,#), 
equation (3.4.19) reads

** ** , , ** ** i
w t + (A cos#+B sm#)wr + (-A sin#+B cos#)pw^ = 0 (3.7.2)

with



*R+5r' c ~^cos5pc2 ^^sin#pc2

q +~^-cos #c ^2^cos#sin#c (3.7.3)a

-2^ln8p 2^cos#sin#c q +-^-sin #c

-A**sin3 + B**cos# = T-1B*T =

<rT ^-~-sin#pc ^^cos #pc2

z p qT-1̂ ~ sin2#c I^icos2#c (3.7.3)b

^±lcos2#c qT+y/|-^sin2#c

Using relation (3.7.1) and the symmetry assumption, equations 
(ii) and (iii) in (3.7.3) can be combined into a single equation in 
the radial velocity gR, yielding the reduced 2 * 2  system

f r a-1 a+1 2 1 ’/a+1 2 r'
P q +— c — pc P , i 2 pC T
R + a+1 1 R^a-1 R T —r /a-l? . 2 P q +— c q

r . 2 C „
= 0 (3.7.4)

The eigenstructure of the matrix in (3.7.4)

R =
pc pc 
-1 1 A = diag(gR-c, qR+ac) (3.7.5)

recovers the expected properties, namely reduced outgoing speed 
and preserved eigenvectors.

System No. II reduces to
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System No. Ill reduces to

f R.a-1 a+l_ 2
> 1

+R
K Jt I

q+-f-c

a+1 1
2 P

-pc p

Q
+ 1 r = 0 (3.7.7)

Both (3.7.6) and (3.7.7) possess the expected eigenstructure in the 
radial direction, this time with account for the physical dimensions.

(3.8) Numerical Experiments

(3.8.1) One Dimensional Tests

In the following ID tests, it is assumed that the RHB is the 
artificial boundary and waves travelling from left to right are 
accordingly outgoing.

Test A (Figure (III.l)a-d)

The governing equation is the modified ID wave equation

r ' 
P

a-1
2

a+1'
2 P

u
+ a+1 a-1 u
t I 2 2 J

(3.8.1)
= 0

formulated as a first order system. The parameter 'a* controls the 
speed of the right moving wave, assuming values between 0 and 1. The 
eigenvectors and eigenvalues of (3.8.1) are

R = 1 1 
-1 1

A = diag (-l,a) (3.8.2)

The numerical method is Roe's field decomposition [61,62] with LW 
scheme applied to each characteristic field. No flux limiter is used.
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Initial data are

2 -a(x-x1)2

■  (!)* (3.8.3)

generating two waves moving in opposite directions with respective 
speeds -1 and a. Clearly the choice of parameter 'a' does not alter 
the propagation of the left running wave. The right going wave is 
propagating at various reduced speeds a=l, 0.8, 0.5 and a=l-x. A 
slight compression of the slowed down wave can be observed in the last 
case due to the gradual change in the speed of propagation.

Test B (Figure (III.2)a-d)

The governing equations are the ID Euler equations given in
(2.2.1) with eigenstructure given in (2.2.3). The equation is 
replaced by the modified equation

w + A*(w)w = 0 (3.8.4)
—  t —  — X

* * -1 * „ * * * where A = RA R A = diagtA^A^A^

Ai = a^(u-c)

The numerical algorithm is again Roe's field decomposition with LW 
scheme and Superbee flux limiter on each characteristic field [71]. 
Initial data correspond to the shock tube problem [68]

X2

wL = (1, 0, 2.5) T h r = (0.1, 0, 0.25)T

generating a left running expansion fan and a right running shock 
followed by a contact discontinuity. Evolution with time of momentum
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profiles is shown in figure (III.2), for the choices

ai = a2 = a3 = 1 (unmodified)

a = 1  a , =  a = 0.8, 0.5, 0.21 2 3

Comparison of the figures confirms that the left moving fan is not 
distorted by the choice of a^ and a^. The right moving waves preserve 
their respective profiles, yet propagate at reduced speeds.

Test C (Figure (III.3)a,b)

The governing equations are the ID Euler equations, and the test 
is the one described in Section (2.2.2) Test A, where a high pressure 
is fed through the LHB, giving rise to right moving shock wave and a 
contact discontinuity. The method of solution is the same as in Test 
B. Figure (III.3)a shows the evolution of density profiles under 
several sudden changes of coefficients. Although theoretical analysis 
predicts weak reflections from interfaces across which the 
coefficients change, the natural dissipation of the scheme results in 
a very rapid decay of the reflected waves, and consequently to a 
smooth passage of waves.

Finally figure (III.3)b repeats the same test with smoothly 
varying slowing-down coefficients. The right moving waves are, in 
fact, brought to a complete rest before reaching the RHB. This is 
accomplished by letting a2 and a3 be a decaying function of x. The 
gradual slowing down process is the limit of a multiple interface 
problem, as the interfaces are brought close together. It is known 
that mild instabilities may be strongly amplified by multiple 
reflections from either boundaries or interfaces [77]. The problem is 
particularly acute when the boundaries or interfaces are close to one 
another, rendering the travelling time between them tend to zero. In 
the present example, there is no evidence of such a process happening, 
and the right moving waves are brought to rest gradually, without 
generating any leftgoing disturbances.
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(3.8.2) Two Dimensional Tests

The experiments were conducted using the 2D linearized Euler 
equations (3.4.1) for which three far field modifications have been 
derived (3.5.1), (3.5.5) and (3.5.8). The results presented in this

performance of (3.5.1) and (3.5.5) is also presented.

Test A (Figures (III.4)a,b, (III.5)a-d)

Initial data is a Gaussian high pressure distribution centred at 
the origin

u(x,y,0) = v(xfy,0) = 0.0

Due to symmetry, the problem is solved in the quarter plane (x^O, y£0)
with reflecting conditions on the boundaries x=0 and y=0.

Second differentiation of the unmodified equations (3.4.1) shows
that pressure satisfies the 2D wave equation P± ~ P  - p = 0, forit xx yy
which an exact solution exists in the integral form

Figure (III.4) shows the exact solution for the initial data (3.8.5), 
obtained by numerically integrating (3.8.6) using Simpson’s rule.

section were obtained by (3.5.1). A comparison between the

p(x,y,0) = eCT(x 2+ y 2) (3.8.5)

(3.8.6)

The numerical algorithm uses a two stage space operator
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splitting

**
(i) w + A w = 0— t -X

**
(il) w + B w = 0—t —y

In each direction. Roe's field decomposition is performed and the LW 
scheme is applied to each characteristic field. The eigenstructure of 
A** and B** is given in section (3.4). Figure (III.5) presents the 
numerical solution for various choices of radial speed.

a = 1.0, 0.8, 0.6, 1-r

The important feature to note is that the outgoing waves do not 
generate any incoming disturbances as they propagate. They leave 
behind a quiet state which asymptotically approaches the undisturbed 
state. A slight compression of the outgoing wave is observed in 
Figure (III.5)d, which is due to the non-uniform radial speed (compare 
Figure (Ill.l)d). Since our interest does not lie with the precise 
details of the outgoing flow, this slight distortion does not 
constitute a problem as long as no incoming waves are generated as a 
result.

Test B (Figure III.6) a, t>)

We repeat the same test and compare the performance of system No. I 
and II. Recall that in the latter, eigenvectors in the radial 
directions are not preserved, and as a result incoming waves are 
generated when the outgoing ones are gradually slowed down.

Test C (Figure (III.7)a-b,Figure (III.8)a,c)

The test is similar to (3.8.5), with the high pressure now 
centred at (x,y) =
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-a((x-x )2 + (y-y )2)
p(x,y,0) = e

u(x,y,0) = r(x,y,0) = 0.0 (3.8.T)

Under the unmodified equations, the expected solution is a circular
pressure wave decaying like l//r as it moves away from (xo,yo) leaving 
behind a quiet region. Figure (III.7) shows the exact solution. 
Figure (III.8) shows the numerical solution for a = 1.0, 0.8, 0.6, 
which slows down the outgoing waves while not altering the incoming 
ones. In fact what we see is precisely the envelope of wave fronts
originated at (x0,Y0) under different slowing down rates.

111. ( II I .14) - Envelope of wave fronts c o rr e s p on d in g  to figure 
(III.S).



99

(3.9) The Proposed Modification and Conservation

It seems only natural to expect that the proposed modified
system

w + A (w)w = 0 (3.9.1)
— t  X

corresponds to a modified set of conservation laws

w + f (w) = 0 (3.9.2)
— t —  —  X

The question is, can a flux function f always be associated with a 
Jacobian matrix A* ? In support of this expectation we have Euler’s 
Theorem on homogeneous functions ([12], p.108).

Definition

A function f (x,y,z) is homogeneous of degree k in x,y and z if 
f(hx,hy,hz) = hkf(x,y,z)

Euler’s Theorem

f(x,y,z) is homogeneous of degree k iff it satisfies

4  + 4 + 4  = "  <3-9-3>

The vector of physical flux functions of the ID Euler equations is 
homogeneous of degree k=l in the conserved variables. When extended 
to systems, setting k=l, (3.9.3) reads

df , (3.9.4)
%  - % = t

That is, if f is homogeneous of degree k=l in w, and A = df/dw, then f 
can be reconstructed from its Jacobian matrix A by the product f = Aw.
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On dimensional grounds, the matrix A is homogeneous of degree k=0
Let f* be defined by

f* = A*w (3.9.5)

which by construction is homogeneous of degree k=l. Is A necessarily
*

the Jacobian matrix of f ? Let

A = df/dw (3.9.6)

by (3.9.4) it follows that

f* = A**w (3.9.7)

implying

A*w = A**w (3.9.8)

** * . . T .
Unfortunately, this does not imply A = A , since w = (p,pu,e) is 
not an arbitrary vector. The only conclusion from (3.9.8) is

** *
w € ker (A - A )

Simple examples can be constructed for which

* **
A * A 
* **

A w = A w

Since the existence of a modified flux function is not 
guaranteed, we now turn to the Euler equations and check whether or 
not the modified equations correspond to a modified conservation law. 
For simplicity, we consider the Isothermal Euler equations

/■ >
p pu

+ 2 + 2
. pu ,t .pu PC J
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the sound speed c is constant. The eigenstructure of the system is

r t = (1, u-c) X1 = u-c (3.9.10)

r2 = (1, u+c) X2 = u+c

* * *
For general eigenvalues A = diag(X^,X2)

* * - 1 A = RA R

with
*
Î, = b [ x‘(u+c) - 

A 12 = h["Xl + XI]

A22 " h [ " Xl(U'Cl + X2(U+C)]

For the particular choice

X* = a^(u-c) X* = a2(u+c) (3.9.11)

with arbitrary constants a^,a2 we obtain

A ii = y <ar  a2)(u2"c2)]

A 12 " b[(V  ai) U +  (ai+ a2)C]
If A* is to be a Jacobian matrix we must have

ft,*» = I A*2d(PU) = fl
Integrating (3.9.12) we find

(3.9.12)
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I Aiidp  T3 + "T3 pc + g(pu)
(3.9.13)

I Ai2d̂ û “ ~ 14 2 + ~2~ pu + b(P)
clearly

a i+a2 ai"a2g(pu) = — — pu h(p) = — 2— "Pf

yet no choice of al and a2 can match the first term unless a^-a^ which 
recovers the unmodified equations up to a scaling factor.

Similar result is obtained if we choose

* *Xi = u-a^c X2 =

Conclusion: The modified equations are not modified conservation laws.

This result carries over to more complete formulations of the 
equations of flow. Indeed if we write System No.II in conserved
variable, we obtain

p ' pu
pu + pu2 +p + (a-1) puu +Mp

t uE+up, X
J e + P ) u ^ ( l + 1 ?

Obviously by setting a=l we recover the lost conservation.

The loss of conservation chiefly bears on flows which contain 
shocks, where conservation is essential for accurate predictions. 
Since the modification is to be applied only in the far field, where 
the flow is not only smooth but in fact can be regarded as locally 
linear, this may have only a minor effect, if at all, on the solution 
in the inner region. From the practical point of view, the additional 
term in (3.9.14) can be treated as a correction source-like term. 
Schemes that are based on characteristic field decomposition (eg Roe
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[59,60], Van Leer [80], Osher [55] ) can absorb the correction term 
into the decomposition algorithm. Shock fitting techniques [eg The 
X-scheme [54] ) do not make explicit use of conservation and may also 
absorb the correction term into a modified set of characteristic 
equations.

(3.10) The Proposed Modification and Preconditioning

Preconditioning is a technique applied to accelerate the 
convergence of the transient solution to steady state. Starting from 
initial conditions, the rate of convergence to steady state is 
determined by how quickly one can march toward t -> a, ie by the size 
of the allowable At. Bounded by the CFL condition for stability, it 
is always the largest wave speed that places the constraint on At

with K a scheme dependent constant. In problems involving different 
time scales, (3.10.1) seems particularly wasteful on the slow waves, 
which could be advanced a lot faster. Furthermore, with most explicit 
schemes, small time steps, ie small CFL numbers, imply very weak 
dissipation and large dispersion errors, which further decreases 
convergence rate to steady state.

As a remedy, one usually replaces the hyperbolic system

H  ma*lxkl 5 K (3.10.1)

w. + Aw = 0t —X (3.10.2)

with (Xk) the significantly different wave speeds, by

P'Nr + Aw = 0 (3.10.3)— t —X

where P*1 is a non singular preconditioner. Clearly (3.10.2) and 
(3.10.3) possess the same steady state solution, yet the time accuracy
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of (3.10.3) is destroyed by the introduction of additional time 
derivatives. The rate of convergence to steady state of (3.10.3) now 
is determined by

w + PAw = 0 (3.10.4)—t —x

and P is chosen so that the eigenvalues of PA are of a comparable 
size, ie that PA has a condition number of unity and lAk1=1 for all k. 
If, for example, all the eigenvalues of A are positive,

P = RA^R"1 = A”1 (3.10.5)

The modification proposed in section (3.2) can be viewed as a
preconditioned system in that

w + A*w = 0 (3.10.6)— t — X

is equivalent to

P'Sr + Aw = 0 (3.10.7)— t — X

where PA = A*. P is a non singular matrix and in fact

P= RA*A~1R‘1 (3.10.8)

with A = diag(Ak) the original wave speeds and A =diag (X^) are the
modified ones.

In 2D, the preconditioned system takes the form

P~%r + Aw + Bw = 0— t — x ~ y

w + PAw + PBw = 0  (3.10.9)—t —x —y

*
Choosing a matrix P such that PA= A possesses certain features, eg a

* *
desirable eigenstructure, completely determines B , B =PB. Upon the
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one-dimensional choice (3.10.5) P=A~1

B* = A _1B (3.10.10)

The modifications proposed in section (3.5) are in a sense more 
general than the class of preconditioned system of the form (3.10.9), 
and are equivalent to

wt + P^Aw^ + P2Bwy = 0 (3.10.11)

where P and P2 are not necessarily identical. Obviously choosing 
P 1=P2 ensures that in the steady state, the system is fully 
conservative. This property is lost under the present modifications 
(see section (3.9)), which take care of the details of the transient 
phase ie conforming to a strict physically 'realistic' wave pattern, 
at the expense of not maintaining conservation.
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(4.1) Gradual Wave Attenuation in ID - The Continuous Level

One dimensional disturbances maintain a constant profile as they 
propagate, unless they interact with one another (eg a rarefaction fan 
overtaking a shock wave). In contrast, multi-dimensional disturbances 
decay as they move away from the origin (like r”1/2 in 2D and r 1 in 
3D) and tend to zero strength as they approach infinity. Placing the 
far field boundaries at a large distance usually renders all boundary 
statements more accurate and results in weaker reflections. An
attractive far field modification is to force the waves to decay to 
their far field values more rapidly than they naturally do, thus
avoiding the need for large computational domains and excessive costs.

If the ID wave equation

© - X2© = 0 (4.1.1)11 xx

with solutions

vtx.t) = «eio(t+x/X) + peiy(t-x/X) (4.1.2)

is replaced in the far field by

<p^ - ip + 2c<p̂  + c2g> = 0 (4.1.3)

it now possesses solutions

«,(x,t> = «ecx/Xeiw(t+xA> + pe-cx/Xeiy (t-x/X, (4.1.4)

representing one dimensional waves exponentially attenuated in space. 
The rate of attenuation, determined by the value of c, is the same for 
all frequencies to, so that the propagating wave does not distort or 
disperse. The resulting interface problem is
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<p - \2<p + 2c + ( c ) 2<p = 0 x<011 XX I t  1

<p - x2p + 2c CP + (c )zç = 0 x>0 (4.1.5)L L XX  ̂ L

Wx=0 = ta?/ax]x=0 = o

Respective solutions are

c x/X iw(t+x/X) -c x/X iw(t-x/X)
ç)(x, t) = a^e e + j^e e x<0

c^x/X iO)(t+x/X) -c x/X iw(t-x/X)
CP(x, t) = «2e e + P2e e x>0

(4.1.6)

Continuity at the interface reads

O, + P, = cx2 + p2

c + iti 
“ i ‘ Pi = (“2 - ^

A right running wave approaching x=0 from the left has

Solving for T and R we obtain

2 (c + iw)
T =

(4.1.7)

c + c + 2i(0 1 2

C . c (4.1.8)
R = 1 2

°1 + °2+ 2iW

If ci * c2# T and R are both complex expressions indicating that right 
moving waves undergo a change of phase across the interface. Note 
also that
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, 4 ( c ) 2 + 4w2
ITI = --   ;---  (4.1.9)

(ci+c2) +4w

and for c<i< c2, lTl< 1 consistent with the choice of attenuation 
rates. By symmetry we have for left running waves

2 (c + ito)
T = ---- — ------

c' + c2+ 2i(o
c _ . (4.1.10)

R = 2 1C1 + c2+ 2iw

Allowing c to vary with the space coordinate x in a, say, piecewise 
constant manner, gradually increases the rate of decay but at the same 
time creates more interfaces across each of which partial reflections 
occurs.

This was the approach taken by Kosloff and Kosloff in [46], and 
its main drawbacks are:(a) Waves are not fully transmitted across 
interfaces, (b) As the distinction is not made between incoming and 
outgoing waves, the same attenuation rate is applied to both, which 
immediately renders this modification inapplicable to a certain class 
of time dependent problems as discussed in the introduction to Part 
II. In the next section an alternative modification is proposed which 
is advantageous in both those respects.

(4.2) A Remedy to Partial Reflections at Interfaces

As seen in Chapter III, a better way to go about the problem of 
partial reflections is by considering first order systems instead of 
second order scalars.



If the advection equation (1.2.1) with solution (1.2.2) is 
replaced by

w + Xwx + cXw = 0  (4.2.1)

it now possesses solutions

w(xft) = e CX f(x-Xt) (4.2.2)

This readily generalizes to first order systems. The system

w + Aw = 0
~ t  - X

with solutions

w(x,t) = Ü ak eiu(t x/Xk> rk (4.2.3)
k = 1

is replaced by

w + Aw^ + Cw = 0 (4.2.4)

The matrix C is chosen so that solutions are now of the form

n -c x iw(t-x/X ) 
w(x,t) = ^ a e e r (4.2.5)

k = l

By considering simple wave solutions it is found that C should possess 
same eigenvectors as A, with re:
It can thus be easily constructed
same eigenvectors as A, with respective eigenvalues A = diagtc^X^).

C = RAR"1 (4.2.6)

with R the matrix of eigenvectors of A. The resulting interface 
problem reads
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w + Aw + C w = 0 x<0— t X 1“

w + A w + C w = 0  x>0—t —x 2—

[ï] M O  = 0

with

C 1 = RA^R"1 A i = diag ( c ^ )

C2 = R A ^ " 1 A2 = diag (dkXk)

The respective solutions are

n -c x
w(x,t) = E e a (t-x/X ) r x<0—  ^  k k —  kk = l

N -d X
w(xft) = % e ^ (t-x/X ) r x>0

k = 1

Continuity requirement becomes

(4.2.7)

(4.2.8)

Z « J t )  r = % P/t) rk (4.2.9)
k = 1 k = 1

Uniqueness of representation again implies 

a (t) = P, (t) k = 1,...,Nk k

and full transmission of all waves is established.

Like in the previous chapter, formulating the problem as a first 
order system rather than as a second order scalar, offers a wider 
choice of far field modifications as a count of degrees of freedom 
will confirm. Some of these modifications are no longer equivalent to
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a modified wave equation, including the one presented here. The
proposed modification appears advantageous to the one in [46] in two 
respects:

(a) Full transmission of the analytic solution is guaranteed by 
construction.

(b) Different attenuation rates may be chosen for different simple 
waves, including the choice of not attenuating certain waves at
all. Thus we can identify and selectively damp the outgoing
waves only.

(4.3) Gradual Wave Attenuation in ID - The Discrete Level

The analysis required in this section is nearly identical to the 
one carried out in section (3.3), and will therefore be discussed very 
briefly. The problem to analyse is

u + Xu + Xc u = 0 x<0t X i

ut + *ux + Xc2u = 0 x>0 (4.3.1)

which is approximated by

u" - i V j +k jso

R

V =  %k = -L
j >o (4.3.2)

j =-L+l,...,r
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First and foremost stability of (4.3.2) needs to be established. Only 
then the question of reflections may be addressed. As pointed out, 
full transmission of discrete waves across an interface does not 
automatically follow from full transmission of continuous waves, and 
in fact in most circumstances, discrete waves do suffer partial, 
though weak, reflections. This is due to the increased number of
modes admitted by the discrete dispersion relation.

As shown in section (3.3), if (4.3.2)a and (4.3.2)b are both 
dissipative, their match across the interface is stable [10]. In
Appendix C, we show that for a particular 3-point approximation to
(4.3.1), both (4.3.2)ab are dissipative hence stability follows. We 
also show that for the same approximation, transmission and reflection 
coefficients are respectively

T = 1 + 0[c])
(4.3.3)

R = 0 ( [c] )

where [c] = c^-c^ is the jump in the attenuation rate across the
interface.

In practice, however, the reflected part is of small amplitude 
and of high wave number and is very rapidly damped out. In the 
numerical results, presented in section (4.6), there is no evidence of 
any noticeable reflections at all.

(4.4) Gradual Wave Attenuation in 2D

Consider the 2D linearised isentropic Euler equations 

w * + Aw + Bw = 0 (4.4.1)— t — X — y
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V 0 1 °] '0 0 1)
w = u A = 1 0 0 B = 0 0 0

|o 0 OJ ll 0 OJ

Following the derivation in section (3.4), plane wave disturbances in 
a direction x' inclined at an angle # to the positive x direction, are 
governed by the equation

w A + M(#)w , = 0—t —X (4.4.2)

0 cos# sin#
M (5) = Acos-9 + Bsin# = COS# 0 0

sin# 0 o ,

igenvectors and eigenvalues of M (#)

' -1 0 1 '
R(*) = (rv r2 u II cos# -sin# cos#

 ̂sin# cos# sin# v
(4.4.3)

A = diag (-1, 0, 1)

which by construction recovers the eigenstructure of A for #=0, and 
that of B for # = Equation (4.4.2) possesses exact solution of the 
form

3 iw(t-x'(#)/A ) 
w(x,t) = ^ a e r (5)

k = 1
(4.4.4)

with x'(#) = xcos-9 + ysin#, r^ and given by (4.4.3). In the far 
field (large x'), (4.4.2) is replaced by

w + M(#)w , + C(#)w = 0— t —X — (4.4.5)
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and by the one dimensional analysis of section (4.2)

C (#) = R(5)AR~1(̂ ) A = diag(Xkck) (4.4.6)

Exact solutions of the modified system are of the form

3 -c x' i«(t-x'A ) 
w(x,t) = a e e r (#)

k = 1
(4.4.7)

describing plane waves, exponentially attenuated as they propagate in 
the x' direction. The matrix C(#) is given by

C(3) =

C 3 " C 2

C 3+ C lC OS #

s * s
C OS #

X L c o s 2»

C 3* C 1cos#sin#

° 3 + C 1

C 3 " C 1

sin#

cos#sin#

X-Lsin29
(4.4.8)

The presence of entries in (4.4.8) which are not linear in cos# and 
sin# imply that C (#) cannot be of the simple form

C (#) = A cos# + B sin#i i (4.4.9)

unless we choose c ^ c ^ c ,  ie same decay rate for both incoming and 
outgoing waves. The far field modification in that case reduces to

w + Aw + Bw + c(Acos# + Bsin#)w = 0-t -X - y  - (4.4.10)

However, there is no need to restrict all waves to the same rate of 
decay and C (#) can remain in its general form, yielding

w + Aw + Bw + C(#)w = 0—t —x —y — (4.4.11)
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The choice of # is again problem dependent, and is to coincide with 
the direction of the main disturbance at each position. (See section
(3.1) for details).

It is interesting to note, though perhaps not surprising, that
(4.4.11) emerges again, if the equations are modified in one preferred 
direction, say the x-direction, and then rotated so that the preferred 
direction coincides with a general direction indicated by #. The 
modification then takes the form

w + Aw + Bw + T'1C(0)Tw = 0 (4.4.12)_ t  - x - y

T is the rotation transformation (3.4.18), C (0) = R(0)AR-1(0) with 
R(0) given by (4.4.3) setting # = 0, and A = diag (c^X^). Explicitly

C(0) =

c 3"c i

c 3+ c i

V e i

V e i (4.4.13)

and it can be verified that

C(3) = T"1C(0)T (4.4.14)

Finally, since the modification is based on a 1-dimensional 
argument, we verify that properties are recovered in genuinely quasi 
one dimensional problems. Indeed, transforming (4.4.11) into 
cylindrical coordinates (r,#) and assuming axial symmetry, we obtain

<7

C 3_ C , C 3+ C 1 . 1
T "  _ 2 + ?

C3+Cl °3-C , <7
= 0 (4.4.15)
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here q = ucos# + vsin^ is the velocity in the radial direction. 
Equation (4.4.14) has general solutions of the form

V 'Ï
+ 0

'i :

UJ /F l-lj /r llj Lr J

representing travelling waves in the positive and negative radial 
direction which, which in addition to their natural decay, are further 
exponentially attenuated with decay rates c^ and c^.

(4.5) Combination of the Two Approaches

The two proposed far field modifications (a) slowing down and
(b) gradually attenuating the outgoing waves, are clearly closely 
linked to one another. The respective modifications are constructed 
to conform to a desirable far field wave structure. In both cases the 
outgoing waves are identified using characteristic field 
decomposition. Preservation of simple wave structure ensures full 
transmission of all waves across interfaces. Both approaches can be
combined into a single far field modification under which the outgoing
waves are slowed down and attenuated at the same time.

Indeed, the ID system

w + A*w + C*w = 0  (4.5.1)

* * _ i * *A = RA R A = diag(X^)

* * - 1 * *C = RA R A = diag(c,X )k k
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*
where the X, are the modified speeds and c, are the attenuation rates,k k
possesses exact solutions

n -c x *
w(x,t) = £ e a (t-x/X ) r (4.5.2)

k = 1

and full transmission of all waves is easily verified. In two space 
dimensions, consider the system

w + A w + B w + C w = 0 (4.5.3)—t —x' —y' —

* *
with A and B given by any of the modifications of section (3.5), R, 
*

Xk and ck are the eigenvectors, the modified speeds and the
attenuation rates in the x'-direction respectively and

* * - 1 * *C = RA R A = diag (c X )k k

of coordinates, equations (4.5.3)

(4.5.4)

T is given by (3.4.18). Numerical results for the combined far field 
modification in both one and two space dimensions are presented in the 
next section.

Viewed from the x and y fixed set 
take the form

** ** **
w + A w + B w + C w = 0— t — x -y ~

* *  _ i ,
A = T (A cos# - B sm#)T

** - 1 * . *B = T (A sin# + B cos#)T

** - 1 *
C = T C T
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(4.6) Numerical Experiments

(4.6.1) One Dimensional Tests

In the following one dimensional tests, it is assumed that the 
RHB is the artificial boundary and waves travelling from left to right 
are accordingly outgoing.

Test A (Figure (IV.1)a-c)

The governing equation is the advection equation (4.2.1) with 
initial data

(4.6.1)

(4.6.2)

The interface is located at a given grid point j=jQ to the right of 
which waves are attenuated. Results are for c = 0.00, 0.01, 0.02. 
Reflections from the interface, although theoretically present, are 
unnoticeable. By the time the wave has reached the RHB, it is of 
practically zero strength.

Test B (Figure (IV.2))

The governing equations are the ID wave equation written as a 
first order system

w(x,0) = e"a(x"xo}

The numerical scheme is a LW adaptation to (4.2.1)

n+l n l>( n n
Wj = *j " 2\ j + 1 - V , . W n - 2wn + W n

I J + 1 j-i

- cAt fl- - Ate ]wn + pcAt fwn - wn
I 2 J J I J+1
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w + Aw + Cw = 0
— t — x  —

(4.6.3)
C = RAR"1 A = diag(c A )k k

The method of solution is Roe's field decomposition, with LW 
scheme applied to each characteristic field. The non-homogeneous term 
in (4.6.3) is projected onto the eigenvectors of A, generating waves 
of strengths

e, = " c , ¥  e2 = =2

Initial data is

V -<J( x-x ) ̂= e o
r r f

i> r 1.

The left running wave is undamped c^O.O, while the damping 
coefficient for the right moving wave is c^ = 0.02.

Test C (Figure (IV.3)a,b)

The governing equations are the modified ID isothermal Euler 
equations (3.9.9)

wA + A(w)w + C(w)(w-w ) = 0  (4.6.5)_t — —x ~ — —

The method of solution is the same as in Test B, for which

= ci(u-c) [(p-pj c - poo(u-uoD)]/2c 

^2 = c2iu'hc) K p~p<x) c + pco(u~u<d)]/2c
(4.6.6)
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Initial data is

-a(x-x )2
p(x,0) = + e

u(x,0) = ± c-log(p/pœ)

giving rise to a right (left) running compression wave gradually 
steepening up to form a shock wave. Damping coefficients are

ci = 0.00, c2= 0.03.

Consequently, the right moving wave (figure (IV.3)a) is damped out 
before the shock wave has been formed. Note that the steepening up 
and propagation of the left moving wave (figure (IV.3) b) is not 
affected by the far field modification.

(4.6.2) Two Dimensional Tests

Test D (figures (IV.4)a-d,(IV.5)a,b)

The governing equations are the 2D linearised Euler equations
(4.4.11) with initial data (compare section (3.8.2) Test A)

p(x,y,0) = e‘a x̂ +y *

u(x,y,0) = r(x,y,0) = 0.0

The numerical algorithm uses a two stage space operator splitting. In 
each direction Roe's field decomposition is performed. The rate of
attenuation of the outgoing waves is

c3 = 0.0, 0.01, 0.02, 0.03

resulting (figure (IV.4)) in strong decay of the outgoing wave. 
Figure (IV.5) shows the evolution with time of pressure profiles along 
the main diagonal for the same problem, with c^ = 0.00, 0.03.
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Test E (Figure (IV.6)a,d)

The two far field modifications are combined. The same test 
problem is repeated with

slowing down coefficient
attenuation rates

Test F (Figures (IV.7),(IV.8))

In this test, the steady state solution for flow past a circular 
arc in sought by means of integrating the 2D unsteady Euler equations 
until convergence is obtained (nodal changes £ 10"6). The circular 
arc is of normalised 1 unit length and of 10% thickness.

Grid features: The numerical grid is aligned with the arc with
32 evenly spaced cells on the bump and 16 linearly stretching cells
over one chord length to either side of the bump and in the vertical 
direction, at a stretching ratio of 3. This part of the grid remains 
unchanged. To obtain a larger domain of computation, additional 
points are inserted, using geometric expansion at a rate of 10% on 
either side of the basic grid and in the vertical direction (See 111. 
(IV.1)).

The method of solution and DCS: The method of solution is
Hall's variation of Ni's scheme [29], which is a cell vertex scheme 
with LW time integration. In all tests, the far field boundaries are 
subsonic. The boundary procedures used are the ones recommended by 
Hall, adapted to the extended 4x4 system. At inflow, tangential 
velocity, entropy and specific enthalpy are specified and normal 
velocity is extrapolated using one-sided version of the interior
scheme. At outflow, velocity components and enthalpy are extrapolated 
using the interior scheme and pressure in specified. On the solid
wall, a simple tangency condition is applied [29].

a =0.8
c = 0.0, 0.01, 0.02, 0.03
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2D Grid for Flow Past a Circular Arc

1 1 1 . (IV.1) - Numerical grid for 2D flow past a circular arc

'Accuracy* study: To assess the effect of the far field
boundary procedures on the accuracy of the converged solution, a 
series of tests were conducted with varying boundary distances. The 
solution is considered 'accurate' when further enlargement of the 
domain gives rise only to small changes (of order 10" ) in the 
converged values of the computed drag and lift coefficients

_ „ < V  *œ)AYi

Numerical tests: Fully subsonic 0.5) and transonic (tfœ= 0.75)
tests were conducted. The results are summarised in the table below. 
Note that the overall number of iterations increases with the grid 
size. This is due to the increased number of error modes that need to 
be damped before steady state can be reached. Yet, the amount of work 
per node decreases, which is partly a result of the far field BCS 
becoming more accurate as the boundaries are moved further out.
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Solution of tests (5) and (11) were considered accurate and are 
depicted in figures (IV.1) and (IV.2) respectively.

Test
Number

Boundary 
di stance

H u m e r i c a 1 
grid size C L C D

No. of iterations 
to steady state

V  °*5

1
2
3
4
5
6

1.0
2.64355
4.70732
6.90649

10.12629
12.25938

65x17
85x27
97x33

105x37
113x41
117x43

-0.281787
-0.313781
-0.317904
-0.318964
-0.319406
-0.319529

0.001360
0.000478
0.000363
0.000353
0.000358
0.000342

5390
5168
6358
6503
6418
6289

V  C).75
7
8 
9

10
11
12

1.0
2.64355
4.70732
6.90649
10.12629
12.25938

65x17
85x27
97x33

105x37
113x41
117x43

-0.355310
-0.437400
-0.450744
-0.460982
-0.462811
-0.463335

0.005332
0.012209
0.013626
0.014580
0.014788
0.014851

1673
3919
4540
5342
5528
5879

Tabel (4.6.1) - C onverged values against boundary distance

Gradual far field damping was applied to tests (5) and (11), and 
the influence of boundary thickness and rate of attenuation was 
studied (See Tables (4.6.2)a,b). In the tables. Boundary Thickness 
indicates the number of points across the modified region; Direction 
of Modification indicates the direction in which waves were damped (X 
for inflow and outflow boundaries and Y for top boundary). Table
(4.6.2)a is for the transonic case, tfœ= 0.75, and Table (4.6.2)b is 
for the subsonic case, 0.5. The first line in each table refers 
to the case where no far-field damping was applied, and should serve 
to assess the performance of the far-field boundary treatment. In all 
cases, the far field damping accelerates convergence to steady state. 
Comparison of Test (1) and Test (6) in Table (a) reveals that in the 
transonic case the Number of Iterations to steady state was 
considerably reduced by some 35%. Relative changes in c^ were far 
less than 1% and those in cD were within 2%. Absolute changes in both
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were far less than 1%. These very small changes in the solution may 
be attributed to very weak reflection mechanisms due to change of 
coefficients in the far field. In the fully subsonic case, the number 
of iterations dropped quite dramatically by over 60% (compare Test (1) 
and Tests (3) and (4) in Table (b) ), while the normal force and drag 
coefficients changed by less than 1%. While far-field damping is 
relatively insensitive to the damping strength and to the boundary 
thickness, its efficiency in accelerating convergence depends strongly 
on the direction of modification. The results indicate that it is 
mostly reflections from the top boundary that inhibit convergence 
while inflow and outflow boundaries generate weaker reflection 
mechanisms. Applying far-field damping in both X-Y directions proved 
best in both transonic and subsonic cases. An explanation as to why 
far-field damping is more efficient in the subsonic case than it is in 
the transonic case, is provided by noting that reflections from 
far-field boundaries are only one of the mechanisms that inhibit 
convergence to steady state. The formation of shock waves is another 
such mechanism. Convergence rate in the transonic case is influenced 
by both mechanisms, hence the reduced effect of far-field damping.

Test 
No .

Dampi ng 
Coef .

Boundary 
Thickness

Dir. 
of M o d .

Number of 
Iterations C N C D

1 0.0 0 - 5528 -.46281 .01479
2 0.5 6 X 5886 -.46443 .01515
3 0.5 6 Y 4799 -.46116 .01462
4 0.4 5 Y 4926 -.46158 .01466
5 0.6 5 Y 4884 -.46144 .01465
6 0.5 6 X-Y 3621 -.46355 .01510
7 0.4 6 X-Y 3646 -.46355 .01510

Table (4 .6.2)a - Parameter study of far-field damping 
T ransonic case.
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Test 
Ho .

Damp i ng 
Coef .

B oundary  
Th i cknes s

Dir. 
of Mod.

Number of 
Iterat i ons C N C D

1 0.0 0 - 6418 -.31941 .00036
2 0.5 6 X 5573 -.31976 .00036
3 0.5 6 X-Y 2404 -.32007 .00036
4 0.4 6 X-Y 2418 -.32005 .00036
5 0.5 6 Y 3192 -.31985 .00036
6 0.4 5 Y 3383 -.31995 .00036
7 0.5 5 Y 3352 -.31997 .00037

Table (4.6.2)b - Parameter study of far-field damping 
S ubsonic case.
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CONCLUSIONS

This work was devided into two parts.

In PART I, the problem of far-field artificial boundaries, arising in 
external flow calculation, was introduced and discussed. The 
conventional approach for treating far-field boundaries, namely 
deriving BCS of absorbing type, was presented. Mathematical 
backgroung in the theories of Well-Posedness and Stability of mixed 
IBVPs was also presented, familiarity with which is necessary for 
understanding the philosophy in constructing such BCS. A survey of 
existing recipes for absorbing BCS was conducted. PART I concluded 
with a thorough numerical study of the efficiency of several, widely 
used, BCS, in absorbing outgoing disturbances. The performance of 
these BCS strongly depends on key numerical parameters such as local 
CEL number, local wave number and grid stretching. This dependence 
was theoretically analysed and computationally studied. The 
limitations of all boundary recipes were exposed. It was found that 
under conditions prevailing in the far-field, ie small CEL numbers and 
small local wave numbers, strong reflections may occur and that grid 
stretching tends to enhance reflection mechanisms. Although 
classified as higher-order effects, these reflections may reach 
intolerable levels as demonstrated by the numerical results.

In view of these results, PART II presented a less conventional 
approach for treating reflections from artificial boundaries, which to 
some extent circumvents the problem of reflections from the boundary 
itself. It was proposed to introduce an outer 'sponge' layer of 
one-way absorbing character, in which the governing equations are 
modified to conform to a desirable far-field behaviour. Two such 
far-field modifications were presented: (a) Slowing down the outgoing 
waves and (b) Damping the outgoing waves. The two are closely related 
in that both require very similar chracteristic field analysis and 
make use of simply wave theory. Under the proposed modifications, the 
propagation of the incoming waves is unaltered while the outgoing
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waves either do not reach the boundary (a), or by the time they do so, 
they are of practically zero strength (b). Reflections from the 
actual boundaries are thus avoided. Conditions were derived to ensure 
that no reflections are generated at interfaces due to change of 
coefficients in the governing equations. The modifications were 
analysed and were shown to be mathematically well-posed and 
numerically stable. They were extended to 2D and tested in a variety 
of ID and 2D time-dependent test problems. Both were found to offer 
gains in accuracy of transient solutions, due to reduced levels of 
reflections from far-field boundaries. Although originally designed 
for time-dependent problems, far-field damping was successfully 
applied to 2D steady-state Euler calculations and was found to 
dramatically accelerate convergence of transient solutions to 
steady-state leading to costs reductions of between 35%-60%. 
Far-field damping is expected to accelerate convergence to 
steady-state, probably in a less * dramatic way, when combined with 
other acceleration strategies such as multigrid and enthalpy damping. 
Finally, the proposed modifications can be extended to 3D along very 
similar lines to the 2D extentions and if fact retain a very similar 
structure.
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Appendix A : Roe's Boundary Conditions

Roe’s far field BCS are demonstrated in two simple cases. The 
reader is referred to [64] for extensions to 2D and 3D Euler 
equations. The strategy is to obtain one outgoing characteristic 
equation from global considerations and to substitute it into the 
governing equations to yield another outgoing characteristic equation. 
In the case of the ID wave equation

p
+

' 0 1 ' rp

A t . 1 0 , ,u>
= 0 (Al)

Second differentiation yields p - Pxx = 0. Hence a right moving 
pressure wave approaching the RHB must be of the form

p(x,t) = f(x-t) (A2)

satisfying

pt + px - 0 (A3)

Substituting (A3)a into (Al) gives

u + u = 01 X (A3) b

Both (A3)ab are outgoing characteristic equations 
the ID Euler equations, (A3) reads

Generalized to

Pt + ( u+c) px = 0 
u + ( u-c) u = 0t X

(A4)

The 2D linearised Euler equations with axial symmetry read

V ' 0 1 ' V
+ +

Æ i . 1 0 , , 0 ,
= 0 (A5)
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Second differentiation shows that

Ptt ~ Prr - r Pr = ° (i6)

An outwardly radiating wave satisfies (to order (r~5/2))

Pt + Pr + ~2Ï~ = ° (A8)a

Substituting into (A5) gives 

2g - ( p-pj
qt + qr +  2r  = 0  (A7)b

Both (A7)ab are outgoing characteristic equations.

Discrete one-sided approximations to either (A3) or (A7) should 
be stable since they use the correct domain of dependence. No
assumptions are required on the state prevailing outside the 
computational domain.
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Appendix B: Adaptation of the LW Scheme to Non Uniform Grids

Let a non-uniform grid be defined by Ax = x - x and assumej+i j+i j
that wj occupies the interval 

Ax + Ax
I . = 2 (BD

Consider the LW approximation to the advection equation (2.2.1)

wn+1 = wn - (XAt/I .) [a. (wn-wn ) + j3.(wn -wn)l (B2)
J J J L J -1 J J - 1 J J + i J J

1+t^. 1-P.
a. = P . = 1 v . = XAt/Ax .J ^ j 2 j j

Using the consistency relation s 1, equation (B2) can be
written in conservation form

(wn+1 - wn)I . = - At
j .) j

(B3)

and conservation of the marching procedure immediately follows. 

Definition:
The scheme is said to be p—  order accurate if it recovers polynomials 
of degree p with an error of order (Ax)p+1.

Let the data be

w = (x-x .)p (B4)
j

For which the exact solution after one time step is

(V j  = ("XAt) (B5)

Substituting (B4) into (B3) gives
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wn+1 = (lût/L.) [-«. (-Ax. ,)p + P.(ûx.)pl (B6)
j j L J-1 J-1 j j J

For p—  order of accuracy

(w )n+1 - wn = O(Ax)P+1 (B7)
e j j

For p=l (B7) is an identity. For p=2 the error is Ax2 - Ax2 , whichj j - 1
for a geometric grid expansion

AXj^ / A X j  = 1 + 0(Ax2) (B8)

is 0(Ax)3. The present adaptation of the LW scheme is therefore
conservative and retains second order accuracy on geometrically
expanding grids that satisfy (B8).
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Appendix C The Discrete Interface Problem 

I. Slowing down the outgoing waves

Consider the discrete interface problem

wj+1 = ”j " £(vrv,)+ r(ffj+i "2w"+ wj-i) j5°
(Cl)

v"+1 = v" " 21 (vj,rvj-i)+ i (vj+r  2vj + vj-,) j>0

■w" = v" j=0,l

v and » are the possibly different CFL numbers to both sides of the 
interface. A single frequency mode is of the form (3.3.11)

with

wn = Zn (A"V + B"x^) j^O

vn = Zn (A+ni + h+v b  j>0j i ^

X 1 -  îïïW  P  + 2 - 1 - A']

x a = F & T  P  + 2 - % + 6~]

fi = R + z - 1 - A+]
^  [ <  + : - !  + A 1

(C2)

(C3)

(A")2 = (l-Z)2 + (2Z-1)p 2 

(A+) 2 = (l-Z)2 + (2Z-1) i>2
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It follows from (Cl)3 that

A" + B~ = A+ + B +
A~x + B x  = A+/J + fiV (C4)

A right moving x mode

A = R A+ = 0
B" = 1 B+ = T

(05)

gives

Denote by [p] = p -i>. To first order it follows from (03) that 

M2/X2 = 1 + c[p] + 0([p])2

Also

2i>+l 1+ (2Z-1) /2A
c = , ( m )  - p2 -

T = kr ka kr ka
k r ^ 2 k r ('J2/k2)k2

Xl-X2
Y.-y.z-cx2L[i>]

= (l-c ^ m ) " 1 (C7)

X2
” 1 + c jr=x“ 1 2

It follows from (04)
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1 + R = T

R = T-l = c [r] (C8)

II Gradual Attenuation of Outgoing Waves

Assume that the finite difference approximation to solve the 
interface problem (4.3.1) is using time operator splitting with the 
following two half steps

(I) u + Xu = 0t X -

(II) v + Xc2v = 0 J

Assume further that (I) is approximated by the LW scheme and (II) by 
the first order forward differencing. The discrete interface problem 
then reads

(II) u + Ac u = 0i 1
X<0

(C9)
(I) v + Xv = 01 x x>0

u

n nU V

with C i = (1 - c^At) and = (1 - c^At). Since jc^j^l and |C2|^1, 
both schemes in (CIO) are dissipative and stability of the interface 
problem follows. Single frequency modes are of the form (C2) with
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Z - C ^ l - P 2) - A"
Ci (̂i>+1)

Z - C^(l-W2) + A*
C^viv+l)

Z - C2(1-PZ) - A+
C

Z - C2(l-P2) + A+

(Cll)

C2^(P+1)

(A™)2 = (Z - C ^ 2 + C i^2(2Z - C a)

(A+) 2 = (Z - C2)2 + C2^2(2Z - C2)

Continuity requirements imply (C4) with (C5) and (C6) to follow. 
Denote by [C] = c2 “ C . To first order it follows from (Cll) that

/J2/x 2 » 1 + d[C] + 0([C])2

(Z-C ) (p2-l) - (1-i>2)A .
d = ---------    —  - %

(Z-Ci (1-p 2))A' + (A~) S

Following (C7) and (C8)

T = 1  + 0([C])

R = 0([C])
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Appendix D: Linearizing the Euler Equations

The 2D linearized Euler equations in primitive variables (pfu,v,s) is

V f

u +

7. + V.

CO Pœcw 0 
%  0

otx

'p X  0
u + 0 v00— 1 _

X LPco 0
Pcô o
0

'P

u

Z

= 0 (Dl)

with the entropy equation completely decoupled,

+ "cô x V y  = 0 (D2)

under the coordinate transformation

Ç = x-uœt 
r) = y-vœt

T = V

(D3)

equation (Dl) becomes

foP

u +

T V.

-i
V c

u +
J F V

-i

'P

u

J,

= 0 (D4)

with A = By further transformation of the dependent variables

' p ' r 1 0 0 ' ' p

u = 0 A 0 u

Oo

. y

we obtain system (3.4.1). Far field modifications of (3.4.1) can be 
carried over to the Euler equations by the inverse of the present 
transformation, and systems I, II and III are easily obtained.
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Appendix E: Point Equation and Line Equation of a Conic

The line equation of a conic is a representation of the conic in 
terms of the envelope formed by its tangents. Let a general line be 
described by

nx + my + 1 = 0 (El)

and consider the family of such lines that satisfy

An2 + 2Hnm + Bm2 + 2Gn + 2Fm + C = 0 (E2)

The envelope formed by these lines is a conic whose point equation is
given by [70]

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 (E3)

where a,b,c etc are the A,B,C etc. minors of the matrix

M =
A H G
H B F
G F C

(E4)

Consider now the characteristic polynomial (3.4.10)

X2-X(a-1)cos#-(acos2# + p2sin2#) = 0 (E5)

In terms of the intersection points with the x and y axes

X = X/cos# Y = X/sin# (E6)

Equation (E5) reads

XY - (a-l)Y - aY/X - p2X/Y = 0 (E7)

For the line described by (El), X = -l/n, Y = -1/m, and (E7) becomes 

an2 - (a-l)n + p2m2 = 0 (E8)
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for which the point equation, using minors of (E4), is

2
P

representing an ellipse centred at oj with respective axes
and p.

a+1
2
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Appendix F : On the Group Velocity of Symmetric and Upwind Schemes

Consider the 2-level explicit model to approximate (1.2.1)

Z (F1)- r '  J ,
Let Z= e1(l)̂  and substitute in (FI) a trial solution u"= Znexp (iÇjh). 
The amplification factor Z is given by

Z= I c (W elÇkh (F2)
k = - 1

and for Cauchy stability the model must satisfy l z l £  1 for all Ç g R .  

Where applicable, the group velocity is given by

G = " S = " ii ^ kck(l,) elÇkh <F3)k = - 1

Symmetric Schemes

In the symmetric case we have l=rss and the stencil of (FI) stretches 
over 2s+l grid points. The maximal order of accuracy is 2s and is 
attained by choosing c^ that satisfy

8
£ kpck(y) = i>p p = 0,1,... ,2s (F4)

k = - s

Equation (F4) is a linear non-homogeneous system of Vandermonde type 
which can be solved using Cramer's rule

ck<w - _ n <")
Jj « s

Using the generalised factorial notation

(p-j)n+1= (p-j)(n-j+1)•••(p-j+n)
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equation (F5) simplifies to read

v ^ (-1)SV k h ( ^ I U )  (F6)

It follows from (7) that:

(a) c, (p) = c , {-i>)k -k

(b) The amplification factor, defined in (3), for Çh=7t
s

Z = (-1) c (v) is a symmetric function in the CFL number p.
k = - s

(c) Assuming Cauchy stability, then for i> sufficiently small

Z = 1-cP2 (F7)

for some positive constant c.
(d) The group velocity for Çh=Tf reads

8 ,
G = - ^  Y, ("I) kck (p) . Substituting (F6) and rearranging we

k = - s
obtain

k= 1 K - P

It follows from (F7) that for sufficiently small p, Z is positive. 
For IpIs 1, all the P-dependent terms in (F8) are positive, leading to 
group velocity that points in the wrong direction.
(e) Since at small CFL numbers, waves propagate through fewer grid 
cells, the true implication of (F8) has to be assessed in the double 
limit |p|-> 0, N -> o> so that T=Nk=NPh/a is fixed. After a fixed time 
T, assuming a=l and h=l, a mode with Çh=n will have dissipated by

zT/p = (1- W 2)T/P * (1- c 2) <1/ct,Z)-ct,T
~ e_ctyr > i (F9)

and in the limit of small p the mode is not dissipated at all. An 
example of a scheme in this class is the LW scheme (2.1.1)
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Upwind Schemes

Even Order Schemes

These have the general form

« r 1- sf °  ( n o
0

and of which the symmetric schemes are a particular case so=0. In 
order for P=0 to be inside the stability region so=0,l88, but we shall 
keep the general notation sQ. Let c“(t>) and c ^(p ) denote the 
coefficients in the upwind and central (symmetric) cases respectively. 
For optimal accuracy

S + 8 , . \ 8 (t̂ -S -j)
= . n T F j f  = . n T F v j T  = ck - . ^ * o > ,F11)

i r r s0 ] r s -  0 0
where c£(i>) are given by (F6). The coefficients are thus related 
through a simple shift operator. It can be shown that:

(a> " c " - k <V * ’) -O 0
(b) The amplification factor of the mode Çh=Jt is not symmetric in v 
hence for sufficiently small y inside the stability region

Zu * 1 - c p + 0(p 2) (F12)

where c is a positive constant. In general there is no reason to
assume c=0 although if the requirement for optimal accuracy is
dropped, the resulting degrees of freedom can be used to construct
schemes for which c=0, leading to amplification factor of the form
(F7). A simple relation holds between the amplification factors in 
the upwind and symmetric cases. Let ii=v-sn

z V i  = " i f0 ( - D k c " ( v )  = ( - i ) 8°  z ( - D k c ° ( p )
k = - 8 + s k = - 80



It follows from (F7) that Zu is symmetric in /i. Assuming Cauchy 
stability, for sufficiently small /li

Z * V )  *  (-1) 0 (1 - Cfj2) (F14)

for some positive constant c.
(c) It follows from (b) that group velocity analysis is applicable 
for either jlzssO (t>aso) or The general expression for the group
velocity reads

For I/jI« 1, the main contribution to G comes from k=0 leading to

ie high frequency modes in this range of CFL numbers move in 
the correct direction.
In the limit of small p , (F15) takes the form

and is strictly positive. High frequencies in this range of CFL 
numbers move in the wrong direction.
(d) The fundamental difference between the symmetric and upwind cases 
lies in their respective long time behaviour. After a fixed time 
T=Nk, high frequencies will have dissipated by

(F15)

s
G

ZS£(l-Cl>)I/P -To
M «  1 (F16)

This suggests that in the upwind case, high frequency parasitic modes



148

do not constitute a severe problem since even at small CFL numbers 
all waves will eventually be damped out. In the symmetric case the 
accumulative damping factor tends to 1 in the limit of small v and 
waves will persist. This is confirmed by simple numerical tests.

An example of a scheme in this class is the second order upwind scheme 
with s=l, so=l

(F17)

Odd Order Schemes

These have the general form

0

and we assume s^s^+l^ 1. For optimal accuracy

-, I : , ,  m  % i . ,  ^
j ^ k j t k-Sq

k-s + s
= Ck-S(y"s0) (F18)0 0

(a) The amplification factor of the mode Çh=7r reads

Zu(y) = T 0 (-1)" c“(p) = (-1)S° I (-1)k cl M
k = -s + s +1 k = - s + 10

(M-s )28 = f2s Ï k + s
= (-1) (2s) !— . % Is+kJ TTT-kk=-s+l

It can be verified that for small p = sQ)

s
Z ^ (-1) (1-c/J)
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for some positive constant c. Likewise, for small inside the 
stability region

Z — 1-c p

for some other positive constant. Group velocity analysis is thus 
applicable in those two ranges of CFL numbers.
(b) The expression for the group velocity of the mode Çh=n reads

k = - s +1

For ixxQ, the main contribution to G comes from k=0, leading to 
approximate group velocity which points in the correct direction 
G =-a. For the group speed reads

which is strictly positive hence points in the wrong direction.
(c) Schemes in this class will display a long time behaviour similar
to (F16). An example of a scheme in this class is the first order 
upwind scheme with s=l, so=0

un+1 = (l-y)un + winj j j + i

RK Type Schemes

Consider the (s) stage RK algorithm to approximate (1.2.1)
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u (1> = u" + x j w  - *r')u"J J 8 Z J

u (2> = u" + X . - K-')u'" (F20)J J 8-1 Z J

u'6’ = un + X, £(K -  K-1) / * - ”J J 1 Z J

un+1 = u u )
J J n n

where K is the shift operator K u . = u . and X are arbitrary positive
r^ik k J J+constants. Let 1D1X1, then (F20) may be written explicitly as

u"'1 = f I + E Ak E (-l)m Kit~2ml U n (F21)
J k=l m=0 J 3

=. Î  ck(y> V kk = - s

It can be shown that:
(a) c (y) = c ,(») k=evenk - k

c, (p) = -c , (W k=oddk - k

and for kkO

P r ]
«,(«. ï (-i)"a 1>s„ ( ;  ") m i

n = 0

where [x] denotes the integer part of x.
(b) The amplification factor for Çh=Jt is Z=1 for which group velocity 
analysis strictly applies.
(c) Using (a) and (b) the group velocity for high frequency modes 
reads

= I ( E + E ) <-K = - S ^  k=-S /k=odd k=even
l)kkck(K)

The even order terms cancel out and the odd order terms yield

na s
G = ^  E ltck(l>) (F23)

Èîodd
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with ck given by (F22). For specific choices of (s) we obtain

(i) s=l (s=2)

G <”> = -jr A,(î

(ii) s=3 (s=4)

G(7r) = ^  - ,( i)

Hi) -
(iii) s-5 (s=6)

G in) = 2a A

H3 - -(3) * 
H9 - >(3 * ■(3)1

etc. It is claimed that

£ (-l)k(2®+l-2k) (Z”+1) s 0 m=l,2.
k=0

The proof is due to P.L. Roe. Consider

k = 0

Then

2m+ 1t (-l)klt(2”+1) (X)1" 1 Ef(x)
k = 0

(F24)
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and

2 m + l  ■ '
£(D = o = g (-D-k p r 1

k = 0

usin9 we 9et

0 E E (-l)k k (2"+1) + (-l)2mtl"k(2m+l-k) (22”P J
k = 0

= % (-1)ktl(2m+l-2k) f2"*1) □
k = 0

This implies that the group velocity of high frequency modes under a 
general (s) stage RK scheme is

For consistency of (F20) X^=l and the group speed always points in the 
wrong direction. This is confirmed by simple numerical tests.
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Figure (II.2) - ID Euler equations at moderate CFL numbers - AReflection study with boundary conditions (i)-(v).equationsFigure
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Figure ( I I .3) - ID Euler Equations at small CFL numbers - A 
Reflection study with boundary conditions (ii)-(v).



î> s





Il



Figure (II.4) - ID Euler Equations on a mildly expanding grid - A
Reflection study with boundary conditions (ii), (iii) and (v).
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!ü  EL/LE/? EOUAT/ONS -  INTERNAL REELECTION TEST
E m u r i O N  o e  DENSi rr p r o f ile s

INITIAL DATA - TOI MAE

Figure (II.5 ) a
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Figure (II.5)b
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Figure (II.6) - Strong focussing of an error generated at the
boundary (a) 20 linearised Euler Equations.



3D LINEARIZED EULER EQUATIONS ElTN RADIAL STNNETRT 
PRESSURE IS  SPECIFIED ON TNE PHD 

\  CEL = 0.500 INAX= 50  N= 200

Figure (II.6) - Strong focussing of an error generated at the
boundary (b) 3D linearised Euler Equations.
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Figure (II.7) - 2D linearised Euler Equations - High frequency2D 1 n e a ni
initial data : (a) p profiles.
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Figure (II.7) - 2D linearised Euler Equations - High frequency
initial data (b) : q profiles.



Figure (II.7) - 2D linearised Euler Equations - High frequency
initial data: (c) p-q profiles.



Figure (II.7) - 2D linéarisée Euler Equations - High frequencyons
initial data: (d) p+q profiles.



20 LINEARIZED EULER EQUATIONS MITN RADIAL STNNETRT 
NI6N FREQUENCr BOUNDART CONDITIONS I  

CEL =0.005 INAX= 50 N=!0000

Figure (II.8) - 2D linéarisée Euler Equations - High frequency
boundary conditions (a).



2 0  L/OEAOJZED EEL EE EQUATIONS VI TU EADIAL STONE TEA 
HIGH FEEQUENCT BOUNDAET CONDITIONS I I  

CEL = 0 .005  INAX= 5 0  N=!0000

- Æ m m m m x N r

Figure (I I .8) - 2D linearised Euler Equations - High frequency
boundary conditions (b ) .
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Figure (II.9) - 2D linearised Euler Equations - Reflection of a
smooth wave from a high frequency boundary (a).
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Figure (II .9) - 2D linearised Euler Equations - Reflection of a20 n e a nismooth wave from a high frequency boundary ( b ) .



2 0  L lOfAOIZEO EL/LEO EQUATIONS V i m  RADIAL STONE TEA 
COOEINEO L - N  BOUNOART CONDITIONS 

CEL =0.005 IOAX= 5 0  m /0000

Figure (11.10) - 2D linearised Euler Equations - Combined
Low-High frequency boundary conditions, (ex')



2 0  LIOEAO/7EO EL/LEE EQUATIONS EIIH RADIAL Sm ETRT  
CONBINEÛ L-N  EOUNOART CONOI FIONS 

CEL = 0 .0 0 5  INAX= 50  N =/0000



lû MA/F fûl/A riOA? - SI OVINS DOW SIGHT GOING HAVES 
GEL =0.75 SÏGHA=0.02 H=/20

SL OHIHG ÛOHH EACTÛ/?=/. 0

Figure (III.l) - ID wave equation: (a) Constant slowing down
coefficient.
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Figure (III .1) - ID wave equation: (b) Constant slowing down
coefficient.
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Figure (III.1) - ID wave equation: (c) Constant slowing down
coefficient.
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Figure (III.l) - ID wave equation: (d) Smoothly varying slowingID equatiwave on
down coefficient.



/Û  EULER EQUATIONS SHOCK TUBE PEOBLEH 
EVOLUTION OE NONENTUN PROFILES 

SLOE I  NO BOHN FACTOR-/. 0

Figure (III.2) - ID Euler equations with various constant slowing
down coefficients (a).
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Figure (III.2) - ID Euler equations with various constant slowing
down coefficients (b).
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Figure (III.2) - ID Euler equations with various constant slowing
down coefficients (c).
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Figure (III.2) - ID Euler equations with various constant slowing
down coefficients (d).
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E/OL UTION OF DENSITT PROFILES 

\ SLOPING OOEN FACTOR=

Figure (III.3) - ID Euler equations - (a) Piecewise constant
slowing down coefficients.
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Figure (III.3) - ID Euler equations - (b) Smoothly varying slowing
down coefficients.



(a>  E xact S o lu t io n  -  P r o je c t io n

(bJ Exact Solution - Contours

Figure (III.4) - 2D linearised Euler equations - Exact solution
for initial data (3.8.5).



CbJ> Outgojng Speed = 0.8

Figure (III.5) - 2D linearised Euler equations - Numerical solution
for initial data (3.8.5).



(c) Outgoing Speed = 0. G

(dl Outgoing Speed -  /

Figure (III.5) - 2D linearised Euler equations - Numerical solution
for initial data (3.8.5).



(a J Outgojng Speed = I - r 
System No I

CbJ Outgoing Speed = /  - r 
System No II

igure (III.6) - 2D linearised Euler equations - Numerical solution 
for initial data (3.8.5).



(a  J E xact S o lu t2on -  P n o je c t j  on

CbJ> Exact Sol ut j on -  Contours

Figure (III.7) - 2D linearised Euler equations - Exact solution
for initial data (3.8.?).



CbJ Outgojng Speed = 0.8

Figure (III.8) - 2D linearised Euler equations - Numerical solution
for initial data (3.8.7).



CcJ O u tgo in g  S p e e d  = 0 . 6

Figure (III.8) - 2D linearised Euler equations - Numerical solution
for initial data (3.8.7).
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Figure (IV.1) - Linear advection equation - gradually attenuatedadvectiLi onnear
solution (a).
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Figure (IV.1) - Linear advection equation - Gradually attenuated 
solution (b).
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Figure (IV.1) - Linear advection equation - Gradually attenuated 
solution (c ) .



lü  MVE EQUATION - GRADUAL OAUP/NG RIGHT GOING RAI/E 
GEL = 0 .7 5  SIGNA = 0 .02  N =!20

ATTENUATION FACTOR = 0 .0 2

Figure (IV.2)



/ ^ % Z V y / 7 & M / Z P ^ j % 5 * 5 V V ^ r / g f % F ) % V 2 r

Figure (IV.3) - (a) Gradual attenuation of a outgoing compression 
wave.
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Figure (IV.3) - (b) Incoming compression wave unaffected.



CaJ Outgo2ng Speed -  1.0 
Outgjng Damping CoeFFicient -  0.00

(bJ Outgoing Speed -  1.0 
Outgoing Damping CoeFFicient -  0.0/

Figure (IV.4) - 2D linearised Euler equations - Gradual attenuation
of an outgoing pressure wave.



CcJ Outgoing Speed -  1.0 
Outgmg Damping CoeFFi cient -  0.02

CdJ Outgoing Speed -  1.0 
Outgoing Damping CoeFFi cient -  0.03

Figure (IV.4) - 2D linearised Euler equations - Gradual attenuation
of an outgoing pressure wave.



2D L I DEAD/ZED EULER EQUATIONS UITN RADIAL SWNETRT 
\  PROFILES ALONG NAIN DIAGONAL
\  ATTENUATION FACTOR = 0 .0 0

Figure (IV.5) - 2D linearised Euler equations with gradualattenuation - Profiles along main diagonal ( a ) .



2 0  LINEARIZED EULER EQUATIONS RI TU RADIAL SÏNNETRT 
\  PROFILES ALONG NAIN DIAGONAL
\  ATTENUATION FACTOR = 0 .0 3

Figure (IV.5) - 2D linearised Euler equation with gradualattenuation - Profiles along main diagonal ( b ) .



Co ) Outgoing Speed = 0.8 
Outgmg Damping CoeFFicient -  0.00

Figure (IV.6) -

Cb ) Outgoing Speed = 0.8 
Outgoing Damping CoeFFicient = 0.01

2D linearised Euler equations - Numerical solution
for initial data (3.8.5).



Cc) Outgoing Speed =0.8 
Out g m g  Damping CoeFFicient -  0.02

Cd) Outgoing Speed = 0.8 
Outgoing Damping CoeFFicient = 0.03

Figure (IV.6) - 2D linearised Euler equations - Numerical solution
for initial data (3.8.5).



xicr*
70.
S5.
SO.
55.
j%
15.
10.
35.
30.
25.

3 X X X X X X X X X -

302520

C/J ffach Number D istrib u tio n

xur2

35.
30.

* X X X X X X X  X X x^ixxxxxxxxx

80.

75.
70. 302520

(DJ P ressure D istrib u tio n

StIDSON/C FLOU PAST A C/PCULAP APC

At/tifP OF /rSPAr/ONS - 61/8 eOUNDARr Û/S7AAC6 - /0 .126
ÛAOP/HG CQ6FF/C/ENr = 0.0 BOMARF M/CXNFSS - 0
CN - -0.3/31 CO - 0.0001

Figure (IV.?)



xtcr?
//_
/s.
/p.
/ / .
to.

/ixxxxxxxxx

^7
>r/̂ r/

rWV tfach Number Dj s ir /b u t/o n

X,x*xxxx,xx

XHT'
CSJ Pressure 0 /s ir /b u t/o n

FPANSON/C ft or PASr a  c/pculap ap c

NUttBEP Of / r£M r/CHS - 5528 BOUNDAPr O/S/AHCf - /^. /zîf
ÛA/tPM COEFF/C/ENf - BOUNDAPr MCXNFSS - <7
CH - -0. iS2B CD -

Figure (IV.8)




