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Abstract. We consider the fluctuating interface of a droplet pinned on a flat
wall. For such a system we compare results obtained within the exact field theory
of phase separation in two dimensions and Monte Carlo (MC) simulations for the
Ising model. The interface separating coexisting phases splits and hosts drops
whose effect is to produce subleading corrections to the order parameter profile
and correlation functions. In this paper we establish the first direct measurement
of interface structure effects by means of high-performance MC simulations which
successfully confirm the field-theoretical results. Simulations are found to corrob-
orate the theoretical predictions for interface structure effects whose analytical
expression has recently been obtained. It is thanks to these higher-order correc-
tions that we are able to correctly resettle a longstanding discrepancy between
simulations and theory for the order parameter profile. In addition, our results
clearly establish the long-ranged decay of interfacial correlations in the direction
parallel to the interface and their spatial confinement within the interfacial region
also in the presence of a wall from which the interface is entropically repelled.
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1. Introduction

The characterization of the interfacial region separating coexisting phases is a classical
problem in statistical physics since the pioneering works of van der Waals [1]. In par-
ticular, it has been shown by van der Waals that the interface separating a liquid at
coexistence with its vapor phase can be described in terms of a density profile that
smoothly interpolates between the bulk values attained far away from the interface
[1, 2]. More generally, the characterization of fluctuating interfaces is a classical prob-
lem in statistical physics, and near to critical points the features of universal behavior
also emerge for extended fluctuating objects [3, 4]; we refer to [3, 5–13] for reviews on
interfacial phenomena.

In statistical mechanics, the interface separating phases a and b can be imposed by
means of boundary conditions (see e.g. [14] for rigorous treatments). Within a coarse-
grained view the interface separating a and b is regarded as a sharp entity whose
fluctuations lead to a smooth density profile that interpolates between pure phases.
By going beyond the picture of a structureless interface, it is legitimate to expect that
interfaces are not sharp but rather they possess some kind of structure. Intuitively, in two
dimensions the interface structure can be understood in terms of processes in which the
line separating coexisting phases self-intersects or branches by hosting droplets of non-
boundary phases c ̸= a,b, as depicted in figure 1. From simple topological considerations
it is clear how branching is possible for the q-state Potts model with q = 3 and q = 4 while
for the Ising model the interface must necessarily spilt in three lines hosting a sequence
of four phases with the pattern −|+ | − |+ [15–18]. The notion of interface structure
is crucial for the understanding of interesting phenomena such as the formation of
droplets adsorption along the interface and the spreading responsible for the occurrence
of interfacial wetting [6, 9, 11, 12].

The two-dimensional case turns out to be interesting because several results are
available from the scaling limit of exact calculations on the square lattice [17]. Such
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Figure 1. Phase separation of a and b via a sharp interface in (a) and interface
structure effects in (b) and (c). In (b) a third phase c appears through droplets
absorbed on the branched ab interface. For the Ising model the process (b) is not
allowed and the interface trifurcates as shown in (c).

findings proved to be fundamental for establishing the connection between random
walks and fluctuating interfaces at equilibrium [4]. Analytical progress on interfacial
phenomena in two dimensions has been obtained within the exact field theory of phase
separation developed in [18–23]. Results for many-body correlation functions have been
obtained in [24] and their test in Monte Carlo (MC) simulations has been performed
in [25, 26]. In particular, interface structure effects have been examined in [25] for the
two-dimensional Ising model on the strip. Then, the occurrence of interfacial adsorption
and interfacial wetting in q-state Potts models on the strip predicted in [20] has been
tested in [27].

From the theoretical perspective, the case of the Ising model on the half-plane has
fundamental importance since it provides the first exact solution of a wetting transition
in two dimensions [28]. In more recent times it has been shown how it is possible to
go beyond the analysis of wetting in the Ising model by means of field-theoretical tech-
niques. In particular, it is has been possible to obtain exact results for order parameter
profiles in other universality classes3 [19] as well as criteria for wedge filling [21, 22].

For the half-plane geometry early MC studies on Ising droplets pointed out that
finite-size effects are indeed quantitatively relevant [31]. As shown in [31], the droplet
profile without finite size corrections—which has derived long time ago [19, 28, 32–34]—
exhibits deviations from MC data. This is something that we are going to show with the
aid of high-performance MC calculations, meaning that the origin of the discrepancy is
not completely due to the early simulations. We will find that by taking into account the
interface structure the agreement between theory and simulations is perfectly achieved.
The analytic expression of the interface structure correction for the droplet profile has
been recently calculated, we refer the interested reader to [35] for further details.

To the best of our knowledge4, the simulation studies of [31] provided the first MC
results for interfacial correlations but unfortunately the comparison with the theory

3 See [29] for recent results on wetting in three dimensions obtained within field theory, and [30] for functional renormalization
group of capillary wave models with non-local binding potential.
4 We refer to [36] for MC simulations on interfacial phenomena.
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was not possible because the analytical results for the pair correlation function within
the interfacial region was not available at that time. This theoretical gap has been
recently filled and only now it is possible to compare the analytical results with the
MC ones—which we also perform. In addition to the leading order result, also the
interface structure correction has been computed in closed form and compared against
simulations in this paper.

The scope of this paper is thus to show how interface structure plays an important
role in the study of density correlations in the interfacial region. To do this, we run
high-precision MC simulations, improving on the early MC studies. Then, we compare
the outcome of our MC results with the analytical predictions calculated within the
exact theory of phase separation in [35]. The addition of the recently calculated high-
order correction to the density profile is able to yield significant agreement between
theory and simulations. Beside the remarkable agreement between theory and numerics
that we will present, one of the most significative results of this paper is to demonstrate
through the specific example of Ising interfaces how interface structure and the presence
of a wall reflects in the long-range character of interfacial correlations.

This paper is organized as follows: first we outline the analytical results which are
the object of a separate work. Then, we illustrate the comparison between theory and
simulations for the density profile; lastly a section on two-point correlations follows.
Conclusions and perspectives are drawn in the last section.

2. Summary of analytical results

In this section we recapitulate the exact analytic expressions for one- and two-point
correlation functions of the order parameter in the presence of a fluctuating droplet.
The detailed calculations involved in the derivation of the results presented in this
section are provided in [35]. Although the theory encompasses several universality classes
within a unified framework, we specialize the analytical results to the Ising model and
we test them by means of MC simulations. The system we consider is therefore the
two-dimensional Ising model along the coexistence line T < Tc and H = 0, where Tc is
the critical temperature and H is the bulk field. We briefly recall the notations and
conventions. In our simulations we consider the Hamiltonian

H = −J
∑
⟨i,j⟩

sisj , (2.1)

where si ∈ {±1} for Ising spins and the sum is restricted to nearest neighboring sites
of a two-dimensional square lattice. The critical temperature is Tc/J = 2/ ln(1 +

√
2) ≈

2.269 [37] and the bulk correlation length is given by ξb = (4K − 4K∗)−1 [17], with the
reduced lattice coupling K = J/T , and its dual K⋆ defined by exp(−2K⋆) = tanhK. The
spontaneous magnetization, M = ⟨σ⟩+ = −⟨σ⟩− > 0, is given by Yang’s formula, M =(
1− (sinh(2K))−4

)1/8
, and in the scaling limit it reduces to M ∼ (Tc −T )1/8 [38, 39].
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Figure 2. The half-plane geometry with boundary conditions Bbab leading to the
formation of a droplet in the half-plane x > 0 with pinning points in (0,±R/2).
Green circles indicate the order parameter fields σ1 and σ2 appearing in correlation
functions considered in this paper. For the Ising model we take b = +1 and a = −1.

Throughout this paper we consider a ferromagnetic coupling J > 0 and without loss of
generality we set J = 1 in our simulations.

The geometry we are interested in is the one of the half plane with boundary con-
ditions on the wall x = 0 enforcing the formation of a droplet in the semi-space x > 0.
For |y|>R/2 spins on the wall take the value σi = +1 while for |y|<R/2 the reversed
patch of boundary spins is such that σi = −1, where i is a lattice point on the wall; see
figure 2. This protocol defines the portion of wall wetted by a droplet of negatively mag-
netized phase. The droplet such defined fluctuates in the bulk but its extremities, the
pinning points (0,±R/2), are not allowed to fluctuate. It is implicit that we are dealing
with a system in which the volume enclosed by the droplet is not conserved. In general,
imposing constraints such as fixing the total mass of the profile leads to interesting
effects on free energies [40] and on correlations in interfacial phenomena [41].

In the continuum limit the discrete lattice spin s i is replaced by a field σ(x,y) and
the lattice node i is replaced by the coordinates (x, y) in the Euclidean plane. From now
on we focus on statistical averages of the order parameter field on the above mentioned
geometry, something that we denote ⟨σ(x,y)⟩B+−+ and ⟨σ(x1,y1)σ(x2,y2)⟩B+−+, respect-
ively for one- and two-point correlation functions. The order parameter profile is given
by [19, 35]

⟨σ(x,y)⟩B+−+/M = Υ(χ) +
1

m
P1(x,y) +O(R−1) , (2.2)
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where P1(x,y)dx is the probability that the interface intersects the interval (x,x+ dx)
at ordinate y, its expression is provided on due course. The parameter m, which is the
surface tension (in kBT units) of the interface separating the coexisting +/−phases, is
related to the subcritical correlation length via ξb = 1/(2m). The latter is is an exact
form of Widom’s relation valid for all subcritical temperatures that follows from duality
[17, 42, 43]; see also [44, 45]. The coordinates x and y enter in the above expression
through the dimensionless combinations

χ =
x

κλ
, κ =

√
1− (2y/R)2 , λ =

√
R

2m
. (2.3)

The first term on the right hand side of (2.2) is

Υ(χ) = −1− 4√
π
χe−χ2

+ 2erf(χ) , (2.4)

where erf(χ) is the error function [46]. The order parameter profile is a smooth function
that interpolates between −1 (for χ= 0) and +1 as χ approaches +∞. The scaling
function Υ(χ) already appeared in the literature on Ising droplets (see e.g. [19, 28,
32–34]) while the correction due to interface structure is a new result, the latter is
the term ∝ P1 [35]. It has been shown in [19] that the scaling function Υ(χ) is not a
specificity arising from the Ising model but rather it is universal in the sense that it
appears for other universality classes admitting droplet shapes (e.g. the q-state Potts
model with q ⩽ 4 [47, 48]). Note that for x→ +∞ the magnetization profile approaches
the value M corresponding to a pure phase obtained from a uniform wall with uniform
boundary condition + along it. This result is consistent with the fact that for any finite
R interfacial fluctuations are of order R1/2 and at large x≫R1/2 the droplet does not
affect the value of the order parameter. The exception to such a behavior is provided
by the wetting transition (see e.g. [19]). The passage probability is

P1(x,y) =
4√
πκλ

χ2e−χ2

(2.5)

with the normalization
´∞

0 dxP1(x,y) = 1, and χ is given in (2.4) [19]. Since the second

term on the right hand side of (2.2) is proportional to R−1/2, it follows that it is a
finite-size effect. In general, these interface structure effects in the magnetization profile
along the x -axis can be organized in the form of a power series whose generic term is
of the form R−n/2Un(η), with n = 1,2, . . . and Un(η) is a universal scaling function of
η = x/λ. Again, the prefactor of Un(η) is not universal. The second term in the right
hand side of (2.2) corresponds to n = 1 and the subsequent correction hidden in O(R−1)
comes from n = 2, and so on. These corrections can be computed systematically within
the field theoretical approach, as outlined in [35].

The scope of this paper is to show how the interface structure correction ∝ P1(x,y)
is essential in order to achieve a quantitative agreement between theory and MC
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simulations. As we are going to show, in order to make a comparison between theory
and simulations it is necessary to take into account the interface structure correction
term ∝R−1/2. Of course, for sufficiently large R it is — in principle—possible to observe
agreement between simulations and theory at the leading order but — de facto—even
for the largest value of R we have simulated the effect due to the term ∝R−1/2 is non
negligible.

There is another point to emphasize. Strictly speaking the analytical result (2.2)
is valid for x≫ 1/m. Technically, this restriction comes from the fact that the spin
field is treated as a bulk field and this is possible only far away from the wall. In fact,
it is known from the scaling limit of the exact solution of the Ising model on square
lattice that the wall affects the magnetization in a layer of thickness of order of the
bulk correlation length, which is ∝ 1/m [49]. These deviations will be reported in our
simulations.

Let us consider now the pair correlation function of the order parameter. In this
paper we focus on two particularly symmetric arrangements of spin fields that allow
for mathematically simple expressions of the analytic results. We thus focus on the
so-called parallel correlation function (∥), denoted ⟨σ(x,y)σ(x,−y)⟩B+−+, in which spin
fields lie parallel to the wall and moreover are spatially equidistant from the symmetry
axis of the system, the x -axis. The second type of two-point function we will examine
is the perpendicular correlation function (⊥), ⟨σ(x,0)σ(x+ d,0)⟩B+−+; in this case both
spin fields lie on the x -axis at distance x, and x + d from the wall, respectively. The
arrangement of spin fields defining the correlation functions given in (2.6) is illustrated
in figure 3.

The aforementioned correlation functions are conveniently written in terms of res-
caled variables by defining

G∥(η,τ) = ⟨σ(x,y)σ(x,−y)⟩B+−+/M 2 ,

G⊥(η,δ) = ⟨σ(x,0)σ(x+ d,0)⟩B+−+/M 2 , δ = d/λ,
(2.6)

with η = x/λ and τ = 2y/R. The analytic expression for the parallel correlation function

reads

G∥(η,τ) = G(η,τ) +
1√

2mR
C(η,τ) +O(R−1) , (2.7)

where G(η,τ) is the scaling function at leading order in finite size corrections and C(η,τ)

is a finite-size effect due to the interface structure. The leading-order term for large R
can be expressed as a single integral

G(η,τ) = 1 +

ˆ η

0

dη ′C(η ′, τ) (2.8)

where C(η,τ) = ∂ηG(η,τ) is given by
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Figure 3. Definition of parallel (a) and perpendicular (b) correlation function for
the Ising model.

C(η,τ) =
16√
πκ

χ2e−χ2

[
erf(χ

√
τ) + erf(χ/

√
τ)− 1

]
− 32

πκ

χ
√
τ

1− τ
e−χ2

[
e−χ2τ − e−χ2/τ

]
, (2.9)

and χ = η/
√

1− τ 2.
Let us discuss now the perpendicular correlation function. For spin fields widely

separated from each other (md≫ 1) and from the wall (mx≫ 1) the perpendicular
correlation function is

G⊥(η,δ) = 1 + Υ(η)−Υ(η + δ) +
1

m
(P1(x,0)−P1(x+ d,0)) +O(R−1), (δ > 0) . (2.10)

The clustering property is easily tested by performing the limit md→∞, which yields

G⊥(η,δ → +∞) = Υ(η) +
P1(x,0)

m
+O(R−1) . (2.11)

Anticipating some results, we will show that the clustering to the one-point correlation
function shown above is confirmed by the numerical simulations provided in the next
section.
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3. Magnetization profile

Before presenting the comparison between theory and numerical simulations, we
summarize the details of the numerical implementations. We performed MC calculations
by using a hybrid scheme which combines the standard Metropolis algorithm (see, e.g.
[50]) and the Wolff cluster algorithm [51]. The minimum number of MC steps per site is
107. Parallelization was obtained by independently and simultaneously simulating up to
128 Ising lattices on a parallel computer. An appropriately seeded family of dedicated,
very large period, Mersenne Twister random number generators [52], in the MT2203
implementation of the Intel Math Kernel Library, was used in order to simultaneously
generate independent sequences of random number to be used for the MC updates of
the lattices. More in detail, each independent parallel simulation comprised: i) a warm
up phase in which 109 numbers drawn from each random number stream in order to
warm up the generators followed by a thermalization of the lattice of 3× 106 ×N Met-
ropolis steps on random spins, with N the total number of spins in the simulation box.
Then production phase steps started. Every production step a realization of the lattice
was saved to disk for further processing. Every production step consisted on 105 hybrid
updates consisting of a Wolff cluster update at a random point in the lattice and 0.5×N
Metropolis spin flips on random spins. The temperature is chosen such that the bulk
correlation length ξb is much smaller than the system size, i.e. ξb ≪R. The simulation
box is a rectangle with (x,y) ∈ [0, lx]× [−ly, ly]. The vertical size is ly = H +R/2 with
H/λ≳ 4 while lx/λ≳ 7. This design effectively reduces the influence of the boundaries
and mimics the field-theoretical setups in the simulations.

The first observable we examine is the magnetization profile. According to (2.2), the
theoretical prediction for the rescaled profile along the x -axis is given by

⟨σ(x,0)⟩B+−+/M = Υ(η) + 8

√
ξb
πR

η2e−η2

+O(R−1) . (3.1)

In figure 4, we plot the rescaled magnetization profile ⟨σ(x,0)⟩B+−+/M as a function
of the rescaled horizontal coordinate η = x/λ. For the bulk correlation length ξb we
used the exact expression provided below (2.1). MC data have been obtained for several
combinations of the temperature T and system size R. We also emphasize that T and
R and the only independent input data and that no adjustable or fit parameters are
involved.

In order to compare simulations with field-theoretical results ξb has to be much larger
than the microscopic lattice spacing, this in order to ensure a continuum treatment in
terms of fields. Nonetheless, it has been observed a posteriori that the good agreement
persists even for correlation lengths of order of the lattice spacing; such a feature has
emerged for the q-state Potts model [27] and for the three-dimensional Ising model [53].

We observe in figure 4 how the numerical results fall systematically away from the
leading-order profile given by the scaling function Υ(η), a feature that has been reported
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Figure 4. The rescaled magnetization profile. Symbols indicate data obtained from
MC simulations for R and T reported in the inset. The solid gray curve is the
leading-order profile Υ(η). The black dot-dashed curve is the profile (3.1) including
the interface structure correction.

in the literature [31]. The reason is due to the fact that the interface structure correc-
tion ∝ (ξb/R)1/2 is actually non-negligible, as anticipated. The quantitative agreement
between theory and numerics improves drastically when the subleading correction at
order R−1/2 is included. For the sake of completeness we mention that MC data in [31]
have been obtained for T ≈ 1.9 and R≈ 46 while in this paper we consider temperat-
ures closer to the critical point (T = 2, T = 2.1, and T = 2.15) and larger system sizes
(ranging from R = 151 to R = 451). The agreement is excellent for any x, provided x
is not close to the boundary within a layer of thickness ≈ ξb. This feature is actually
compatible with the applicability domain of the field-theoretical result which, as men-
tioned, requires mx≫ 1. Error bars are not indicated but typically their extent does
not exceed that of the symbols in figure 4 and subsequent ones.

It is tempting to further test the validity of (3.1) by isolating the interface structure
correction. The latter can be extracted from the numerical data by considering the
quantity

B(x,0) =
√
mR

[
⟨σ(x,0)⟩B+−+

M
−Υ(η)

]
, (3.2)

whose theoretical prediction is

B(x,0) =
25/2

√
π
η2e−η2

+O(R−1/2) . (3.3)

We recall that m = 1/(2ξb) and the exact expression for the bulk correlation length is
provided below (2.1). Note that for R→∞ the term B(x,0) is actually the passage
probability P (x,0) up to an overall proportionality factor. The comparison between
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Figure 5. (a) The interface structure correction B(x,0) for the magnetization pro-
file. The solid black curve corresponds to the leading-order analytic result given
in (3.3). (b) Scaling of the maximal deviation from the leading order profile Υ(η).
The dashed line is the theoretical result 25/2π−1/2e−1R−1/2 = 1.1741R−1/2 obtained
at the peak of B(x,0).

B(x,0) extracted from the numerical data and the analytic prediction (3.3) is illustrated
in figure 5.

The overall agreement between theory and numerics is visible although the compar-
ison is not accurate as for the magnetization profile shown in figure 4. The reason is due
to the fact that numerical data are inevitably affected by further subleading effects at
order R−1 which are amplified by the factor

√
mR in (3.2). These corrections at order

R−1/2 in (3.3) are responsible for the deviations visible in figure 5.
Another aspect that is often investigated in the context of interfacial phenomena is

the liquid adsorption at a wall (see e.g. [7]). The adsorption is quantified in terms of
the excess of density with respect to density attained deep in the bulk phase away from
the wall. The quantity of interest is the coverage, which in our notations we define as

Γ =

ˆ R/2

−R/2

dyΓy , (3.4)

where

Γy =

ˆ ∞

0

dx
[
M −⟨σ(x,y)⟩B+−+

]
. (3.5)

In the following we will examine Γ0, which is the coverage computed from the density
profile sliced along the x -axis, such a quantity can be directly measured in simulations.
The theoretical prediction can be easily worked out from the analytical expression of
the magnetization profile. A simple calculation entails

Γ0(T,R) = M
(

4
√

Rξb/π− 2ξb

)
+O(R−1/2) ; (3.6)

we stress that Γ0 depends on the temperature T via M and ξb. We further observe
that for large system size such that R≫ ξb the first term in (3.6) dominates and the
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Figure 6. The coverage Γ0 along the x -axis as a function of the distance between
pinning points. Data points refer to the temperatures T shown in the inset. The
theoretical prediction (3.6) is indicated with dashed lines whose slope is 1/2.

coverage scales as Γ0(T,R) ∼ (Tc −T )−cR1/2 with the exponent c = (ν/2)−β; for the
Ising model c = 3/8. The theoretical prediction (3.6) is compared against MC results in
the plot of figure 6 for two values of the temperature and for several values of the size
R. The agreement between theory and simulations is perfect.

4. Spin-spin correlation function

Turning to correlation functions of the order parameter field, figure 7 provides the
comparison of the theoretical and MC results for the parallel correlation function. The
agreement is again noteworthy provided the correction term ∝ C(η,τ) in (2.7) is taken
into account. As expected, the agreement improves by taking system with larger size,
as shown in figure 8.

It is instructive to further comment figure 7 in light of the analytic result obtained
for separations ξb ≪ y ≪R [35], which is

⟨σ(x,y)σ(x,−y)⟩B+−+ = M 2

[
1− 32mx2

πR

√
2y

R
e−

2m
R
x2

]
+O((y/R)3/2) . (4.1)

For fixed vertical separation y the x -dependence of (4.1) indicates an exponential
envelope proportional to the passage probability density. This feature is signaling that
interfacial correlations reach the maximal magnitude in correspondence of the most
probable point where the interface passes. Secondly, upon varying y with fixed x the
long-ranged character of correlations within the interfacial region is captured by the
power-law growth proportional to y1/2.
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Figure 7. The rescaled parallel correlation function as a function of x/λ for several
y. Data points are obtained for T = 2.0, R = 161 (circles) and T = 2.0, R = 201
(squares). Solid curves correspond to the analytical results given in equation (2.7).

Figure 8. The parallel correlation function as in figure 7, in this case T = 2.1 and
R = 351.

An analogous comparison is carried in figure 9 for the perpendicular correlation
function. In particular, we consider ⟨σ(x,0)σ(x+ d,0)⟩B+−+ as function of the rescaled
coordinate η = x/λ for fixed separation d between spin fields. We observe an excellent
agreement between theory and MC data for all the values of d we have examined. The
clustering argument (2.11) is also successfully tested in figure 9. Equation (2.11), which
corresponds to the limit d→ +∞, is indicated with the red dot-dashed curve in figure 9.
The above limiting curve is progressively approached for wide ranges of η by the MC
data upon increasing the distance d, as shown by the curves with finite d ranging from
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Figure 9. The rescaled perpendicular correlation function for T = 2, R = 201 as
function of the rescaled position of the leftmost spin field. MC data are indicated
with colored circles. The separation d between spin fields ranges from d = 10 (red)
to d = 34 (purple) with spacing 2 between each data sets. Solid curves indicate the
analytic expression (2.10). The red dot-dashed curve indicates the limiting result
given by (2.11); both take into account corrections of order R−1/2. For comparison
it is also shown the droplet profile Υ(η) which does not include the corrections at
order R−1/2 (gray dotted curve).

d = 10 to d = 34 in figure 9. Still focusing on the clustering for d→∞, the leading order
result Υ(η), which is obtained by ignoring the term proportional to P1 in (2.11), and
which is indicated with the dotted line, exhibits deviations from the MC data. Once
more, we note that including the subleading correction at order R−1/2 is decisive in
order to establish a quantitatively accurate agreement between theory and simulations.

5. Conclusions

In this paper, we have successfully illustrated the comparison between theoretical and
MC results for order parameter profiles and correlations in the presence of a fluctuating
droplet. The theory, which is exact in the near critical region, has been specified to
the universality class of the two-dimensional Ising model, which we have simulated
with high-precision MC simulations. All theoretical predictions are found in very good
agreement with MC simulations in the absence of adjustable parameters, confirming
thus the predictability power of the exact theory of phase separation. Although the
comparison has been performed for the Ising model, there is no fundamental obstruction
in testing other universality classes.

The salient feature that emerges from the analysis illustrated in this paper is the
importance of interface structure effects. The system sizes and temperatures we con-
sidered clearly show how large the system has to be in order to achieve a quantitatively
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good comparison between theory and simulations. We show that when interface struc-
ture effects are added on top of the magnetization profile the old discrepancies between
theory and numerics are resolved, as shown by the perfect agreement in figure 4. As
discussed while commenting equation (4.1), order parameter correlations are found to
be long-ranged along the interfacial direction but at the same time they are spatially
confined within the interfacial region. This observation, which for us emerges directly
from an exact field-theoretical results in real space, agrees with Wertheim’s prediction
based on the analysis of integral equation theory for inhomogeneous liquids [54] (see
also [1, 2, 55] and [56] for experiments). Our analysis show that also interface struc-
ture yields long-ranged correlations in the presence of entropic repulsion. Although our
investigation has been carried out in real space, it will be shown elsewhere how to pass
in momentum space by extending the familiar notion of interface structure factor to
strongly fluctuating droplets [57].
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