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“In the end we all die, but not all
for the same reason nor with the same life histories”
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Introduction

0.1 General framework

This work is structured as a collection of 4 applications dealing with competing risks
models, a useful tool for the survival analysis of real-world datasets. These applications,
included in chapter 2, 3, 4 and 5 are presented in the form of scientific papers. Two of
them (see chapter 2 and 3) are already published in two high-impact medical journals,
while the others will be submitted soon. In particular, chapter 4 and 5 represent the main
core of the dissertation. They include a novel way to analyze overcrowding in Emergency
Department by using a frailty competing risks model, and a methodological novelty that
aims to extend the Vertical model as an alternative competing risks model (see section
0.2.2 for more details about the structure of the dissertation).

The competing risks topic has been hugely discussed in the literature and has aroused
a lot of interest in recent years, especially among biostatisticians [13] and epidemiologists
[82]. Competing risks occur, in time-to-event data, when more than one event is of in-
terest. A typical example, when dealing with competing risks, relies on the computation
of the risk of death for different causes. If one dies from a cause of death, it is not pos-
sible to observe eventual times relied to other causes. The focus of the dissertation is on
the application of competing risks methods in healthcare and medical research, but these
methods can be applied to any research area. By taking into account a variety of poten-
tially occurring event types that are mutually exclusive, a competing risks model extends
the traditional survival setting.

The first traces of competing risks analysis date back to 1760, when Daniel Bernoulli
tried to determine the extent to which life expectancy would increase if smallpox were no
longer a cause of death. Using differential equations in two subgroups, he determined
that, in a population without the disease, life expectancy would be increased by about
three years. This result was eventually corroborated by the first vaccine, created by Ed-
ward Jenner 40 years later.

The interest in competing risks grew up after the second half of the 20th century,
when, Cornfield defined competing risks as "a problem that exists whenever several
withdrawals can be subdivided into a set of mutually exclusive classes, and its existence
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is no way dependent on how these classes are defined" [36]. He compared the probabil-
ity of dying from lung cancers in smokers with/without the presence of other causes of
death. So, he introduced the concept of non-informative censoring in a competing risks
setting. Even though competing risks have been largely developed over the last decades,
their use in the clinical community is still marginal. [80]. Fortunately, things evolved
quickly.

The first important result was given by Tsiatis in 1975 [139]. He discussed the non-
identifiability of the survival times when more than one cause occurs. The main result
relied on the inequality of the "crude" survival probabilities (that is, in presence of inde-
pendence) with the joint survival probabilities (that is, in presence of non-independence).
Especially in the clinical setting, the independence assumption of the risks does not of-
ten hold. Though assuming independence among events of interest could be not always
possible, treating events that preclude the occurrence of other ones of interest is still con-
troversial. In 1997, Di Serio [130], in an application to survival data to Bone Marrow
Transplantation, assumed that the lack of independence between the competing failures
may cause the unexpected protectivity of a covariate. The results have shown that the lack
of independence did not cause the protectivity but it may occur according to the degree
and the sign of dependence between the frailty factor and the covariate. The concept of
frailty, corresponding to the random effects in the GLMs, will be discussed later. The
estimation procedure of the parameters in the competing risks follows essentially two al-
ternative approaches: the first one is the cause-specific hazard model [107], and the Fine
and Gray model [49].

0.2 "Standard" competing risks models

Much concern regards the choice between the two types of competing risks models,
widely discussed in the literature. The usual way to estimate competing risks models is
to compute the cause-specific hazard, that is, the hazard function is given by the deaths
observations, while the censored observations and the deaths due to other causes are
together treated as censored.

In 1999, Fine and Gray [49] defined the sub-distribution hazard function to provide a
competing risks model, where the cumulative incidence functions as a regression model.
Such model, even if yields valid inference, is based on an awkward construction of the
risk set, in which observations dying for a cause of death remain at risk for the other
causes. In the last 20 years, the model has been used in medical and healthcare studies
to predict the cumulative incidence in a competing risk setting, with little knowledge of
its limitations. For example, many researchers interpreted the Hazard ratios estimated
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by the Fine and Gray model as a corresponding increase in the cumulative incidence
function. This is not completely true [11](see section 1.2 for more details). One of the
biggest limitation is that the sub-distribution hazard approach can allow the sum of the
probabilities of the individual events to exceed 1 in some risk profiles. This discrepancy
can be explained by the fact that at least one of the fitted models will be inaccurate when
there are two different sub-distribution hazard models coming from two types of events
[21]. This problem can be overcome by fitting all the cause-specific hazard models, one
for each event of interest, and combining the estimated cause-specific hazard functions to
get subject specific estimates of the risks [15]. Austin et al. [14] discussed deeply the Fine
and Gray model limitations but they also argued that model allows to identify the factors
associated to higher or lower risk. The cause-specific hazard model is unable to provide
this information. Moreover, the sub-distribution hazard model enables computation of
subject-specific estimates of absolute risk when the focus is on a single event type. Even
though some estimates may be biased, they can be considered better than the results
from a single Cox proportional hazards model where the overestimation of the censored
observations is certainly wrong. On the contrary, it is preferred using the cause-specific
hazard model when all the events are of interest.

To overcome the "uneasy feelings" with the sub-distribution hazard model, Putter
et al. [109] explored satisfactorily the link between the Fine and Gray and cause spe-
cific approaches, defining the reduction factor, which is defined as the ratio between sub-
distribution hazard and cause-specific hazard. The relationship between the cause-specific
and the sub-distribution hazard, obtained by the computation of the reduction factor, is
useful to compute the predicted CIF based on the sub-distribution hazard coefficients
starting from a cause-specific hazard model.

In general, the choice of the "right" hazard function relies on the research aim. Lau
et al. suggested that the cause-specific hazard model is more appropriate for addressing
etiological questions, while the Fine and Gray model is more appropriate for addressing
questions around incidence and prognosis [82]. In conclusion, researchers should begin
by carefully formulating the research question and then selecting the model that is most
appropriate for addressing the formulated question.

A third approach dealing with competing risks analysis is represented by the Vertical
model [97]. It is considered an alternative approach to the "standard" competing risks
model, especially when the proportionality assumption of the risks is violated or when
facing with missing cause of failure [98]. The Vertical model is focused on the estimation
of the joint distribution of time to failure T and cause of failure D, denoted as P(T, D),
decomposed by the chain rule into two components. The two components are easily ob-
tainable by estimating first the overall hazard, that is the risks occurrence to any event, and
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then proceeding "vertically" to the estimation of the relative hazard, that is the probability
of experiencing the event of interest.

Specifically, we consider "standard" and "extended" competing risks models, where:
the first ones concern all the models above described including in the first category and
the second ones concern the frailty models. The latter models accommodate for a random
component to take into account for unobserved heterogeneity aroused in multi-center
settings.

0.2.1 Frailty (extended) Models

The concept of frailty was first introduced by Vaupel et al. [143] to account for individual
heterogeneity in univariate (independent) survival data. These models can be seen as
extensions of the well-known Cox proportional hazards model. The R statistical software
is plenty of routines performing different functions to fit frailty survival models [16].
Other approaches to inferentiate frailty models were discussed in the literature. Marti-
nussen et al. [91] proposed the use of the Aalen additive gamma frailty model, which is
an extension of the Aalen additive hazard model [2], useful for studying time-dependent
covariate effects in such a context. Wienke et al. [150] proposed a bivariate model with
compound Poisson frailty, an extension of the compound Poisson frailty model in uni-
variate survival analysis, which yields a subgroup of zero frailty, that is observations that
never experience the event under study. This model represents an alternative to cure
models in multivariate frailty settings.

The vast majority of published research addressing clustered survival data focus on
estimating the parameters of a single type of event at a time, presuming that the censor-
ing mechanism is independent of the event type of interest conditional on the covariates
[95, 59, 47]. This assumption is still not valid anymore, though, when different causes of
failure occur. There has not been much research on clustered failure time competing risks.
Bandeen-Roche and Liang [18] presented statistical techniques for examining multivari-
ate failure times in the presence of competing risks without including covariates and
accommodating for multiplicative frailty effect on the hazard. They analyzed the time
until the earliest failure from any event such that the overall hazard, which is the total of
the type-specific risks, is identical to the conventional frailty model with no competing
risks. More recently, several papers considered shared frailty to model the correlation
structure within the clusters [4, 83, 147]. Unlikely, the assumption that each cluster has
the same effect on the events of interest is strong. Yashin et al. first introduced a corre-
lated gamma frailty model decomposing a twin’s frailty into a sum of two independent
frailties, relationship of which is shared by the twins [159]. This model overcomes the use
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of shared frailty in a multi-center study but considering frailties for different competing
events within a center to be independent may be questionable, since they are likely to
be correlated. Other authors considered correlated frailty competing risks model with
a parametric approach [151], while others a semi-parametric one [123]. In chapter 4, a
frailty competing risks model is proposed to model the risk of two competing events,
Discharge and Hospitalization, in the Emergency Departments (ED), following the ap-
proach described by Do Ha et al. [64], with a random effect for each hospital, in which
the two events of interest are correlated (multivariate frailty competing risks model).

Similarly to the "standard" competing risks models, these "extended or frailty" models
can accommodate for cause-specific [123] or sub-distribution hazard functions [63, 164].
In chapter 4, an application of a frailty cause-specific competing risks model is presented
with the ED data. In chapter 5, a second application of a Vertical model is proposed with
the inclusion of a random term in both sub-models’ linear predictors, as an alternative to
the usual frailty competing risks approach.

Actually, the realm of the "extended" competing risks is wider. As a matter of fact,
a cure fraction, that is a proportion of the population for which none of the competing
events can occur, can be considered in the competing risks framework. It is interesting to
note how several papers considered the cure fraction in presence of competing risks [146,
102, 46] and in the vertical modeling approach [99].

Another "extension" is to include time-dependent covariates in the competing risks
model, either in the cause-specific hazard model or in the Fine and Gray model [38, 12].

We showed the results coming from the Separated Vertical Mixed Model (SVMM)
assuming no correlation between the overall and the relative hazard (estimated by a Cox
frailty hazard model and a mixed logit model), and we also provided the estimation
of the Joint Vertical Mixed Model (JVMM), which arises from the assumption that the
couple of random effects included in both sub-models linear predictor are correlated. We
used R-INLA, an R-Package able to implement Latent Gaussian Model (LGM) analysis
[142]. The aims were, to find a fast alternative to the "usual" frailty competing risks model
estimation procedures and to extend the SVMM by introducing a correlation coefficient
among random effects.

0.2.2 Chapters organization

Figure 1 briefly describes the dissertations’ structure and its main contents, distinguish-
ing among data-sets and competing risks models. The description of the Covid-19 data-
sets is at the beginning of Chapters 1 and 2, while the description of the data-set ED at
the beginning of Chapter 3.
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COVID-19 data

Discharge Death

Data used and
Events of interest

Model used "Standard Competing risks "Extended" (frailty) competing
risks model Vertical Mixed Model

Chapter Chapter 1 and 2 Chapter 3 Chapter 4

ED data 2019

HospitalizationDischarge

FIGURE 1: Chapters structure and types of competing risks models used in each chapter.

The first two chapters consider two applications on Covid-19 hospitalized patients to
analyze In-hospital mortality using "standard" competing risks models. The first chap-
ter’s 2 main goal was to identify the factors associated with In-Hospital mortality in a
cohort of 426 patients coming from IRCCS Policlinico San Matteo, Pavia, Lombardy, Italy.
The second chapter 3 is an extension of the work in chapter 2, with a web app to predict
In-hospital mortality according to different patient profiles. To do that, the prediction
rule, identified using an internal cohort (including 1810 patients coming from Bergamo
and Pavia units), was validated using an external cohort (381 patients from the Rome
unit). The third chapter 4 considers the analysis of overcrowding in the Emergency De-
partment in 63 Sicilian hospitals: the database consists of around 1.700.000 records of
access to the Emergency Department (EMUR 2019 database). The application regards the
development of a frailty competing risks model, modeled by maximizing the Hierarchi-
cal Likelihood, which takes into account the unobserved heterogeneity among hospitals.
The fourth chapter 5 considers the Vertical model, introduced in 2010 [97] as an alter-
native approach to the standard competing risks model. The novelty is given by the
accommodation into the model of a random effect component. It may be an alternative
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to the frailty competing for risks model, which presents long computation times. Data
used is the same of the third chapter (EMUR 2019 database).
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Chapter 1

Standard and extended competing
risks models

This section includes the theoretical definitions useful to carry out the survival analyses
performed in the dissertation chapters, starting from the definition of the basic quantities
in survival analysis to the definition of competing risks frailty model. Due to his defini-
tion of "alternative to the competing risks model", the theoretical definitions behind the
Vertical Model are included in chapter 5 and will not be discussed in this section.

We stress that the aim of the work relies on the application of "standard" and "ex-
tended" competing risks models. These models are useful to determine the association
between risk factors and the occurrence of more than one event of interest. In the "ex-
tended" case, the unobserved heterogeneity, which can arise, in particular in biomedical
fields, from repeated measurements or multi-center studies, is taken into account.

1.1 Survival analysis principles

Survival data, or more commonly "time-to-event" data, take into account the interval
between a certain origin and the occurrence of an event of interest, such as the inter-
val between the diagnosis of a particular illness and death. Although it is common to
talk about survival time, the event being considered is not always death. For instance,
in chapter 4, we are interested in the waiting time in the Emergency Department from
admission to visit one of the leaving types.

There are two key characteristics that set survival data apart. First, it is clear that
the time-to-event, commonly abbreviated with T, is a positive continuous random vari-
able. The potential for censorship and truncation, which results in incomplete data, is the
second characteristic of survival data. Because of censorship, it is difficult to determine
exactly when an event of interest will occur for some study subjects. In a clinical trial, a
patient can still be alive at the time of the final follow-up appointment. In that example,
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the survival time is said to be right-censored at the date of the final information accessible
because we know that the real survival time is longer than the observed survival time.
Even if right censoring is more common in such a framework, left censoring, interval
censoring and truncation are still possible. We assume the right censoring to analyze the
two available survival datasets. To define the basic quantities, we need to first define the
distribution function of T as:

F(t) = P(T ≤ t)

with density function:

f (t) = lim
∆t→0

1
∆t

P(t ≤ T ≤ t + ∆t) (1.1)

1.1 is useful to define a more common quantity in survival analysis, the survival function
as:

S(t) = 1 − F(t) = P(T > t) (1.2)

The survival function represents the individual probability to survive beyond time t. It
is a strictly decreasing function in [0,1] where at t = 0 its value is 1 and at t = ∞ its
value is 0. The survival function can be defined also in terms of f (t) as the integral of the
probability density function:

S(t) =
∫ ∞

t
f (t)dt (1.3)

and, thus:

f (t) =
−dS(t)

dt
Even if identifying the failure pattern by looking at the survival curve graphically is dif-
ficult, it is still a popular quantity in literature to describe the survival probability and
is particularly useful when comparing more than one survival pattern. Two more basic
quantities in survival analysis able to describe some aspects of the time-to-event distri-
bution are the hazard function and the cumulative hazard function. They are defined
as:

h(t) = lim
∆t→0

P(t ≤ T ≤ t + ∆t|T ≥ t)
∆t

(1.4)

and:
H(t) =

∫ t

0
h(t)dt (1.5)

The hazard function is useful to determine the mechanism of failure over time. It is a
non-negative function, that is h(t) ≥ 0. The hazard function is also named hazard rate.
Indeed, assuming T as continuous, it can be derived from the fractional between the
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probability density function and the survival function. In formula:

h(t) =
f (t)
S(t)

= −d ln[S(t)]

from the relationships in 1.5 :
H(t) = − ln[S(t)]

and, taking the reversal, the survival function can, again, be defined:

S(t) = exp(−
∫ t

0
h(t)dt) = exp(−H(t)) (1.6)

Thus, the knowledge of one of these quantities is sufficient to derive the others. Inter-
estingly, the hazard function and the cumulative hazard function represent, respectively,
the instantaneous and cumulative quantification of the event times distribution.

1.1.1 Survival and hazard function estimation approaches

To estimate the basic quantities in survival analysis shown in section 1.1 researchers can
choose among parametric, non-parametric, or semi-parametric approaches. In the first
case, a parametric distribution for the event times is assumed. Survival data, by defini-
tion, have usually asymmetric distribution, thus consider the normal distribution is not
appropriate. The most used parametric survival distributions are: the Weibull, Expo-
nential, and Log-Normal. We recommend some books on survival analysis for a deep
description of parametric survival distributions [78, 85]. In chapter 5 we implemented
a Joint Vertical Mixed model assuming a Log-Normal distribution for the "time to-any-
event" inside the Emergency Department setting, useful to estimate the overall hazard.

The second case does not concern with the assumption of a time-to-event distribu-
tion. Here the data are treated as they are. The parametric estimation assumes that the
hazard function follows a deterministic rule, which is rare in practice (due to the presence
of censoring). Indeed, even if the true time distribution was continuous, this approach
would consider the data comes from a discrete distribution. Thus, the survival function
can be estimated just by computing the number of subjects still alive from the cause of
interest at time t over all the subjects under observation just before t (represented by all
the subject that are event-free just before t).

Formally, we denote with Y = min(T, C) the time-to-event in right censoring setting,
with observed n times y1, y2, ..., yn and censoring indicators δ1, δ2, ..., δn. Then we denote
y1, ..., yr the r ordered event times with d1, ..., dr the number of events for each event time
and R(y(1)), ..., R(y(r)) the corresponding risk set. The survival function can be, then,
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estimated by the well known Kaplan-Meier estimator [76]:

Ŝ(t) = ∏
j:yj≤t

(
1 −

dj

R(y(j))

)
(1.7)

The Kaplan-Meier estimator has several properties: it is a decreasing function with
value 1 at time 0 and will reach 0 if the biggest time observed, y(r), is an event. In the case
of uncensored data, the Kaplan-Meier estimator is simply the fraction between subjects
who survive at time t over all subjects in the risk set at that time. Moreover, the Green-
wood formula [152, 114], available in every Survival analysis book (see for example [78]),
is useful to make inference and to compute the survival function confidence intervals.

In practice could be important comparing two subgroups in survival terms. To test
whether two survival functions are equal (or not), the log-rank test is the most used.
The log-rank test compares the observed number of events with the expected number
of events at each event time. The most intuitive way to do that is to compute the sums
of the differences between the observed and expected number of events (under the null
hypothesis H0 that the two survival curves are equal). Simplifying the notation we define
the UL statistics as:

UL =
r

∑
i=1

(d1i − e1i)

and, under H0:
UL√

V(UL)
≈ N(0, 1)

Which leads also to:
U2

L
V(UL)

≈ χ2
1

The log-rank test is powerful when the risks proportionality assumption holds. We rec-
ommend [85] to check for some extensions of this test.

1.1.2 Survival Regression models

Survival regression models are used to quantify the effect of some covariates on the event
time distribution. Such an approach is useful to determine which factors affect more
or less the occurrence of the event of interest over time. For example, in chapter 2 we
identified the factors associated with the risk of death, in hospitalized Covid-19 patients,
during the time spent inside the Hospital. We used a competing risks model, considering
the Discharge to the hospital to prevent death occurrence.
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A simpler way to perform a survival regression model relies on the risk evaluation of
just one event of interest, as in the case of the Cox proportional hazard model [39] (which
considers a semi-parametric approach to estimate the hazard function) or Accelerated
Failure Time model (AFT) (which considers a fully parametric approach). The latter will
not be discussed later. Let assume Xt = (X1, X2, ..., Xp) be the set of covariates with
values xt

i = (xi1, ..., xip) which determine the hazard function of individual i(i = 1, ..., n
as the product of a baseline hazard function h0(t) and a factor depending on the value
of X. Notice that h0(t) is a common quantity for each i. The proportional hazards (PH)
model considers the exponential of the linear predictor to be the multiplying factor of the
baseline hazard. In formulas:

hi(t) = h(t|xi) = h0(t)exp(βtxi) (1.8)

where β is the unknown parameters vector.
The main assumption of the model is that the hazards are assumed to be proportional

which means that the hazard ratio (HR) of two subjects with covariates values x1 and x2

is constant over time:

h(t|x1)

h(t|x2)
=

h0(t)exp(βtx1)

h0(t)exp(βtx2)
=

exp(βtx1)

exp(βtx2)
= exp{βt(x1 − x2)} (1.9)

This means, also, that the HR does not depend on time. One can make assumptions on
the baseline hazard function, assuming a parametric distribution to the event times (AFT)
or to be unspecified, leading to a semi-parametric PH model (Cox model).

The estimation procedure is based on the maximization of the partial likelihood (PL)
in the case the baseline hazard is set to be unspecified. In the survival regression model
framework, the likelihood function is defined as:

L(h0, Y, β) =
n

∏
i=1

(h0(yi)exp(βtxi))
δi exp(−H0(yi)exp(βtxi)) (1.10)

The maximization of 1.10 is not feasible, due to the presence of the nuisance parameter
h0. Hence, to remove such a parameter, the partial likelihood must be maximized. In
presence of no ties, the PL is derived as a profile likelihood:

Lp(β) =
r

∏
i=1

exp(βtxi)

∑l∈R(yi) exp(βtxl)
(1.11)

The denominator is referred to all the subjects still at risk. The censored subjects, there-
fore, contribute to this sum.
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Even if the partial likelihood might be not consider a real one, it’s been proved that
is a valid quantity to provide consistent and asymptotically normally distributed estima-
tors of β̂. The maximization of PL is performed through the Newton-Raphson algorithm
and the variance-covariance matrix of β̂ is approximated by the inverse of the Fisher
information matrix at β̂ (see [85, 56] for more details about the estimation procedure).

Sometimes researchers forget that the Cox PH model is based on some assumptions
that need to be verified. The most important assumption, as already stated, is the pro-
portionality of the hazards. To check for the proportionality of the Cox model, several
aspects can be inspected. One approach is based on the log-cumulative hazard plot. In-
deed the hazard in 1.8 can be written as:

log(H(t|xi)) = log(H0(t)) + βtxi

and, in terms of the survival function:

− log(− log(S(t|xi)) = − log(− log(S0(t))− βtxi

Thus, one can check for proportionality assumption looking at the − log(− log) transfor-
mation of the survival function. In that case, proportionality holds if the two curves (one
for each value of xi) are parallel. Another approach, one of the most used, is based on the
scaled Schoenfeld residuals [60], which computes the expectation of the ith component of
the scaled residuals for the jth covariate, as:

E(rP∗
ji ) ≈ β j(yi)− β̂ j

with β j(yi) the time-varying coefficient for Xj. Thus, checking the plot, showing the
scaled residuals plus the estimated beta rP∗

ji + β̂ j versus time, a horizontal line is expected
in the case of proportionality.

1.1.3 Frailty models

In survival analysis, frailty models represent an extension of the classical approach, where
the population is assumed to be homogeneous. This might be rarely true. Indeed, in some
applications is more logical to consider heterogeneous population or grouping of people.
Even in such situations, subjects can be exposed to different levels of risk which might
depend on unobserved risk factors related to the event of interest. The frailty is the tool to
address for the unobserved heterogeneity which can arise by the presence of unobserved
(or unmeasured) covariates. In his seminar paper, Vaupel first accounted for this issue
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[143]. The idea was to model the unobserved heterogeneity by adding a random com-
ponent (the so-called frailty) acting multiplicative on the hazard. The univariate frailty
model, assuming the censoring to be non- informative conditionally on Ui = ui denoting
the univariate frailty for the i-th subject and the clusters with j = 1, ..., q, is defined as:

λij(t|ui) = λ0(t)exp(βtxij) (1.12)

The most used distribution, assumed for Ui, which is considered as an i.i.d. random
variable, is the log-normal (particularly useful to account for correlated frailties) and the
gamma. From 1.12 it is noticed that the individual risk depends also on the frailty. In-
deed, larger values of ui correspond to a higher hazard (meaning also a smaller survival
probability). On the contrary, smaller values of ui correspond to a lower hazard (meaning
also a higher survival probability).

While several approaches, already briefly discussed in 0.2.1, are used in literature to
inferentiate frailty models, we will focus on the Hierarchical likelihood-based approach,
following [61].

1.2 Survival analysis and competing risks models

As already discussed in 0.1, competing risks concerns, in survival analysis, the situation
in which different types of events can occur and the occurrence of one of them can pre-
clude, or modify, the occurrence of the others. The simplest approach is to perform a
classical survival analysis, where the observation failing from other causes can be treated
as censored. This can, anyway, remove information on the other causes of occurrence.
The interpretation of the results is where such an approach has been largely criticized.
Suppose to estimate the probability of failing from cause k using the Kaplan-Meier es-
timator (that is F̂KM(t) = 1 − ŜKM(t)) where the observation failing from a competing
event are censored. The so-called Naive Kaplan-Meier do not describe anymore the prob-
ability of experience cause k at time t, and the sum of the estimated probabilities of all
the causes can exceed one [108]. Strictly speaking, the Naive Kaplan-Meier is biased. The
main reason for this bias relies on the violation of the assumption of independence of the
censoring distribution. Indeed, the naive Kaplan-Meier method overestimates the prob-
ability of failure because patients that will never fail are treated as though they could fail
(they are censored). To make it clearer, we show, in figure 1.1, the comparison between
naive and no naive KM computed for covid-19 patients hospitalized in "Fondazione Poli-
clinico Universitario A. Gemelli IRCCS, Rome, Lazio", between February 22nd and April
7th, 2020 (see 3.2 for more details on the data used). The main difference between the two
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approaches shown in figure 1.1 is that the Naive KM seems to overestimate the proba-
bility of Death and underestimate the probability of Discharge (represented in survival
terms as 1 − F̂(t)).
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FIGURE 1.1: naive KM vs no naive KM according to death, with discharge as competing event, in
covid-19 hospitalized patients.

In the competing risks setting, all the basic quantities described in 1.1 are extended
to take into account more than one event of interest occurrence. For example, the hazard
function is computed for each event in the competing risks framework. We define the
so-called cause-specific hazard, with continuous T, for the kth event, with k = 1, ..., K as:

λk(t) = lim
Λt→0

P(t ≤ T < t + ∆t, E = k|T ≥ t)
∆t

and, hence, the cumulative cause-specific hazard:

Λk(t) =
∫ t

0
λk(s)ds

and:
Sk(t) = exp(−Λk(t))
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An important quantity is represented by the overall survival function, which is the survival
probability of experiencing any event at time t and it is the sum of Sk(t) for all causes.

S(t) = exp

(
−

K

∑
k=1

∆k(t)

)
(1.13)

It is useful to define the cumulative incidence function (CIF), the probability of failing
from a cause before time t.

Ik(t) =
∫ t

0
λk(s)S(s)ds (1.14)

which is different from the Naive KM:

1 − Sk(t) =
∫ t

0
λk(s)Sk(s)ds

It is then clear that the definition of the overall survival function is what corrects for the
bias provided by the Naive KM.

In the stochastic process theory of survival analysis [1], Competing risks can be seen
as a special case of multi-state models, composed of an initial state and more than one
final state (see figure 1.2). The process is useful to understand the computation of the
CIF, defined as the probability of experiencing an event from cause k a time s (described
by the cause-specific hazard λk(s)) given the probability of surviving to any event at the
time just before s (described by the overall survival S(s)).

0 s

P ( T >= s ) λk (
s) cause k

t

other causes

FIGURE 1.2: Competing risks process.

The simplest approach is to fit a standard Cox model for one event of interest censor-
ing the others or to fit separate models, one for each event of interest.

For example, in chapter 2 we fitted two separate regression models using In-hospital
covid-19 data: one for In-hospital mortality and one for Discharge. The idea was that
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if Discharge occurred, the patient cannot experience anymore death (and, thus, he was
censored). This is, obviously, true also in the opposite situation. Formally, the impact of
covariates on the cause-specific hazard is modelled via:

λk(t|xi) = λk,0(t)exp(βt
kxi) (1.15)

with λk(t|xi) the cause-specific hazard for cause k at time t for a subject with covariate
xi, λk,0(t) the baseline hazard for cause k and βk = (βk1, ..., βkp) the vector parameter
associated with X. Given that 1.15 can be performed through the standard PH Cox model,
the estimation procedure is identical to that used in traditional survival analysis with one
event of interest. The difference relies on the interpretation of the results due to the fact
that 1.15 is referred to the influence of the covariates X on the cause-specific hazard. It is
also possible to fit the cause-specific hazard models for each cause at the same time using
a data augmentation approach. The most relevant, well described in [108], transforms
the dataset in the long format, that is the subjects will have one row for each possible
transition in the competing risks process, thus k lines per subject.

TABLE 1.1: Example of long format dataset.

Row id from to trans Tstart Tstop time status Pathology

1 1 1 2 1 0 1,68 1,68 0 Other_symp
2 1 1 3 2 0 1,68 1,68 1 Other_symp
3 2 1 2 1 0 0,25 0,25 1 Dig_dis
4 2 1 3 2 0 0,25 0,25 0 Dig_dis
5 3 1 2 1 0 1,22 1,22 1 Injury
6 3 1 3 2 0 1,22 1,22 0 Injury
7 4 1 2 1 0 2,07 2,07 1 Other_symp
8 4 1 3 2 0 2,07 2,07 0 Other_symp

To better understand Table 1.1 we refer to Figure 4.1 for a graphical description of the
process inside the ED. The long format includes columns identifying the transition type
for each row (columns from stands for the initial state, columns to refers to the final state of
the competing risks process, that takes value 2 or 3 for subjects, respectively, discharged
or hospitalized). The elapsed time (computed as the difference between Tstop and Tstart
is common for the same subject and different transitions). Finally, a failure indicator is
represented by status (value 0 for discharge, value 1 for hospitalization type). The long
format allows to perform two different competing risks models: a stratified model for the
event type (which leads to identical results of the separate models approach, and a model
that includes the status as covariate. The latter alternative assumes proportional baseline
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hazards between event types and can be helpful to quantify the effect of the covariates
on the marginal hazard by a single measure.

Moreover, it’s been largely discussed that the use of the cause-specific hazard does not
provide a one-to-one relationship with the CIF [7], because the cause-specific incidence
computation for one event type k involves all cause-specific hazards [14]. This also means
that the sign of the regression coefficient β̂k, estimated from a competing risks model,
might be not matched with a higher/lower CIF.

1.2.1 The Fine and Gray Model

Fine and Gray, in 1999, defined the sub-distribution hazard to make the one-to-one rela-
tionship with the CIF [49]. The model appears very similar to the Cox PH model:

hk(t|xi) = hk,0(t)exp(βt
kxi) (1.16)

Where hk,0(t) is the baseline sub-distribution hazard for event type k. The main difference
relies on the definition of the risk set. In a sub-distribution approach, indeed, subjects
who fail from a cause k are still at risk of experiencing any other cause. This definition
has been largely criticized, due to the unrealistic world such an approach defined (for
example, people dying from a cause cannot be at risk for another cause). As expressed
in 0.1 the sub-distribution approach seems to solve the issue in the interpretation of the
betas, corresponding to a direct increase in the CIF, but looking at 1.16 the occurrence of
an event k depends on the baseline sub-distribution hazard and the effect of the covariates
on the baseline hazard, but also the baseline hazard and the effect of the covariates on the
baseline hazard for the competing events. The estimation procedure, even though still
based on the maximization of the partial likeliihood, similarly to 1.11, is more complex,
due to the presence of a different definition of the risk set. In the simplest case, that is
assuming right censoring distribution, the Fine and Gray partial likelihood is:

LFG
p =

n

∏
i=1

(
exp(βt

k)

∑j∈Ryi
exp(βt

kxj)

)δi

(1.17)

From 1.17, subjects experiencing a competing event are treated as censored, coming back
to the main issue on the computation of non-parametric cumulative incidence. To over-
come this issue, the event time for these individuals is set to be equal to the end of the
study (administrative censoring). We used such methodology to perform a Fine and
Gray model, chapter 2 and 3, in covid-19 hospitalized patients, to predict in-hospital
mortality considering the Discharge to be a competing event. This model is known to be
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more appropriate in a prediction setting, given the one-to-one relationship between the
sub-distribution hazard and the CIF. This relationship allowed us to define the different
risk profiles for mortality in order to improve the treatments, validate the model using
an external cohort, and, finally, decrease the overcrowding faced by the Italian hospitals
during the first wave.

1.2.2 H-likelihood

H-likelihood is known in the GLMM theory to overcome the issues aroused from the
maximization of the extended likelihood (where the maximum likelihood estimator for
the unobservable results useless [61]) to get the joint distribution of (θ, v), where θ is the
vector of unknown parameters and v the log transformation of the random effect U. The
H-likelihood is still an extended likelihood but it is built under a different scale of v [84].

Supposing to define the likelihood ratio (LR) for θ1 and θ2, the pair of values of the
vector parameter θ of length p, including a special scale v:

L(θi; y)
L(θj; y)

=
L(θi; v̂θi , y, v)
L(θj; v̂θj , y, v)

(1.18)

where v̂θi is the MLE of v at θ = θi with i, j = 1, .., p and i ̸= j. The H-likelihood is the
extended likelihood when the scale of v is canonical, that is the scale satisfying 1.18. It’s
been proved that the canonical scale is log(u). The log-H-likelihood can be, therefore,
defined as:

h = l1(θ; y|v) + l2(θ; v) (1.19)

In the frailty model setting, considering the Cox PH model as belonging to the GLM
family, the H-likelihood approach is still valid.

Defining with Yij = min(Tij, Cij) the event times for the i-th subject and j-th cluster and
δij = I(Tij ≤ Cij) the event indicator, the H-likelihood for the frailty model is, similarly
to 1.19:

h(β, v, λ0, α) = ∑
ij

l1ij + ∑
i

l2i (1.20)

where
l1ij = (β, λ0; yij, δij|ui) = δij{logλ0(yij + ηij)} − {Λ0(yij)exp(ηij)}

is the log-likelihood conditionally on Ui = ui and l2i is the logarithm of the density func-
tion of Ui, and:

ηij = βtxij + vi
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the linear predictor with vi = log(ui). In such a setting the dimension of baseline haz-
ard is potentially high when λ0 is unknown and increases with the number of events
[62]. Therefore, given λ0 is often not of interest, it can be removed by profiling the H-
likelihood.

h∗ = h|λ0=λ̂0

where

λ̂0k(β, v) =
d(k)

∑ij∈R(k)
exp(ηij)

obtained computing δh
λ0k

= 0. Then, substituting λ̂0k in 1.20:

h∗(β, v, α) =

{
∑

k
d(k)logλ̂0k + ∑

ij
δijηij − ∑

k
d(k)

}
+ ∑

i
l2i

The fitting procedure is based on different orders of the Laplace approximations to get
fixed and random effects estimates (see [61]). In R, such a procedure is implemented in
the frailtyHL routine included in frailtyHL R package.

1.2.3 Competing risks frailty models

As already stated in 1.2, in the survival framework more than one event of interest may
occur and all the quantities, useful to perform such analysis, have to be extended. To do
that, suppose the presence of i = 1, ..., q number of clusters with j = 1, ..., ni observation
of each cluster. Let Tij the time of the first event for subject j in cluster i and ϵij ∈ 1, ...K
the corresponding cause of failure. Denote with Cij the censoring time and with Ui the
frailty for cluster i. We, therefore, assume that censoring Cij is conditionally independent
with the respect of the time-to-event (Tij, ϵij) conditionally on Ui and that censoring is
also non-informative to (Tij, ϵij) conditionally on Ui. Similar to frailty models, we define
the cause-specific hazard function conditional on the log-frailty vi, shared by clusters, for
the jth observation in cluster i who failed from cause k, as:

λijk(t|vi) = λ0k(t)exp(xt
ijβk + vi) (1.21)

where vi represents the random component, from an assumed univariate distribution
with parameter θ, acting in a multiplicative way with the respect to the cause-specific-
hazard. The so-called "univariate" cause-specific frailty model assumes that the shared
frailty vi affects the event type inside a cluster in the same way, which is unrealistic in
situations where people inside a cluster are more or less frail to experience any event
than the others. Moreover, the shared frailty assumes only a positive association within
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a cluster. This means that, if vi > 0 for all i, the subject in the cluster will experience the
event early. To overcome this issues, the multivariate competing risks frailty model can
be considered.

λijk(t|vi) = λ0k(t)exp(xt
ijβk + vik) (1.22)

where vik is the random effect for failure k in cluster i. The multivariate normal distri-
bution is the usual choice for the distribution of vik with mean 0 and matrix-covariance
matrix K × K (denoted with Σ). In chapter 4 we used a multivariate frailty competing
risks model with unstructured ΣU , to model the risk of discharge and hospitalization
(K=2) once the patients were admitted to visit. The distribution of vik is assumed to be:(

vi1

vi2

)
∼ N

((
0
0

)
,

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

))

.
The construction of the H-likelihood is similar to 1.20. Denote with Yij = min(Tij, Cij)

and δijk = I(Yij = Tijk) the event time and the event indicator respectively, where δijk = 1
if cause k occurs first and 0 otherwise. Thus, the conditional likelihood with the respect
to vik is defined as:

Li(β, λ0|vik) =
K

∏
k=1

ni

∏
j=1

(
λ0k(yij)exp(xt

ijβk + vik)
)δijk

exp
(
−Λ0k(yij)exp(xt

ijβk + vik)
)

(1.23)
where ηij = xt

ijβk + zt
ijvk is the linear predictor with zij = (zij1, ..., zijq) the q × 1 cluster

indicator vector. The H-likelihood for cluster i is therefore the product of the conditional
likelihood in 1.23 and the likelihood provided by the joint probability density function of
Vi = (Vi1, Vi2):

hi = log

{
∏

k
∏

j
L1ijk(βk,0k ; yij, δijk|vik)L2i(θ; vi)

}
(1.24)

where:

L1ijk(βk,0k ; yij, δijk|vik) =
{

λ0k(yij)exp(ηij)
}δijk exp(−Λ0k(yik)exp(ηij))

and, assuming a bivariate distribution of Vi with mean 0 and variance covariance
matrix Σ

fi(vi; θ) = |2πΣ|−1
2 exp

(
−1
2

vt
i Σ

−1vi

)



1.2. Survival analysis and competing risks models 23

Summarizing over the clusters, the log h-likelihood is:

h(β, λ0, v, θ) = ∑
i

hi = ∑
ijk

l1ijk(βk, λ0k; yij, δijk|vik) + ∑
i

l2i(θ; vi) (1.25)

with:
l1ijk(βk, λ0k; yij, δijk|vik) = δijk(log(λ0k(yij)) + ηij − δ0k(yij)exp(ηij)

and:
l2i(θ; vi) = −1

2
log|2πΣ| − 1

2
vt

i Σ
−1vi

As discussed in section 1.2.2, the baseline hazard function λ0k must be removed due to
its high dimensionality that increases as well as the number of events. The first step is to
compute the MHLE for λ̂0kr by solving δh

δλ0kr
= 0

λ̂0kr =
d(kr)

∑ij∈R(kr)exp(ηij)
(1.26)

where d(kr) is the number of events occurred at time y(kr) for cause k. Replacing λ̂0kr

with λ0kr in 1.25, the h-likelihood is now:

h∗(β, v, θ) =
2

∑
k=1

 Dk

∑
r=1

d(kr)log(λ̂0kr) + st
x(kr)βk + st

z(kr)vk − λ̂0kr ∑
ij∈R(kr)

exp(ηij)

+ q

∑
i=1

l2i(θ; vi)

(1.27)
where st

x(kr) = ∑ij∈D(kr)
xt

ij and st
z(kr) = ∑ij∈D(kr)

zt
ij.

The estimation is based on the maximization of 1.27 with respect to the regression
parameters, through the Laplace approximation. The estimation of the competing risks
frailty model in chapter 4, using the R routine hlike_frailty of the frailty_HL package, is
based on 0-order and first-order of the Laplace approximation for, respectively, fixed and
dispersion parameters. This choice should perform well in the case the log-normal dis-
tribution is assumed for the random effects.

1.2.4 Vertical models

Competing risks in survival analysis occur when multiple events are of interest and the
occurrence of one event precludes the others (e.g. in a liver disease process the liver
transplant event avoids, clinically, the occurrence of death). In such a setting, the main
quantity is the Cumulative Incidence Function (CIF) which represents the cumulative
probability of failing from the cause j (denoted by D) up to time T (time to event D)
(Fj = P(T <= t|D = j)). Another approach to describe the joint distribution of (T, D) is
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based on the following decomposition:

P(T, D) = P(D|T)P(T)

The two quantities P(T) and P(D|T) are connected with one of the main quantities
in a competing risk setting, the cause-specific hazard. The first is is the overall hazard λ.,
that is the hazard of experiencing any event of interest, the latter is the so-called relative
cause-specific hazard πj =

λj
λ.

with ∑J
j=1 πj = 1.

As described in section 5.1, covariates can be involved estimating a multinomial lo-
gistic model for the relative cause-specific hazards πj (where we included the interaction
between a smoothed function of time B(T) and the vector of covariates Z assuming that
the effect on πj of each level of Z is not the same along time t) and a Cox proportional
hazard model for the overall hazard λ.. In formulas:

πj(t) =
exp(βT

j B(t) ∗ Z)

∑J
j=1 exp(βT

j B(t) ∗ Z)

with j=1,..,J
where B(t) is a vector of smoothed functions of time (B1(t), B2(t), ..., Bp(t))T,
and:

λ.(t) = h0(t)exp(βT ∗ Z)

Vertical Mixed Model

The novelty is to accommodate for a random component in the Vertical Model, taking
into account the unobserved heterogeneity that can arise in presence of clustered data
or subjects’ repeated measurements [123]. The assumption is that the clusters are obser-
vations coming from a random distribution that must be assumed. Denote the couple
(Vi, Ui) as the random effects for the overall hazard and the relative hazard respectively
in the i-th cluster. The Vertical mixed model for the j-th cause and i-th cluster, an exten-
sion of the model described in section 1.2.4, is defined as:

πj(t) =
exp(βT

j B(t) ∗ Z + ui)

∑J
j=1 exp(βT

j B(t) ∗ Z + ui)
(1.28)

and:

λ.(t) = h0(t)exp(βT ∗ Z + vi) (1.29)
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The regression model for the relative hazard is now a Multinomial mixed model and the
model for the overall hazard is a Cox frailty model. The couple (Vi, Ui) act additively in
the linear predictors of the two sub-models. Moreover, we assume that they are normally
distributed with zero mean and variance-covariance matrix Σ [30].(

ui

vi

)
∼ N

((
0
0

)
,

(
σ2

u ρu,vσuσv

ρu,vσuσv σ2
v

))

The correlation coefficient ρu,v represents the degree of correlation between the two ran-
dom variables (U, V). In a multicentre framework, this quantity describes how the clus-
ters are related. A positive correlation coefficient ρu,v would mean that clusters with
negative frailty (meaning lower overall hazard) tend to have a positive random effect
in the multinomial mixed model(meaning higher probability of experiencing one of the
events of interests); on the other hand, clusters with positive frailty (higher overall haz-
ard) tend to have negative random effect in the multinomial mixed model (meaning a
lower probability of experiencing one of the events of interests).

According to the assumption on ρu,v two different Vertical Mixed Model can be per-
formed:

• JVMM assuming ρu,v = 0 that is the couple (Vi, Ui) are uncorrelated. The Vertical
Mixed Model can be performed estimating separately the overall hazard and the
relative hazards as a mixture model.

• JVMM assuming ρu,v ̸= 0. The overall and the relative hazard, as well as ρu,v, must
be estimated integrating them out from the joint likelihood.

Joint Vertical Mixed Model

Denote with i the cluster with random components (Vi, Ui), with j (j = 0, 1, ..., ni) the
j-th event of interest, with δij the event indicator variable within a cluster i and yij =

{δij = 2} representing the binomial response variable for the event of interest 2. The joint
likelihood can be written as:

L =
∫ ∞

0

∫ ∞

0

n

∏
i=1

ni

∏
j=1

l1ij(β, λ0(tij), vi)l2ij(γ, B(tij), ui)fΣ(ui, vi), dui dvi (1.30)

where l1ij and l2ij are the overall and the relative hazard contribution to the joint likeli-
hood, respectively, and f is assumed to be a bivariate normal distribution with mean zero
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and variance-covariance matrix Σ.
The two sub-likelihoods are given by:

l1ij(β, λ0(tij), v) = (λ0(tij))exp(βTzij + vi))exp(−Λ0(tij)exp(βTzij + vi))
δij>0 (1.31)

l2ij(γ, B(tija), ui) = (expit(γTzijν
TB(tij) + ui)

yij expit(γTzijν
TB(tij) + ui)

1−yij)δij>1 (1.32)

where expit(x) = exp(x)
1+exp(x)

Direct maximization of the joint likelihood 1.30 is impossible due to the nonparametric
component λ0.

The estimation procedure, considering a EM (Expectation- Maximization) approach,
would rely on profiling the joint likelihood with e respect to λ0, that is getting a non-
parametric estimation λ̂0, substituting λ̂0 in 1.30 and then maximize the joint likelihood
to get the model parameters [17, 70]. Such a procedure, especially when the number of
observations and random effects increases [64], could be computationally heavy.

A bayesian based approach to the JVMM

To overcome the computational issues, regarding the maximization of the joint likeli-
hood explained in section 1.2.4, we considered a bayesian based approach to estimate
the JVMM. The assumption is that the model is considered as a Latent Gaussian Model
(LGM). Such an approach is based on INLA (Integrated Nested Laplace Approximation)
which is able to approximate the joint posterior distribution of the model parameters
starting from the selection of a priori distribution.

LGM is a specific subset of hierarchical Bayesian additive models [142]. This class
comprises of well-known models such as mixed models, temporal and spatial models.
An LGM is defined as a model having a specific hierarchical structure, as follows: the
likelihood is conditionally independent based on the likelihood parameters (hyper pa-
rameters), θ and the linear predictors, ηi, such that the complete likelihood can be ex-
pressed as:

π(y|η, θ) =
N

∏
i=1

π(yi|η(X ), θ) (1.33)
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Where: ηi = β0 + βTXi + ui(zi)

and: X ∼ N(0, Q−1(θ)) with X the latent gaussian field with sparse precision matrix
Q(θ2) to ensure efficient computation [120].

The main assumption is that the data, Y is conditionally independent given the par-
tially observed latent field X , and some hyper parameters θ1. A prior π(θ) for the hyper-
parameters can be assumed to get the joint posterior distribution:

π(X , θ) ∝ π(θ)π(X |θ)∏
i

π(Yi|X , θ) (1.34)

The joint posterior density in 1.34 is then approximated to obtain the marginal poste-
rior densities π(Xi|θ) i = 1, 2, ..., n and π(θ|Y). Strictly speaking, the distribution a priori
assumed for θ is then updated through the data (that is the joint likelihood in 1.30) to get
the posterior joint distribution. Moreover, the Laplace approximation is used to approx-
imate possible intractable joint posterior distribution in case of non-Gaussian likelihood
[141].

The JVMM proposed will be performed, in chapter 5 using the inla function from the
R package INLA. Estimation of joint models under a bayesian approach is also imple-
mented in JMBayes R-package [118].
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Chapter 2

Competing risks analysis of
coronavirus disease 2019 in-hospital
mortality in a Northern Italian centre
from SMAtteo COvid19 REgistry
(SMACORE)

2.1 Introduction

This chapter represents an already published paper remake, where the clinical parts are
removed to make place for statistical definitions and results. My role in this paper, pub-
lished on Scientific Reports (https://doi.org/10.1038/s41598-020-80679-2) in 2021,
was to perform entirely the statistical analysis (represented, beyond the descriptive anal-
ysis, by the implementation of the Fine and Gray model, defined from a theoretical point
of view in section 1.2.1, and the computation of the CIFs for the different risk profiles)
and to write anything dealing with statistical concepts. Nevertheless, the discussion is
reported as it was, given it was written in 2020.

To the best of my knowledge, this work represented the first attempt to predict in-
hospital mortality and the clinical factors associated with it, in covid-19 hospitalized pa-
tients. To be honest, at that time we did not know about other papers, published almost
at the same time, using a similar approach (the Fine and Gray model) and similar data
structure. In the Italian pandemic context, some authors predicted the risk of secondary
infection during the time from admission until discharge or death in patients hospital-
ized at "IRCCS San Raffaele" Hospital [117]. Outside Italy, other authors used a similar
approach to analyze in-hospital mortality covid-19 patients in 5 dutch hospitals [101].

https://doi.org/10.1038/s41598-020-80679-2
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Clearly, we could update the In-hospital mortality issue from Covid-19 after 2020,
especially in western countries, but it is not of interest.

Since December 2019 SARS COV 2 disease, defined as a pandemic by the World
Health Organization (WHO) on 11 March 2020, has spread rapidly all over the world
[53]. Outside China, the first western country to be affected was Italy, where the epi-
demic began on 21 February 2020 and quickly affected thousands of people, practically
overwhelming the capacity of the National Health System to respond to it in terms of
availability of the hospital, Intensity Care Unity (ICU) beds and Emergency Room (ER)
spaces to receive and manage patients[115].

Although Policlinico San Matteo is one of the largest teaching hospitals (1.300 beds)
in Lombardy and the Infectious Diseases division managed to more than double its total
capacity of regular beds from 44 to 94, in the first 2 weeks it experienced difficult in
allocating patients, because clinical criteria to define the evolution of the disease were
missing[9].

At the end of 2019, most of the studies that have extensively reported the clinical
and laboratory characteristics of patients infected by COVID-19 have been carried out
in China[119]. Data on clinical outcomes and treatment of COVID-19 outside China are
lacking and the high heterogeneity in observed case-fatality ratios between and within
different countries still remains unexplained. Because COVID-19 shows an array of clin-
ical presentations and the lack of effective treatment makes it difficult to predict its out-
come, the identification of risk factors for clinical outcomes, such as death, ICU admis-
sion and hospital discharge is crucial in order to improve the organisation of healthcare
and to identify patients who may benefit the most from the available treatment strate-
gies. Moreover, in such a complex epidemiological and clinical scenario, competing risks
might help in the assessment of the impact of treatment strategies on meaningful clinical
endpoints, such as in-hospital death and discharge[108].

The aim of this study was to explore and explain, in a cohort of Lombardy patients
with COVID-19 in Pavia, Italy, the heterogeneity of clinical outcomes and to identify
predictors of in-hospital mortality and discharge by competing risks analysis.

2.2 Data and Methods

SMatteo COvid19 Registry (SMACORE) is a cohort of patients with a confirmed diagno-
sis of COVID-19 disease referred to the IRCCS Policlinico San Matteo Hospital of Pavia,
Italy from February 2020. Te SMACORE database includes demographic, clinical labo-
ratory tests, treatment, and outcome data. This is a single centre, retrospective, observa-
tional cohort study and all patients of SMACORE cohort consecutively admitted to the
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Infectious Diseases Unit between 22 February and 30 March 2020, with a diagnosis of
COVID-19 were enrolled. ICD-9 CM codes were reviewed, and clinical data were further
extracted and reviewed by consulting the medical charts. Patients were followed un-
til 21 April 21 2020. Laboratory confirmation of the SARS COV-2 infection was defined
as positive Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) from
clinical nasal swab. Demographic, clinical, laboratory, treatment, and outcome data were
extracted from medical records using a standardised data collection form. The Charlson
comorbidity index (CCI) and the modified Elixhauser index (mEi) were used to assess
comorbidity[charlson1987new, fabbian2017modified]. CCI includes 16 comorbidities,
predicting 10-year survival in patients with multiple comorbidities and was used as a
measure of the total comorbidity burden.

Lymphocitopenia was defined as lymphocyte count< 1.5×109 /L. CRP was consid-
ered elevated above 10 mg/dL. LDH levels were considered elevated above 245 U/L.

Treatment data included the use of lopinavir/ritonavir, hydroxychloroquine, corti-
costeroids, tocilizumab, and antibiotic drugs. Lopinavir/ritonavir 400/100 mg was ad-
ministered orally twice daily for 14 days. Hydroxychloroquine (HCQ) 600 mg twice on
day 1, then 400 mg daily for 7 days.

Corticosteroid treatment consisted of dexamethasone 20 mg daily for 5 days in pa-
tients admitted from 22 February to 20 March and methylprednisolone 1 mg/kg intra-
venously daily for 5 days from 21 March to the end of follow-up. Tocilizumab 8 mg/kg
was given intravenously in 1 or 2 doses from 13 March to the end of follow-up. A second
dose was given 8–12 h after the first dose in patients with inadequate response.

Antibiotic therapy consisted of a combination of piperacillin/tazobactam and doxy-
cycline. Low (cannula and simple masks) and high (Venturi and reservoir masks, Nasal
High Flow (NHF), helmet continuous positive airway pressure (CPAP)) fow oxygen sup-
port was provided when hypoxia was detected. Time to ICU admission was defined as
the time from hospitalisation to ICU admission.

The primary disease event was in-hospital mortality. Discharge was analysed as a
competing event by competing risks analysis. The criteria for discharge were absence
of fever, clinical remission of respiratory symptoms, oxygen saturation greater than 94%
and two nasal swab samples negative for SARS-CoV-2 RNA obtained at least 24 h apart.

In-hospital mortality and discharge were evaluated by competing risks analysis, us-
ing cumulative incidence function (CIF)[108]. The proportional sub-distribution hazard
model by Fine and Gray, widely described in section 1.2.1, was fitted in order to esti-
mate the effect of covariates on CIFs in-hospital death and discharge [49], including ICU
admission as a time-dependent discrete factor. We investigated the association between
other clinical factors and the occurrence of death and discharge during hospitalization
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time, in order to define the risks profiles with the respect the two events of interest, to
improve the management of the structure under a critical emergency situation, as those
caused by the covid-19 pandemic in Lombardy in 2020, and also the treatment of the
patients in future.

2.3 Results

2.3.1 Descriptive Analysis

From 22 February to 30 March 2020, 426 confirmed cases of COVID-19 were observed,
292 (68.5%) were males (Table 2.1). The median age was 68 years (IQR, 56 to 77 years)
and 197 (45.8%) patients were older than 70 years of age. 269 (63%) patients had at least
one comorbidity, with hypertension and diabetes being the most common (140 (33%) and
63 (15%) patients, respectively). The median score on the Charlson comorbidity index
(CCI)6 was 3 (IQR, 1 to 4) while the median score of Modifed Elixhauser score (mEI) was
9.2±7.8. Te first nasal swab test for SARS-COV2 was positive in 365 (86%) patients, while
61 (14%) patients had a negative first nasal swab test and positive repeat nasal swab test.

Laboratory findings on admission are reported in Table 2.1. Lymphocytopenia was
present in 398 (93.3%) patients, while platelet count was lower than 150,000/mmc in 100
(23.5%) patients. CRP was increased in 188 (44.0%) patients and LDH was elevated in
369 (87.0%) patients.

Chest radiography revealed the presence of interstitial pneumonia in 301 (71.0%) pa-
tients. Data on treatments are reported in Table2.2. Antibiotic therapy was started in 304
(85%) of patients. Corticosteroid treatment was administered to 70 (20%) patients and
consisted of dexamethasone 20 mg daily in 13 patients and, starting on 21 March 2020,
methylprednisolone 1 mg/kg intravenously daily in 57 patients.

Hydroxychloroquine, 600 mg twice on day 1, then 400 mg daily for 7 days, was ad-
ministered to 249 (70.3%) patients and was initiated within 72 h following admission. 64
(18.1%) patients did not receive any antiviral drug, while 174 (49.1%) patients received
antiviral treatment with Lopinavir/ritonavir 400/100 mg twice daily. 22 (5.2%) patients
received Tocilizumab 8 mg/kg from 13 March 2020.

On 21 April 2020, 141 (33.1%) patients died. The median time from symptoms on-
set to death and from hospitalisation to death was 11 days (IQR 3–19) and 6 days (IQR
3–11), respectively. 41 (9.6%) patients had been transferred to ICU. The median time from
hospitalisation to ICU admission was 4 days (IQR 2–6). 239 (56%) patients had been dis-
charged and 46 (10.7%) patients were still hospitalised (17 of whom were still in ICU).
Median time from hospitalisation to discharge was 10 days (IQR 5–18).
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TABLE 2.1: Demographic, clinical and laboratory characteristic of patients on admission. Data
are expressed as median (interquartile range) or n (%). P-values are calculated on the basis of
two sample T-test for categorical variables and Wilcoxon test for continous variables at a 0.05
significance level.

Overall (n=426) Death (n=141) Survivor (n=285) p-value

Age (years) 68(56-77) 77(71-83) 61(50-72) <0.001
<50 72(16.9%) 1(0.7%) 71(24.9%) <0.001
50-59 64(15%) 8(5.7%) 56(19.6%) 0.003
60-69 95(22.3%) 21(14.9%) 74(25.9%) 0.014
70-79 125(29.3%) 66(46.8%) 59(20.7%) <0.001
>80 70(16.4%) 45(31.9%) 25(8.8%) <0.001
Male sex 292(68.5%) 103(73%) 189(66.3%) 0.194
Comorbidity 269(63.1%) 116(82.2%) 153(53.7%) <0.001
Hypertension 140(32.8%) 52(36.8%) 88(30.9%) 0.256
Diabetes 63(14.8%) 28(19.9%) 35(12.3%) 0.074
Atrial fibrillation 37(8.7%) 21(14.9%) 16(5.6%) 0.002
Coronary heart disease 36(8.5%) 25(17.7%) 11(3.9%) <0.001
Obesity 26(6.1%) 10(7.1%) 16(5.6%) 0.636
Chronic kindey disease 25(5.9%) 16(11.3%) 9(3.2%) <0.001
Chronic heart failure 21(4.9%) 12(8.5%) 9(3.2%) 0.027
Chronic liver disease 21(4.9%) 11(7.8%) 10(3.5%) 0.085
Chronic obstructive lung disease 20(4.7%) 9(6.4%) 11(3.9%) 0.342
History of malignancy 18(4.2%) 4(2.8%) 14(14.9%) 0.467
Active malignancy 16(3.8%) 8(5.7%) 8(2.8%) 0.182
Dementia 12(2.8%) 9(6.3%) 3(1.1%) 0.005
Charlson comorbidity index 3(1-4) 4(3-5) 2(1-3) <0.001
Modified Elixhauser index 9.2±7.8 15±7.9 6.4±5.9 <0.001
Number of comorbidities <0.001
0 155(36.3%) 25(17.7%) 130(45.6%)
1 145(34%) 52(36.9%) 93(32.6%)
2 73(17.1%) 34(24.1%) 39(13.7%)
>3 53(12.4%) 31(22%) 22(7.7%)
Median time from symptoms onset 7(3-10) 6(3-8) 8(4-11) 0.037
to Hospitalization
Time of hospital admission 0.025
From February. 21 to March. 3 137(32.2%) 36(25.5%) 101(35.4%)
From March. 4 to March. 16 165(38.7%) 67(40.6%) 98(34.3%)
From March. 17 to March. 30 124 (29.1%) 38(27%) 86(30.2%)
Glutamuc oxaloacetic transaminase. U/L 41(28-64) 44(29-70) 40(27-57) 0.117
Glutamic pyruvic transaminase U/L 32(21-48) 34(23-53) 31(21-44) 0.258
C-reactive protein. mg/dL 8.23 (4.14-14.75) 10.4(5.85-15) 7.64(3.62-14.54) 0.008
C-reactive protein > 109 mg/dL 188(44.1%) 83(58.9%) 105(36.8%) <0.001
Creatinine. mg/dL 0.89(0.72-1.11) 0.90(0.75-1.16) 0.87(0.71-1.09) 0.132
Lactate dehydrogenase. U/L 365 (304-446) 380(325-455) 365(294-446) 0.075
Lactate dehydrogenase>245. U/L 369(86.6%) 129(91.5%) 240(84.2%) 0.054
Troponine. ng/L 26(10-108) 21(10-55) 37(11-119) 0.103
White cell blood count. x > 109 per L 6.73(5.18-9.15) 7.02(4.95-8.9) 6.65(5.35-9.3) 0.423
Lymphocyte count. x > 109 per L 0.8(0.6-1) 0.74(0.6-0.97) 0.8(0.6-1.01) 0.087
Lymphocyte count< 1.5 x > 109 per L 398(93.3%) 135(95.7%) 263(92.3%) 0.25
Neutrophil count. x > 109 per L 5.27(3.9-7.72) 5.5(3.61-7.68) 5.2(3.94-7.75) 0.455
Platelet count. x > 109 per L 204(152-287) 201(144-263) 207(154-296) 0.184
Platelet count <150 x > 109 per L 100 (23.5%) 39(27.7%) 61(21.4%) 0.236
Pneumonia at chest X-ray 301(70.7%) 130(92.2%) 171(60%) <0.001
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TABLE 2.2: Treatments and outcomes of patients. Data are expressed as median (interquartile
range) or n (%).

N=426

Treatments

Lopinavir/ritonavir 174/354 (49.1%)
Hydroxychloroquine 249/354 (70.3%)
Corticosteroids 70/349(20%)
Antibiotics 304/358 (84.9%)
Tocilizumab 22(5.2%)
Outcomes
Death 141 (33.1%)
Median time from symptoms to death (days) 11(3-19)
Median time from hospitalization to death (days) 6 (3-11)
Admission to ICU 41 (9.6%)
Median time from symptoms to ICU admission (days) 11 (8-13)
Median time from hospitalization to ICU admission (days) 4 (2-6)
Discharge 239(56.1%)
Median time from symptoms to discharge (days) 19 (9-24)
Median time from hospitalization to discharge (days) 10 (5-16)
Respiratory failure 245 (57.5%)
Acute kidney injury 26 (6.1%)
Acute caridac injury 14 (3.3%)
Thromboembolic events 7 (1.6%)
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The outcomes of patients who were still hospitalised have been updated as of 30 May,
2020: among these 46 patients, 5 (10.9%) had died, 8 (17.4%) were still in ICU, 12 (26.1%)
were transferred to lower intensity care units and 21 (45.7%) were discharged.

Patients who died were older, had higher CCI and higher mEI score, higher CRP and
LDH levels and lower lymphocyte count compared to survivor patients (Table 2.1).

Hydroxychloroquine and antibiotics were used more frequently in patients who died
compared to those who did not. The frequency of complications, such as respiratory
failure, acute kidney injury, acute cardiac injury and septic shock was significantly higher
in patients who died as compared to survivors. (Table 2.3). Area Under the Curve (AUC)
for in-hospital mortality prediction was 0.80 (0.75–0.83) for CCI and 0.81 (0.76–0.85) for
mEI (p-value for comparison=0.468).

TABLE 2.3: Treatments and outcomes of patients stratified according to death.

Death (n=141) Survivor (n=285) p-value

Treatments
Lopinavir/ritonavir 66/119(55.5%) 108/235(46%) 0.115
Hydroxychloroquine 92/119(77.3%) 157/232(67.7%) 0.079
Corticosteroids 21/119(17.6%) 49/230(21.3%) 0.504
Antibiotics 109/120(90.8%) 195/238(81.9%) 0.039
Tocilizumab 8(5.7%) 14(4.9%) 0.919
Outcomes
Admission to ICU 22(15.6%) 19(6.7%) 0.006
Median time (days) 4(2-6) 3(2-6) 0.854
from hospitalization to ICU admission
Respiratory Failure 119(84.4%) 126(44.2%) <0.001
Acute kidney injury 20(14.2%) 6(2.1%) <0.001
Acute cardiac injury 11(7.8%) 3(1%) 0.007
Septic Shock 7(4.9%) 0(0) 0.007
Thromboembolic events 2(1.4%) 5(1.8%) 0.882

2.3.2 Competing risks analysis results

The CIF for in-hospital mortality is shown in Figure 2.1. The estimated probability of in-
hospital death was 24.4% during the first 10 days from hospitalization, 31.0% during the
first 20 days and 33.7% at the end of follow-up. Using the Fine and Gray model-to-model
mortality, older age (70–79 years: HR 4.42, 95% CI 2.59–7.39, p < 0.001. Over 79 years: HR
7.75, 95% CI 4.39–13.74, p<0.001), male sex (HR 1.85, 95%CI 1.22–2.89, p=0.003), number
of comorbidities higher than 3 (HR 3.63, p = 0.03), and time of hospital admission (be-
tween 4 and 16 March: HR 2.32, 95%CI 1.45–3.71, p=0.001; between 17 and 30 March:
HR 1.68, 95%CI 1.03–2.75, p=0.04) were independently associated with higher in-hospital
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mortality, while time to ICU admission longer than 7 days (HR 0.19, 95%CI 0.05–0.67, p
= 0.01) were independently associated with lower in-hospital mortality (Table 2.4). The
CIFs for in-hospital mortality performed using the parameter estimates of the Fine and
Gray model for each of these covariates are shown in Appendix A.

FIGURE 2.1: Cumulative incidence functions for in-hospital mortality and discharge of patients
with Coronavirus Disease-19.

These risk factors were then used to construct a model encompassing all patients
grouped into a “best” and a “worst” class according to the presence or not of these fac-
tors. CIFs for the best class (female patients with less than 3 comorbidities, admitted
between February, 21 and March, 3) and for the worst class (male patients with more
than 3 comorbidities, hospitalized between 4 and 16 March) stratified by age group are
showed in Figure 1.2.

At the end of follow-up, the probability of in-hospital death in patients younger than
70 years was 1.8% in the best class and 18.6% in the worst class. In patients with 70–79
years, the probability of in-hospital death at the end of follow-up was 8.3% in the best
class and 62.5% in the worst class. In patients older than 80 years, the probability of in-
hospital death at the end of follow-up was 13.7% in the best class and 80.8% in the worst
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FIGURE 2.2: Cumulative incidence functions for in-hospital mortality performed using the pa-
rameter estimates of the Fine and Gray model and considering the best patient profile (female
sex, number of comorbidities lower than 3 admitted between 21 February to 3 March 2020) and
the worst patient profile (male sex, number of comorbidities higher than 3, admitted between 4
and 16 March 2020) according to age groups. (A) Age lower than 70 years. (B) Age between 70
and 79 years. (C) Age higher than 79 years.
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class.
The CIF for discharge is showed in Fig. 1. The estimated probability of discharge was

30.5% during the first 10 days from hospitalization, 48.8% during the first 20 days and
61.4% at the end of follow-up Tocilizumab use was significantly associated with a lower
probability to be discharged at univariate analysis, however it was not included in the
multivariate model because only 22 patients received Tocilizumab.

Using the Fine and Gray model, we observed that lymphocytes count (HR 1.13, 95%
CI 1.06–1.19, p=0.001) was independently associated with higher probability to be dis-
charged, while older age (70–79 years: HR 0.39, 95%CI 0.27–0.55, p<0.001. Over 79 years:
HR 0.27, 95% CI 0.16–0.44 p<0.001), number of comorbidities higher than 3 (HR 0.08,
p<0.001), and time of hospital admission (between March, 4 and March, 16: HR 0.66, 95%
CI 0.47–0.92, p=0.02; between 17 and 30 March: HR 0.68, 95%CI 0.50–0.93, p=0.02) were
independently associated with lower probability to be discharged. (Table 2.4). The CIFs
for discharge performed using the parameter estimates of the Fine and Gray model for
each of these covariates are showed in Figures S5–S9.

The CIFs for the best class and for the worst class according to age are showed in
Figures S10–S12. At the end of follow-up, the probability of discharge in patients younger
than 70 years was 99.5% in the best class and 31.5in the worst class. In patients with 70–79
years, the probability of discharge at the end of follow-up was 84.6% in the best class and
12.6% in the worst class. In patients older than 80 years, the probability of discharge at
the end of follow-up was 75.3% in the best class and 9.6% in the worst class.
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2.4 Discussion

This report, is the first large retrospective study assessing competing risks in hospitalised
patients with confirmed COVID-19 in Europe. Older age, male sex, comorbidities and
hospital admission subsequent to March, 4 were significantly associated with a higher
in-hospital death, by competing risk multivariate analysis.

When comparing our cohort with those described in the literature we noted that mor-
tality was higher than that observed in other studies both in and outside China[165, 145,
124]. The median age in our cohort was 68 years and 77 years in patients who died, which
is higher than that observed in other studies. In-hospital mortality assessed by compet-
ing risks analysis was significantly higher in patients aged between 70 and 79 years and
in those over 79, compared with patients younger than 70 years. By contrast, the prob-
ability of discharge was similar between patients of 70–79 years and those older than 79
years. The association between age and in-hospital mortality could be explained by the
lower cardiopulmonary reserve, by the enhanced susceptibility to infections and by the
inadequate control of anti-inflammatory mechanisms.

In our cohort, the median Charlson comorbidity index was 3 and modifed Elixhauser
Index was 9.2. While the prevalence of comorbidities in our cohort was similar to that
reported in the USA[124], it was higher than that observed in Chinese cohorts[165]. Our
results are in line with those of the Italian National Institute of Health, showing that
approximately 61% of deceased Italian patients with COVID-19 had more than 3 comor-
bidities, while only 3.6% of patients who died had no comorbidity[54]. It is well known
that COVID-19 patients with comorbidities are at high risk to develop a worst outcome.

Several meta-analyses shown that comorbidities (specifically hypertension, respira-
tory system disease, cardiovascular disease, and chronic kidney disease) are associated
with a higher risk of development of severe COVID-19[163, 156, 48]. Different comorbid-
ity scores have been evaluated in COVID-19 patients, such as CCI[124] and mEI score[41].
Our analysis showed that these two scores had a similar accuracy by AUC for the predic-
tion of in-hospital death.

Male sex was an independent risk factor for in-hospital mortality and a lower prob-
ability of discharge. The association between gender and worst outcomes in COVID-19
is not fully understood. It has been proposed that female sex could be associated with
lower susceptibility to viral infections, with sex hormones playing a relevant role in in-
nate and adaptive immune response[73]. A different expression of ACE 2 receptor has
also been suggested as an explanation of the gender-associated mortality in COVID-19
patients[27]. Conversely, it has been suggested that males could be more prone to being
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affected by COVID-19 due to the higher smoking rate and higher prevalence of cardio-
vascular comorbidities[25]. However, our multivariate model suggested that sex was an
independent predictor of mortality, and discharge regardless of comorbidities and evi-
dence supporting smoking as a predisposing factor in men with COVID-19 are lacking.
Unfortunately, we were unable to evaluate the association between smoking and clinical
outcomes in COVID-19.

Patients who were admitted during the first weeks of the emergency had a signifi-
cantly lower in-hospital mortality and a higher likelihood of discharge compared to those
who were admitted during subsequent weeks, with the worst outcomes observed from 4
to 16 March 2020. One factor that many reports have addressed is the sequence of phases
into which the disease has been divided, each corresponding to a different pattern of viral
and immunological factors. Patient presentation in late phase may also have occurred,
leading to the admission of an exceptionally large number of patients who needed hos-
pitalisation in a short time span, resulting in a critical overload in the Policlinico San
Matteo, in both triage and the management of the disease. These findings may be ex-
plained by also taking into consideration that during the first week many admissions
were made for epidemiological reasons, leading to the hospitalisation of patients with
few symptoms or mild disease.

Although ICU admission after 7 days from hospitalisation was independently and
significantly associated with a lower risk of in-hospital mortality, the rapidity with which
patients entered the ICU often concurrently with initiating other treatments makes the
benefit of this treatment difficult to assess. Moreover, results from observational studies
of drug effects should be interpreted with caution as they may be biased by survivor
treatment selection bias, including time-related biases[136, 57].

In the literature, the use of composite endpoints (i.e. death or ICU admission) and, on
the other hand, the implementation of traditional survival and Cox models are not ap-
propriate in a disaster medicine setting such as that of COVID-19. The first assumption
considers ICU and death to be equal, which is not true, while the traditional Cox model
neglects to model discharge as an alternative endpoint. Competing risks analysis may
provide further insights into the effect of interventions on the separate endpoint com-
ponents [153]. We overcame this issue by performing a competing risks analysis taking
into account two events (in-hospital death and discharge) and including ICU admission
as a time-dependent covariate [109]. We suggest the use of a standardised methodol-
ogy to assess treatment effects in observational studies in the complex clinical scenario of
COVID-19. It should be underlined that COVID-19 case fatality ratio requires a dynamic
assessment[72] and that it decreased dramatically in Italy during the months that fol-
lowed our study. This could be due to the improvements of the supportive treatments, as
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well as the general organization and bed occupancy. The competing risks model adopted
is able to recognize effective and noneffective predictors, as, for instance, our model ex-
cluded treatments since the very beginning. Nevertheless, we are aware that unknown
risk factors are still incumbent in all the statistical analyses conducted till now, so frailty
survival models can be applied in order to capture the eventual and unknown source of
variability.

The main limitation of our study is the retrospective design. Retrospective studies
have many problems that reduce their internal and external validity. When assessing
retrospective cohort studies, the most important bias is the likelihood of the inappropri-
ate selection of patients, which can lead to incorrect results and spurious associations.
However, we included only consecutive patients with confirmed COVID-19, therefore
we believe that selection bias was not relevant. Moreover, some potential confounders
associated with the severity of COVID-19 (i.e. P/F ratio or circulating cytokine levels)
and not available for this modeling, could affect our results. Thus, we performed mul-
tivariate competing risks analysis to overcome this issue. Other limitations are the gen-
eralisability of our results to different populations and settings, particularly regarding
the demographic structure of our country, including European elderly patients with a
high prevalence of comorbidities. Finally, mortality was limited to in-hospital death, and
discharged patients were assumed to still be alive during the study period.

2.5 Conclusion

The findings indicate that in a Lombardy cohort of elderly hospitalized patients, for the
most part male with a high prevalence of comorbidities, COVID-19 is characterized by
high in-hospital mortality. Older age, male sex, comorbidities and time of admission
were found to be significant risk factors for in-hospital mortality and associated with a
lower probability of being discharged.

The dataset included data coming from a single northern Italian centre, which can
avoid the possibility to generalize the findings by performing an external validation in
presence of competing risks. To do that, data coming from other centers, inside and
outside Lombardy, are needed.

The urgency to create novel therapeutic approaches (in a context where the vaccines
were not available yet) brought on by the global COVID-19 illness outbreak was un-
precedented, and the "rush to COVID-19" provided controversial findings. We, therefore,
decided to provide a statistical model in which treatments, in particular hydroxychloro-
quine, are included even though not associated significantly with any event of interest.
This work was also one of the first to assess the ineffectiveness of hydroxychloroquine to
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improve from covid-19 survival, at least in this cohort, in contrast to what some authors
stated in some prestigious journal [8]. The most important findings, in terms of treatment
effectiveness, are related to the protective effect of RAASi [31].

Even if the statistical methodology can be still valid in future, this findings cannot be
considered at all with more recent data, and, thanks to the introduction of vaccination,
either in Italy and all over the world, in-hospital mortality faced a huge decrease after the
first wave. [19]
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Chapter 3

Predicting in-hospital mortality from
Coronavirus Disease 2019: A simple
validated app for clinical use

3.1 Introduction

This chapter is based on a published paper and can be considered as a consecutive work
that extends the work in chapter 2. My role in this paper, published on PLOS ONE
(https://doi.org/10.1371/journal.pone.0245281) in 2021, was to perform entirely
the statistical analysis, by the imputation of missing data through the hot deck procedure,
the implementation of the Fine and Gray model, defined from a theoretical point of view
in section ??, the computation of the CIFs for the different risk profiles, the validation of
the model using an external cohort, the building of the shiny app, helpful for clinicians
to predict in-hospital mortality by inserting clinical factor obtainable immediately after
the patients came to the hospital, and the definition of any statistical concept or quantity.
As in chapter 2, the discussion is reported as it was written dating back to 2020.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified
in China in December 2019 and has since spread rapidly all over the world [53]. Outside
China, Italy was the first western country to be involved and the first case was diagnosed
on February, 21. During the initial weeks of the pandemic, the rapid increase in cases
overwhelmed the capacity of the National Health System to receive and manage patients
and to respond in terms of availability of health resources[115].

In the context of triaging patients in emergency departments or in special clinics set
up during an acute outbreak, the lack of clinical criteria to identify the most severe cases
and to define the evolution of the disease has made the management of the pandemic
even more difficult.

 https://doi.org/10.1371/journal.pone.0245281
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A risk stratification of COVID-19 patients is crucial in order to improve the health-
care organization and to best manage a new potential second wave of the epidemic in
the coming winter. In this complex epidemiological and clinical scenario, a competing
risks model is a robust statistical method to predict patients risk profile when more than
one competing event, such as in-hospital mortality and discharge, is present [108]. The
aims of this retrospective multicenter study are 1) to derive a simple clinical prediction
rule capable of promptly identifying risk factors for in-hospital mortality and discharge
in hospitalized patients with COVID-19 by competing risks analysis; 2) to validate this
prediction rule in an external validation cohort; 3)to design a free web-app for calculating
the risk of in-hospital mortality (COVID-CALC).

3.2 Data structure and Methods

We analyzed an integrated database that contained clinical, laboratory and treatment
data from all hospitalized patients with a diagnosis of COVID-19 at three Italian referral
tertiary centers, two in Lombardy (the “eye of the SARS-COV-2 storm” in Italy) (Bergamo
and Pavia) and one in Lazio (Rome): 1) Hospital Papa Giovanni XXIII, Bergamo, Lom-
bardy; 2) Fondazione IRCCS Policlinico San Matteo, Pavia, Lombardy; 3) Fondazione
Policlinico Univerisitario A. Gemelli IRCCS, Rome, Lazio. All consecutive patients ad-
mitted between February 22nd and April 7th, 2020 were enrolled and were followed up
until April 30th, 2020. Information on the history and physical examination of hospital-
ized patients with COVID-19 were abstracted from chart reviews by medical officers at
each hospital. Variables collected through standardized recording forms included age,
sex, comorbidities, smoking status, time of symptoms onset and time of hospital admis-
sion. Additional variables were the presence of fever (defined as axillary temperature of
at least 37.5C), dyspnea, cough, and diarrhea.

Laboratory confirmation of the SARS COV-2 infection was defined as positive real-
time reverse transcriptase polymerase chain reaction (RT-PCR) from nasal and pharyn-
geal swab; samples were prospectively collected and analyzed at the Molecular Virology
Units of each center according to the WHO guidelines and Corman et al. protocols[37,
35].

The primary event was in-hospital mortality. Discharge was analyzed as a competing
event in the competing risks survival analysis. The competing risks model proposed by
Fine and Gray was applied[49]. The criteria for discharge were absence of fever, resolu-
tion of respiratory symptoms, oxygen saturation higher than 94% and two consecutive
nasal swab negative for SARS-CoV-2 obtained at least 24 hours apart.
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As we did in chapter 2, the Fine and Gray model (see section 1.2.1 for the model
description) was chosen to determine the association between covariates and the CIFs in-
hospital mortality with discharge considered as competing event. [49]. Competing risks
analyses were performed in SAS version 9.4. Hot-deck missing imputation data and the
assessment of discrimination and calibration and were performed in R Core Team (2019).
The hot deck procedure was performed in the derivation cohort for those variables with
less than 20% missing data. Variables with more than 20% missings were not considered
to be included in the Fine and Gray model. We used the hot.deck function from hot.deck
library in R 3.8.0

Risk factors for in-hospital mortality and discharge identified by competing risks
multivariate analysis in the derivation set were used to generate a prediction rule. The
probability of dying or of being discharged within 40 days after hospital admission was
computed for a hypothetical patient identified by a combination of prognostic factors.
The prediction accuracy of the fitted models was assessed by discrimination and cali-
bration both in the derivation (internal validation) and validation cohorts (external val-
idation)[162]. Discrimination of the models was assessed by the area under the receiver
operating characteristic curve (AUC or C-index)[129].

Calibration was evaluated by comparing the predicted probability with the observed
probability at a certain time point by a calibration plot. Finally, the Brier score, which
takes into account both the discrimination and the calibration at the same time, was also
calculated. It is defined as the expected squared distance between the observed status
at that time and the predicted probability[55]. Thus, a smaller value of the Brier score
indicates a better model. To assess the internal validity of the prediction rule, the deriva-
tion set was randomly split into a training set (70%) and a test set (30%)[44]. The external
validation of the prediction rule was carried out with data from an external validation
cohort, represented by the Rome unit, in terms of discrimination, calibration and the
Brier score. The prediction rule has been translated into a web-app that is freely avail-
able to the public (COVID-CALC: https://sites.google.com/community.unipa.it/
covid-19riskpredictions/c19-rp).

3.3 Results

From February 22nd to April 7th, 2020, a total of 2191 consecutive confirmed cases of
COVID-19 were observed.

Baseline characteristics of patients stratified according to derivation (n = 1810) and
validation cohort (n = 381) are shown in Table 3.1. Median age was 67 years (IQR, 56–77
years) and 45% of patients were 70 years or older. Sixty-nine percent of patients were

https://sites.google.com/community.unipa.it/covid-19riskpredictions/ c19-rp
https://sites.google.com/community.unipa.it/covid-19riskpredictions/ c19-rp
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male. In 27.5% of patients, at least one comorbidity was present, with hypertension and
diabetes being the most common (43% and 17% of patients, respectively). Median time
from symptoms onset to hospital admission was 8 days (IQR 5–11 days). At hospital ad-
mission, fever was present in 85%, dyspnoea in 56% and cough in 44% of patients. Lym-
phocyte count lower than 1000/mmc was observed in 77% of the patients, and platelet
count was lower than 150000/mmc in 37.5% of patients. CRP was increased in 83% of
patients, and LDH resulted elevated in 88% of patients.

In the derivation cohort, male sex, hypertension and obesity were significantly more
frequent and the prevalence of chronic kidney disease, chronic obstructive lung disease
and malignancies was significantly lower in comparison with the validation set. Patients
in the derivation set had higher median GPT, CRP, LDH, and D-dimer levels, higher
lymphocyte count and lower P/F ratio, in comparison with patients in the validation set.

Data on treatments and outcomes according to derivation and validation cohorts are
reported in Table 3.2. Corticosteroid treatment was administered to 129 patients (11%.
Data available in 1164 patients). Enoxaparin was given to 254 patients (21%. Data avail-
able in 1218 patients). Hydroxychloroquine was administered to 931 patients (80%. Data
available in 1163 patients). Seven-hundred seventy-nine patients (49%) received antiviral
treatment with Lopinavir-ritonavir and 242 with Darunavir-ritonavir (15%) (Data avail-
able in 1593 patients). Tocilizumab was administered in 112 patients (9%) and Sarilumab
in 51 patients (13%) (Data available in 1233 patients). One-hundred sixty-four patients
(9%) received non-invasive ventilation (Data available in 1765 patients).
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TABLE 3.1: Demographic, clinical and laboratory characteristics of patients with Coronavirus
Disease-19 on hospital admission in the derivation and the validations cohorts. P-values are cal-
culated on the basis of two sample T-test for categorical variables and Wilcoxon test for continous
variables at a 0.05 significance level.

Overall Derivation cohort Validation cohort p-value
(n = 2191) (n = 1810) (n = 381)

Age (years) 67 (56–77) 67 (55–78) 68 (57–77) 0.960
<50 293 (13.4%) 239 (13.2%) 54 (14.2%)
50–59 394 (18.0%) 312 (17.2%) 82 (21.5%)
60–69 511 (23.3%) 437 (24.1%) 74 (19.4%)
70–79 594 (27.1%) 510 (28.2%) 84 (22.0%)
>80 399 (18.2%) 312 (17.2%) 87 (22.8%)
Male sex 1521 (69.4%) 1280 (70.7%) 241 (63.3%) 0.006
Median duration of symptoms 8 (5–11) 8(2–10) 7(5–11) <0.001
before hospital admission
Duration of symptoms before 1473 (67.2%) 1193 (65.9%) 280 (73.5%) 0.004
hospital admission shorter
than 10 days
Fever 1866 (85.2%) 1495 (82.6%) 371 (97.4%) <0.001
Dyspnea 1235 (56.4%) 1070 (59.1%) 165 (43.3%) <0.001
Cough 969 (44.2%) 742 (41.0%) 227 (59.5%) <0.001
Diarrhea 164 (7.5%) 127 (7.0%) 37 (9.7%) 0.810
Number of comorbidities 0.250
0 1506 (71.4%) 1233 (71.3%) 273 (71.7%)
1 446 (21.1%) 372 (21.5%) 74 (19.4%)
2 157 (7.4%) 123 (7.1%) 34 (8.9%)
Comorbidity
Hypertension 952 (43.4%) 825 (45.6%) 127 (33.3%) <0.001
Diabetes 372 (17.0%) 311 (17.1%) 61 (16.0%) 0.370
Obesity 320 (14.6%) 265 (14.6%) 54 (14.1%) 0.014
Coronary Heart Disease 209 (9.5%) 159 (8.8%) 43 (11.2%) 0.230
Chronic kidney disease 164 (7.5%) 124 (6.8%) 40 (10.5%) 0.047
Chronic obstructive lung disease 148 (6.8%) 102 (5.6%) 46 (12.1%) 0.001
Malignancy 98 (4.5%) 66 (3.6%) 32 (8.4%) 0.002
Chronic Liver disease 45 (2.0%) 42 (2.3%) 3 (0.7%) 0.005
Current smoker 87 (4.0%) 63 (3.5%) 24 (6.3%) 0.011
Glutamic pyruvic transaminase, U/L 54(108.61) 57(120.05) 44(57.04) 0.003
C-reactive protein, mg/dL 11.5 (10.01) 11.9 (10.33) 10.1 (8.68) 0.001
C-reactive protein>10 mg/dL 1438/1733 1145/1359 293/374 0.100

(83.0%) (84.3%) (78.3%)
Lactate dehydrogenase, U/L 441 (323) 462 (343) 343 (173) <0.001
Lactate dehydrogenase>250 U/L 1931 (88.1%) 1648 (91.0%) 273 (71.7%) 0.007
Creatine kinase, U/L 875 (2288) 2834 (3850) 198 (403) <0.001
D-dimer, U/L 7680 (26055) 10059 (13667) 5835 (32479) 0.049
9White Cell Blood Count, × 109 per L 7.82 (5.93) 7.94 (4.66) 7.42 (8.94) 0.270
Lymphocyte Count, × 109 per L 1.04 (1.84) 1.12 (2.14) 0.86(0.52) 0.001
Lymphocyte Count<1.0 × 109 per L 1678 (76.6%) 1484 (82.0%) 194 (50.9%) <0.001
Platelet Count, × 109 per L 142 (98) 141 (97) 146 (100) 0.410
Platelet Count < 150 × 109 per L 823 (37.5%) 675 (37.3%) 148 (38.8%) 0.480
P/F ratio 238 (117) 203(116) 406 (68) <0.001
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3.4 Clinical Outcomes

At the end of follow-up, 540 patients had died (24.6%), 302 (13.7%) had been transferred
to ICU, 1358 patients (62.0%) had been discharged and 258 were still hospitalized. Me-
dian time from symptoms onset to death and from hospital admission to death were 13
days (IQR 9–19) and 5 days (IQR 3–10), respectively. Median time from hospital admis-
sion to ICU admission was 3.5 days (IQR 1–6). Median time from hospital admission to
discharge was 10 days (IQR 6–16).

The CIFs for in-hospital mortality and discharge in the derivation and validation co-
horts are shown in Figure 3.1. In-hospital mortality at 7 and 21 days was 16% and 26% in
the derivation cohort and 5% and 10% in the validation cohort, respectively. Discharge
rates at 7 and 21 days were 22% and 52% in the derivation cohort and 6% and 62% in the
validation cohort, respectively.

FIGURE 3.1: Cumulative incidence functions (CIFs) for in-hospital mortality and discharge of
patients with Coronavirus Disease-19 in the derivation (1A) and validation cohorts (1B).
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3.5 Risk factors for in-hospital mortality

Seven variables were independently associated with in-hospital mortality in the Fine and
Gray model: age (HR 1.08, 95% CI 1.07–1.09, p<0.001), male sex (HR 1.62, 95% CI 1.30–
2.00, p<0.001), duration of symptoms before hospital admission shorter than 10 days (HR
1.72, 95% CI 1.39–2.12, p<0.001), type 2 diabetes (HR 1.21, 95% CI 1.02–1.45, p = 0.044),
coronary heart disease (HR 1.40, 95% CI 1.09–1.80, p = 0.009), chronic liver disease (HR
1.78, 95% CI 1.16–2.72, p = 0.008), and LDH levels (HR 1.0003, 95% CI 1.0002–1.0005,
p<0.001) (Table 3.3). The same variables were independently associated with Discharge,
but with opposite sign of the coefficients (Table 3).
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These risk factors were used to construct a model encompassing patients grouped
into “best”, “intermediate” and “worst” profiles. CIFs for the best (60 years old, female,
duration of symptoms before hospital admission longer than 10 days, no comorbidities,
and LDH levels of 250 U/L), the intermediate (70 years old, male, duration of symptoms
before hospital admission shorter than 10 days, chronic liver disease, LDH levels of 300
U/L) and the worst profiles (80 years old, male, duration of symptoms before hospital
admission shorter than 10 days, coronary heart disease, chronic liver disease, diabetes,
LDH levels of 400 U/L) are shown in Figure 3.2. In the best profile, 7- and 21-day in-
hospital mortality was 5% and 8%, respectively; in the intermediate profile, 7- and 21-day
in-hospital mortality was 18% and 28%, respectively; in the worst profile, 7- and 21-day
in-hospital mortality was 52% and 70%, respectively.

FIGURE 3.2: Cumulative Incidence Functions (CIFs) for in-hospital mortality of patients with
Coronavirus Disease-19 according to three different patient profiles. A: best profile (60 years old,
female sex, duration of symptoms before hospital admission longer than 10 days, no comorbidi-
ties, and LDH levels of 250 U/L). B: intermediate profile (70 years old, male sex, duration of
symptoms before hospital admission shorter than 10 days, chronic liver disease, LDH levels of
300 U/L.) C: worst profile (80 years old, male sex, duration of symptoms before hospital admis-
sion shorter than 10 days, coronary heart disease, chronic liver disease, diabetes, LDH levels of
400 U/L).
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3.6 Validation of the prediction rule

By internal validation, the AUC based on the data from the derivation cohort was good
(AUC = 0.822, 95% CI 0.722–0.922). The accuracy in the validation cohort was similar to
that of the derivation cohort (AUC = 0.820, 95% CI 0.724–0.920). Figure B.1 shows the
calibration plot of the model for in-hospital mortality. The Brier score was 14.3 in the
derivation cohort and 16.9 in the validation cohort. Similar results were obtained for dis-
charge model (See Appendix B). The prediction for in-hospital mortality has been trans-
lated into a web-based app (COV-ID-CALC) to obtain both the CIF for in-hospital mor-
tality (predicted curve) and confidence intervals for the CIF at 7, 14 and 21 days (https:
//sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp).

FIGURE 3.3: Calibration curves for predicting in-hospital mortality of patients with Coronavirus
Disease-19 in the derivation and validation cohorts.

(https://sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp)
(https://sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp)
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3.7 Discussion

In this study we developed and validated a simple clinical prediction rule able to predict
in-hospital mortality of hospitalized patients with COVID-19, considering discharge as
a competing risk. In our analysis, seven variables (older age, male sex, shorter duration
of symptoms before hospital admission, diabetes, coronary heart disease, chronic liver
disease, and LDH levels) were independent risk factors for in-hospital death, as shown
by a competing risks multivariate analysis.

External validation of this prediction rule showed good discrimination and calibra-
tion. To support clinicians in the risk stratification, a web-based app was developed.

From a practical point of view, our prediction rule could help physicians to improve
the allocation of medical resources, potentially reducing the overcrowding that we have
witnessed in healthcare systems which significantly impacted mortality worldwide dur-
ing the COVID-19 pandemic. Several prediction models have been previously published
aiming to stratify the risk of in-hospital mortality in patients with COVID-19, in both
Western and Eastern countries[79, 86, 155, 50, 154, 92]. Particularly, the 4C Mortality
score[79], including age, sex, number of comorbidities, respiratory rate, oxygen satura-
tion, level of consciousness, urea and CRP levels, was developed in a cohort of more than
35,000 European patients, showing a good discrimination for mortality (AUC = 0.79).
Moreover, a 10-item risk score predicting the occurrence of critical illness, defined as a
composite of ICU admission, invasive ventilation, or death, was recently validated in a
Chinese cohort, showing an AUC of 0.88[86]. However, our methodological approach
was quite different to those used in the above quoted studies. It should be noted that
the use of a composite endpoint considers ICU and death to be equal, which may not be
true. Moreover, the traditional logistic regression model neglects to model discharge as a
competing endpoint. Our competing risks analysis may provide further insights into the
effect of clinical covariates on the separate endpoint components[153, 109].

Results of our analyses confirmed those of previous reports from China and the USA[165,
145, 124], showing older age as the most important risk factor for in-hospital death in
COVID-19. However, we found higher in-hospital mortality in comparison to other stud-
ies[165, 145]. The demographic structure of the Italian population could be a reason for
this finding. In 2019, Italy resulted as being the European country with the highest pro-
portion of elderly people, with about a quarter of the population aged older than 65 years
[131]. Not surprisingly, the median age in our cohort was 67 years, that is higher if com-
pared with that observed in other studies.

Interestingly, in our analysis comorbidities were associated with in-hospital death in-
dependently from age and other covariates. In our study the prevalence of comorbidities



3.7. Discussion 57

was similar to that reported in other Western countries [21], but it was higher when com-
pared to Chinese patients[165, 145], with cardiovascular comorbidities, including coro-
nary heart disease, resulting as the most common. Regarding chronic liver disease, our
findings are also in line with the results of two international reporting registries of 152
patients (103 of them with cirrhosis), showing a mortality of about 40% [93].

A shorter duration of the symptoms before hospital admission was independently as-
sociated with higher in-hospital mortality. This is a novel finding, and it could be argued
that patients with the most severe disease were hospitalized shortly after symptoms on-
set, while those who were hospitalized after a longer duration of symptoms were those
with milder disease.

LDH levels resulted as being independently associated with a higher risk of in-hospital
death. LDH is released from cells upon damage of cytoplasmic membrane and its lev-
els might reflect tissue necrosis related to immune hyperactivity, which thus relates to
poor outcome [140]. The prognostic role of LDH has also been reported in other Chinese
reports[29, 157] and in studies conducted on other coronaviruses [al2016treatment].

Our study suffers from several limitations. Retrospective studies have many prob-
lems that reduce their internal and external validity and selection bias can lead to incor-
rect results and spurious associations. However, we believe that selection bias could not
be relevant as only consecutive patients with COVID-19 were included.

A limitation of any prediction rule is the generalizability of results to different pop-
ulations and settings. However, we performed an external validation that showed good
calibration and discrimination.

Our derivation and validation cohorts showed significant baseline clinical differences,
probably because data were collected in two different settings (Northern vs Central Italy)
with different degrees of overcrowding for healthcare systems. However, it should be
underlined that hospitalization criteria were similar among participating centres.

Patients in our cohort were collected during the early phase of the spread of the in-
fection locally, therefore it may not fit during different epidemic periods. Whether this
prediction rule will also apply to patients observed at a later phase of the pandemic re-
mains to be tested.

Mortality was limited to in-hospital death, and we assumed discharged patients to
still be alive during the study period. Moreover, the sample size of our validation co-
hort was relatively small, probably reflecting the differences in disease burden between
Northern and Central Italy.

The high number of missing data on treatments, particularly regarding corticosteroids
use, hampered their inclusion in the prediction rule. However, it should be underlined
that the effects of most drug interventions are currently highly uncertain, particularly
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for the timing of steroids use and the optimal dosage of hydroxychloroquine[43], and no
definitive evidence exists that therapies could result in important benefits and harms for
any outcomes, as recently reported in a network meta-analysis [133].

LDH was included in our prediction rule, although LDH levels may be not always
available. In order to accommodate for possible LDH missings in the app, we imple-
mented two different prediction rules: the first one based on the final model including
LDH values when available, the second one based on a model estimated including all
the risk factors of the final model but LDH. Moreover, in the latter case the app will warn
that the prediction rule is not accurate as the first one.

3.8 Conclusions

We developed and validated a simple prediction rule capable of accurately predicting the
risk for in-hospital mortality and discharge of patients with COVID-19. Even if the data
collected in 3 different Italian centers until April 30, 2020 might not reflect the more recent
in-hospital mortality rates, that, thanks to the improvements in the treatments and the
administration of vaccines to the great part of the western population, rapidly decreased,
our prediction rule could improve the triage and management of patients with COVID-
19 in different epidemiological and healthcare organization settings, especially in those
health systems still in the pandemic emergency.

This chapter, together with chapter 2, concludes the work carried out for around 6
months of my first-year PhD program, in which I had the opportunity to be part, as a
statistician, of an important and motivated research group aimed to make clearer what
was happening in Lombardy, the first Italian region to be hit by COVID-19, in a period
where all our lives, dramatically for some people, changed.
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Chapter 4

Overcrowding at Emergency
Department in the pre-COVID-19
era: a frailty competing risk analysis

4.1 Introduction

The Emergency Department (ED) overcrowding has become more and more prevalent
throughout the nation in recent years. Several definitions of overcrowding in ED are
largely present in literature. In a review article [158] overcrowding is defined as “the
situation in which ED function is impeded primarily because of the excessive number
of patients waiting to be seen, undergoing assessment and treatment, or waiting for de-
parture compared to the physical or staffing capacity of the ED.” Overcrowding can be
also defined as a situation during which the function of an emergency department is
compromised primarily due to excessive patient numbers waiting for consultation, diag-
nostics, treatment, transfer or discharge, exceeding the present resources[87]. In general,
overcrowding is due to the imbalance of the need for emergency care and the hospital’s
capacity to provide the service. Another definition states that overcrowding refers to the
condition leading to the dysfunction of the emergency department due to the fact that
the number of patients (awaiting visit, awaiting transfer, or undergoing diagnosis and
treatment) exceeds either the physical or staffing capacity of the ED [127].

Overcrowding reduces or, in extreme cases, cancels the ability of the ED to carry out
its own function. It is therefore clear it is a topic of primary importance, characterized
by a high degree of complexity. Although it is a theme now extensively treated in the
literature, it is still a challenging topic in which researchers try to contribute in analyzing
the phenomenon in its different aspects. It is therefore crucial to detect the determi-
nants of overcrowding to provide understanding of the phenomenon. Rastelli et al. [112]
found that the increase of overcrowding is probably due to the reduction of the number
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of hospitals and the number of beds. Other authors found that severe overcrowding was
usually associated to insufficient ED personnel and lack of beds in the hospital wards.
Both issues negatively affect patient care outcomes, including increased length of stay
(LoS) at EDs, number of patients who left without being seen, and other factors [104].
In addition, some studies have identified the effect of high ED occupancy (above 90%)
and access block as causes of adverse patient outcomes, treatment delays, high mortality
rates (20%–30%), prolonged inpatient length of stay (LoS), and hospital readmission [144,
160].

In the Italian setting, though the health ministry published the main policies direc-
tions that every Italian hospital must respect (for example that "the measurement of
overcrowding must be addressed by the use of the indexes NEDOCS, CEDOCS, SONET,
recorded homogeneously by all the hospitals and, at least, every 24 hours"), the health
system is regionally dislocated. However, in the last decades, also due to the increasing
number of elderly people, the country have been faced with an increased demand for
health services, which did not match with an equal improvement of the territorial ser-
vices. As a matter of fact, unpublished data from SIMEU (Italian Society of Emergency
Medicine) from July 2010 show that ED visits have grown by 5% to 6% per year, with 30
million ED visits in 2009 [105]. Moreover, in Sicily, the 26% of people went to an ED in
2019 was older than 65). Different papers, dealing with overcrowding in Italy, are present
in literature. Di Bella et al.[42] identified clinical and socio-demographic risk-factors con-
nected to different levels of ED utilisation and highlighted the influential role played by
chronic conditions. Strada et al. [135] analyzed the NEDOCS, comparing objective scores
with healthcare personnel’s perception of overcrowding, just for the accesses at the ED
at the University Hospital of Ferrara in 2018. Amodio et al.[6] tried to explore the associ-
ation between overcrowding and the Italian population characteristics, using data from
the regional health system including all ED admissions of patients present in two Italian
provinces (Lecco and Monza e Brianza). They found that the high health impact of win-
ter is associated with an increase in ED admissions, especially for older and critical/very
critical patients (yellow and red triage codes).

Others authors observed influenza can increase ED admissions as well, rising the risk
of absenteeism among healthcare personnel and incrementing the burden of diseases in
intensive care units as well as in other wards [5, 138].

The outbreak of Covid-19 pandemic starting from the beginning of 2020 has changed
completely the ED management. Gormeli et al. [58] found a significant drop of emer-
gency admissions during Covid-19 pandemic compared with the pre-Covid-19 pandemic
period. In turn, this would have increased the rate of deaths occurring at home, and
led emergency services to be overcrowded by patients with worse outcomes and higher
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mortality rates. Bouillon et al. [22] stated that it appeared that the lockdown could be
considered the gold standard for patient care in emergency departments, without any
problem for them to find a bed for those needing to be hospitalized.

Nonetheless, we argue that, using recent data to analyze overcrowding at ED, for
example just before the beginning of the COVID-19 pandemic, can be useful to better
understand the future ED accesses flows, once the pandemic situation will slightly return
to "normality".

One of the criteria useful to understand the causes of overcrowding relies on the clas-
sification of the variables, that can affect overcrowding, in input, throughput, and output
factors[127]. These factors are independent from each other, but they are interconnected
and influenced by underlying contributors, making the phenomenon of overcrowding a
multifactorial and complex one [125, 110, 40].

The input–throughput–output model therefore appears useful for understanding the
factors that regulate the flow and capacity of the ED, but also represents a guideline for
conceptualizing the same factors in both the entire hospital setting and the health care
system[10, 113, 69]. Strictly speaking, overcrowding is characterized by an imbalance
between supply and demand.

Input, throughput, and output factors can be defined as follows:
Input factors: they are represented by factors determining patient access to the ED.

They include the waiting time, the number of patients who arrived in the ED, as well as
their severity and complexity. Input factors constitute one of the causes of crowding, but
the least important [96, 34, 71]. Information such as the Triage, time of arrival in ED, and
other accesses characteristics are included in the data we used to analyze overcrowding
(see section 4.2 for a detailed description of the EMUR database).

Throughput factors (internal factors): they are represented by the process time, meaning
the time between taking charge of the patient and the outcome (diagnosis and decision:
discharge, hospitalization, and transfer). They include all the complementary exams that
are performed in the ED (laboratory analysis and imaging). These factors are also affected
by the healthcare personnel (in terms of quality of work, shift work, burnout, drop in
performance, respect for shifts, and holidays)[125, 128, 106, 116]. Throughput factors
have a key role in our analysis. We will, indeed, analyze the risk of being discharged or
hospitalized during LoS in a survival setting (see section 4.2 for a description of the EDs’
process and section 4.3 for a description of the statistical model we used).

Output factors: they include patients boarding in the ED, availability of hospital beds,
and the delay of transport (both internal and external) to leave the ED. The lack of hospi-
tal beds appears to be a fundamental cause of overcrowding, but so is the lack of home
care. The reduction of beds (which in some realities have decreased by more than 50%
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in the last 20 years) is a worldwide phenomenon that has led to exit block (that occurs
when ’patients in the ED requiring inpatient care are unable to gain access to appropriate
hospital beds), as well as to the collapse of the possibility of hospitalizing patients. Con-
sidering output factors, it is therefore evident that overcrowding is influenced by the fact
that patients who should go to the ward are stationed in the emergency room and must
continue to be assisted from a medical point of view[127, 106, 116]. Among the different
factors, patient boarding was found to be one of the most significant[110]. Boarding is
the practice of keeping patients admitted to the ED for prolonged periods due to inad-
equate capacity of inpatient wards. Unfortunately the EMUR database doesn’t include
information about the number of beds or the delay of transport.

Given its multifactoriality and complexity, different aspects must be accounted to
solve overcrowding. One possible solution could be to include an increase in transitional
beds and better working conditions for hospital staff. Considering that overcrowding is
a mismatch between supply and demand, one might think that an increase in supply can
solve easily the problem. In some cases [94], this did not lead to an improvement in over-
crowding but, on the contrary, to a worsening of the situation. Other authors suggested
to act at medical and bureaucratic level. These can be divided into two levels: microlevel
(ED point of view) and macrolevel (Hospital point of view)[126, 127].

From a methodological point of view, there are two main approaches to analyze over-
crowding in ED. The first concerns the use of indexes that measure the degree of crowd-
ing inside the ED. In USA, the NEDOCS (National Emergency Department Overcrowd-
ing Score) is an extensively studied and validated measure of emergency department
crowding and one of the most used index in literature to measure overcrowding [71, 149].
The NEDOCS score is computed considering seven variables recorded at a single point in
time [23]. It includes variables related to input (ability of ambulances to offload patients,
patients who leave without being seen or treated or time to Triage) throughput (ED oc-
cupancy rate , patients’ total length of stay in the ED and the time until a physician first
sees the patient) and output factors (ED boarding time and number of patients boarding
in the ED). Recently, even if it has been used in many EDs over the years, especially in
USA, NEDOCS was found to overestimate the ED overcrowding [135]. Other authors
compared the predictive performance of NEDOCS with the EDWIN model [20] (which
highly depends on the number of the patients in a Triage category), demonstrating a "su-
periority of the NEDOCS when compared with the EDWIN in measuring overcrowding"
[148]. In order to reduce the overcrowding, the Sicilian health institution published, in
2018, the health policy directions suggesting the use of new indexes (K1,K2,K3) to mea-
sure overcrowding by taking into account the number of people inside the ED at different
intervals of time [132].
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The second approach uses statistical models to predict overcrowding or determine
factors associated with it or with the type of exiting from ED. In the literature there are
few papers using the statistical model approach to analyze overcrowding. A multivariate
logistic regression was used to predict hospital admission using factors easily obtainable
at the time of triage, to reduce the ED flow burden [24]. Sprivulis et al. [134] used the Cox
regression models was to determine the association between hospital and ED occupancy
and mortality after emergency admission. Harris et al.[67] used a parametric survival
model for the time spent in the ED from the first visit by a treating doctor to admission,
to analyze the association between the length of stay and bed access block factors. Others
approaches are based on linear regression [75, 45]; machine learning [77, 111] and time-
series forecasting [74, 26], to predict demand emergency services.

When accounting for more than one type of leaving from ED, a competing risks model
can be the best choice to model the length of stay (LoS). Unfortunately, the literature is
poor. Few papers considered a similar approach in ED’s overcrowding but the analy-
sis setting is limited to a single hospital. Some authors used an accelerated failure time
model to evaluate the dependence of ED LOS on relevant covariates, such as Age, Triage
acuity level, transfer, patient entity and arrival time, considering 3 final fates for ED pa-
tients: discharge, admission to the hospital, or expiring in the ED [28]. Others identified
predictors for LoS considering Death and Discharge as competing events in patients with
burn injuries, performing a cause-specific hazard analysis with burn size Age and inhala-
tion injury as covariates [137].

Piecewise exponential models was used to determine the risk of being dead, consid-
ering discharge as a competing event, in seriously injured or ill patients [32].

By using a competing risks model, this work focuses on detecting the determinants
of overcrowding at EDs, and on the identification of risk profiles that are at "risk" to be
discharged or hospitalized during LoS (in particular the so-called bottlenecks) according
to different accesses characteristics (input factors), especially the pathology assigned at
the ED and the role fo the season and the level of ED utilization. The knowledge of such
determinants and risk profiles can help the EDs’ management to act properly to reduce
overcrowding. We used the EMergenze - URgenze (EMUR) dataset, which includes the
accesses from 63 Sicilian EDs in 2019, to perform such analysis. Because we are in a multi-
centre setting, to take into account the unobserved heterogeneity due to the hospitals, a
frailty component is used.

The aim is to exploit the information on the pre-pandemic setting to provide “good”
quantitative information to the EDs’ heads and policymakers in order to develop pro-
cesses able to systematically address high ED volumes in a post Covid-19 pandemic
setting. Indeed, over the past two years, hospitals have faced difficulties brought by
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the SARS-CoV-2 pandemic, and its effects have provided a completely different setting,
which is beyond our scope.

The chapter is divided as follows: first, we introduce the definition of overcrowding,
the factor associated with it and the statistical methods used, in literature, to analyze the
overcrowding in ED. Section 4.2 includes the description of the data used to analyze over-
crowding in the sicilian EDs the EMUR database. In Section 4.3 details on the survival
methods, used to predict the risk of two event of interest (Discharge and Hospitalization),
are described followed by the results in section 4.4. The results obtained are discussed in
section 4.5.

4.2 Data

The EMUR database is a national informative system collecting data from EDs containing
information on all the accesses to the Italian EDs. This archive aims at monitoring all the
medical emergencies in the public hospitals to favor an effectiveness of the intervention,
as well as guaranteeing the continuity of care for the benefit of the patient.

Our database is the Sicilian 2019 EMUR consisting of 1,724,758 records coming from
63 Sicilian EDs. Each record is an access, so repeated accesses of the same patient can be
considered by a unique patient ID.

Each record includes information on the demographic characteristics of the patient
(age, gender) and several pieces of information connected to the access (e.g. time of
arrival, time of first visit and dismissal, urgency level according to the triage system,
Pathology, means of arrival).

Following official documents [52], we also divided the Sicilian EDs according to their
size (as in Table 4.1) which depends on the number of accesses in 2019. The most impor-
tant variable in this work is the pathology. Our hypothesis is that the risks of Discharge
and Hospitalization, once the patients are admitted, are different across pathologies, thus,
its knowledge can allow the EDs’ staff to predict patients exiting and to make policies ap-
propriately. In the EMUR database, the pathology is defined through the International
Classification of Diseases, Clinical Modification (ICD9-CM) coding system. Due to a large
number of different diagnosis codes, we aggregated, thanks to the indications of an ED
manager, the ICD9 codes appropriately into 9 macro-categories as in Table 4.2.
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TABLE 4.1: Number of Sicilian EDs by size.

EDs size # Accesses in 2019 # EDs

Biggest >40.000 12
Big - Medium 25.000-40.000 16
Small-Medium 10.000-25.000 18
Small <10.0000 18
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4.2.1 Data cleaning

In Italy, as in the rest of the World, there exist women’s and children’s Hospitals. We
did not consider such hospitals in our analysis because the aim is to compare similar
hospitals. We, therefore, excluded, a priori, all the accesses less than 15 years old. We
also restricted our analysis to multispeciality hospitals selecting the biggest sixteen EDs
(638,748 accesses in total) located in 7 Sicilian cities (Agrigento, Caltagirone, Catania,
Messina, Palermo, Siracusa, Vittoria). The EDs located in the other Sicilian little cities
are therefore excluded because of the lack of wards. Therefore, it is important to include
multispeciality hospitals to analyze the Length of Stay (LoS) in the EDs before transfer-
ring to an appropriate medical ward. Our sample is represented by 12 "Biggest" and 4
"Big-Medium" Hospitals (see Table 4.1). The included EDs are shown in Table 4.3.
Numerically, we excluded the following not appropriate records: 87,941 records with pa-

TABLE 4.3: Sicilian EDs included in the analysis.

EDs # Accesses

Ospedale San Giovanni di Dio (Agrigento) 32.022
Presidio Ospedaliero Gravina e Santo Pietro (Caltagirone) 25.188
Ospedale Garibaldi (Catania) 31.692
Ospedale Cannizzaro (Catania) 18.867
Presidio Ospedaliero Gaspare Rodolico (Catania) 26.374
Ospedale Vittorio Emanuele (Gela) 27.276
Policlinico Gaetano Martino (Messina) 18.687
Azienda Ospedaliera Papardo (Messina) 15.756
Ospedali Riuniti Villa Sofia- Cervello (Palermo) 14.870
A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli (Palermo) 36.355
Policlinico "Paolo Giaccone" (Palermo) 31.137
Ospedale Buccheri La Ferla (Palermo) 30.732
Presidio Villa Sofia (Palermo) 25.712
Ospedale Ingrassia (Palermo) 18.454
Ospedale Umberto I (Siracusa) 37.204
Ospedale Guzzardi (Vittoria) 19.807

Total 410.133

tients aged less than 15 years; 1,644 unidentifiable records; 2,194 repeated accesses within
4 hours.

Some Pathologies may be not useful to explain overcrowding because they represent
accesses that should be filtered by territorial services. Therefore, we considered them not
appropriated to be included in the analysis. We excluded 136.836 accesses coming from:
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-Mental disorders (ICD-9 [290-319]), diseases of the Nervous system and sense organs (ICD-
9 [320-389]). We found that these accesses (60.956 in total), in particular in the Health
Italian System, are rapidly discharged. They represent people who should not go directly
to the ED but consult the family doctor.

-Complications of Pregnancy, Childbirth, And the Puerperium (ICD-9 [630-679]), Congen-
ital Anomalies and Certain conditions originating in the perinatal period (ICD-9 [740-779]).
These accesses (42.816 in total) are rapidly Hospitalized, thus they rarely have prolonged
EDs LoS.

-Neoplasms (ICD-9 [140-239]). These accesses might be potentially effective on over-
crowding caused by prolonged LoS but they should go directly to the Oncology ward.
Furthermore, they represent the least frequent Pathology, at least in our data (2.224 ac-
cesses).

4.2.2 Description of the ED process

The admission steps at EDs are described as follows: the first step is the triage assign-
ment, which is a color assigned to each patient right after they access the ED, assigned
by the ED personnel, according to their severity conditions. The second step is repre-
sented by the time during which the patients wait in the Emergency room until they are
admitted to visit. We called this interval of time T1. The third step is the time interval
(T2) between the admission and the leaving from ED according to the decision of the
physicians. The patients, indeed, can be Hospitalized or Discharged after being visited.
The entire process in Figure 4.1 would recall the use of a multi-state model with the ad-
mission state as transient. We simplified the analysis considering the process with ED
admission as starting state and Discharge and Hospitalization as absorbing states, that,
with the time of interest T2 recalls the typical competing risks setting. Then, we deleted
the patients’ records ended up with deaths and leaves. Deaths were excluded because
they are rare (0.11%), while leaves, usually of two types "leave before treatment" and
"leave without being seen", because the leaving times were not recorded for both types.
The knowledge of the leaving times could allow us to consider an even more complicated
multi-state process that might be able to predict the leavings and the factors associated
with it.

4.3 Statistical Analysis

In order to identify the factors associated with two events of interest (Discharge and
Hospitalization), we first calculated the quartiles of LoS. Differences in the quartiles of
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FIGURE 4.1: Emergency department admission process.

Los among categories might provide useful descriptive information about overcrowding
to the ED’s heads.

Predicting the probability of Discharge or Hospitalization, once a patient was admit-
ted, is crucial to detect the so called bottlenecks which generate overcrowding[3]. We
therefore applied a competing risks model for the LoS. The Hazard ratios are estimated
using the cause-specific Hazard Function, as both outcomes are of interest.

To quantify the unobserved heterogeneity among EDs (the assumption is that each
Hospital effect the risk of Discharge or Hospitalization) we considered the frailty com-
peting risks model 1.12 described in section 1.2:

λijk(t|vi) = λ0k(t)exp(XT
ij βk + vik)

Where λijk(t|vi) is the cause-specific hazard function conditional for the jth observation
who failed from cause k (k = 1, 2) on the log-frailty vik (i.e. the random effect for type
event k and cluster i with i = 1, .., 16) and T the time spent from Admission to one of the
events (LoS).

To perform the competing risks frailty model avoiding large computational times, we
sampled sistematically 15.191 rows from the population of interest, one every 27 rows.

The estimation procedure was conducted under the framework of the H-likelihood
that allows to overcome the computational issues by using the marginal likelihood ap-
proach in presence of the frailty component [64]. Other possible approaches to estimate
the unobserved frailties, were proposed by Rueten et al.. [123] who used the EM algo-
rithm approach. In addition, such algorithm provides empirical Bayes estimates for each
center’s frailty.

Model estimation was performed by using the frailtyHL R package. On the basis of
the competing risks model we computed the predicted Cumulative Incidence Functions
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(CIFs) for each event of interest according to the most important covariates. Given that
this package does not include routines to compute the predicted CIF, we created the R
codes to compute them. (See Appendix C)

4.4 Results

Descriptive analysis of LoS

Accesses with prolonged length of stay are considered the most relevant in terms of over-
crowding. We therefore calculated the quartiles of LoS (measured in hours) at ED ac-
cording to several access characteristics (Table 4.4). A number of 410.133 accesses were
recorded in 16 Sicilian Hospitals in 2019 (76% Discharged and 24% Hospitalized). The
number of accesses included in the descriptive analysis is much greater than the sample
used for modelling purposes. When considering Discharge as outcome of interest, the
median LoS (time occurred from Admission to Discharge) was 1.88 hours. Females and
males have similar median LoS (1.97h vs 1.82h).The oldest patients stayed, in median,
3.28 hours. Pathologies with the highest median LoS before being discharged are Blood
related diseases (6.49h), Circulatory and Respiratory diseases (2.6 h), and Other Symp-
toms accesses (2.43h). Accesses occurred in Winter show the greatest LoS in median
(1.97). Accesses occurred in the first half of the week do not register large differences
with those occurred in the weekend (1.92h vs 1.87h) and those occurred from 06AM to
18PM are similar, in median, with those occurred from 18 PM to 06 AM (2.03h vs 1.83h).
People arrived at hospital autonomously show much lower median LoS than people ar-
rived through Ambulance (1.7h vs 3.15h). Repeated accesses have similar median time
of LoS of unique accesses (1.97h vs 1.83h).

When considering Hospitalization as outcome of interest, the median LoS (the time
occurred from Admission to Hospitalization) was 4.05 hours. Females stayed inside the
ED, in median, equal than males (4.02h vs 4.07h), Oldest patient stayed, in median,
5.35 hours. Pathologies with the highest median LoS before Hospitalization are Blood
diseases (6.53h) , Circulatory and Respiratory Diseases (5.15h) and Digestive Diseases
(4.08h). Accesses occurred in Winter show the greatest LoS in median (4.37). Accesses
occurred in the first half of the week do not register large differences with those occurred
in the weekend (4.13h vs 3.9h respectively) and those occurred from 06AM to 18PM are
longer of almost a hour, in median, with those occurred from 18PM to 06AM (4.5h vs
3.8h). People arrived at hospital autonomously show much lower median LoS than peo-
ple arrived through Ambulance (3.52h vs 5.12h). Repeated accesses show similar median
LoS with the respect to unique accesses (4.18h vs 3.92)
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TABLE 4.4: Quartiles of length of stay (hours) at ED, considering 16 Sicilian hospitals as a whole,
with respect to Discharge or Hospitalization as competing events, in 2019.

Discharge Hospitalization

p25 p50 p75 # of accesses p25 p50 p75 # of accesses

Gender
Male 0.72 1.82 3.62 158.893 1.82 4.07 12.68 51.103
Female 0.83 1.97 3.72 154.312 1.82 4.02 12.77 45.819

Age
<30 0.55 1.50 2.77 68.539 0.52 1.15 2.7 8.720
30-50 0.53 1.6 3.07 94.073 1.37 3 6.75 15.140
50-80 0.97 2.18 4.35 125.516 1.88 4.32 13.98 49.736
>80 1.62 3.28 7.58 25.083 2.38 5.35 20.03 23.326

Pathology
Inf_Dis 0.55 1.73 3.37 9.141 1.87 4.08 15.58 2.262
Blood_Dis 2.6 6.49 16.12 4.608 2.58 6.53 23.47 3.401
Circ&Resp_Dis 1.25 2.6 5.42 29.546 1.92 5.15 20.37 27.171
Dig_Dis 0.68 2.02 3.95 55.273 1.92 4.1 10.23 19.522
Skin&Musc_Dis 0.63 1.55 2.98 42.214 1.87 3.85 7.37 5.207
Other_Symp 1.2 2.43 4.48 85.094 1.82 3.68 8.93 22.836
Inj&Pois 0.47 1.33 2.52 87.335 1.52 3.22 10.5 16.523

Season
Winter 0.83 1.97 3.85 72.501 1.93 4.37 14.92 24.635
Spring 0.78 1.9 3.7 79.079 1.78 4.02 12.97 24.532
Summer 0.7 1.82 3.53 83.477 1.7 3.78 10.8 23.576
Fall 0.77 1.88 3.65 78.154 1.83 4.03 12.23 24.179

Weekdays
Mon - Thu 0.78 1.92 3.72 186.220 1.82 4.13 13.08 57.740
Fri - Sun 0.75 1.87 3.62 126.991 1.8 3.9 12.13 39.182

Arrival hour
06 am - 18 pm 0.83 2.03 3.88 103.846 2.08 4.5 9.35 30.142
18 pm - 06 am 0.73 1.83 3.55 209.365 1.72 3.8 14.42 66.780

Arrival Mode
Ambulance 1.6 3.15 6.93 51.334 2.25 5.12 18.42 39.469
Autonomous 0.65 1.7 3.27 261.877 1.55 3.52 9.07 57.453

Repeated Access
No 0.75 1.83 3.52 172.509 1.77 3.92 12.43 50.760
Yes 0.78 1.97 3.9 140.702 1.87 4.18 13.02 46.162

total 0.77 1.88 3.67 313.211 1.82 4.05 12.72 96.922
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Even though Triage is known in the literature to be associated with LoS [65, 51], we
decided, looking at the data, to not include such a variable as a covariate in the competing
risks frailty model. Our choice depends on the different criteria hospitals assign such a
code to patients. In other words, there is too much variability, among Hospitals, on the
conditional probability of Hospitalization and Discharge according to the Triage levels
(see details in Table 4.5).
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4.4.1 Competing risks frailty model estimates

Table 4.6 provides the hazard ratios estimated by the cause-specific competing risk frailty
model. Risk factors associated with Discharge and Hospitalization regard patient level
covariates (Pathology, Age, Arrival mode), and ED-level covariates (Season, Arrival hour
and Repeated Access).

In a cause-specific hazard framework, interpretation of the model coefficients (or in
terms of hazard ratios) relies just on the sign and does not reflect a direct magnitude on
the cumulative incidence function.

In our analysis the most important information, useful to predict the LoS, are pro-
vided by the pathology. The other covariates included in the model can be considered as
correction factors for the pathologies. Among them, accesses with Skin & Musculoskele-
tal diseases have the highest risk of Discharge (HR [Skin&Musc_Dis] = 1.88) while ac-
cesses with Circulatory & Respiratory Diseases and Digestive Diseases have the highest
risk of Hospitalization (HR [Circ&RespDis] = 1.48, HR[Dig_Dis]= 1.26). Risk factor as
Age (0.99), Arrival Mode (HR [Ambulance]=0.5) , accesses occurred between 06 AM to
18 PM (HR = 0.98) and accesses of frequent users (HR = 0.93) are related with Discharge
Correction factors associated with risk of Hospitalization are Age (HR=1.002) accesses
occurred between 06 AM to 18 PM (HR = 0.91), and arrival mode (HR = 1.11).
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4.4.2 Predicted Cumulative Incidence Functions.

The cumulative incidence functions were predicted from the competing risks frailty model
in order to obtain the probability, during the LoS, of being Discharged or Hospitalized.
We used as a stratification factor the pathology, which represents, in our data, the most
important variable affecting overcrowding. While the others covariates values are fixed
at the baseline category values. Given that the statistical framework concerns the pres-
ence of a hospital effect in our model, we provide the predicted CIFs of a hospital median
effect in Figure 4.2, that is the CIFs computed without considering any random effect
(νik = 0).

FIGURE 4.2: CIFs by pathology, predicted from the cause specific model, with respect to the length
of stay at ED of a hospital median effect and two competing events: discharge and hospitalization.

Pathologies with lower probability of discharge could affect more overcrowding. On
the other side, pathologies with higher probability of Hospitalization could affect more
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the overcrowding. It’s also important to consider which pathologies have prolonged
times. This can be assessed looking at the rapidity by which the CIF reaches its maximum.

Even though there is no direct relationship between model coefficient and predicted
CIF in such a context, the behaviour of the latter seems to confirm what obtained in the
model estimation. In terms of crude probability pathologies such as Skin&Musc_Dis,
Other_Symp and Dig_Dis are the highest CIFs for Discharge, while Circ&Resp_Dis and
Blood_Dis and Dig_Dis are the highest CIFs for Hospitalization.

Moreover, pathologies such as Circ&Resp_Dis and Blood_Dis have prolonged times,
either for Discharge and Hospitalization, with the respect to the others. This could sug-
gest that these access categories stayed more inside the ED before taking any decision.

The CIFs for any centre effect, fixing a pathology, provide information either on un-
observed heterogeneity and on the comparison among hospitals in terms of probability
of being discharge and hospitalized for a specific profile. Figure 4.3 shows the CIFs for
accesses with Blood Diseases according to the minimum and maximum centre effect.
The huge distance between the CIFs computed at the minimum and maximum centre
effect suggests the presence of heterogeneity, in particular in case of Hospitalization (the
probability of being Hospitalized at 48h, since admission, of the largest centre effect ED
is 0.5, while of the lowest centre effect ED is 0.2). Instead, concerning the Discharge, the
CIFs computed the minimum and maximum centre effect appear closer (respectively 0.59
against 0.64 at 48h since admission).

4.4.3 Testing the unobserved heterogeneity

The test on the frailty parameter, was used to determine whether it needs to be included
in the model or not. We performed the test graphically, computing the 95% Confidence
intervals for each random effect and checked if they included the 0, and empirically,
based on the null mixture χ2

1,0.1 distribution [64]. Figure 4.4 shows the random effects
estimates and their CI 95% according to Discharge and Hospitalization.

In both events of interest, 9 random effects significantly diverge from 0. Investigating
the characteristics of the Hospitals with significant random effects could detect part of
the source of the unobserved heterogeneity. In such a context, apparently, those hospitals
do not present any peculiar characteristics.

The graphical test is not sufficient to determine if the frailty component is statistically
significant. Given that the value of the statistics χ2

1,0.1 is equal to 1,275.785, we can con-
clude that the frailty component in the model is needed (p-value <0.001 at 5% significance
level).
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FIGURE 4.3: CIFs by minimum (dashed lines) and maximum (solid lines) centre effect, predicted
from the competing risks frailty model, considering accesses with Blood Diseases (Blood_Dis)
computed for discharge (red lines) and hospitalization (black lines).

4.5 Discussion

Overcrowding in emergency department is a multi-factorial phenomenon. For this rea-
son, there is no complete agreement on what determines the overcrowding in literature.
Several authors tried to identify the causes of overcrowding analyzing different aspects
of the process.

This work focused on the identification of the factors associated with the risk of Dis-
charge and Hospitalization in order to identify the so-called bottlenecks. We used a com-
peting risks analysis including 7 pathologies (made by aggregating ICD-9 codes appro-
priately) as covariates and correction factors such as Age, time of arrival at ED, season
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FIGURE 4.4: Centres effect estimates and CI 95% extracted from the Cause-specific frailty model
according to the event of interests (Discharge and Hospitalization).
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and type of arrival and repeated accesses.
The main assumption is that, among 16 hospital in Sicily, there is an amount of het-

erogeneity that cannot be observed. To assess for this amount we add an extra frailty
component in the competing risks model.

We found that the pathology is an important factor affecting overcrowding. We are
able to detect which pathologies have prolonged LoS with the respect to two endpoints:
Discharge and Hospitalization (we didn’t consider the Death because is a rare event);
moreover, other factors, such Age and arrival mode and repeated accesses are associated
with their risk occurrence. Despite the definition of a frequent user in the literature is still
not clear [81], some papers [66, 88] defined them as patients who have made four or more
visits during the previous 12 months. Repeated accesses, in this work, were defined as
such if at least the second access occurred later than 4 hours from the first and before the
end of the year 2019, thus, following one of the definitions provided in the literature for
the repeated accesses could improve the competing risks model performance.

The estimated hazard ratios (HRs) provide further information to the ED’s heads, in-
dicating whether that characteristic affects positively or negatively the risk occurrence of
the event. In particular, accesses with higher risk of Discharge or higher risk of Hospital-
ization should improve the ED management process (increasing the number of available
beds in that specific ward, the number of medical personnel, ICU capacity, arranging
admission or Discharge immediately after valuation or developing disease-specific pro-
tocols[28]).

In general, the information provided by the model coefficients (Table 4.6), predicted
CIFs (Figure 4.2) and random effects estimates (Figure 4.4) should allow ED’s heads to
conduct appropriate policy making.

This work has several limitations. The competing risks framework allows to estimate
the cause-specific hazards considering an initial state (Admission in ED) and more than
one absorbing state (Discharge and Hospitalization). A multi-state model would consider
the entire process inside ED considering admission as intermediate state and the Triage
as initial (like in Figure 4.1).

Due to large computational times, we reduced the sample size to 410.133 to 15.191
extracted from 16 EDs out of 63 to consider only multi-speciality hospitals. Using a mod-
eling approach allowing to exploit more data could improve the estimates precision and
the predictive performance of the competing risks model, even though we found that the
estimation procedure implemented in the frailtyHL R package requires larger computa-
tional times anyway. Finally, some important factors, assumed to be useful to analyze
overcrowding, were not included in the EMUR dataset (for example the number of beds
inside the wards).
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The cause-specific model is useful to identify the factors associated with the occur-
rence of the events of interest, but there is no direct relationship between the model
coefficient and a "direct" effect on the CIFs. Thus, in a situation where the aim is the
prediction, estimating the sub-distribution hazard can be preferred.

Even if the statistical methodology used is valid in helping physicians to detect bottle-
necks inside ED, the data used in this work do not represent the actual ED’s dynamics. In
one hand, using ED data during Covid-19 pandemic could be not useful to identify fac-
tors associated with Discharge and Hospitalization. Early reports from different coun-
tries suggested that, as the number of persons hospitalized with COVID-19 increased,
sharp drops in the numbers of persons seeking emergency medical care for other reasons,
[103]. On the other hand, we may face Covid-19 pandemic affection on overcrowding in
ED still in future.

4.6 Conclusions

Overcrowding in ED is a worldwide issue. With the spread of Covid-19 pandemic, this
issue becomes even more cumbersome to face. Our results aim to help ED’s managers to
act properly to reduce overcrowding, identifying the characteristics of bottlenecks.

Our findings provide quantitative and timely information to the EDs in order to an-
alyze the bottlenecks causing overcrowding. An important risk factor for overcrowding
is the pathology, as the CIFs associated to the seven ICD-9 macro categories show very
different patterns.

From a statistical point of view we believe that competing risks analysis is a valid tool
to describe the process and to predict LoS starting from admission in ED. The reduction
to a small sample size, due to large computational times, suggests further research on the
identification of statistical tools able to address for more data in reasonable computational
times.
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Chapter 5

Vertical Model in presence of random
effects using R-INLA: an alternative
approach to the competing risks
frailty model

5.1 Introduction

Vertical model is considered a valid alternative to the competing risks approach. The
focus is on the joint probability of time to failure T and the cause of failure D (denoted
as P(T, D)). These two components are observed, namely relative hazard and overall
hazard, and can be easily estimated through a multinomial regression model and a cox
proportional hazard model when accounting for covariates.

The Vertical Model has been implemented as an alternative to the competing risks
model especially when the proportionality assumption is relaxed[97] or in presence of
a missing cause of failure [98]. In this work, we extended the standard Vertical Model
including a random component (Vi, Ui) inside the model to take into account the unob-
served heterogeneity that can arise in presence of clustered data. We used the EMUR
(EMergenze-URgenze) database, which includes Emergency Department accesses from
63 Sicilian EDs, to analyze the risk of being Hospitalized or Discharged during the Length
of Stay (LoS), once admitted to Hospital, in a multi-center setting.

Assuming a correlation degree between the couple (Vi, Ui) we considered a JVMM.
The value of (Vi, Ui) can provide insights from a single Hospital point of view. Moreover,
the correlation coefficient of (Vi, Ui) provides information from a multicentre perspective.
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Due to the large computational times, that occurred considering a frequentist ap-
proach, we decided to implement a JVMM using R-INLA, which uses a Bayesian ap-
proach to approximate the posterior distribution of the hyperparameters.

In the last decades, interest in approaching the frailty models from a Bayesian point of
view has grown. The first discussion on frailty model with Bayesian inference date back
to 1991 [33]. More recently, several papers introduced the frailty competing risks model
with a Bayesian approach. To carry out such analysis, the specification of a prior distri-
bution for the vector of parameters is needed to get the posterior distribution through
the observed data, expressed by the likelihood function. Due to the complexity of the
frailty model likelihood, obtaining the posterior distribution is not simple. Zhang et.al.
[161] developed a Gibbs sampling algorithm to sample from the posterior distribution, in
order to carry out posterior inference. A similar approach has been conducted by other
authors to estimate the posterior probability of dying from gastroenterological diseases
in different Iranian regions [68]. In the Bayesian setting, interest has grown in applying
INLA (Integrated Nested Laplace Approximation) in the last five years on censored data.
Such an approach is based on the INLA methodology developed by Rue et al. [121], and
provides computational efficiency by using sparse representations of high dimensional
matrices used in latent Gaussian models (LGM). The main advantage of using INLA is
represented by the lower computational times to obtain the posterior distribution of the
parameters. Indeed, the Laplace approximation is used to approximate the intractable
joint posterior density that can arise in case of non-Gaussian likelihood. Recently, INLA
has been hugely used to estimate survival joint models, as a fast and efficient alternative
to Markov Chain Montecarlo (MCMC) approach, to account for multivariate longitudinal
outcomes and competing risks.

We applied the JVMM using the inla function from R-INLA package to approximate
the posterior distribution of the parameters (such as the pathology) and the correlation
coefficient ρui ,vi among 63 Sicilian hospitals.

To date, this is the first attempt at dealing with Vertical Model using INLA. As a
matter of fact, INLA is applied more to estimations of joint models for longitudinal and
survival parts [90, 122, 120, 141]. Within the realm of joint longitudinal-survival mod-
els, users have a choice of various computational approaches. The joineR library in R
is widely used to fit joint models from a frequentist point of view whereas the JMBayes
library facilitates Bayesian estimation of joint models. The joineR library can even acco-
modate competing events in the survival submodel. Others used R-INLA to deal with
joint competing risks model [100]. In terms of partially linear joint models the JointModel
library was developed to fit non-linear covariate effects in the longitudinal submodel us-
ing B-splines with a sieve approximation. The bamlss library can also be used to fit a
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partially linear joint model using a Markov Chain Monte Carlo (MCMC) approach.

5.2 Data and computational issues

The data used come from the EMUR (EMergenze-URgenze) database (see section 4.2 for a
brief description of the data). Differently from chapter 4, we included all 63 Sicilian Hos-
pitals in our analysis. This chapter has different aims: first, we wanted to assess whether
a correlation degree of the couple of random effects (Vi, Ui), included inside the Vertical
Model, is present among hospitals, even if they have different characteristics (in terms of
number of accesses, age or location). Second, we wanted to overcome the computational
issues faced by implementing a frailty competing risks model (we reduced the sample
size to around 10.000 of accesses coming from 16 EDs. See chapter 4 for more details. We
first tried to compute a separate Vertical model including all the accesses in 2019 in Sicily
but we faced large computational times (the Logit Mixed Model for the relative hazard
took 72 hours to run with more than 1 million of rows). We, therefore, sampled system-
atically 154.055 accesses from the population of interest (k=8). We excluded 18.307 not
appropriate accesses (17.194 accesses with Mental Disorders and 393 with Neoplasms).

To implement the JVMM we estimated separately the relative and overall hazard us-
ing, respectively, the glmer R function from lme4 (the estimation of the relative hazard for
Hospitalization took 2 hours) and the coxme R function from coxme (the frailty cox model
took a few minutes to run).

To reduce again the computational time we considered a bayesian approach, based on
INLA, which approximates the posterior distribution of the parameter (the JVMM using
the inla routine from R-INLA package took 20 minutes).

5.3 Results from the separate Vertical Mixed Model

As explained in section 1.2.4, the SVMM can be performed assuming no correlation be-
tween the random effects (Vi, Ui), that is the random effects included in the two sub-
models (1.28 and 1.29). Such a model was already implemented, without considering a
random component, either as an alternative to the standard competing risk model [97],
especially when the proportionality assumption of the risks doesn’t hold, and as a valid
approach when missing cause of failures occurred [98].

The following results come from the estimation of the SVMM using a sample of
135.748 accesses from 63 Sicilian EDs to determine the probability of being Hospitalized
(or Discharged) during the LoS once the patients are admitted to Hospital (see Figure
4.1). The model included the pathology, consisting of seven different macro-diagnoses
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identified aggregating the ICD9 codes appropriately (see Table 4.2), the age and the ar-
rival mode of the patients (by ambulance or by themselves) at the ED, as covariates. The
latter represent correction factors for the pathology.

As we assumed that the effect of each pathology on the probability of being hospi-
talized (or discharged) is different during LoS, we included an interaction term between
a smoothed function of LoS and the pathology in the model for the relative hazards. In
particular, we’ve chosen a cubic spline with 5 knots that interpolates the relative hazard
at the 5 quantiles of LoS (1%, 10%, 50%, 90% and 99%). The choice of the quantiles de-
pends on the fact that the greatest part of the events occurred 1 hour until experience
one of the events. Furthermore, we decided to include 5 knots to avoid computational
increased times.

TABLE 5.1: Fixed coefficient estimates from the separated Vertical Mixed Model.

Relative hazard estimates Overall hazard estimates

lower (95%) OR upper (95%) lower (95%) HR upper (95%)
Intercept 0,53 0,69 0,90
Digestive Diseases 0,25 0,34 0,46 1,01 1,04 1,06
Infectious 0,21 0,35 0,58 0,97 1,01 1,05
Skin 0,05 0,08 0,12 1,60 1,65 1,69
Blood 0,33 0,87 2,32 0,71 0,74 0,78
Other_Symptoms 0,25 0,33 0,43 0,99 1,01 1,03
Injuries 0,08 0,10 0,14 1,53 1,56 1,59

Age 1,013 1,014 1,015 0,989 0,989 0,989

Arrival mode 2,56 2,65 2,75 0,64 0,65 0,66

For reason of an easier interpretation, we show, in Table 5.1, the fixed coefficient es-
timates, and their confidence interval at 95% significance level, of the SVMM with Hos-
pitalization as event of interest. Concerning the pathology, Circulatory and Respiratory
accesses (which is in the model the baseline characteristic) seem to have the highest prob-
ability of being hospitalized given admission to Hospital (all the other pathology’s Odds
Ratios are lower than 1). Accesses with Skin Diseases have the lowest probability of
hospitalization (92% less than Circulatory and Respiratory). Furthermore, the older the
patients the higher the probability of being hospitalized (1.4% per year), and accesses ar-
rived through ambulance have higher probability of hospitalization (more than 2.5 times
the accesses arrived by own means).

Further information can be provided by the overall hazard beta estimates. For exam-
ple, accesses with skin diseases are the most likely to be admitted to Hospital (HR = 1.65),
which also means to experience one of the events; on the contrary, accesses with blood
diseases are the least likely to be admitted to Hospital (HR=0.74).
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FIGURE 5.1: Predicted probability of being hospitalized given being admitted to Hospital during
LoS, or relative hazards (left) and survival probability of being admitted to hospital, or overall
hazard (right), according to pathology.

On the basis of the SVMM, the predicted relative hazard and the overall survival
probability (obtained from the overall hazard function), for each pathology, can be com-
puted (see Figure 5.1). From an interpretational point of view, the relative hazard and
overall survival are complementary. In particular, the first (left panel in Figure 5.1) de-
scribes the behavior of the probability of being hospitalized, given being admitted to
Hospital, during LoS, and the second, either in terms of a hazard or survival scale (right
panel in Figure 5.1), describes, somehow, the intensity of the relative hazard during LoS
(that is how many accesses remain at risk at a specific LoS time and how many are ex-
pired).

In such a context the overall survival probability is the same across pathologies with
low median time (2 hours of LoS). This means that the 50% of accesses, whatever the
pathology, are admitted to hospital since 2 hours of LoS. Going vertically to the relative
hazard, a huge amount of those accesses are hospitalized (described by the big jumps of
the smoothed curves in the first minutes of LoS). In ED’s terms, those accesses should be
the least severe and the decision to discharge them is immediate. On the contrary, the
most severe accesses need to be visited, increasing the LoS and the probability of being
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hospitalized. This is true for almost all the pathologies included in the model. Some
of them, instead, show a sinusoidal pattern (Blood diseases and Symptoms). Table 5.2
shows the relative hazard value for the selected quantiles of LoS.

TABLE 5.2: relative hazard according to quantiles of LoS by pathology.

quantiles of LoS (hours)

0,02 0,12 1,92 9,13 35,25

Circ & Resp 0,51 0,13 0,25 0,36 0,5
Digestive Diseases 0,29 0,15 0,16 0,29 0,43
Infectious 0,08 0,02 0,04 0,15 0,28
Skin 0,29 0,14 0,1 0,18 0,32
Blood 0,53 0,48 0,33 0,26 0,37
Other_Symptoms 0,28 0,12 0,12 0,15 0,39
Injuries 0,11 0,05 0,08 0,18 0,33

As mentioned in section 1.2.4, the cause-specific hazard can be computed by the re-
versal of πj =

λj
λ.

, thus the Cumulative Incidence Function (CIF) can be obtained as the
product between the cause-specific hazard and the overall survival. Figure 5.2 compares
the "median effect" CIFs by pathology according to Hospitalization and Discharge. The
CIFs confirm that the great part of the accesses experiment an event in the first hours
(the CIFs are flat after 10 hours of LoS). Comparing the CIFs by the different pathologies,
we can state that accesses with Blood and Circulatory and Respiratory diseases have the
highest probabilities of being hospitalized and lowest of being discharged. Finally, it
seems, from a graphical point of view, that the CIFs are proportional, in contrast to those
obtained in 4, Figure 4.2, highlighting one of the advantages of using the Vertical Model.

The couple of random effects (Vi, Ui) estimated from the SVMM are shown in Figure
5.3. The scatterplot, which includes each Hospital effect on the two sub-models, confirms
that the Vertical model is under an uncorrelation assumption between the random effects
(ρ = 0.09). This assumption is confirmed by a non deterministic pattern of the couple of
random effects inside the scatterplot as well.

The interpretation of each Hospital effect is not straightforward. For a single Hospi-
tal, negative values for both (Vi, Ui) would mean that the Hospital experiences one of the
possible event slowly (given by a lower overall hazard) with a lower probability of hos-
pitalization (given by a lower relative hazard). On the contrary, positive values for both
(Vi, Ui) would mean that the Hospital experiences quickly one of the events (meaning
a higher overall hazard), with a higher probability of hospitalization (meaning a higher
relative hazard).
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FIGURE 5.2: Cumulative incidence function by pathology predicted by the SVMM.

5.4 Results from the JVMM using R-INLA

Differently from section 5.3, we estimated a JVMM assuming a correlation degree be-
tween the random effects (Vi, Ui) included in the two sub-models. To do that, we con-
sidered the model as a LGM (See section 1.2.4). The binomial distribution was chosen to
model the probability of being hospitalized given admission to Hospital (relative hazard
in the Vertical Model), the log-normal distribution for the survival times (overall hazard
in the Vertical Model). The latter is implemented in R-INLA package under the paramet-
ric hazard function assumption. We chose a non-informative prior distribution (Wishart)
for the precision matrix hyperparameters (See Appendix D for more details about the
prior distributions considered in the model). In terms of covariates included, the JVMM
is identical to its separate version in section 5.3. We again considered to include the in-
teraction term between the pathology and a smoothed function of LoS in the relative
hazard’s sub-model. In this case we have chosen different quantile knots (that are 1%,
16%, 33%, 50% 66% and 88%) because those used in the separate VM provided to much
large standard errors.

Table 5.3 includes the fixed effects coefficients (either for the relative and the overall
hazard) estimated by INLA.
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FIGURE 5.3: Scatterplot of the random effects (Vi, Ui) from the SVMM.

TABLE 5.3: Estimate coefficients of the Joint Vertical Mixed Model by INLA.

Relative hazard estimates Overall hazard estimates

0,025 q mean 0,975 q 0,025 q mean 0,975 q
Intercept 0,14 0,17 0,21 0,57 0,73 0,93

Digestive Diseases 0,63 0,75 0,89 0,93 0,97 1
Infectious 0,53 0,72 0,96 0,88 0,93 0,98
Skin 0,10 0,14 0,18 0,51 0,53 0,55
Blood 1,95 3,06 4,81 1,61 1,73 1,86
Other_Symptoms 0,53 0,62 0,72 1,05 1,08 1,11
Injuries 0,21 0,25 0,29 0,58 0,59 0,61

Age 2,54 2,64 2,73 1,94 1,99 2,03

Arrival mode 1,01 1,01 1,02 1,02 1,02 1,02
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As noticed, the model returns the posterior distribution for each parameter included
in the model, that is the mean (or the mode) and the credible interval quantiles (0,025
and 0,975) of the distribution. The mean of the posterior distribution can be compared
with the estimates of the separate Vertical Model in Table 5.1. It is noticed that INLA
provides quite different OR and HR coefficients than the previous method. For example,
in terms of relative hazard accesses with blood diseases have 3 times the probability of
being hospitalized than the reference category (0.87 in the separate VM). Coefficient dif-
ferences between the two methods are present also in terms of overall hazards. Again,
INLA estimated an overall hazard mean for Blood diseases accesses of 1.73 against 0.73
in the SVMM.

As already stated, INLA approximate the posterior distribution of the model param-
eters and hyperparameters.That is why we need to explore such a distribution to get
summary statistics of the parameters. Figure 5.4 shows the posterior distribution, with
the credible interval indicated by the blue line), of Digestive diseases in both sub-models.
The negative sign in both sub-models indicates that those accesses have a lower risk of
being admitted to Hospital and a higher probability to be hospitalized than the reference
category (represented by Circulatory and Respiratory diseases).
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FIGURE 5.4: Posterior distribution of digestive disease parameter for the GLMM model part (left)
and the Survival model part (right).

The relative and overall hazard according to pathology predicted by INLA are shown
in Figure 5.5. The biggest difference with 5.1 relies on a general lower probability of
hospitalization given admission to Hospital ,over LoS, for all the pathologies, and on the
fact that patholgies have different overall survival probabilities. For example, accesses
with skin related diseases have the lowest probability of hospitalization and the highest



92 CHAPTER 5. VERTICAL MODEL IN PRESENCE OF RANDOM EFFECT

probability of survive to admission to Hospital. From a ED’s point of view, these accesses
experience prolonged times inside the Emergency Room before admission to Hospital, to
be, then, discharged with high probability.
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FIGURE 5.5: Predicted probability of being hospitalized given being admitted to Hospital during
LoS, or relative hazards (left) and survival probability of being admitted to hospital, or overall
hazard (right), according to pathology.

The CIFs shown in Figure 5.6 describe a different pattern than its separate version
(Figure 5.2). Apparently, hospitalized accesses have lower LoS after admission to Hospi-
tal than discharges. Skin diseases related accesses confirm to have the lowest probability
of hospitalization and the highest of discharge; while, on the contrary, Blood diseases
confirm to have the highest probability of hospitalization. Differently from Figure 5.6,
accesses with Circulatory and Respiratory diseases are not among the pathologies with
the highest hospitalization probabilities during LoS.

As expected, the posterior distribution of ρ̃uivi , shown in Figure 5.7, is asymmetric
and the credible interval lies in the negative realm (the posterior distribution mean is -
0.84 (credible interval = [-0.92;-0.63]), meaning that negative centre effects in the binomial
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FIGURE 5.6: Cumulative incidence function by pathology predicted by the JVMM.
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part tend to have positive frailty in the survival one or that positive centre effects in the
binomial part tend to have a negative frailty.
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FIGURE 5.7: Posterior distribution of the Rho parameter estimated by INLA.

Figure 5.8 shows the scatterplot of the couple of random effects (Vi, Ui) estimated by
INLA. It is noticed that there is a negative relationships between the random binomial
part and its survival counterpart, confirming the negative value of ρvi ,ui . This means that
in hospitals with negative frailty the admission in Hospital occurs quickly and they are
more likely to hospitalize (due to a positive random effects in the binomial part) and
means that in hospitals with negative frailty the admission in Hospital occurs slowly
with a corresponding lower probability of hospitalization.

5.5 Discussion

We have proposed a novel approach for conducting competing risks analysis that in-
corporates a random component to account for unobserved heterogeneity. The frailty
competing risks model, commonly used for this purpose, can be computationally de-
manding, requiring either an EM-algorithm [123] or maximizing the H-likelihood [64].
However, the extended time needed to compute this model motivated us to seek a faster
alternative that can handle larger datasets. Thus, we developed the Vertical model, which
offers improved computational efficiency and scalability to accommodate more data. In
general, the Vertical model is particularly useful when missing cause of failure occurs
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or when the proportionality assumption has to be relaxed. We applied a Vertical Model
which accommodates for a random component using Sicilian EDs’ accesses, included in
the EMUR database, to predict the probability of being Hospitalized vertically by predict-
ing, first, the risk of being admitted to Hospital. The random component is represented
by the 63 Sicilian Hospitals.

Two ways to compute a Vertical mixed model are proposed. First, the SVMM, assum-
ing that the two random variables, one for each sub-model, are not related. To perform
a SVMM, a model for the relative hazard (a GLMM with a binomial response) and for
the overall hazard (a frailty Survival regression model considering the events of interest
as one) are necessary. We first tried to perform such a model with all the rows included
in the EMUR database but the GLMM took 3 days to run. We then decreased the sam-
ple size to 135.748 rows sistematically extracted from the population. This model took
around 2 hours to run.

Second, the JVMM, assuming a correlation degree between the couple (Vi, Ui). We
proposed a fast Bayesian-based approximation approach to estimate the hyperparame-
ters of the joint likelihood (composed by a binomial part and a survival one) using R-
INLA. INLA took around 20 minutes to obtain the parameter posterior distributions.

From a comparison point of view between the SVMM and the JVMM, the results may
change because of some differences: first, the survival sub-models are different. While
we used a semi-parametric frailty model performed by the coxme routine in the coxme R-
package in the SVMM Vertical Mixed Model we considered a parametric survival model,
in the JVMM, assuming a lognormal distribution for the time of interest. We tried to
perform a semi-parametric survival model but the inla routine from R-INLA crashed.

Second, given INLA provided large standard errors including the same knots to con-
struct the splines as in the SVMM, we considered different spline knots in the JVMM.

Third, the two model estimation procedures are different. In particular, in order to
obtain the parameter estimates in a SVMM, maximizing the two sub-model likelihoods
independently is needed. On the contrary, the implementation of a JVMM involves an
approximation of the posterior hyper-parameters distribution, considering a joint likeli-
hood and a prior distribution.

Thus, the fact that the two models’ estimates are quite different should not be sur-
prising (See Table 5.1 and 5.3). The differences in the beta coefficients are reflected in the
predicted quantities we computed on the basis of the two models. In particular, accesses
with Circulatory and Respiratory Diseases have the highest probability of Hospitaliza-
tion given being admitted to Hospital (see Figure 5.1 and one of the highest CIF among
the other pathologies (see Figure 5.2) in the SVMM. The same does not hold in the JVMM
(See Figure 5.5 and 5.6). This mismatch between the two models must be further assessed.



5.6. Conclusions 97

The estimation of ρvi ,ui is crucial. From a statistical point of view, it represents the
degree of correlation between the two sub-models. From a healthcare point of view, it
provides key information about the centers. In particular, we estimated a negative ρvi ,ui

meaning that hospitals, which admit to Hospital quickly, tend to hospitalize less likely
and that hospitals, which admit to Hospital slowly, tend to hospitalize more likely. Even
though the results are attractive, care needs to be done when dealing with INLA, which
is often defined as a black box [89]. That is why a simulation study would be helpful
to verify the goodness of the model. Further analysis would also regard the presence of
association between the value of the couple (Vi, Ui) and some specific type of hospital
(in terms of size, number of available beds, and location). Moreover, the knowledge of
(Vi, Ui) for the single hospital could be used for comparison purposes with the others.

5.6 Conclusions

The Vertical Model is a useful tool that can be used alternatively to the "standard" compet-
ing risks approach, depending on the research aim. When accounting for random effects
and a large sample size, the Joint Vertical Mixed Model using INLA represents a fast al-
ternative to the well-known competing risks frailty models, even though it is based on
an approximation approach. In order to understand the performance of INLA with the
respect to the maximizing likelihood approaches, further analysis should be employed.

The estimation of ρvi ,ui represents the main result of this work. Using the Sicilian EDs
database we found a negative value of ρvi ,ui but care needs to be done about the goodness
of the model performed with R-INLA. Finally, applying the JVMM to data coming from
other Italian regions or even from another European country could provide more insights
on the phenomenon.
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Conclusions

This work focuses on the application of competing risks models in healthcare and clinical
data analysis. These models extend the classical survival analysis approach by consid-
ering studies where more than one event of interest may occur. We discuss three ap-
proaches to competing risks modeling: cause-specific, sub-distribution hazard model,
and Vertical model. While there have been debates in the literature about which ap-
proach is best, it is now commonly accepted that the choice of approach should depend
on the research goals and objectives. The first approach is a direct extension of the Cox
regression model, where subjects who do not experience the event of interest are consid-
ered censored. This method is more suitable for investigating the association between
risk factors and the occurrence of outcomes. The second approach involves an unnatural
construction of the risk set and is more appropriate for prediction purposes, as there is a
one-to-one relationship between the estimated coefficients and CIF. The third approach
is an alternative to the first two models, used particularly when the proportionality as-
sumption is violated or when there are missing causes of failures. The latter approach
is known as the Vertical model. In addition to the three main approaches to competing
risks modeling, this work also introduced a distinction between the "standard" and "ex-
tended" competing risks models.The standard model adjusts only for fixed effects, while
the extended model incorporates a random component to appropriately account for un-
observed heterogeneity, particularly in multi-center studies.

The first two chapters of this work (Chapter 2 and Chapter 3) focused on applications
of the standard competing risks model, while Chapters ?? and ?? discussed extensions of
the model.

In Chapter 2, we presented a Fine and Gray model to identify the risk profiles for
in-hospital mortality in COVID-19 patients, considering discharge as a competing event.
The analysis was based on data from a center located in Lombardy, the first Italian region
to face the pandemic emergency.

The results of the study have significant implications for clinical decision-making in
the management of COVID-19 patients. By identifying the factors associated with in-
hospital mortality, our findings can support clinicians in identifying patients at higher
risk of adverse outcomes and tailoring their treatment accordingly.
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Moreover, our study sheds light on the effectiveness of certain treatments, such as
hydroxychloroquine, during the early stages of the pandemic when vaccines were not
yet available. This information can inform future treatment protocols and help clinicians
make evidence-based decisions in the management of COVID-19 patients.

Overall, our study highlights the importance of applying competing risks models to
healthcare data to improve our understanding of complex clinical outcomes and inform
evidence-based decision-making in clinical practice.

Chapter 3 represents a continuation of the work described in chapter 2, where we
investigated the risk factors associated with in-hospital mortality in COVID-19 patients
using data from a single center in Lombardy. In chapter 3, we expanded our analysis to
include data from three centers, two located in Lombardy and one in Latium.

Using a Fine and Gray model, we developed a prediction rule for in-hospital mor-
tality based on factors easily obtainable at admission. We validated the prediction rule
using an external cohort from a hospital located in Latium. Furthermore, we developed
a web application based on a prediction rule, which can support clinicians and hospital
managers in predicting in-hospital mortality in different clinical contexts during the first
wave of the COVID-19 pandemic.

Our work in chapter 3 represents an important step forward in the application of com-
peting risks models to healthcare data. By developing a prediction rule for in-hospital
mortality in COVID-19 patients, we can assist clinicians in making evidence-based deci-
sions and allocate resources more efficiently in the management of the pandemic.

In chapter 4, we applied a cause-specific frailty model to investigate the overcrowd-
ing issue in 16 emergency departments (EDs) in Sicily. Our analysis showed that the type
of diagnosis or pathology, classified into 7 macro categories, is significantly associated
with the risk of hospitalization and discharge. Specifically, we found that patients with
circulatory, respiratory, and blood diseases had the highest risk of hospitalization during
their length of stay (LoS) and the lowest risk of discharge. These findings, adjusted for
covariates such as age, time of arrival, arrival mode, and repeated accesses, provide valu-
able insights for ED managers to allocate resources effectively and reduce overcrowding.
However, due to the large computational time required, we had to reduce the sample size
from 410,133 to 15,191 accesses. Addressing this issue by developing statistical models
with shorter computational times remains a problem.

In chapter 5, we introduced a novel approach called the Vertical mixed model as an
alternative method for analyzing ED access data. This model is an extension of the Ver-
tical model. We applied this model to analyze nearly 1 million accesses from 63 Sicilian
EDs. The model converges into a solution in 72 hours. To reduce computational time,
we reduced the sample size to 154,055 accesses. First, it estimates the overall and relative
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hazards separately (SVMM). Second, to address the correlation among the sub-models’
random effects, we developed the Joint Vertical Mixed Model (JVMM). The Bayesian ap-
proach, which utilized the Integrated Nested Laplace approximation to obtain the pos-
terior distribution of the hyperparameters, provided a fast procedure for estimating the
JVMM.

As expected, the JVMM’s results coming from the reduced sample were similar to
those obtained in chapter 4. The JVMM provided an additional advantage in the estima-
tion of ρ, which indicated how the random effects of EDs were related. We found that
hospitals with higher risks of exit from their EDs were less likely to hospitalize patients,
whereas hospitals with lower risks of exit from their EDs were more likely to hospitalize
patients.

Our approach, the JVMM, is estimated using INLA and provides fast coefficient esti-
mates, despite being based on an approximation approach of the posterior distribution.
The novelty of this approach consists of an alternative to the usual frailty competing risks
approach. We believe that the Vertical Model and its developments are a promising al-
ternative to the open problems present in the Cox and Fine-Gray approaches. However,
it is important to acknowledge that the "extended" version of the Vertical Model is both a
novelty and a limitation, as it has not yet been completely validated in other settings and
applications.
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Appendix A

Supplementary material of Chap.2
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Appendix B

Supplementary material of Chap.3
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FIGURE B.1: Calibration curves for predicting Discharge in patients with Coronavirus Disease-19
in the derivation and validation cohorts.
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Appendix C

Supplementary information of
chapter 4

C.1 Computation of the predicted CIF from a hlike.frailty R ob-
ject

## hlike_obj is the hlike.frailty object which includes
##all the quantities estimated by the model
## the baseline cause -specific hazard "lam1" and "lam2" and the time -to -event
#"TIME" are picked up from the model
lam1 <-hlike_obj$lambda .0[[1]]
lam2 <-hlike_obj$lambda .0[[2]]
TIME <-sort(unique(c(unlist(hlike_obj$time ))))

## time -to-discharge "t1" and time -to -hospitalization "t2" are computed
t1<-TIME %in% hlike_obj$time [[1]]
t2<-TIME %in% hlike_obj$time [[2]]

## the cause -specific hazard wtr the two events "lambda1" and "lambda2"
lambda1 <-rep(0,length(TIME))
lambda2 <-rep(0,length(TIME))
lambda1[t1]<-lam1
lambda2[t2]<-lam2

## cumulative hazards
LAMBDA1 <-cumsum(lambda1)
LAMBDA2 <-cumsum(lambda2)

## overall cumulative hazard as the sum of
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##the cumulative cause -specific hazards
LAMBDA=cumsum(lambda1 )+ cumsum(lambda2)

## from the survival analysis theory we got the overall survival "SURV0"
SURV0=exp(-LAMBDA)
tab_new <-data.frame(TIME ,lambda1 ,lambda2 ,LAMBDA1 ,LAMBDA2 ,LAMBDA ,SURV0)
## The cause -specific CIF is computed by the ## product of the overall
survival and the cause -specific hazard
tab_new$CIF_dim <-cumsum(SURV0*lambda1)
tab_new$CIF_ric <-cumsum(SURV0*lambda2)

## marginal CIF for Discharge and Hospitalization
plot(tab_new$TIME ,tab_new$CIF_dim , type="s",ylim=c(0,1),xlim=c(0 ,50))
lines(tab_new$TIME ,tab_new$CIF_ric , lty=2)

## 1) function fix_CIF computes the predicted CIF
## for different levels of the covariates
## 2) It needs the tab_new data frame constructed above , the estimated
## coefficient from the model for each event of interest
## "BETA1" and "BETA2" and a profile indicator vector "X"
## 3) The procedure is similar to the computation of the marginal CIF ,
## but the covariates are included in the linear predictors
## "exp_effect1" and "exp_effect2"
## 4) the fuction fix_CIF provides i dataframes ,
## inside a list , one for each level of the covariates
fix_CIF <-function(CIF0=tab_new ,X=X_f,BETA1=beta_discharge ,

BETA2=beta_hospitalization)
{

CIF <-vector("list",length(X))
for(i in 1: length(X)){

WCIF <-CIF0
exp_effect1 <-exp(drop(crossprod(X[i],BETA1[i])))
exp_effect2 <-exp(drop(crossprod(X[i],BETA2[i])))
WCIF$lambda1 <-WCIF$lambda1*exp_effect1
WCIF$lambda2 <-WCIF$lambda2*exp_effect2
WCIF$LAMBDA1 <-CIF0$LAMBDA1*exp_effect1
WCIF$LAMBDA2 <-CIF0$LAMBDA2*exp_effect2

WCIF$LAMBDA <-WCIF$LAMBDA1+WCIF$LAMBDA2
WCIF$SURV0 <-exp(-(WCIF$LAMBDA1+WCIF$LAMBDA2 ))
WCIF$CIF_dim <-cumsum(WCIF$SURV0*WCIF$lambda1)
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WCIF$CIF_ric <-cumsum(WCIF$SURV0*WCIF$lambda2)

CIF[[i]]<-WCIF

}
return(CIF)

}

## profile vector indicator
X_f<-c(c(1,1,1,1,1,1),rep(54,1),rep(1,1),rep(1,1),rep (1,1))

f_CIF <-fix_CIF(CIF0=tab_new ,X=X_f,BETA1=beta_discharge ,

BETA2=beta_hospitalization)

#fixed CIF for each pathology
layout(matrix(c(1,2,3,3), ncol=2, byrow=TRUE), heights=c(5, 1))

par(mar=c(5, 4, 3, 1) + 0.1)
plot(tab_new$TIME , tab_new$CIF_dim , type="s", xlim=c(0,48), ylim=c(0,1),

xlab="Time␣(hours)", ylab="Cumulative␣incidence␣function",lty=1,
lwd=1.5, main="Discharge")

for( i in 1:6){
lines(f_CIF[[i]]$TIME , f_CIF[[i]]$CIF_dim , type="s",lty=i+1,
col=i+1, lwd =1.5)

}
plot(tab_new$TIME , tab_new$CIF_ric , type="s", xlim=c(0,48), ylim=c(0,1),

xlab="Time␣(hours)", ylab="Cumulative␣incidence␣function",lty=1,
lwd=1.5, main="Hospitalization")

for( i in 1:6){
lines(f_CIF[[i]]$TIME , f_CIF[[i]]$CIF_ric , type="s",lty=i+1,
col=i+1,lwd =1.5)

}
par(mai=c(0,0,0,0))
plot.new()
legend (0.28,1, ncol=2,legend=c("Other_Symp","Circ&Resp_Dis", "Dig_Dis",

"Inf_Dis","Skin&Musc_Dis","Blood_Dis", "Inj&pois"),
col=seq (1:7) , title="Pathology",title.adj = 0.45, bty="n", lty=1:7,
lwd=rep(2,9), cex =0.85)
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Appendix D

Supplementary information of
chapter 5

D.1 The Wishart prior distribution

Parametrization

The two-dimensional Wishart model is used if one want to define the model for the linear
predictor η as:

η = a + b

where a and b are correlated

(
a
b

)
∼ N

(
0 ,W−1

)

with covariance matrix W−1 =

(
1/τb ρ

√
τaτb

ρ
√

τaτb 1/τb

)

and τa, τb and ρ are the hyperparameters. In this case the following model is implemented
for the precision matrix W

W ∼ Wishartp

(
r ,R−1

)
, p = 2

where the Wishart distribution has density

π(W) = c−1|W|(r−(p+1))/2exp
{
− 1

2
Trace(WR)

}
, r > p + 1
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Hyperparameters

The hyperparameters are
θ = (log τa, log τb, ρ̃)

where
ρ = 2

exp(ρ̃)
exp(ρ̃) + 1

− 1

See the R-INLA documentation https://inla.r-inla-download.org/r-inla.org/doc/

latent/wishard.pdf for more details on the Wishart distribution.

https://inla.r-inla-download.org/r-inla.org/doc/latent/wishard.pdf
https://inla.r-inla-download.org/r-inla.org/doc/latent/wishard.pdf
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