
Citation: Chiacchiera, A.; Sai, F.;

Salvetti, A.; Guariso, G. Neural

Structures to Predict River Stages in

Heavily Urbanized Catchments.

Water 2022, 14, 2330. https://

doi.org/10.3390/w14152330

Academic Editors: Celestine Iwendi

and Thippa Reddy Gadekallu

Received: 19 June 2022

Accepted: 24 July 2022

Published: 27 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Neural Structures to Predict River Stages in Heavily
Urbanized Catchments
Annunziata Chiacchiera 1, Fabio Sai 2, Andrea Salvetti 3 and Giorgio Guariso 1,*

1 Department of Electronics, Informatiom, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
annunziata.chiacchiera@mail.polimi.it

2 Agenzia Interregionale per il Fiume Po, 43121 Parma, Italy; fabio-sai@agenziapo.it
3 Ufficio dei Corsi D’acqua, 6501 Bellinzona, Switzerland; andrea.salvetti@ti.ch
* Correspondence: giorgio.guariso@polimi.it; Tel.: +39-02-2399-3559

Abstract: Accurate flow forecasting may support responsible institutions in managing river systems
and limiting damages due to high water levels. Machine-learning models are known to describe
many nonlinear hydrological phenomena, but up to now, they have mainly provided a single future
value with a fixed information structure. This study trains and tests multi-step deep neural networks
with different inputs to forecast the water stage of two sub-alpine urbanized catchments. They prove
effective for one hour ahead flood stage values and occurrences. Convolutional neural networks
(CNNs) perform better when only past information on the water stage is used. Long short-term
memory nets (LSTMs) are more suited to exploit the data coming from the rain gauges. Predicting a
set of water stages over the following hour rather than just a single future value may help concerned
agencies take the most urgent actions. The paper also shows that the architecture developed for one
catchment can be adapted to similar ones maintaining high accuracy.

Keywords: machine learning; neural networks; multi-step ahead; flood forecasting; sub-alpine
catchments; Lura and Laveggio rivers

1. Introduction

Forecasting flows of rivers in heavily urbanized catchments is challenging because of
the high runoff caused by impervious surfaces and the relative potential risk for the local
population. The European Environment Agency attributes one-third of the damages caused
by natural disasters to floods. Since 2000, floods in Europe have caused at least 700 deaths
and at least EUR 25 billion in economic losses. Between 1998 and 2005, northwestern
Romania, southeastern France, central and southern Germany, northern Italy, and eastern
England experienced the highest concentration of repeated flooding. The situation has
been similar in Switzerland [1]. The coming decades will likely see more frequent flood
occurrences in Europe and, consequently, more significant economic damages due to the
combined effects of climate change and expanding urbanization [2–4]. In addition, land-use
changes, namely the reduction of permeable soil, will further increase the peak discharges
of floods by modifying the rainfall and snow-melt infiltration and runoff on the land surface
into streams.

Together with risk-based spatial planning and the construction of defense works, one
of the key tools to mitigate high flow detrimental effects is the availability of adequate
warning systems that can provide the agencies in charge with sufficient time for an inter-
vention. The efficacy of such Early Warning Systems is strictly related to the lead time of
the forecast before a critical event occurs. Unfortunately, the heavily urbanized conditions
of many regions in the world have increased the volume and speed of floods, decreasing
the effectiveness of traditional hydrological forecasting models [5]. This paper tackles
these problems by exploring different neural network architectures to predict the flows of
two urbanized catchments on the Italian-Swiss side of the Alps: the Lura and Laveggio
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rivers. They represent interesting case studies due to their fast runoff and the damages that
their floods cause.

A flood event is defined by extremely large values of irregular and rare flow occur-
rences [6]. In particular, this study interprets flooding events as a significant variation of the
river’s stage within a short time, rather than events with long return times. The developed
neural predictors differ in the internal structure of their component nodes and in terms of
information used to issue the forecast.

Machine learning (ML) methods, and neural networks in particular, have already
been effectively adopted to forecast hydrological phenomena characterized by complex
and strongly nonlinear relationships, such as those occurring in urbanized catchments.
Using traditional feed-forward (FF) neural architectures, such applications date back to
the end of the past century. For instance, Campolo et al. [7] predicted the Tagliamento
River flood events in the northeast of Italy one hour ahead. The authors considered the
information provided by a hydrometer and several rain gauges without integrating the
rainfall over the basin, as is standard in water balance studies. The same authors in [8]
forecasted floods of the Arno River in Tuscany, Central Italy, proving the relevance of
autoregressive components (i.e., the river antecedent stages) in water level predictions.
Tayfur et al. [9] developed a neural network model for the upper part of the Tiber River
basin, again in central Italy, to predict flood peaks. The authors conclude that artificial
neural networks outperformed the modified Muskingum and the numerical solutions of the
St. Venant equations in forecasting individual storm hydrographs. New dynamic network
architectures far exceed physical and conceptual models during critical episodes when the
computational time of these numerical models can be a limiting factor and not in line with
real-time forecasting purposes [10]. Abbot and Marohasy [11] compared several physical-
based and ML predictors in Queensland, Australia, and proved the superior accuracy of
the ML models. Liu et al. [12] utilized long short-term memory (LSTM) neural networks to
simulate rainfall-runoff relationships for catchments with different climate zones in China.
These results are compared to the conceptually based Xinanjiang rainfall-runoff (XAJ)
model; authors assessed comparable quality predictions between models, concluding that
LSTM represents an efficient hydrologic modeling approach. Apaydin et al. [13] performed
a comparative analysis of several recursive neural network (RNN) architectures (Bi-LSTM,
LSTM, RNN, GRU) for reservoir inflow forecasting in Turkey. LSTM nets succeeded in
simulating peak flow periods accurately. The results in [14] underline the LSTM structure’s
potential for rainfall-runoff and large-scale regional modelling using catchment attributes
and meteorology for large-sample studies in 241 basins in the USA. Hu et al. [15] proved
that LSTMs lead to better performance compared to FF neural networks due to their
ability to learn long-term dependencies representing, for instance, storage effects within
catchments, which may play an essential role in hydrological processes. Kabir et al. [16]
compared convolutional neural network (CNN) predictions with the outputs produced by
a 2D hydraulic model (LISFLOOD-FP) in Carlisle, UK: the CNN model is highly accurate in
capturing flooded cells, as indicated by several quantitative assessment metrics. CNNs are
a class of deep neural networks, most commonly applied for image analysis. However, they
have shown high accuracy in correspondence of 1D time series data, such as those used
for speech recognition [17] and text classification [18]. Ragab et al. [19] showed that the
accuracy of CNNs increased faster than other neural prediction approaches, such as LSTM,
due to their low computational requirements in real-time and low-cost implementations;
however, other recent studies (e.g., [20–22]) concluded that LSTM represented the most
advisable choice.

The last years have witnessed a steady growth in the application of neural predictors
to river flow forecasting, as shown, for instance, by the review papers of Mosavi et al. [23],
Tayfur et al. [24], Zounemat-Kermani et al. [25], or Ghorpade et al. [26]. Indeed, Google
Scholar quotes over 37,000 articles concerning the use of neural networks in river flow
forecasting in 2020–2021, with an increase of about 18% compared with the preceding
two years.
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Besides the internal structure, another essential aspect in the definition of the predictor
model is the type and amount of information used to compute the forecast. For example,
the number of preceding autoregressive river flows can be set by trial-and-error, but the
number of rain gauges, their possible integration, or other input variables may also be
considered. For instance, in ref. [27] and, more recently, in ref. [28], the preceding rainfall
or the basin saturation state are used as input to the neural predictors. Refs. [29,30] use
measured or forecast precipitation, while refs. [31,32] use radar observations and derived
products, and ref. [33] integrates them with satellite sensor data.

Although the state-of-the-art suggests investment into neural networks implementa-
tion in hydrological applications, unexplored aspects and improvement margins are still
evident in the works analysed above; this study explores and addresses some of these issues.
One overlooked aspect central to this study concerns how the neural models are trained for
forecasting critical episodes, since this is essential to support the decision-making processes.
Flood events are the most difficult to predict because of their low frequency of occurrences,
and imbalanced datasets can negatively influence many machine-learning algorithms. For
that reason, several studies applied undersampling and/or oversampling techniques to
increase the frequency of such extreme events (e.g., [34]). Other studies have developed
neural networks based on flood events only to manage this issue (see, for instance, [15,35]).
Namely, they developed models capable of describing the flood dynamics, but cannot
recognize the occurrences of such events in advance. On the contrary, we aim to compare
deep neural predictors of water stages and floods without altering the probability distri-
bution of the measured variables. The data used to train the model are not manipulated
in any way, maintaining their sequentiality, as well as proportionality, between extreme
events and standard situations. Therefore, the approach applied in this study allows the
development of models that can be immediately adopted in actual cases. Another peculiar
characteristic of the approach adopted is the development of multi-step predictors that
provide a sequence of future stage values instead of just a single one for a specific time step
ahead. This feature allows for better planning actions during critical episodes.

Different neural network types have been compared in the following analysis, ex-
ploiting the same data. More precisely, each neural network implementation has been
differentiated into autoregressive and multivariable models that use different input infor-
mation. In this way, the analysis will quantify the added value carried by the additional
information at different frequencies and trade it off with the performance improvements.
Furthermore, to better appreciate the performance of the proposed neural network struc-
tures, we compare their performance with two classical benchmarks: a persistent predictor
(i.e., the current water stage value is used to predict the future one) and standard FF ar-
chitecture. Finally, the paper explores the possibility of transposing the neural network
architecture optimized for the Lura River to forecast the stages of another catchment in the
same area with similar characteristics, the Laveggio River.

The results of the set of neural models presented in the following sections may help
environmental authorities to better trade-off the model complexity and information re-
quirements with the accuracy of forecasted values, and thus select the implementation that
better suits their practical needs.

The paper is organized as follows. The next section describes the study areas and the
related data used in the analysis. The following section presents the tools and methodol-
ogy used, the models’ architectures, and the evaluation metrics considered. The fourth
section shows the results obtained using the different models, while the last draws some
conclusions about possible future uses of the developed models.

2. Materials and Methods
2.1. Case Studies Description

The case studies considered, the Lura and the Laveggio rivers, are represented in
Figure 1 in their subalpine territorial context. Each domain is detailed in the following.
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Figure 1. Approximate location of the Lura (red) and Laveggio (blue) river basins in their sub-alpine
territorial context. Map data © OpenStreetMap.

2.2. The Lura River Basin

The Lura stream originates at 450 m above sea level from the lower area of a hilly
region across the Swiss-Italian border. It flows north–south for about 45 km, and its
catchment covers 130 km2 at the junction with the Olona River.

The catchment, represented in Figure 2, is characterized by intense and steadily
increasing urbanisation in the southern part [36], accounting for one-third of the total
catchment surface. Consequently, the hydrological response differs according to the area
hit by the heaviest precipitation. The basin can be clustered into three main areas: the
“natural Lura” consists of the upper part where the catchment has a relevant gradient
and marginal urban areas; the “intermediate Lura”, where the river flows through the
open flatland occupied by several urban centres; and lastly, the “urban Lura”, in which
the stream flows partially covered into an almost totally paved catchment, with limited
conveying capacity and absence of expansion areas. Due to these peculiar characteristics,
the Lura stream has been affected by several flooding events, mainly originating from the
urban stormwater drainage system, which derives its volumes from several inputs [37].
A few decades ago, to mitigate inundation risks at the main urban centres, a diversion
channel was created to convey part of the discharge to the CSNO (Canale Scolmatore di
Nord Ovest). It constitutes the main hydraulic infrastructure built during the 1980s to
reduce floodwater volumes entering the northern Milan metropolitan area. In 2014, some
municipalities (Saronno, Caronno Pertusella, Lainate, and Rho) were severely flooded. In
the late 2010s, a detention basin of 340,000 m3 was implemented in the “intermediate Lura”
to reduce the peak discharge from 70 m3s−1 to less than 20 m3s−1 before entering the urban
areas. Despite implementing these structural measures, the lower catchment is still hit
by frequent floods due to intense and spatially concentrated storms. As the hydrological
concentration time is about 30 min, the current monitoring network detects and transmits
the registered data with a 10-min resolution.

2.3. The Laveggio River Basin

The Laveggio River is a tributary of Lake Lugano, and it flows in the Canton of Ticino,
Switzerland, from south to north. It originates near the Italian border and joins the lake
in the municipality of Riva San Vitale. The catchment area is about 33 km2, as shown in
Figure 3.
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Figure 2. Location of the Lura River basin and the relative measurement stations. Map data ©
OpenStreetMap.

Figure 3. Location of the Laveggio River basin and the relative measurement stations. Map data ©
OpenStreetMap.

The Laveggio River is located in three distinct stratigraphic units with different per-
meability and soil characteristics. The more recent unit (post-glacial) is characterized by
prevalent gravel deposits and a strong permeability fed to the east by the limestone karst
massif of the Jura age (Morée catchment basin), with a very intense and rapid response to
precipitation events. The first river correction works were carried out from 1912 onwards,
eliminating the typical meandering course of the river and building embankments, which
still feature in the area today. The 1940s were characterized by wide land reclamation
works in the area of S. Martino and Prati Maggi (etymologically, Prati Marci). From the
1960s onward, however, the most important change was intense urbanisation, with the
development of a large industrial and artisanal zone on much of the flat land around the
Laveggio River, exponentially increasing the potential damage and the risk for people
and infrastructures. The largest recorded flow event occurred from 13 to 15 September
1995, with a peak discharge of about 70 m3s−1 corresponding roughly to a 30-year return
period event. The erosion of the paved riverbed was observed in several areas, with dam-
age to the embankments, but without significant flooding of the surrounding areas. The
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best-documented events were on 3 May 2002 and 11 November 2014, respectively, with
a peak discharge of approximately 58 m3s−1 and 60 m3s−1. The documentation of these
two events shows that the channel sections were almost full in both cases. Then, accord-
ing to the information from the fire brigade, there was only one point where the water
overflowed, namely on the left side into the commercial area above Ponte Via Giuseppe
Motta. Sandbags have been placed along the channel as a preventive measure during other
flooding events since 1992.

2.4. Data Description

In the case of the Lura River, the prediction was based on data collected by a hy-
drometer operated by Agenzia Interregionale per il Fiume Po (AIPo), together with five
rain gauges (Lurago Marinone, Misinto, Vertemate con Minoprio, Pogliano Milanese and
Saronno), managed by ARPA—the environmental agency of the Lombardy region. All
these measurement stations are represented in Figure 2. Data of the Laveggio River are
from the Riva S. Vitale hydrometer, together with five rain gauges (Chiasso, Coldrerio,
Mendrisio, Monte Generoso, and Stabio), operated by MeteoSwiss and by the Department
of Environment and Spatial Planning of Canton Ticino (OASI database), as represented in
Figure 3. In both application domains, data covers from 7 October 2015 to 25 July 2018, with
a time-step equal to 10 min, a sufficient frequency to portray the high-speed dynamics of the
studied phenomena, i.e., 147,312 records of water stage and precipitation were considered
for each domain.

Available records were divided into three subsets respecting the temporal order of
observations: training, validation, and test sets, respectively, composed of 70%, 20%, and
10% of available data. The training set was used to identify model parameters, while the
validation set served to find the model architecture: training and validation data constitute
the calibration data on which models are based. The test set was employed to assess
model performance on previously unused data. For the Lura River, it was composed of
2454 hourly sequences of water stage records, 65 of which exceeded the flooding threshold,
i.e., 2.67% of the total. For the Laveggio River, the test set comprised 2427 hourly sequences,
where 28, i.e., 1.15%, were above the flood threshold (detailed later).

Data were comprised of attributes with varying scales, i.e., water stages and rainfall
records, so they were normalized to the interval 0 to 1. This procedure benefits many
machine learning algorithms, such as neural network training.

The forecasting task was approached as a regression problem to develop autoregressive
and multivariable models. Autoregressive models comprise a single series of water stages.
On the other hand, multivariable models include more than one observation for each time
step, i.e., water stage observations complemented by rain gauge records.

Neural networks can be trained in different ways: in this study, the supervised
learning method was implemented where model outputs are compared to actual values. In
particular, river water stages ŷ were predicted up to h time steps ahead by exploiting the
information available at time t, when the forecast was issued. Such information constitutes
the model input and always includes d samples of the actual water stage (y), as shown by
Equation (1). The implemented models fa thus work as multi-output—the forecast is the
future sequence of values along the prediction horizon h:

[ŷ(t + h), . . . , ŷ(t + 1)] = fa(y(t), y(t− 1), . . . , y(t− d + 1)) (1)

The multi-output approach can better support the decisions of the concerned agencies
by avoiding the standard recursive method. Most studies develop a single-step ahead
predictor, whose output is reused to forecast the following steps: this approach may result
in limited performance [35,38]. On the other hand, developing models for multi-step
forecasting means that the functions mapping current information to the future water
stages are optimized over the entire forecasting horizon h [39]. This parameter will be
assumed to be equal to six to obtain at each time step a vector of outputs covering the
evolution of the water levels in the next hour. Indeed, an hourly prediction horizon can
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help issue flood warnings and undertake the most urgent mitigation actions. Then, it could
be complemented by more extended horizon forecasts in the future when precise rainfall
predictions will be available.

This study develops predictive models for forecasting future water stages under
two different frequencies of information update: 60 min, i.e., the forecast is issued every
hour for the following six ten-minute intervals, or 10 min, for the same intervals ahead.
In this last case, there will be more than one forecast for the same clock time, and they
will possibly become increasingly accurate as that time approaches. This may be useful
to follow the most critical episodes’ evolution closely. The input–output patterns implied
in the supervised learning are thus defined differently for the input update frequency of
60 min and 10 min, as shown in Table 1. It is interesting to note that, in Table 1b, data
are moving along just a one-time step, while the prediction still concerns the following six
water level values.

Table 1. Example of the input–output patterns (time step equal to 10 min) for models with an input
update frequency of 60 (a) and 10 min (b). In the autoregressive approach, the input vector v only
contains previous water stages y; in the multivariable approach, the rainfall records are also included.

(a) Input Output

t = 6 v01 v02 v03 v04 v05 v06 ŷ07 ŷ08 ŷ09 ŷ10 ŷ11 ŷ12
t = 12 v07 v08 v09 v10 v11 v12 ŷ13 ŷ14 ŷ15 ŷ16 ŷ17 ŷ18

. . . . . .

(b) Input Output

t = 6 v01 v02 v03 v04 v05 v06 ŷ07 ŷ08 ŷ09 ŷ10 ŷ11 ŷ12
t = 7 v02 v03 v04 v05 v06 v07 ŷ08 ŷ09 ŷ10 ŷ11 ŷ12 ŷ13

. . . . . .

2.5. Multivariable Models: Rain Gauges and Total Rain Scenarios
In the case of the multivariable modelling approach, two different input scenarios

were considered: the total rain scenario and the rain gauges scenario. In the total rain
scenario, models ft are fed by an estimate r(t) of the total precipitation over the catchment,
computed from all the gauge measurements together, i.e.,

[ŷ(t + h), . . . , ŷ(t + 1)] = ft(y(t), y(t− 1), . . . , y(t− d + 1), r(t), r(t− 1), . . . , r(t− d + 1)) (2)

Finally, the rain gauges scenario includes the time series of each rain gauge ri(t),
contributing individually as model input, as in Equation (3).

[ŷ(t + h), . . . , ŷ(t + 1)] = fr

(
y(t), y(t− 1), . . . , y(t− d + 1), r1(t), . . . ,

r1(t− d1 + 1), . . . , rn(t), . . . , rn(t− dn + 1)

)
(3)

As is already well known, an estimate of the total rain can be obtained by many
different approaches (e.g., Kriging, Splines, . . . ). The classical Thiessen method has been
applied here, not implying any computational overload. The Thiessen or Voronoi polygons
developed by Thiessen [40] assume that measured amounts of precipitation at any station
can be applied halfway to the next station in any direction, which means that rainfall, at any
point, is equal to the observed rainfall at the closest gauge. The choice of using the Thiessen
method instead of a more sophisticated one is supported by the attempt to determine the
degradation of the forecast performance in the worst case. Evidently, with a more accurate
interpolation, intermediate results can be obtained between those of the individual gauges
and the polygon interpolation.

Furthermore, the use of an aggregation method allows consideration of cases where,
for any reason, one or more rain measures are missing, which is likely to happen in real
applications. Adopting this approach, the forecast can be issued even if just one gauge is
active. On the contrary, this would not be possible using the rain gauge scenario.
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2.6. Neural Networks

This study explores two different structures that seem particularly suited for the flood
prediction task: CNN and LSTM, which will be briefly described in the following sections.
CNNs are similar static maps, though with a more sophisticated structure, to the traditional
FFs, while LSTMs belong to the class of recurrent neural networks (RNN), namely nets
able to solve the forecasting problem from a dynamic perspective. Indeed, RNNs involve
modification of the original feed-forward structure, allowing for feedbacks between layers
and the existence of a neuron’s internal state that stores information over time.

2.6.1. Convolutional Neural Network

A CNN is made up of several components similar to our visual cortex. They have
deep learning (DP) architecture, initially developed for 2D image data. However, they
have recently been used also for 1D data, such as sequences of texts and time series. CNN
nets can learn how to automatically extract, from the raw data, relevant features that
are useful for the problem being addressed when the data have strong spatial and/or
temporal correlations. Operating on 1D data, CNNs read across the sequence of lagged
observations, detecting the most salient elements for the prediction. The implementation
of an autoregressive model results in a 1D-CNN. In the case of a multivariable model, a
CNN model made by two 1D-CNN layers for each input series is implied; the prediction is
obtained by subsequently combining their outputs.

Figure 4 shows that a CNN net is mainly composed by:

• The convolutional layer. It plays a crucial role in CNNs. Convolution is a linear
operation extracting features from inputs through a small moving filter called the
kernel. An element-wise product between each kernel element and the input is
calculated, obtaining a feature map. The two key hyperparameters that define the
convolution operation are the size and number of kernels. Multiple kernels are
considered, so this procedure is repeated multiple times, returning different feature
maps. The outputs of this linear operation are then passed through a nonlinear
activation function, such as a rectified linear unit (ReLU);

• The output feature maps. The previous outputs are transformed into a 1D vector
and connected to one or more dense or fully connected (FC) layers in which every
input is connected to every output. This last layer maps the extracted features into the
final output.

Figure 4. Convolutional neural network (CNN) structure.

2.6.2. Long Short-Term Memory Neural Network

LSTMs [41] are among the most used RNNs in time series analysis due to their ability
to detect and store temporal and spatial dependencies between data. The LSTM shows
excellent potential in modelling the dynamics of natural systems, as already noted in the
Introduction. The applications of LSTM networks range over several fields, including geol-
ogy [42], energy [43], air quality modelling [44], economy [45], and meteorology [46]. LSTM
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neural networks can store information about past data, avoiding excessively increasing the
dimension of the network itself.

Like all RNNs, LSTMs also have the form of a chain of cells, each with the intercon-
nected structure shown in Figure 5. In addition to the output, the cell updates a state value
that runs straight down the entire chain and is the core of the LSTM inner structure. An
LSTM cell has three gates that modify the cell state by removing and adding information:

• The forget gate decides what information shall be filtered from the cell state by looking
at the previous hidden state h(t − 1) and the current input x(t);

• The input gate is responsible for updating the cell state c(t). In the input gate, sigmoid
and tanh functions combine the previous hidden state h(t − 1) and the current input
x(t). The cell state is affected by both forget and input gates (c(t));

• The output gate defines the following hidden state h(t) based on the previous hidden
state h(t − 1), current input x(t), and the newly modified cell state c(t). The hidden
state h(t) and the new cell state c(t) move forward in the neural chain.

Figure 5. Long short-term memory (LSTM) cell structure.

Through these gates, the LSTM cells modulate the effect on the output of the internal
memory, which stores the information gathered from past inputs.

2.7. Model Architecture

The implementation of neural networks requires the determination of hyperparam-
eters, which cannot be estimated from data, such as the number of hidden layers and
neurons, the input variables lag (d), the activation function, the training algorithm, as well
as the performance metric to be optimized. Some guidance on choosing the hyperparam-
eters’ values can be found in the literature, but, basically, the determination of a neural
network architecture remains a trial-and-error process, where some values must necessarily
be fixed a priori to avoid an overwhelming complexity.

Indeed, we fixed the number of LSTM internal layers to one to provide a fair com-
parison among models, Table 2, while for CNN nets, the number of layers was the same
as the time series involved as inputs, indicated as ‘n.features’ in Table 3. In addition, the
delay parameter d was set equal to six based on experiments. Indeed, this value leads to
the most accurate estimates for all the models, closely following the natural dynamic of the
local hydrological phenomena. Finally, all other hyperparameters have been tuned by a
grid-search optimization, namely evaluating a model for every combination of possible
values within a discrete set.

Tables 2 and 3, respectively, show the resulting architectures for LSTM and CNN
neural models. The hyperparameters obtained from this extensive search on the Lura River
have been subsequently applied to the Laveggio River.
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Table 2. Hyperparameters of LSTMs in autoregressive and multivariable approaches.

LSTM Hyperparameters Autoregressive Model Multivariable Model

Batch-size 64 32
Learning rate 0.001 0.001

Epochs 15 30
Activation function relu relu
N. hidden neurons 10 20

Table 3. Hyperparameters of CNNs in autoregressive and multivariable approaches.

CNN Hyperparameters Autoregressive Model Multivariable Model

Batch-size 32 16
Learning rate 0.001 0.001

Epochs 20 25
Activation function relu relu

Convolutional layers 1 2 × n.features
Kernel size 3 3

Filters 64 32
Fully connected layers 1 2

All models developed in this study are trained using the efficient Adam version of
the stochastic gradient descent. The loss function is represented by the mean squared error
(MSE) average value over the entire forecasting horizon h (Equation (4)). Indeed, the MSE
is the most commonly used metric in regression models:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (4)

In particular, it indicates the mean square discrepancy between observed data yi and
model predicted value ŷi, with N equal to the cardinality of the training dataset. As is
well known, MSE emphasizes the contribution provided by more significant errors that
correspond to the occurrence of extreme events, in line with the primary objective of the
present modelling exercise. Each training takes place twice, randomly varying the weights
initialization to avoid being stuck in a particular solution. Models are implemented in
Python mainly using the Keras library, with Tensorflow as the back-end.

2.8. Performance Assessment Metrics

Since the problem is framed as a regression problem, three additional metrics have
been computed: RMSE, MAE, and NSE.

The root mean squared error, or RMSE, is defined as the square root of the MSE. Its
value is useful since it is expressed in the original units of the target variable.

Equation (5) expresses the mean absolute error or MAE metric that indicates the
absolute discrepancy between the observed data yi and the model estimation ŷi:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (5)

Lastly, Equation (6) represents the NSE metric, also known as Nash–Sutcliffe model
efficiency, traditionally used to assess the predictive skill of hydrological models [47]:

NSE = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (6)

NSE can range from −∞ to 1. In the ideal case, the NSE should be equal to 1, meaning
that the model perfectly interprets the actual data. A model that produces a variance of the
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estimation error equal to the variance of the observed time series results in a null NSE. In
the case of a negative value of the NSE metric, the observed average turns out to be a better
predictor than the model. The advantage of looking at NSE is that it is a standardized
value, thus allowing comparison of different time series independently on their averages
and standard deviations.

One of this study’s aims is to develop models able to predict the occurrence of flooding
events in addition to their magnitude. Therefore, to support the decision-making process,
results are also interpreted in terms of flood detection. To evaluate the ability of the model
to work as a flood classifier, the following ad hoc indicators were introduced:

• Iflood(t) is positive (P) if floods are present in a sequence of values (either real or
predicted). Flood sequences are defined as hourly sequences [y(t), y(t + 1), . . . , y(t + h)]
that contain at least one record of water level equal to or greater than a certain threshold
(Table 4). Conversely, a negative value (N) means there is no flood in the sequence.

I f lood(t) =
{

P i f y ≥ f lood threshold
N otherwise

with y ∈ [y(t), y(t + 1), . . . , y(t + h)]. (7)

Table 4. Thresholds of floods and rapid events in Lura and Laveggio rivers for Iflood and Irapid indicators.

River Flood Threshold (m) Rapid Increment Threshold (m)

Lura 1.2 0.20
Laveggio 0.6 0.08

• Irapid(t) indicates whether rapid flow increments occur in a (real or predicted) water
stage sequence. Rapid increments are defined as hourly sequences [y(t + h − 1), . . . ,
y(t + 1), y(t)] containing at least one value greater than the first of the sequence by the
rapid increment threshold (Table 4).

Irapid(t) =
{

P i f [y(i)− y(t)] ≥ rapid increment threshold, i ∈ [t + 1, t + h]
N otherwise

(8)

These indicators allow evaluation of the classification ability of the models, even
if they are not explicitly trained for the classification task. In line with this aim, three
additional metrics have been considered: precision (9), recall (10), and their harmonic mean
F1 score (11). More precisely,

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1score =
2 Recall · Precision
Recall + Precision

(11)

where TP means true positive cases, namely the number of occurrences where the model
correctly predicts the positive class (i.e., the actual sequence contains a flood event that
the model predicted successfully). On the other hand, TN represents true negative cases
(i.e., both reality and prediction include no flood episodes). Finally, FP is false positive,
so cases where the model incorrectly predicts the positive class (i.e., the actual sequence
is not a flood event, while the model classifies it as such). Consequently, FN represents
false negative. Table 4 presents the thresholds used to compute Iflood and Irapid indicators
for both Lura and Laveggio domains. These values are set by referring to the statistical
characteristics of water stage time series, as well as historical flooding damages. In
general, the water stages of the Laveggio River are lower than those of the Lura River.
The thresholds reflect this.
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3. Results

CNN and LSTM neural networks have been applied to predict river stages one hour
ahead. These models’ predictive power is analysed for both autoregressive and multivari-
able approaches. The performances are computed on test data employing the evaluation
metrics defined in the previous section, and are compared with two standard benchmarks:
a persistent predictor that uses the value at time t as the forecast one hour ahead, and a
classical FF network.

In the case of the Lura River, Tables 5 and 6 summarise the performance of autore-
gressive and multivariable models in correspondence to the entire test dataset and flood
events only. In particular, Table 5 shows that, over the whole test set, all autoregressive
neural networks perform similarly and quite satisfactorily, achieving an NSE equal to 0.90,
compared to the 0.78 of the persistent predictor. It is important to underline that flood
sequences are just 2.67%, meaning that, in most instances, the prediction is relatively simple.
On the other hand, in correspondence to flood events, the persistent predictor scores a
negative NSE value, the FF predictor scores 0.24, the LSTM model 0.27, and the CNN
model 0.41. The autoregressive FF and LSTM models show similar performances, as is
also expressed in Figure 6, where their relative confusion matrices (correct and incorrect
number of flood forecasts) coincide.

Table 5. The performance of the Lura River’s autoregressive models: average value of the evaluation
metrics over the entire test dataset and flood events only.

River Model Data Model RMSE (cm) MSE (cm2) MAE (cm) NSE

Lura Autoregressive

All test data

Persistent 11.45 131.17 3.01 0.78
FF 7.31 53.01 2.04 0.90

LSTM 7.35 54.11 2.05 0.91
CNN 7.31 53.43 2.70 0.90

Extreme events

Persistent 48.63 2393.00 34.23 −0.01
FF 41.16 1694.01 26.01 0.24

LSTM 40.51 1641.08 25.91 0.27
CNN 36.24 1314.02 23.83 0.41

Table 6. Performance of multivariable models for the Lura River: average value of evaluation metrics
over the forecasting horizon (h) in the entire test dataset and flood events (rain gauges and total
rain scenarios).

River Model Data Scenario RMSE (cm) MSE (cm2) MAE (cm) NSE

Lura Multivariable

All test data

LSTM—Rain Gauges 6.20 38.53 2.01 0.93
LSTM—Total Rain 6.02 40.23 2.13 0.93

CNN—Rain Gauges 6.52 47.08 2.98 0.91
CNN—Total Rain 6.24 44.20 2.08 0.92

Extreme events

LSTM—Rain Gauges 29.39 977.64 20.09 0.56
LSTM—Total Rain 30.35 1042.33 20.90 0.53

CNN—Rain Gauges 33.45 1262.23 23.36 0.44
CNN—Total Rain 30.67 1110.57 21.13 0.50

The performances of the neural predictors are very similar when considering all the
test data. In flood conditions (second half of Table 5), CNN provides the best results, fol-
lowed by LSTM. Despite the improvements compared to the traditional FF networks being
limited, we decided to further explore these more modern architectures in the following
multivariable approach. It is interesting to note how CNNs perform as autoregressive
models: the value of RMSE in flood conditions is 4.27 cm lower compared to LSTMs, and
4.92 cm lower compared to FFs. Flood episodes are defined above 1.2 m, as shown in
Table 4; thus, these errors represent less than 4% of the actual values. Results in Figure 6
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show that the CNN model performs better than FF and LSTM in terms of correctly predicted
floods, even if it also shows a higher value of false alarms or false positives (FP), usually
a less severe error than false negatives (FN). This translates into a recall and precision of
0.87 and 0.74 for CNN, while FF and LSTM score 0.95 and 0.68, respectively. The F1 is thus
very similar, with 0.79 for FF and LSTM, and 0.80 for CNN. In the case of the persistent
predictor, the number of false positives is the same as the number of false negatives; as a
consequence, all three classification metrics have an identical value of 0.77. From Figure 6,
it is evident that neither model manages to capture rapid events defined by Irapid. The
confusion matrix relative to rapid increments is the same for all neural models with TP
equal to zero. Consequently, all the performance indicators related to rapid increments are
also null.

Figure 6. Iflood and Irapid for autoregressive FF, LSTM, and CNN models. Test data, Lura River.
P means a flood or a rapid event is present, N means that it is not.

The autoregressive term can partly represent the basin saturation state, which influ-
ences its base flow. However, the rainfall information could better represent its dynamics.
Table 6 shows the performance of the multivariable LSTM and CNN models corresponding
to the rain gauges and total rain scenarios in the case of the Lura River. As already dis-
cussed, the rain gauges scenario includes the rain gauges taken individually in the model
input. On the other hand, the total rain scenario uses an estimate of the total precipitation
over the catchment.

Table 6 shows that models perform quite similarly, in correspondence to the entire test
dataset, with an improvement of the performance indices between 20% and 30% compared
to the autoregressive case (Table 5). Instead, in correspondence of flood events, the LSTM
model obtains much better values, with an NSE more than double with respect to the
autoregressive case, outperforming the results of the CNN. LSTM also demonstrates the
best ability to exploit the information of separate precipitation time series (rain gauges
scenario). Table 6 reveals that by predicting floods using rain gauge values, LSTM performs
3% to 6% better than in the total rain scenario.

The performance of multivariable models is also expressed in Figures 7 and 8 for the
rain gauges and total rain scenarios, respectively. Looking again at the rain gauges case,
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LSTM and CNN perform similarly in terms of their ability to detect floods, with F1 scores
equal to 0.86 and 0.81, precision equal to 0.72 and 0.71, and recall of 0.98 and 0.94, as shown
by Figure 7. On the contrary, the LSTM net is demonstrated to be definitely superior in
forecasting rapid growth trends, with an F1 equal to 0.62, a precision equal to 0.47, and a
recall of 0.90, in comparison to the 0.45, 0.31, and 0.86 of CNN. This is because the CNN
does not view data as distributed in time. Instead, they are treated as an input vector
over which convolutional read operations can be performed, such as a one-dimensional
image. As a result, the CNN model seems effective in predicting future water levels in
the autoregressive approach according to its structural property of extracting essential
information from 1D data (NSE equal to 0.41, Table 5). However, this net does not reach
the same benefit when considering the precipitation records (NSE equal to 0.44 in the rain
gauges scenario and 0.50 in the total rain scenario, Table 6). In this case, the LSTM shows
more significant potential (NSE equal to 0.56 in the rain gauges and 0.53 in the total rain
scenario, Table 6). This is because LSTMs offer native support for sequences, reading one
step at a time and building up an internal state representation that can be used as a learned
context for making the prediction. For example, in the total rain scenario (Figure 8), the
LSTM net predicts flooding events with an F1 equal to 0.80, a precision equal to 0.68, and a
recall of 0.97, compared to the 0.80, 0.71, and 0.92 of CNN.

Figure 7. Iflood and Irapid for multivariable LSTM and CNN models in the rain gauges scenario. Test
data, Lura River. P means a flood or a rapid event is present, N means that it is not.

It is common with multi-step forecasting problems to evaluate predictions at different
lead times. Figure 9 shows the trend of NSE in correspondence of floods in test data of
the Lura River in both autoregressive and multivariable models. The NSE value, as well
as the predictive power, regularly decreases over the forecasting horizon. Still, it shows
that multivariable models provide better performance with respect to the autoregressive
models, particularly in the case of LSTM nets (Figure 9a).

The models presented so far use the previous six observations to get the predictions
over the next hour; the forecast is issued every 60 min, and the model input is updated
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accordingly. In addition, we investigated the performance improvement obtained by
providing information more frequently to the model, showing the most accurate predictions,
i.e., the LSTM network in the rain gauges scenario. Table 7 and Figure 9 show the results
obtained with an input update frequency equal to 60 min (already shown in Table 6) and
10 min in the case of the Lura River. With an input update frequency of 10 min, the
optimized metric is still the average MSE over the next hour, but such a forecast is updated
every 10 min, as shown in Table 1b. Therefore, any given water stage is predicted six times
with higher and higher accuracy as it approaches.

Figure 8. Iflood and Irapid for multivariable LSTM and CNN models in the total rain scenario. Test data,
Lura River. P means a flood or a rapid event is present, N means that it is not.

Figure 9. NSE over the forecasting horizon h of LSTM (a) and CNN (b) predictors for the floods of
the Lura River: dashed lines represent autoregressive models and solid lines represent multivariable
models with markers for the rain gauges and total rain scenarios.

Absolute metrics in Table 7 clearly show how the accuracy is significantly higher in
correspondence of flood events when the inputs are updated more frequently. Metrics im-
prove by 40–70% when the entire test dataset is considered. Specifically, in correspondence
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to flood events, the model with inputs every 10 min leads to a noticeable improvement,
ranging from 70% to 90%, also confirmed by a precision value of 0.97, recall equal to 0.98,
and an F1 of 0.97 (Figure 10). Therefore, in the case of the rapid growth of water levels,
models characterized by an input update frequency of 60 min should be integrated with
models with 10-min updates when critical conditions are detected (Figure 11).

Table 7. Comparison of multivariable LSTM performance with 60- and 10-min input update frequency
for the entire test dataset and flood events only. Rain gauges scenario, Lura River.

Input Update Frequency

60 min 10 min

River Data
RMSE
(cm)

MSE
(cm2)

MAE
(cm) NSE

RMSE
(cm)

MSE
(cm2)

MAE
(cm) NSE

Lura
All test data 6.20 38.53 2.01 0.93 3.02 9.32 1.20 0.98

Extreme events 29.39 977.64 20.09 0.56 9.52 92.16 4.57 0.96

Figure 10. Iflood and Irapid for the multivariable LSTM model with 10-min input update frequency.
Lura test data, rain gauges scenario. P means a flood or a rapid event is present, N means that it
is not.

Figure 11. Performance of multivariable LSTM. Rain gauges scenario: test flood event of 21 July 2018,
Lura River. Actual (green) and forecasted water levels with 60- (red) and 10-min (orange) input update.

Ref. [48] explored the application of support vector machines and artificial neural
networks (ANN) on a multivariate set of data, i.e., water basin levels and meteorological
data, in the case of the Seveso River. Although the Lura and Seveso Rivers belong to the
same hydrological system, the Lambro-Olona basin, using the ANN, the author estimates a
value of 0.83 for F1, compared with the 0.97 computed in this study as the flood detection
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performance for the Lura River. The same is true for another study, conducted on the hydro-
logical basin of the Lambro, Seveso, and Olona Rivers [46], that developed a multivariate
DNN to predict water level 30 min ahead.

The same architecture of the LSTM neural network in the rain gauges scenario de-
veloped for the Lura River has been adopted for the Laveggio River basin after model
retraining. Moreover, in this case, both the 60- and 10-min input update frequencies have
been applied; Table 8, and Figures 12 and 13 show the results. In particular, as shown in
Table 8, LSTM with input update every 60 min reaches smaller values of the absolute met-
rics than the Lura case (Table 7), since the Laveggio River has lower water levels. Models’
evaluation metrics in Table 8 allow the estimation of an improvement of about 50–75%
over the entire test dataset when updating model inputs every 10 min. In flood events,
such an improvement goes from 40% to 99%. Indeed, in correspondence with an input
update frequency of 60 min, the LSTM net leads to an NSE equal to −0.12 for flood events,
a much less satisfactory performance than in the Lura River case. The negative value of
the NSE metric indicates that the model cannot capture the flood dynamics. This can be
explained, on the one side, because data used to develop models for the Laveggio River are
characterized by very few flood events (as previously discussed), not allowing the neural
model to learn the causal relations in critical conditions. Indeed, considering six previous
values of water levels and rainfall to predict future water level sequences is suitable when
considering the entire test data; however, it becomes insufficient to describe the rare flood
dynamics. Conversely, the hyperparameters of the Laveggio River model were kept equal
to the Lura River. A specific optimization of the LSTM architecture could have provided
better results.

Table 8. Comparison of multivariable LSTM performances with 60- and 10-min input update
frequency for the entire test dataset and flood events (Laveggio, rain gauges scenario).

Input Update Frequency

60 min 10 min

River Data
RMSE
(cm)

MSE
(cm2)

MAE
(cm) NSE

RMSE
(cm)

MSE
(cm2)

MAE
(cm) NSE

Laveggio All test data 1.80 3.52 0.61 0.90 0.92 0.86 0.31 0.97
Extreme events 13.46 200.71 8.80 −0.12 7.70 0.60 4.17 0.63

Figure 12. Iflood and Irapid for the LSTM model with 60-min input update frequency. Laveggio test
data, rain gauges scenario. P means a flood or a rapid event is present, N means that it is not.

Figure 14 demonstrates how the model better describes the system behaviour with
10 min input frequency, which is also reflected in Table 8 by a 0.63 NSE. Furthermore, the
model achieves an F1 equal to 0.96 in the case of rapid events, rather than 0.4 scored by
the model with 60-min input frequency (Figures 12 and 13). Therefore, the predictions
obtained using a multivariable LSTM with a 10-min input update frequency deliver relevant
information and content.
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Figure 13. Iflood and Irapid for the LSTM model with 10-min input update frequency. Laveggio test
data, rain gauges scenario. P means a flood or a rapid event is present, N means that it is not.

Figure 14. Performance of multivariable LSTM in the rain gauges scenario: test flood event of 4 June
2018, Laveggio River. Actual (green) and forecasted water levels with 60- (red) and 10-min (orange)
input update.

In practice, both the water authorities of Lura and Laveggio use completely different,
more physical-based models for their routine forecasting activities. The FEST-WB [49]
model is used on the Italian side, and the PREVAH [50] model on the Swiss side. They both
require a considerable amount of additional information (air temperature, precipitation,
relative humidity or water vapour pressure, global radiation, wind speed, and sunshine
duration), as well as a detailed description of the catchment’s physical characteristics.
Additionally, they need non-negligible computer power, which is one of the reasons why
they are not best suited for forecasting activities in such small catchment areas and with
very short response times. For instance, the results of PREVAH on the Laveggio River show
a relatively low average NSE, i.e., about 0.53, with this score being computed on calibration
data [51]. On the contrary, they may be very useful for planning purposes.

4. Conclusions

This study examined the use of different neural network architectures for river flow
forecasting and early warnings of floods. In addition, it deepened some common issues
concerning applying such tools, such as training models only on flood events, developing
only one-step ahead recursive predictors, handling the probability distribution of the
natural phenomena, and exploiting rainfall data.

The results confirmed that deep neural networks have a strong potential to deal with
urbanized water catchments and accurately represent the corresponding fast and nonlinear
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runoff dynamics. Machine learning techniques may indeed allow the development of
warning tools to help mitigate flood damages, reducing the need to introduce structural
elements, such as floodgates, which are not always feasible in urbanized contexts.

Human activity, urban settlement, and land use are the drivers that most affect flood
occurrences and behavior. The catchments of the Lura and Laveggio rivers, examined
in this paper, located on the Italian and Swiss sides of the Alps, are both characterized
by intense urbanization in their lower part, leading to very severe and rapid response
to precipitation.

Different types of neural networks have been implemented in this study in order to
identify the most suitable for predicting river flood conditions. Despite the complexity
of the hydrogeological dynamics, neural networks can provide accurate flood forecasts
even when only self-regressive data are used. Among the autoregressive models, the best
performances were obtained by the CNNs, particularly when computing error metrics of
flood episodes; the CNN structure shows a structural ability to extract the “flood shape”
from 1D data. However, it turned out that CNN does not equally benefit from considering
the precipitation records. LSTM enables better exploitation of the information provided by
those measurements, both when using rain gauge values separately (rain gauges scenario)
and when combining them to estimate a single total rain value (total rain scenario). In
particular, the LSTM model provides the most accurate flood predictions among the tested
architectures. It is also interesting to note that LSTM loses only about 6% in MSE when
using the aggregate rain information compared to using the individual gauges, in the case
of Lura River. This limited loss has been obtained by implementing the standard and
simple Thiessen interpolation method. More sophisticated techniques may lead to an even
smaller difference. In this respect, one has to consider that a model with a single aggregated
rainfall input is not only easier to calibrate and faster to operate, but also can continue to
work (with a possibly reduced accuracy), even if some rainfall information is missing.

This study also quantifies the contribution provided by rain gauge records. In the Lura
case, a purely autoregressive approach cannot predict any rapid event; conversely, when
exploiting rainfall data, 47% of rapid events can be correctly recognized if the input update
frequency is 60 min, and up to 100% if it is 10 min. It would be interesting to go further with
this analysis to understand the individual contribution of each rain gauge and whether a
reduced set of monitoring stations would be sufficient for an effective flood warning.

The LSTM network architecture developed for the Lura River has been kept unchanged
to explore its behavior in another domain: the Laveggio River. The results obtained are
very interesting. The Laveggio basin is smaller and thus characterized by faster dynamics
than the Lura basin. Indeed, the model performance with an input update time of 60 min
produces a negative NSE value for flood events, and only 25% of rapid events are correctly
detected. However, when the input update frequency is 10 min, the NSE reaches 0.63,
and 100% of rapid events are correctly recognized. This clearly shows that a 60-min input
update time is too long to deal with the Laveggio dynamics effectively. It must also be
noted that a full re-calibration of hyperparameters on the Laveggio case may lead to
better performances.

To summarize, the models implemented can predict flood events of the Lura and
Laveggio rivers with remarkable accuracy, especially when the rainfall information is fully
exploited, and even better if the input update frequency is equal to 10 min. This suggests
that the environmental authorities could make use of a suite of three models: as a baseline,
an LSTM network with separate rainfall values (rain gauges scenario) with a relatively low
input frequency; in the case that an extreme event is detected, a model with faster input
update frequency; and finally, in the event that some rain gauges do not work correctly,
models using an aggregated estimate of the total rain (total rain scenario) may represent
valid substitutes.

The study also points out an interesting future research direction: the development of
embedded models that combine the ability of feature extraction of convolutional neural net-
works with that of capturing temporal dependencies of long short-term memory networks.
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