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Abstract 

Human–robot interactions require the ability of the system to determine if the user is paying 

attention. However, to train such systems, massive amounts of data are required. In this study, 

we addressed the issue of data scarcity by constructing a large dataset (containing ~120,000 

photographs) for the attention detection task. Then, by using this dataset, we established a 

powerful baseline system. In addition, we extended the proposed system by adding an 

auxiliary face detection module and introducing a unique GAN-based data augmentation 

technique. Experimental results revealed that the proposed system yields superior 

performance compared to baseline models and achieves an accuracy of 88% on the test set. 

Finally, we created a web application for testing the proposed model in real time. 
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1. Introduction 

Human–robot interaction (HRI) [1], or more generally, human–computer interaction (HCI) [2], 

has received increased research interest in the last two decades thanks to the recent technological 

advances in the hardware and systems fields [3]. 

Extensive research has been performed to improve the quality of HRI by exploiting modern 

machine learning (ML) techniques [4, 5] to allow voice and gesture commands. Such interactions 

are largely based on visual perception, and the system must be able to distinguish whether the user 

is attentive. However, few approaches relying upon eye gaze have been proposed to date [6, 7]. 

Detecting attention is an essential stage in various applications. For example, when dealing with 

hyperactive children, knowing if the child is following the recommended action (e.g., an educational 

session) is necessary to decide whether the same activity must be presented again. Furthermore, in 

conventional HRI, if the user does not pay attention when the robot asks a question (e.g., “What do 

you want to order?” in a restaurant scenario), the robot can increase the volume and ask the 

question again to get the user’s attention. In a driver monitoring system, the robot can check if the 

driver is looking ahead and decide to notify him and refocus his attention. 

Visual tracking plays an important role in the assessment of human attention. This task requires 

merging many computer vision applications, which include image and video processing, pattern 

recognition, information retrieval, automation, and control. While the correlation between eye 

movement and attention level is generally acknowledged, there are no standards to define a direct 

mapping between the two. However, eye tracking is an extensive field and is employed in many 

applications, such as mobile robotics, solar forecasting, particle tracking in microscopy images, 

biological applications, and surveillance [8-11]. Although there are numerous use cases of gaze 

tracking and attention detection, few datasets are freely available online. This shortage is due to 

the lack of a clear and established baseline for labeling image data. Moreover, constructing a dataset 

is time-consuming and expensive. 

Massive amounts of data are required to train deep learning (DL) systems capable of solving such 

tasks in a supervised manner. 

In this study, we focused on the attention detection task in its entirety, from addressing the issue 

of data scarcity, building a baseline system, and proposing unique ways to boost performance 

further to developing a web application. For the attention detection task, we constructed a new 

manually annotated dataset containing approximately 120,000 images from 18 users. Moreover, 

we developed a strong baseline system to achieve competitive detection results on the developed 

dataset. Furthermore, we enhanced the baseline system by adding an auxiliary face detection 

module, enhancing the performance. In addition, we proposed a novel GAN-based data 

augmentation technique to further enrich the collected data and achieve performance 

improvements. We extensively evaluated the benefits of using the constructed test set by 

performing a statistical analysis of the obtained results. Finally, we designed a web application to 
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further analyze the system’s behavior and perform real-time testing. With this work, we aim to 

encourage further studies on the development of high-performance attention detection systems. 

The paper is structured as follows. In Section 2, a brief overview of the related works for the 

topics covered in the introduction is presented, particularly attention assessment through different 

human signals and their use in real-world scenarios. In Section 3, the methodology employed for 

constructing the dataset and some statistical analysis are described. In Section 4, the proposed 

architecture for assessing human attention is presented, and the baseline system and the 

augmentation implementation by using GAN are discussed. The experimental setup and results are 

presented in Section V. The real-time application developed for evaluation is described in Section 6. 

Finally, the conclusion and ideas for future research are presented in Section 7. 

2. Related Works 

Extensive research has been conducted on human attention detection from many perspectives, 

and thanks to recent advances in sensor technologies and computer vision techniques, the research 

focus has shifted from manual to automated techniques [12-14]. 

Previously, studies mainly employed experiments on physiological factors such as fatigue [15], 

brain signal data [16], blood flow and heart rate [17], and galvanic skin conductance [18]. Recently, 

efforts have been made to accomplish driver attention prediction as a computer vision technique. 

In a previous study [19], semantics-induced scene variations were analyzed using a novel multi-

branch deep architecture that integrates three sources of information: raw video, motion, and 

scene semantics. In another study [20], a semantic context-induced attentive fusion network was 

designed. Eye-tracking [21, 22], gaze-tracking [23], and face-tracking algorithms [24] have also been 

proposed. 

These methods are promising as they are inexpensive and unobtrusive [25-28]. In addition, the 

automatic recognition of facial expressions has resulted in applications that span several disciplines. 

For example, facial expressions are used to identify pain [29, 30], diagnose syndromes in infants [31, 

32], detect driver’s drowsiness [33-35], recognize emotions [36-40], and detect engagement [41, 

42]. 

These systems have been employed for important tasks such as the detection of driver attention 

and autism-related diseases. There has been an increased interest in gaze detection information to 

determine a driver’s focus of attention. In a previous study [43], a model based on Sanger’s neural 

network [44] was proposed to monitor real-time driver attention through binary classifiers and 

iconic data reduction. In another study [45], the driver’s attention behavior and the road scene were 

parsed to predict potentially risky maneuvers. A DL-based gaze detection approach that can detect 

the driver’s head and eye movement by using a near-infrared (NIR) camera sensor has been 

proposed [46]. The driver’s gaze in a pre-attention environment has been investigated using 

intention prediction based solely on fixation maps [47]. However, these systems suffer from the 

problem of grabbing the attention of a driver and rely on a restricted number of predefined safety-

inspired rules. In a previous study [48], the driver’s attention toward pedestrians and motorbikes at 

junctions was inspected, and object saliency was employed to avoid the looked-but failed-to-see 

effect. On the contrary, in the absence of eye-tracking systems and reliable gaze data, several 

studies [49-53] have focused on the driver’s head and the detection of facial expressions to predict 

head orientation. Such latter techniques are more robust to varying lighting conditions and 
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occlusions; however, there is no certainty about the adherence of predictions to the true gaze 

during the driving task. 

Most studies have focused on a specific aspect, such as the driver or the environment. To solve 

this problem, in a study [54], a novel driver attention estimation model that considers the 

environment’s saliency map and the driver’s gaze was proposed; both the gaze and the scenario 

image were used to estimate the driver’s attention area and establish a multiresolution network to 

model. 

For children with autism spectrum disorders (ASDs), attention recognition plays a vital role in 

providing learning support. The unobtrusiveness of face-tracking techniques enables establishing 

automatic systems to detect and classify attentional behaviors. In a previous study [55], an attention 

detection model was established based on the kid’s behavior during engagement with the robot in 

HRI systems; the model was used in an adaptive interaction system where the robot detects the 

action depending on the child’s attention. However, constructing such systems is challenging 

because of the complexity of attentional behavior in ASDs. To overcome this problem, in a study 

[56], a face-based attention recognition model was presented based on geometric feature 

transformation and a support vector machine (SVM) classifier [57]. 

These semi-autonomous adaptive systems are complex and require high-performance hardware, 

such as GPU chips [58], to process real-time data and update interactions. Moreover, fully 

autonomous and complex robots and systems are not yet reliable outside controlled research 

setups. In a previous study [59], a simple autonomous assessment system based on attention cues 

was developed and deployed and then combined with an enhanced adaptive semi-autonomous 

interaction system. This technique can aid in ASD intervention to facilitate adaptive interactions 

with patients while involving minimal subjective biases. 

In the present study, inspired by recent advancements, we developed a simple yet effective high-

performance architecture to perform attention detection; the proposed system can be easily 

integrated into the aforementioned applications. 

3. Data Collection Process 

Thanks to the recent advances in neural networks [60], various tasks can be performed by 

training network models on large amounts of data. However, such data are scarcely available. 

Therefore, we created a new large dataset for the attention detection task. 

The direction of the head is usually one of the determining aspects of whether the interlocutor 

is heedful, whether it’s between two humans or between a human and a machine [60-64]. 

Thus, we determined attention based on the direction of the interlocutor’s face. 

In the proposed system, when an interlocutor faces their interaction partner, full attention is 

assumed. In contrast, if the interlocutor is looking in another direction (e.g., left, right, up, or down), 

the interlocutor is considered distracted. We used five classes—CENTER, LEFT, RIGHT, UP, and 

DOWN—rather than a binary label to better cluster different situations, letting the model 

distinguish between various kinds of inattention. The CENTER class is the only positive label, 

indicating that the interlocutor is heedful. We recorded 270 videos from 18 users, each video lasting 

approximately 20 s. Each user was asked to record 15 videos (each user recorded three series of five 

videos, where each of the five videos corresponded to one specific label), changing their location 
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and/or their outfit—including glasses—every five videos to let the dataset be as general as possible. 

The videos were segmented manually and double-checked to ensure the validity of the annotations. 

The created dataset was divided into the training, testing, and validation sets. The people 

involved in the training set were not included in the testing and validation sets, and vice versa. The 

average age of the people in the dataset is between 20 and 30 years. To test the proposed system’s 

ability to generalize across different ages, we added a person who was approximately 60 years old. 

Details regarding the dataset are presented in Table 1. 

Table 1 Dataset statistics describing the number of samples for each class in the training, 

testing, and validation sets. The last line shows the total number of produced samples 

independently from the class and the split. 

Dataset Split Class # Samples 

Train 

CENTER 

LEFT 

RIGHT 

16.5K 

17.8K 

18.0K 

UP 17.3K 

DOWN 17.0K 

Validation 

CENTER 

LEFT 

RIGHT 

2.5K 

2.7K 

2.6K 

UP 2.4K 

DOWN 2.6K 

Test 

CENTER 

LEFT 

RIGHT 

3.3K 

3.4K 

3.4K 

UP 3.7K 

DOWN 3.3K 

∑ — 116K 

4. Methodology 

In this section, we first describe the proposed baseline system in Section 4.1. Next, we propose 

two extensions to improve such systems: face detection (Section 4.2) and GAN-based data 

augmentation (Section 4.3). 

4.1 Baseline System 

Training ML models is a challenging task. The training algorithms may not work as intended, the 

training times are too long, and the training data may be problematic. Transfer learning (TL) [65] is 

one of the most effective ML techniques to facilitate training. TL involves storing the knowledge 

gained in solving one problem and applying it to a different but related problem. TL can be applied 

to many ML models, including DL models such as artificial neural networks and reinforcement 

learning models. In addition, TL offers several advantages in the development of ML models, such 
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as resource-saving and improved efficiency in training new models. Furthermore, TL can be used to 

train models when only unlabeled datasets are available, as most of the model is already trained. 

TL is being used in several areas of ML, such as strengthening natural language processing [66], 

machine vision [67], and other real-world applications [68]. 

We used the Visual Geometry Group 16 (VGG16) [69] pretrained model for the attention task. 

The proposed model’s architecture is illustrated in Figure 1 and consists of 13 convolutional layers 

(separated by five pooling layers) and three dense layers. We augmented the architecture with two 

additional dense layers and an output layer with the softmax activation function. 

 

Figure 1 Architecture of the proposed model. Conv denotes convolutional layers, fc 

denotes fully connected layers, and gap is the global average pool. 

The proposed system is designed to generalize as much as possible to achieve robustness to noise 

and unseen samples. Generally, the training data is augmented for this purpose [70]; however, not 

all data augmentation techniques are applicable in our case. For instance, horizontal flipping cannot 

be used because left-labeled images would become right-labeled and vice-versa, creating confusion 

in the training process. However, brightness and shifting can be used instead; brightness is beneficial 

if the test set contains samples whose brightness levels differ from those in the training data, 

whereas shifting is useful when the position of the interlocutor varies greatly between training and 

testing. In our case, shifting does not have any effect on the model’s performance, as we already 

have this feature in our training set. Further details are provided in Section 5. 

4.2 Face Detection 

Another fundamental task of computer vision is face detection [71], wherein the human face is 

identified by relying on the key points that characterize it (e.g., eyes, mouth, and nose). Face 

detection can be used as an additional step for a variety of tasks, such as understanding facial 

expressions [72], lip reading [73], user identification [74], and marketing applications [75]. 

In the proposed system, face detection is used to focus on the features that are relevant to our 

task. For instance, our attention detection system finds it challenging to classify low-contrast images 

where the background color is similar to the face color or in cases of overexposed images. To solve 

this problem, we employed an auxiliary face detection system (a pretrained OpenCV Caffe model) 

that outputs the four vertices of the bounding box surrounding the face and used them to crop the 

original image. 
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4.3 GAN-based Data Augmentation 

As already mentioned in Section 4.1, data augmentation techniques are beneficial for several 

computer vision tasks and enable the development of highly robust systems. However, such 

techniques involve elementary mathematical operations such as shifting, rotating, and flipping 

images, which may not be sufficient in some cases. 

The GAN framework estimates generative models by using an adversarial process in which two 

models are trained simultaneously: a generative model 𝐺 captures the data distribution 𝑝𝑔 over the 

data 𝑥, and a discriminative model 𝐷 estimates the probability that a sample came from the training 

data rather than 𝐺. The generator constructs a mapping from a prior noise distribution 𝑝𝑧 to a data 

space as 𝐺(𝑧; 𝜃𝐺), where 𝜃𝐺  denotes generator parameters. The training procedure for G is to 

maximize the probability of D making a mistake. 

The original GAN framework poses this problem as a min-max game in which two players (𝐺 and 

𝐷) compete against each other, playing the following zero-sum min-max game: 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑥){𝑙𝑜𝑔[1 − 𝐷(𝐺(𝑧))]} (1) 

Training GANs consists in finding a a point of equilibrium between the two competing concerns. 

Unfortunately, finding an equilibria is a very difficult problem. Both the generator model and the 

discriminator model are trained simultaneously in a game. This means that improvements to one 

model come at the expense of the other model. The proposed GAN architecture is illustrated in 

Figure 2. 

 

Figure 2 GAN architecture. 

We developed a novel GAN-based data augmentation technique to further improve the system’s 

performance. We used this technique to generate new samples, starting from the images of the 

users in the training set and making them a different age. For this purpose, we adopted SAM [76], 

a C-GAN for face aging, which takes as input an image of a person 𝑃 and a desired age 𝑎𝑑  and 

outputs the transformed image of 𝑃 with age 𝑎𝑑. 

This strategy is fundamental in any computer vision application that deals with users of all ages, 

but the corresponding training set does not cover all the required ages. Only users between 20 and 
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30 years were included in our case; however, the proposed system is intended for use by both young 

and old people. To overcome this problem, in addition to the data augmentation techniques already 

described in Section 4.1, we applied this face-aging solution to make our system insensitive to age 

changes, as illustrated in Figure 3. 

 

Figure 3 Example of face aging with target age 𝑎𝑑 = 60. 

5. Experiments 

In this section, first, the experimental setup is described (Section 5.1). Next, the results of the 

baseline system are presented (Section 5.2.1). Finally, the results of the baseline system + face 

detection system (Section 5.2.2) and the proposed baseline system + face detection system + GAN 

system are presented (Section 5.2.3). 

5.1 Experimental Setup 

We implemented the proposed baseline system and its extensions by using TensorFlow and the 

Keras framework to load and fine-tune the weights of the pretrained models. We trained every 

model by using the Adam optimizer [77] for a maximum of 30 epochs with a learning rate of 10–5 

and a cross-entropy loss criterion. The best models were determined according to their accuracy on 

the validation set at the end of each training epoch. The hyperparameter values are listed in Table 

2. Furthermore, for obtaining the results shown in Sections 5.2.2 and 5.2.3, we repeated each 

training on five different seeds, fixed across experiments, and reported the mean and standard 

deviation of their accuracy scores. We compared the experimental results by using the Student’s t-

test. All the experiments were performed on NVIDIA Tesla K80 with 12 GB of RAM. 

Table 2 Hyperparameter values of the models used for the experiments. 

Hyperparameter Value 

batch size 64 

learning rate 1e-5 

dropout 0.5 

adam 𝛽1 0.9 

adam 𝛽2 0.999 

adam 𝜖 1e-8 
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5.2 Results 

5.2.1 Baseline System 

We aimed to develop a robust baseline system to perform attention detection. For this purpose, 

we performed model selection on the validation set by comparing different architectures. The 

results are presented in Table 3. 

Table 3 Accuracy of the different models on the test set. 

Model Accuracy 

ResNet152V2 53.37 

ResNet50 54.74 

Xception 49.95 

VGG16 74.21 

VGG19 74.12 

As can be seen from Table 3, the ResNet152V2, ResNet50 [78], and Xception [79] models 

exhibited low accuracy due to their high architectural complexity; they have 152, 50, and 36 layers, 

respectively, thus indicating that extremely deep architectures are not suitable. On the contrary, 

simpler architectures such as VGG16 and VGG19 [69] performed better. We selected VGG16 as the 

temporary baseline, on which we applied data augmentation techniques because it attains 

comparable performances with respect to the 19-layer version while being less complex. 

To further improve the proposed system, we applied the data augmentation techniques 

discussed in Section 4.1. The results are presented in Table 4. 

Table 4 Performances of the different data augmentation techniques when applied to 

the VGG16 model. 

Model Accuracy 

VGG16 74.21 

w/shift 74.32 

w/brightness 75.11 

w/brightness + shift 74.95 

As can be seen from the results presented in Table 4, applying the shifting operation did not 

improve the system performance as some shifted data are already partially included in the dataset, 

as already mentioned in Section 4.1. In contrast, the brightness operation improved the model 

performance because the test set contained samples with highly variable levels of brightness. In the 

subsequent discussion, we refer to this final system, VGG16, with the brightness operation, as the 

baseline system. 

5.2.2 Face Detection 

As mentioned in Section 4.2, we started from the intuition that the background of the image, or 

the user’s outfit, does not provide any helpful information but can only introduce noise in the 
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classification process. Therefore, we performed face detection as an auxiliary task to let the system 

focus only on the relevant features, yielding three advantages: it greatly improved the model 

performance, dramatically reduced the training times, and considerably decreased the amount of 

required disk space. 

In terms of system performance, as can be seen from the second line of Table 5, the baseline 

system + face detection model yielded an average improvement of 12.85 accuracy points over the 

previously described baseline system. Moreover, an extreme statistical significance was observed 

in the results (p-value = 3.7e-07), thus, demonstrating how this technique is fundamental for our 

task. As can be seen in Figure 4, the validation accuracy of the two systems varied during epochs, 

and a consistent gap was observed between the two curves (pink and gray curves). 

Table 5 Comparison of the performance of the improved models based on face 

detection and GAN-based data augmentation with the baseline system. ** denotes 𝑝 −

𝑣𝑎𝑙𝑢𝑒 < 0.001 , and * denotes 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 . Both statistical significance and 

differences (𝛥𝑠) are always expressed concerning the immediately above row, therefore 

the Δ of the third row refers to the difference of the results obtained between the model 

of the third and second row. 

Model Accuracy ∆ 

Baseline System 73.31 ±1.40 – 

w/Face Detection 86.17 ±1.66** 12.85 

w/Face Detection + GAN 88.45 ±1.11* 2.28 

 

Figure 4 Validation performances of the baseline system, baseline system + face 

detection, and baseline system + face detection + GAN. 
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Considering training times instead, the baseline system required approximately 35 min for each 

epoch, whereas preprocessing the images by applying face detection and training the system 

directly on the cropped images increased the speed by up to 6×. 

The final advantage is the reduced amount of required storage space. The standard dataset 

occupies approximately 25 GB of memory, whereas the processed dataset requires only 

approximately 4 GB of memory. 

5.2.3 GAN-based Data Augmentation 

As discussed in Section 3, our training set contains only images of users belonging to the age 

range of 20–30 years. Nevertheless, approximately 30% of our test set was constructed by including 

a 60-year-old user. While standard data augmentation techniques fail to let the system generalize 

well with users of different ages, the proposed GAN-based data augmentation technique (Section 

4.3) helps overcome this problem. From Table 5, it can be seen that enhancing the baseline system 

by using GANs provides further improvements over the baseline for face detection system. The 

results were statistically significant. 

6. Real-Time Application 

After creating the dataset (Section 3), we developed the baseline system (Section 4.1) and 

applied the extensions—face detection (Section 4.2) and GAN-based data augmentation (Section 

4.3)—to realize real-time applicability to further analyze and test the proposed system. 

We developed an application consisting of a web interface that allows testing the proposed 

model by using the user’s webcam. The web application allows to test the proposed system and 

observe the predictions in real time, although the prediction also depends on the frame rate (fps) 

of the user’s computer. An example of positive and negative predictions is presented in Figure 5. 

We implemented the web application by using HTML, CSS, JavaScript, JQuery, and TensorFlowJS. 

The web application works on any browser and device, but it is not optimized for smartphones and 

tablets. 

 

Figure 5 Example of positive and negative predictions in our web application. 
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7. Conclusions and Future Work 

Although attention detection is a crucial step in various computer vision tasks and applications, 

particularly in the HRI field, few studies have been performed on this topic. In this study, we 

addressed the attention detection task in its entirety. 

We created a manually annotated dataset consisting of approximately 120,000 images from 18 

users with five labels (Section 3). Then, we used this dataset to train a baseline system and measure 

its performance, obtaining satisfactory results on the test set (Section 4.1). 

Furthermore, as the first extension, we proposed an improvement over the baseline system by 

using an auxiliary face detection module to remove useless information (e.g., the background), 

obtaining consistent performance improvements over the baseline system (Section 4.2). 

As the second extension, as our system is intended for users of all ages, we proposed a novel 

GAN-based data augmentation technique (Section 4.3) for face aging to make the proposed system 

robust to age changes. This extension yielded further performance improvements over the powerful 

baseline system. Moreover, we extensively evaluated the advantages of the proposed test set by 

performing statistical analysis and obtained statistically significant results (Section 5.2). Finally, to 

further analyze the behavior of the developed attention detection system and enable real-time 

testing, we designed a web application (Section 6).  
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