
CANova: a Hybrid Intrusion Detection Framework

based on Automatic Signal Classification for CAN

Alessandro Nichelini1a, Carlo Alberto Pozzoli1a, Stefano Longaria, Michele
Carminatia, Stefano Zaneroa

aPolitecnico di Milano - Dipartimento di Elettronica, Informazione e Bioingegneria, Via
Ponzio 34/5, Milan, 20133, Italy

Abstract

Over the years, vehicles have become increasingly complex and an attractive
target for malicious adversaries. This raised the need for effective and efficient
Intrusion Detection Systems (IDSs) for onboard networks able to work with
the stringent requirements and the heterogeneity of information transmitted
on the Controller Area Network. While state-of-the-art solutions are effective
in detecting specific types of anomalies and work on a subset of the CAN
signals, no single method can perform better than the others on all types of
attacks, particularly if they need to provide predictions to comply with the
domain’s real-time constraints. In this paper, we present CANova, a modular
framework that exploits the characteristics of the different Controller Area
Network (CAN) packets to select the Intrusion Detection Systems (IDSs)
that better fits them. In particular, it uses flow- and payload-based IDSs
to analyze the packets’ content and arrival time. We evaluate CANova by
comparing its performance against state-of-the-art Intrusion Detection Sys-
tems (IDSs) for in-vehicle network and a comprehensive set of synthetic and
real attacks in real-world CAN datasets. We demonstrate that our approach
can achieve good performances in terms of detection, false positive rates, and
temporal performances.

Keywords: Automotive Security, Intrusion Detection, Signal Classification,
Controller Area Network, Flow and Payload based Detection

1 Both authors contributed equally to the research work.

Preprint submitted to Computer Security March 7, 2023

1. Introduction

Nowadays, vehicles have become more and more complex not only from
a mechanical point of view but especially from Electronic Control Units
(ECUs) [1], necessary to implement essential functionalities such as engine
performance and power steering, but also entertainment and autonomous
drive-related functionalities. However, this increased complexity raises se-
curity risks, leaving the room for a bigger attack surface: if once the ve-
hicle was an isolated system, now there are various ways in which the car
is connected to the outside world: infotainment via USB and Bluetooth,
short-range (e.g., keyless entry, Tyre Pressure Monitoring Systems (TPMS))
and long-range (e.g., 4G/5G) communications interfaces are possible entry
points for an attacker. Even when an attacker cannot physically connect to
a car’s internal network, the vast number of wireless interfaces may allow
gaining remote control over the car [2]. Problems reside in how ECUs are
connected among each other: even when core vehicle ECUs and communica-
tion ECUs are on two separated networks, Koscher et al. [3] demonstrated
that by implementing path traversal techniques an attacker would be able
to reach any sub-network inside the vehicle. Therefore, the research commu-
nity has focused on developing Intrusion Detection Systems (IDSs) for CAN,
which analyze network packet stream for signs of intrusions.

IDSs for intra-vehicle networks can be divided into flow-based and payload-
based approaches. The objective of flow-based approaches is to find anoma-
lies in the flow of packets in the network, independently from the data inside
the packets’ payload. While these approaches are usually lightweight and re-
liable, they are limited to detecting specific events (e.g., changes in the arrival
frequency of packets, such as increasing or decreasing packets’ frequency in
the network). Payload-based approaches analyze the data inside the packets
and can also detect more sophisticated intrusions that do not modify the flow
of the packets but only the information inside their payloads. Consequently,
they can detect a wide range of attacks but usually have high computa-
tional requirements and are not as effective against frequency-based attacks.
Considering attacks to CAN, flow-based approaches cannot be used as a
standalone solution since an adversary in a compromised system can send
malicious packets without changing their frequency by forcing the transmit-
ting ECU in the bus-off state before communicating [4, 5]. On the other
hand, payload-based approaches may not be suited for real-time detection of
the entire traffic of the network. In fact, they are usually tested on a small

2

subset of CAN IDs, while the traffic of a real vehicle is composed of packets
from tens of CAN IDs (more than 80 in the dataset used in this work). In
addition, the characteristics of the packets from different CAN IDs are often
heterogeneous. However, state-of-the-art IDSs do not consider the differences
between different types of packets or work only on a subset.

Given the limitations of existing IDS, in this paper, we exploit the com-
plementarity of flow- and payload-based approaches by combining them in
CANova, a modular IDS that selects the best approach to apply to each
packet based on a classification of the CAN IDs. The core module of CANova
extracts the signals from CAN packets and performs an attribute-based clas-
sification of the signals. Then, on the basis signal’s classes and features, it
decides the sequence of detection approaches that analyze each packet, fo-
cusing on a high detection rate, low computation requirements, and low false
positives.

We evaluate CANova by measuring its effectiveness against a comprehen-
sive set of synthetic attacks injected in a real-world CAN dataset. Moreover,
to provide a fair evaluation of CANova, we compare its performances against
state-of-art Intrusion Detection Systems (IDSs) for in-vehicle network on a
public dataset constructed by logging the real-time CAN message via the on-
board diagnostic (OBD-II) port of two running vehicles with attack messages.
Our experimental results show that CANova outperforms state-of-the-art de-
tection methods with a perfect True Positive Ratio (TPR), an accuracy of
up to 0.9997, and lower time requirements on all the attacks under analysis.

The contributions of this paper are the following:

• We propose an attribute-based classifier to analyze and categorize CAN
traffic based on flow- and payload-dependent characteristics, which are
used to choose the best approach to detect anomalies for each packet.

• We propose a detection module that combines different detection ap-
proaches to obtain high detection rates while keeping lower computa-
tional requirements. To do so, we propose a new intrusion detection
approach based on a Vector Auto Regression (VAR) model and im-
prove state-of-the-art CAN detection techniques, respectively, a flow-
and payload-based IDSs.

• We develop CANova, a modular IDS for CAN composed of the attribute-
based classifier and the detection module, which exploits its in-depth

3

classification of CAN characteristics to choose the approaches that are
used to detect anomalies in each CAN packet.

The rest of the paper is structured as follows: In section 2, we give a brief
overview of the concepts related to CAN that are needed to understand our
approach. Section 3 provides an overview of existing solutions related to the
one proposed in this paper, discussing their limitation and the research goal.
In Section 4 we systematically analyze the threat model, while in Section 5
we present CANova. Section 6 presents the experimental evaluation and
results. Finally, in Section 7 we draw the conclusion of the paper.

2. Background on CAN

In this section, we present an overview of the CAN protocol. Those con-
cepts are fundamental for the next sections, where we describe the problems
we want to solve and how state-of-the-art approaches deal with them.

2.1. Controller Area Network

Controller Area Network (CAN) is a multi-master, message broadcast
protocol first introduced by Robert Bosch in 1986, then revised and stan-
dardized in 2012 (ISO 11898-1). It is one of the most successful network
protocols ever designed, and today it is the de facto standard for vehicle on-
board networks, used in the automotive industry for connecting the different
ECUs of a vehicle. The CAN bus [6] is a broadcast channel that provides
multi-master capabilities. Therefore, any node connected to the bus can read
any packet sent on the network. Moreover, when the bus is idle, any node
can write on the bus. If multiple nodes need to communicate at the same
time, arbitration is won by the message with the lowest ID. This technique
is implemented at the physical layer, where logical ’0’s overwrite logical ’1’s.
Therefore if two nodes start writing the ID of their message (the first segment
of the packet) on the bus, the one that has the higher ID is overwritten on
the bus by the lowest one and gives up attempting to write its packet. The
CAN protocol is also robust, as it features five different methods of error
checking: three of them are at the message level, while two are at the bit
level. A message failing any of these error detection methods is not accepted
and an error frame is consequently generated from the receiving node. In
case of repeated errors, the failing node is removed by its controller when the
error limit is reached [7].

4

Table 1: CAN packet structure

Field name Description

Start of Frame (SOF) 1 bit that marks the start of a message.

CAN identifier
(CAN-ID)

11-bits (or 29-bits) field that identifies messages and their priority.
The lower the values, the higher the priority.

Remote Transmission
Request (RTR)

1 bit defining whether this is a Data or Remote frame.

Identifier Extension Bit
(IDE)

1 bit that defines if the standard CAN version is being used with-
out any extensions.

r0 1 reserved bit (for future use).

Data Length Code
(DLC)

4-bits field that contains the number of bytes of data being trans-
mitted.

Data Up to 64-bit field encoded with vendors and vehicles dependent
rules.

Cyclic Redundancy
Check (CRC)

16-bit cyclic redundancy check contains the checksum of the pre-
ceding application data for error detection.

Acknowledgement
(ACK)

2-bits field: 1-bit acknowledgment, 1-bit delimiter. The acknowl-
edgment bit is overwritten by the receiving ECU once the message
is correctly received.

End of Frame (EOF) 7-bits that mark the end of a CAN frame.

Inteframe Space (IFS) 7-bits inter-frame space.

2.1.1. CAN packets

Four different types of messages can be transmitted on CAN, respectively
Data, Remote, Error, and Overload frames. Data frames represent the vast
majority of the channel communication and, as the name suggests, carry data
in payloads. Remote and Overload frames are much less common in current
CAN networks. The first serves the purpose of requesting a frame from a
specific node, while the second would be used by nodes not keeping up with
the network to delay other nodes’ communication. Finally, Error frames are
sent by the transmitter or by a receiver when they detect an error on the
packet being sent on the bus to notify that the current packet is not valid.
In Table 1, we present the standard CAN packet structure. Inside a single
data, field are packed multiple values, each with a specific meaning. In this
paper, we refer to these different values as signals. Signals usually contain
information regarding sensors and commands from actuators, but they can
also contain noisy sequences of bits and CRCs that make their interpreta-
tion very difficult for security researchers. The translation of the signals of
each CAN ID is considered sensible intellectual property by vendors, which
hardly disclose the Communication Database for CAN (DBC) files with their

5

specifications to external entities. This security-through-obscurity approach
deeply impacts the design of IDSs for CAN

2.1.2. CAN Security Issues

CAN, being designed with network isolation in mind, lacks security sys-
tems of any sort and is, therefore, characterized by security weakness [8].

No authentication: Since CAN is a broadcast network where each ECU
receives all messages sent by all other ECUs. Any node on the bus con-
tinuously listens to the messages being broadcasted, waiting for the IDs of
messages it is interested in. Moreover, any node can write any message on
the bus. This implies the feasibility of a wide range of attacks that rely upon
sending spoofed messages with a tampered CAN ID.

No encryption: Since CAN needs to be light and fast to maintain live com-
munication requirements, CAN protocol never adopted packet encryption of
any sort. This problem makes it straightforward for an attacker to sniff data
and perform activities with the aim of tampering with the authenticity and
integrity of messages.

Protocol misuse: Since the CAN arbitration system relies on CAN IDs and
CAN IDs can be easily tampered with, the CAN protocol can be misused
by sending messages with low CAN ID and high priority, thus preventing
authentic packets from winning arbitration and ultimately implementing a
Denial of Service (DoS) attack. Moreover, in the latest years, a novel ap-
proach to CAN attacks has focused on exploiting the physical characteristics
of the CAN signal and its error-handling mechanism to silence nodes, again
ultimately implementing a targeted DoS attack where only the victim node
loses access to the bus [9, 4].

Higher level protocols exploitation: Important to mention, although
not directly related, some attacks to higher-level protocols sometimes imple-
mented on CAN, such as the Unified Diagnostic Services (UDS), have proven
effective at forcing nodes to send attack data or at shutting nodes down [10].

More details about threats and possible attacks will be addressed in Sec-
tion 4, but it is clear that the CAN bus is insecure by design. With our work,
we want to join the choral research effort to find the best possible intrusion
detection approach for CAN.

3. Related Works

6

Multiple researchers and surveys studied the state of the art of CAN in-
trusion detection systems [11, 12, 13, 14], and proposed methods to categorize
them. We focus on software-based intrusion detection classifying IDSs into
frequency-based (which we generalize as Flow-based), content-based (which
we generalize as Payload-based), and combined IDSs.

3.0.1. Flow-based Detection

Flow-based IDSs monitor the CAN bus, extract distinct features such
as message frequency or packet inter-arrival time, and use them to detect
anomalous events without inspecting the payloads of the messages.

Song et al. [15] propose an IDS aimed at detecting message injection
attacks by analyzing traffic anomalies, in particular time intervals between
messages. The authors’ objective is to simplify the process of detecting mes-
sage injection with regard to other statistical methods in order to get a fast
response while keeping the detection rate high, avoiding the need to wait up
to a full window of analysis latency before detecting the attack. The model
has been tested with 2x, 5x, and 10x message injection rates, and in all cases,
the model had 100% accuracy with no false positives.

Other approaches apply Machine Learning (ML) algorithms to analyze
the flow on the CAN bus. Taylor et al. [16] propose an IDS based on a One
Class SVM (OCSVM) classifier that uses as input a feature vector containing
the count, mean, and variance of time differences and mean and variance of
Hamming distances for each CAN ID. This method shows an Area Under
Curve (AUC) between 0.9620 and 0.9905 and outperforms a simple flow-
based detector designed by the authors in several scenarios.

GIDS, proposed by Seo et al. [17], is a two-stage IDS composed of two
discriminators with the same Deep Neural Network (DNN) architecture. The
first discriminator is trained in a supervised way on a labeled dataset com-
posed of both normal and malicious traffic. The second discriminator is
trained with a Generative Adversarial Network (GAN) and learns a model of
the CAN bus traffic, trying to discern the true messages from the ones cre-
ated by a generator fed with random noise to detect unknown attacks. The
input of the network are images generated by one-hot encoding the CAN IDs
of the packets read on the bus traffic, making this a flow-based method, as
the author commented that using the entire packet would make the system
not suitable for real-time detection. The system shows a detection rate of
100% for the first discriminator and 98% for the second discriminator with
an AUC between 0.996 and 0.999.

7

Olufowobi et al. [18] implemented a system building an anomaly-based,
supervised algorithm to obtain a timing model of CAN messages, attempting
to predict a window of time for the completion of a can message transmission.
The results are promising since all experiments have a recall of 0.97 or more
and no false positives. However, the tests have been done on a small real-
world dataset, with four attacks and spoofing only two IDs with relatively
similar features (Gear and RPMs).

3.0.2. Payload-based IDSs

Payload-based IDSs examine the payload of CAN packets (usually only
data frames). Lately, the research in this field has focused on applying ML al-
gorithms to this task, where it is important to distinguish between supervised
and unsupervised ML approaches since this distinction has important conse-
quences on the effectiveness and role of the approaches in intrusion detection
tasks. Supervised approaches are limited to the detection of the specific
anomalies they are trained on, they are generally more effective on specific
attacks but have limited capabilities in the detection of different events. On
the other hand, unsupervised ML approaches are able to build a representa-
tion of the normal behavior of a network and, for this reason, are potentially
able to detect any type of anomaly detectable given the input data while
being obviously less specialized on the specific attacks. Reduced Inception-
ResNet [19] is a supervised deep convolutional neural network based IDS,
which takes from Inception-ResNet, a model designed to classify images in
up to 1000 classes. The authors simplify the model for the automotive field in
an attempt to lower the computation times. CANTransfer [20] is a supervised
convolutional LSTM-based IDS designed to apply transfer learning to CAN
detection. The goal of this system is that of using a small batch of attacks
to train models capable of detecting also other classes of attacks. CAN-
ADF [21] is a framework for CAN anomaly detection and ensembles both
a rule-based detector and a supervised Recurrent Neural Networks (RNNs)-
based detector attempting to provide not only attack detection but also au-
tomatic classification of various types of attacks. TSP [22] uses a supervised
LSTM-based model and focuses on studying the best loss function form to
provide a higher detection rate and lower false positives. O-DAE [23] is
a supervised IDS based on a deep denoising autoencoder, basically using
an autoencoder to reconstruct an initial data representation while remov-
ing the noise in the signal. E-GAN [24] is an unsupervised technique that
uses both a GAN and the OEM-provided packet description (e.g., DBC files)

8

to increase the capability of the system to recognize anomalous behavior in
packets. Finally, CANnolo [25] and CANdito [26], are unsupervised IDSs
based on a Long Short-Term Memory (LSTM) autoencoder. An RNN-based
architecture is effective in modeling time series and has been proposed for
CAN traffic anomaly detection even without using an autoencoder [27]. A
window of packets is fed to the RNN autoencoder, which attempts to recon-
struct it following the trained model. A bad reconstruction represents an
anomaly since it implies that the stream of data is not behaving as expected.
This method performs well on various data field anomalies, but its major
limitation is the long computation time.

3.0.3. Combined IDSs

Zhang et al. propose a two-stage IDS for CAN. The purpose of this work
is to strike a balance between efficiency and detection rate thanks to a system
composed by a first stage that applies a CAN ID validity rule and the time
interval rule proposed by the aforementioned IDS by Song et al.[15] and a
second stage that is a DNN. The DNN stage analyzes only the traffic that
was not considered malicious by the previous stage in order not to overload
this more complex stage in case of increased frequency of the messages during
an attack. Although this approach is interesting and different from every-
thing proposed before, the way the second stage is designed may not be ideal
for detecting complex payload-based attacks. In fact, most of the chosen
input features are flow-based (sequence of CAN IDs, number of occurrences
on the last second of incoming message CAN ID, relative distance between
message CAN ID) and the last one is entropy that, although demonstrated to
be a valid feature for flow-based detection methods [28], in our preliminary
tests has proven effective only against a very limited set of CAN IDs with
very predictable traffic. HyDL-IDS [29] is a supervised, combined IDS for
CAN that exploits CNN and LSTM models to extract both temporal and
spatial features of the packets. Rec-CNN [30] is a supervised approach that
uses Convolutional Neural Network (CNN) by transforming the detection
problem into an image-classification one. To do so, they exploit recurrence
plots that graphically describe packets over time, enabling the CNN to detect
anomalies in the representation. In the attempt to exploit also the correla-
tion between different CAN IDs, Hanselmann et al. propose CANet [31], an
IDS based on an autoencoder that has a separate input LSTM network for
the traffic of each CAN ID. The inputs of each LSTM sub-network are the
signals of the correspondent CAN ID rescaled with a signal-wise 0-1 normal-

9

ization. The first layer of the autoencoder is a joint latent vector obtained by
concatenating the last output of each LSTM input. At each time step, the
current packet is fed into the corresponding LSTM sub-network in order to
update the latent vector. The joint latent vector is then processed by a dense
layer, another smaller dense layer that represents the bottleneck of the au-
toencoder, and a final dense layer that has the same size as the total number
of signals. This approach has the unique advantage compared to every other
state-of-the-art method of being potentially able to detect a larger number
of anomalies thanks to the fact that every CAN ID is evaluated at the same
time. Nonetheless, the time to test each packet has proven unacceptable for
real-time detection on a large set of CAN IDs or in series with other IDSs.

3.1. Goals and Challenges

Following the presentation of related works, we briefly comment on our
goals and the challenges we attempt to overcome. The main limitation of
current state-of-the-art approaches for packet-based intrusion detection is
that, while different methods work well on different problems, none of them
is able to achieve good results against every attack and packet and at the
same time provide results fast in order to process the traffic of the network
in real-time. The way this limitation compels a system largely depends on
the different type of IDS approach adopted; generally, flow-based approaches
are able to provide fast predictions while being limited to detect very specific
kinds of vulnerabilities, while payload-based approaches have a broader scope
but it is often a problem to make them work in real-time on the entire traffic.
Moreover, the traffic on different CAN IDs has different characteristics, but
the current state-of-the-art methods do not consider them in order to provide
better results.

Our goal, to overcome the limitations of the state of the art, is to build a
modular IDS that is able to analyze the entire traffic on the CAN bus while
improving the performances of the state of the art, both by taking advantage
of the peculiarities of the different existing approaches and by finding and
exploiting specific characteristics of the packets, in order to improve the
detection capabilities of the system or lighten the computational weight on
the more complex modules. To do so, we aim to modify existing state-of-
the-art systems to fit our needs and design new ones if necessary.

While the design of a IDS is not per se an easy task, some additional
challenges derive from the modularity of our solution. To be able to put

10

different systems together, there are some additional constraints on perfor-
mances, timing, and synchronization because a module does not only have
to work on its own but also alongside the others, affecting the detection rate,
false positives, and time to process the data.

4. Threat Model

Modern vehicles have both a wide internal and external attack surface,
and while in most cases adversaries do not have direct access to the internal
network (except in particular cases as car-sharing services), more and more
options are available as the cars become more connected. While securing
all the different components of the attack surface is fundamental, it must
be considered that all those technologies are heterogeneous and diverse. We
focus on what may happen on the CAN bus, assuming that one or more ECUs
have been compromised independently from the channel through which the
attack has been performed. Our scope is to evaluate the effectiveness of
different kinds of IDSs that analyze the packet traffic on in-vehicle networks
and, in particular, the CAN bus, as it is the predominant technology in the
industry.

We consider an adversary model where the attacker has already com-
promised at least one ECU. Our attacker can be either a weak adversary,
which has access to the CAN bus directly or through a compromised ECU,
but his target ECU is not compromised in a way that makes it incapable of
sending messages on the bus. This means that a weak attacker, whatever
his knowledge of the protocol and of the semantics of the messages, needs to
change the frequency of the messages of the target CAN ID on the bus in
order to succeed in his exploitation. A strong adversary, on the other hand,
can prevent its victim from sending messages. This means that it has all the
capabilities of a weak attacker while also being able to suppress the messages
from the target ECU and spoof it without changing the frequency of messages
on the bus. As discussed in Section 2.1.2, by design, the CAN protocol lacks
some basic security properties. This means that every adversary with access
to the network has some basic capabilities: Sniffing, as CAN is a broadcast
protocol that lacks any cryptography mechanism, anyone that has access to
the bus is able to listen to the messages sent by any ECU, and Packet Injec-
tion, as CAN protocol lacks any form of authentication, any node can send
messages on the bus with any CAN ID, being potentially able to impersonate
any other ECU on the network. Addressing these issues is difficult because

11

it requires drastic and expensive protocol modifications. This means that on
most vehicles, even a weak adversary has access to a wide range of different
attacks.

Spoofing Attack: To try to impersonate a target ECU, the attacker floods
the network with messages with the same CAN ID as the target. If the injec-
tion rate is higher enough than the normal frequency of the target messages,
the other ECUs may accept the injected messages.

Fuzzing Attack: This attack consists of injecting random or partially ran-
dom messages on the network in order to cause malfunctions. This method
has also been used to attempt to reverse engineer the semantics of the mes-
sages [3].

Denial of Service (DoS): Similar to previous attacks, but the objective
is to saturate the network. The injection rate is higher, and the CAN ID of
the injected messages is low (e.g., ID 0x0) as the arbitration mechanism of
the CAN protocol gives priority to messages with lower CAN ID.

Drop attack: The compromised ECU is prevented from sending messages
(e.g., by putting it into Bootrom mode [10] or with a targeted DoS attack
aimed at forcing the victim ECU in bus-off state [9, 4]).

The first step for these types of attacks to be successful is to conform
to the protocol and to various rules that would make ECUs refuse the new
packets. Several rules can be checked by an IDS in order to easily refuse
those malformed messages, for example, by checking their formal correctness
with regard to CAN specification (correct size of sections, field delimiters, bit
stuffing, CRC), the consistency of eventual counters and CRC in the payload
(while often if there are problems in these sections, the ECU will just reject
the messages) and of bits that are never used. Even for messages that are
formally correct, these types of attack are easily and reliably detected by
simple classifiers taking into account the increased (for spoofing, fuzzing, and
DoS) or decreased (for drop) frequency of messages of the target CAN ID on
the bus. This means that for these types of attacks using complex machine
learning algorithms is redundant, as they can be detected with much more
simple and less computationally intensive methods.

Strong adversaries, besides all the described attacks, can also perform
more sophisticated masquerade attacks : the attacker may have control of
the specific ECU that sends the target packets, or they may implement a

12

drop attack against the transmitting ECU and send malicious packets, in
both cases preserving the perceived frequency of the attacked CAN ID. It
is important to note that the second implementation of this attack is not
trivial and requires a strong adversary with full IDs and packets knowledge
(obtained either through CAN DBC files or extensive reverse engineering)
and fine-grained packet injection capabilities regarding CAN frame frequency
and format, (e.g., the attacks proposed by Tron et al. [4] and Kulandaivel
et al. [32]). In fact, placing a legitimate node into bus-off state, or shutting
down the legitimate node, implies that all the IDs sent by that particular
node will be missing from the bus. Therefore, the attacker has to be capa-
ble of replacing the communication of all the missing IDs (as demonstrated
by Miller et al. [10]) and maintaining their correct frequency, otherwise it
would be trivial to detect the attack due to the misbehavior of packets, eas-
ily recognized by rule or frequency-based IDSs. However, if implemented
correctly, differently from attacks that widely impact the traffic on the net-
work, this type of intrusion is very difficult to detect through basic detection
approaches. An adversary of this type may try to shape the payload of the
sent messages in such a way that makes it difficult for more complex sys-
tems to detect the attack. We categorize these attacks into the following two
categories: Replay and continuous change attacks.

Replay Attack: the payload of the sent messages is replaced with a time
series of messages of the same CAN ID previously sniffed on the bus. This
type of attack is intended to trick the IDS into considering the injected traffic
as valid.

Continuous Change Attack: a signal inside the payload of the messages
is slowly modified until the wanted malicious value is reached. This type of
attack is more complex as the attacker needs to know the position of a signal
inside the payload and its semantics. An attack of this type may make an
IDS believe that the traffic is valid as no abrupt changes in the value of the
signal can be detected.

5. CANova

In this section, we describe CANova, the modular framework proposed in
this work, which exploits the characteristics of the different CAN packets to
select the fittest IDSs for detecting attacks. First, we provide an overview of
its functioning, and then, we detail the inner workings of each component.

13

Signal
Extraction and
Identification

Phase 1

Phase 2

Phase 3

0,1234s ID: 0xAB “AB12CD34”

CAN Traffic

0,5678s ID: 0xCD “EF56GH78”
…

0
1
n

[0-16] physval,
 [24-32] physval,

[35-38] CRC

[0-1] binary,
[8-32] physval

[...]

0xAB

0xCD

n

Signals
high frequency,
full pattern

Classified Traffic

few values,
periodic

…

0xAB

0xCD

n

Classification

Rule-based
classes to signal
characteristics

association

Modular Intrusion Detection System

flow-based
module

rule-based
module

VAR-based
module

Hamming
Distance-based

module
RNN

Autoencoder
-based module

Class-dependent
path definition

Anomalous

Legitimate

Figure 1: The three components of the framework of our work: Signal extraction, classi-
fication and modular IDS, and their interactions.

5.1. Approach Overview

As shown in Figure 1, CANova is composed of three components: the sig-
nal extractor, the CAN IDs classifier, and the modular IDS. First, CANova
extracts the packets’ signals using a reverse engineering method based on
READ by Marchetti and Stabili [33]. The output of this step is the assign-
ment between CAN IDs and the list of categorized signals. This information
is used by the classifier and the IDS modules. The second step of our frame-
work is a classifier, which assigns some attributes to the CAN IDs based on
the characteristics and behavior of their packets. These attributes can be ei-
ther based on frequency-based features (e.g., periodic or non-periodic arrival
of packets, high or low packet frequency) or on the content of the payloads
(e.g., CAN IDs that have a small number of bit-flips/values of the signals,
signals that follow a pattern). Finally, we use these attributes to choose the
different IDS modules to assign to each category of packets. In this work,
we envision several modules concatenated considering their temporal perfor-
mance (see Section 6); in other words, ”lighter” modules analyze the packets
before the more complex ones to lighten the computational burden. There-
fore, we first apply ”simple” checks on packets’ payload and flow to provide
fast and precise detection of the less advanced attacks.

Rule-based module: it applies static rules to the traffic (valid packet id,

14

check on a bit that should never flip, check on the correct behavior of pattern
sequences).

Flow-based module: it checks the arrival time of packets belonging to
CAN IDs showing periodic behavior. This module uses as a reference the
inter-arrival time of the packets registered in a real-world scenario to detect
anomalous flows on the network.

Packets that are marked as malicious by neither of these modules are
then analyzed by one of the different parallel payload-based modules chosen
depending on the attributes of the CAN IDs. The idea behind these modules
is that they are able to provide the best trade-off between detection accuracy
and detection time for at least a category of packets. In particular, we choose
the following classes of IDSs, since they performed best in our experimental
evaluation depending on packets’ extracted features.

Hamming distance-based module: IDS based on the Hamming distance
between packets that can detect anomalous events when the value of the
packets changes significantly in a small amount of time.

VAR-based module: IDS based on an auto-regressive model that is useful
for CAN IDs that have signals that are highly predictable given their last
few values.

RNN autoencoder-based module: IDS that can model even complex
non-linear relationships inside the traffic of most CAN IDs, at the expense
of computational requirements. We have chosen this particular type of ar-
chitecture because several state-of-the-art works show it to be particularly
effective in the same task [27, 25, 31].

It is important to mention that while the modules that we have chosen
are the ones that performed best in our experimental evaluation, this may
change in the future due to novel detection techniques being proposed. The
overarching goal of CANova is not only to propose a viable current solution
but also to design and propose a framework that can be easily updateable
with novel techniques without re-designing the whole process. In fact, in
the event where a novel technique is found that well detects specific types of
packets where the current modules underperform, it can be easily inserted
by adding the necessary routing rules.

5.2. Signal extraction and identification

To evaluate the characteristics of the signals found in each CAN packet,
it is first necessary to extract such signals. To do so, we exploit a reverse

15

engineering method based on READ by Marchetti and Stabili [33]. The
output of this step is the assignment between CANs ID and the list of its
signals. The second step is a classifier, which assigns attributes to a CAN ID
based on the characteristics and behavior of its signals. These attributes can
be either based on frequency-related features (e.g., periodic or non-periodic
arrival of packets, high or low packet frequency) or on the content of the
payloads (e.g., CAN IDs that have a small number of bit-flips/values of the
signals, signals that follow a pattern). The output of this classification is
then fed to the CANDetector in order to choose the detection modules to
use. The extraction of the signals from each CAN ID is necessary since dif-
ferent signals, even if sent alongside the same CAN packet, may behave in
completely different ways and, therefore, may require to be handled differ-
ently. Therefore, given the full dataset trace, we need to extract signals for
each CAN ID. To do so, we expanded Marchetti and Stabili’s READ [33].
READ extracts individual signals from CAN traffic by inspecting all the bits
of the data field of all observed CAN messages and evaluating their evolution
over time. To do so, READ focuses on a CAN ID trace at a time and it does
not require any prior knowledge about the nature of the messages’ payload.
In brief, READ’s algorithm is composed of three logical steps. The first step
is PreProcessing, which computes intermediate data structures needed for
the following phases: bit-flip rate and magnitude array. The second step is
called Phase 1, and in this phase, the magnitude array is used for the defi-
nition of preliminary signal boundaries identification. Finally, the last step
is called Phase 2, and takes as input the preliminary boundaries identified
in the previous phase together with the bit-flip rate array to identify and
correctly label signals. The output of phase 2 is the list of signals and their
categorization for each CAN ID. READ’s phase2 identifies three types of
signals: PHYSVAL, COUNTER, and CRC. Our custom version of phase 2
adds a fourth one: BINARY.

On top of this basic classification made essentially over the analysis of bit
flips, we expanded the signal extraction technique by adding another step:
phase 3. The scope of phase3 in our modular system is the identification of
further characteristics of signals based on features different from the only bit
flip ratio and its magnitude used in the first phases. In particular, during
phase3, we perform two different checks: a recurrences check, where signals
that present a pattern behavior are marked as PATTERN, and an auto-
correlation check, where signals’ auto-correlation coefficients are computed
and the ones which present very high values are marked as HIGH AUTO-

16

CORRELATION. This signal-related information is used to eventually enrich
the output of phase 2 with the aforementioned additional categories.

Pre-processing. Our pre-processing phase analyzes the messages’ payloads
and computes the information used by the next phases. The bit-flip rate is
evaluated for each bit of the payload, independently of its neighbors. The
number of times each bit flips its value is counted for each of the n bits that
compose the payloads; the bit-flip rate is then calculated as the ratio between
the count of the flips and the total number of packets for the considered
CAN ID. Then each element of the magnitude array is calculated as Mi =
⌈log10(Bi)⌉, 0 <= i < n, where B is the array of bit-flip rates of the
considered CAN ID. The values of the magnitude array represent the different
orders of magnitude of the bit-flip rate for each bit of the payload and they
are used in phase 1 to compute the preliminary boundaries of the signals.

Phase 1. The objective of phase 1 is to find the preliminary bounds of
the signals for each CAN ID (i.e., bounds that contain one or more signals).
For each CAN ID the steps of phase 1 of the original algorithm consist
in scanning the magnitude array starting from the first bit, searching for a
significant magnitude decrease (which marks the end of a preliminary bound),
and repeat from the successive bit to the end of the payload. The idea behind
the algorithm is that a decrease of the magnitude indicates the transition
from the least significant bit of a signal to the most significant bit of another
signal or to a section that does not include any signal. The only novelty
that we added in phase 1 is that every time we find a preliminary bound, we
skip all the bits with magnitude −∞ and identify it as the start of the next
preliminary bound the first bit with non-infinite magnitude. By doing so we
avoid including bits that never flip into the preliminary bounds.

Phase 2. Contrary to the choice for the first two steps of the signal ex-
traction, we more significantly modified the design of phase 2. The Phase 2
function takes as input the preliminary bounds of the signals found in phase
1 and the bit-flips calculated during pre-processing. The purpose of phase 2
is to find the correct boundaries and type of one or more signals contained in
each preliminary bound. Our phase 2 is designed to be able to identify not
only the starting bit of the preliminary bound like in the original approach
but also the ending bit, which allows us to be more precise in the recogni-
tion of signals. The categories of signals produced by phase 2 are shown in
Table 2.

Phase 3. Phase 3 is a completely novel contribution to the signal extraction

17

Table 2: The different types of signal categories identified by phases 2 and 3 of our
Extraction and Identification step.

Phase 2
CRC Signals that contain the result of a cyclic redundancy check on the

message payload to detect transmission errors. These signals have
bit-flips that follow a normal distribution with a mean of 0.5.

Counter Signals whose value always increases or decreases by one with respect
to the previous message’s counter with the same CAN ID. These
signals have bit-flips that approximately double after every bit and
have the least significant bit with bit-flip around 1 (e.g., a 4 bits
counter has a bit-flip array of values close to [0.125, 0.25, 0.5, 1]).

Physval Signals that represent a value read from a sensor (e.g., speed, steer-
ing angle, gas tank level). We consider PHYSVAL signals that do
not belong to any of the previous categories.

Binary One-bit long signals
Phase 3

Patterns Signals are considered patterns if they have a periodic pattern that
is repeated for the whole dataset.

High Auto-
correlation

A signal is considered highly autocorrelated if it is a “physval” and
the correlation between the signal and itself, shifted by one time-
step, is greater than 0.9.

process, meant to find signals’ features that are independent of their bit-flip
ratio and magnitude, but that are useful for the following classification step.
The outputs of phase 3 are the same signals found by phase 2, with some
of those signals enriched by additional attributes. The categories of signals
added by phase 3 are shown in Table 2.

5.3. Classification

Once we extract all the properties from signals we can finish our classi-
fication of the packets by identifying distinct categories of CAN IDs on the
basis of their attributes. Once the characteristics of the traffic are clear and
attributes are assigned, we can define associations between CAN IDs to IDSs
on the basis of the set of attributes they are given. We focus the design of our
classification and mapping steps on maintaining two characteristics: the first
is to build both a modular classification and mapping. In fact, new attributes
could come up as meaningful in the future, and our framework would be able
to integrate them without requiring a complete reconfiguration. Moreover,
new detection techniques could be identified as useful for some specific IDs,
and in the same way our framework would be able to integrate them without

18

a complete reconfiguration. Second, we want our system to be automatic,
which means that attributes must be assignable without any human super-
vision. This is fundamental for the framework to be scalable on different
vehicles and configurations.

The Classification step takes the output of the signal extractor and cal-
culates different features that we empirically recognized as useful for the
successive choice of an IDS. The list of possible features is shown in Table
3.

5.4. Modular Intrusion Detection System

Once the classification of the various packets has been completed, we
focus on the design of the actual modular IDS and how the various detection
modules interact with each other to obtain the evaluation of each packet.
Our focus in the design of the interaction between modules is manifold: The
detection system as a whole needs obviously to be effective, as it has to detect
the vast majority of attacks; The detection process needs to be fast since the
system is designed to be implemented on-board of a vehicle and needs to
keep up with the live traffic; Following the same reasoning, the detection
system needs to have low latency, even if multiple detection modules process
the same packet. Last but definitely not least in terms of importance, the
detection system as a whole needs to have low False Positive Ratio (FPR),
since the only way for it to be actually implementable in real-world scenarios
is by not being more of an annoyance than a solution.

Our intuition to handle these requirements is to implement the intrusion
detection modules either in series or in parallel, depending on the module
characteristics. We can make various considerations regarding our focus on
the design and the properties of modules in series or parallel. In an optimal
scenario, where no module has false positives, the solution with the high-
est detection rate would be the one with all the modules in series, from the
computationally fastest one to the slowest. In this way, all modules would
have the chance of detecting anomalies, but if the anomaly could be detected
by the fast ones, it would not end up taking up unnecessary computation
time. Similarly, in an optimal scenario, the solution with the fastest out-
put would be the one where all detection modules are inserted in parallel,
and each packet/ID is evaluated only by one module. However, as further
discussed in Section 6, some modules are particularly effective in detecting
some attacks, independently from many properties of the packet, but are
incapable of recognizing others (e.g., flow-based detection cannot recognize

19

Table 3: All the possible attributes can be assigned to a CAN ID. Note that attributes-ID
associations are not unique, meaning that an ID may be assigned multiple attributes if it
follows the requirements needed for them.

Classification

Always con-
stant

CAN IDs for which payloads are always constant in the training set. A CAN ID
is marked as always constant if the signal extractor indicates there are no signals
for that CAN ID.

Few values CAN IDs for which the payloads have a minimal set of possible values. A CAN
ID is marked as Few values if the different values assumed by its payloads are
less than a predefined threshold (10 values for each dataset).

Few flips CAN IDs for which the bits of the payloads in the flip a minimal number of times.
A CAN ID is marked as Few flips if the bits of its payloads flip value a number
of times that is less than a predefined threshold (10 flips for each dataset).

Few flipping
bits

CAN IDs with a single bit that flips.

Not enough
packets

CAN IDs that have a minimal number of packets. A CAN ID is marked as Not
enough packets if there are less than a certain amount of packets (40 packets for
each dataset) from the CAN ID.

Full pattern CAN IDs with payloads containing only signals that follow a pattern. A CAN ID
is marked as Full pattern if all its signals are identified as pattern by the signal
extractor.

Partial pat-
tern

CAN IDs with payloads containing at least one signal that follows a pattern.

High fre-
quency

CAN IDs with a small average packet inter-arrival time (less than 21 ms).

High auto-
correlation

A CAN ID is marked as High auto-correlation if all its PHYSVAL signals are at
least 4-bits long, are identified as high auto-correlation by the classifier, and has
a high packet frequency (period ≤ 20 ms).

Full binary CAN IDs that have only signals composed by a single bit.

Non-
periodic

CAN IDs that do not have a periodic behavior. A CAN ID is marked as non-
periodic if the maximum period calculated on the different training datasets is
bigger than two times the minimum period calculated on the training datasets
or if the average interval between packets, multiplied for the number of packets,
is less than 0.97x the actual duration of the traffic of the CAN ID.

Semi-
periodic
low

CAN IDs that behave similarly to periodic ones but have some high-frequency
events. We classify a CAN ID as semi-periodic low if there is at least one
packet that satisfies this condition: (timestamp − last timestamp) < 0.3 ∗
average interval ∧ (timestamp−second last timestamp) < 0.8∗average interval .

Semi-
periodic
high

CAN IDs that behave similarly to periodic ones but have some low-frequency
events. We classify a CAN ID as semi-periodic high if there is at least one packet
that satisfies this condition: (timestamp−last timestamp) > 2∗average interval .

Semi-
periodic

CAN IDs that are both semi-periodic low and semi-periodic high.

Periodic CAN IDs that have a strong periodic behavior. A CAN ID is marked as periodic
if it is neither non-periodic nor any type of semi-periodic.

20

masquerade attacks but easily detects DoS). It follows that the real-world
best solution is an in-between that both keeps a high detection rate over all
possible attacks, and at the same time does not require a series of modules
that are excessively long, in order to avoid delays.

Another (although already anticipated) relevant design choice is whether
a packet is forwarded to a second detection module when it results anomalous
or legitimate. This question, although important, is easily answered. In fact,
since as we already mentioned some detection modules are extremely efficient
in detecting specific attacks but cannot detect all, choosing to forward only
anomalous packets to confirm the result would lead to some attacks passing
undetected. Our best choice is to forward packets when they are evaluated
as legitimate, to ensure that all types of attack can be detected. This choice,
however, has an important drawback, which is that in a standard context the
vast majority of packets are legitimate, and therefore the computational over-
head and overall delay for each result increases. It is fundamental, therefore,
while choosing the detection modules and their layout, to avoid inserting in
series a set of modules that are all computationally expensive.

Finally, as previously mentioned, different detection methods are effective
against different types of attacks, hence it is necessary to evaluate a packet
with detection methods that complement each other, and to avoid instead to
insert in a chain of detection multiple detection modules that focus on similar
attacks. Our extensive analysis of detection systems led us to assert that it
is always effective to insert, where meaningful, as the first two modules a
flow-based and rule-based. The reasoning behind this choice is that flow and
rule-based modules are orders of magnitude faster than other payload-based
modules while having essentially no false positives.

To summarize our modules interaction choices, we define a set of rules:
(1) Modules are inserted in series or in parallel.
(2) A packet that is considered anomalous when it is evaluated as such by
one module. A packet is considered legitimate when it is evaluated as such
by all the modules that should evaluate it.
(3) Since the system has to be effective in detecting all types of attacks,
modules that are effective in the detection of different types of attacks have
to be inserted in series.
(4) Since the system has to be fast, and different modules have significantly
different testing times, the ones with lower testing time have to be inserted
first, so that the simpler modules have the possibility to detect trivial attacks
and avoid useless computation.

21

(5) The latency of a negative prediction is the sum of the latencies of all the
modules in series. Therefore, it is fundamental to ensure that such sum of
latencies never exceeds the interarrival time between two packets with the
same ID.
(6) The FPR of the system is negatively affected by modules in series, since
each module has the theoretical possibility of detecting false positives. It is
hence necessary to avoid chains of modules with relevant false positive rates
for the system to be implementable in real-world scenarios.

Modules mapping. Finally, CANova requires a methodology to map the
various IDS modules to the different CAN IDs. Note that this step is the
only one in the analysis process that requires complete knowledge of the IDS
modules that are being used. Specifically, the modules we implement are a
flow-based IDS, a rule-based IDS, an RNN-based autoencoder, a hamming-
distance-based IDS and finally a VAR-based IDS.

To choose which ID is assigned to which set of modules, we empirically
designed a hierarchy of rules that link an IDS to an ID depending on its
attributes. ”Hierarchy” means that where a CAN ID is assigned with more
than one attribute, only the policy corresponding to the highest rule on the
list is applied. The only exception to this is the flow-based module, which is
applied first to all IDs that show periodic behavior. The hierarchy of rules
is as follows:
(1) Not enough packets The CAN IDs marked with this attribute are an
exception: no predictions are viable for them because of the limited number
of data and the lack of DBC to know their real behavior, therefore no IDSs
either in series or parallel is associated with them.
(2) Always constant No more than simple checks are feasible. Therefore only
the rule-based module is used on them.
(3) Full pattern Full pattern CAN IDs traces just need to be checked with
the rule-based module because any possible attack would trigger a pattern
violation.
(4) Few flips and Few values CAN IDs that include this couple of attributes
can be seen as a generalization of the Always constant class attribute; as a
matter of facts packets of the two classes share most of the features and we
can see the always constant trace as the extreme case: zero flips and just one
value. Therefore, besides the rule-based module, we enforce the use of the
Hamming distance-based IDS, to check that the packets do not change too
much in a short amount of time, in particular, to detect fuzzing attacks.

22

(5) Few flipping bits CAN IDs that include this attribute are handled with
the Hamming distance-based IDS (if not already assigned with other IDSs),
so that, even if the check upon the hamming distance between two consecu-
tive packets is not particularly effective, the check over the average Hamming
distance between a bigger set of packets can detect anomalies associated with
unusual bit flipping ratio.
(6) High-auto correlation CAN IDs marked with these attributes are ana-
lyzed with the VAR-based IDS, besides the rule-based module, which like
on all the other CAN IDs enforces some simple rules. On the other hand,
the VAR-based IDS can be used on this set of CAN IDs because, as shown
in Section 6.3.3, it has a similar effectiveness on them as the more general
RNN autoencoder-based model while being an order of magnitude faster in
providing the results.
(7) Others All the CAN IDs that cannot be classified through the above list
of rules are handled with the RNN autoencoder module. This IDS is able to
handle the widest range of CAN IDs, and it is therefore used on every packet
that cannot be better classified.

We proceed to describe the list of modules that we selected, presenting
their design and the role that we envision for them in CANova. As already
mentioned, while the following modules were chosen because they have per-
formed the best in our preliminary evaluation for specific categories of pack-
ets, the strength of CANova derives from its modularity, which means that
if novel techniques are found that perform better against specific categories
of packets, adding such modules requires only to update the set of rules that
enable to route the given packets towards the new module.

Flow-based Module. An overview of the current state of the art regarding
flow-based IDSs has already been provided in Section 3. Amongst the various
options, we opted to implement the system based on the measure of time in-
tervals between packets proposed by Song et al. [15], since it has been proven
by its authors to have a 100% Detection Rate (DR) on flow-based attacks
with no false positives, and low computational overhead, which is exactly
what we search for in the module that is inserted first. While implement-
ing this system, however, we noticed a set of CAN IDs with a considerable
number of false positives. In fact, upon further inspection of the data that
caused the false positives, there is a case that is not considered in the original
implementation: some IDs, while generally behaving similarly to the other
periodic ones, present some short events with higher traffic frequency (our

23

classification step already categorizes these CAN IDs as semi-periodic low)
or events with lower traffic frequency (semi-periodic high). We have modified
the original IDS to deal with this problem thanks to the categorization of
the CAN IDs that cause the most false positives. Our new flow-based IDS
uses the minimum packet inter-arrival time registered on real CAN traffic
for these CAN IDs, instead of the average packet inter-arrival time, in the
anomaly detection process. The second modification, to further lower the
possibility of false positives, is to extend the check on the message interval
from only the last packet to the two packets prior to the current one. This
avoids considering anomalous delays of a single message, that may be caused
by arbitration and not by an attacker. We made a preliminary evaluation of
the Flow-based module alone to ensure that our modifications did not lower
its detection capabilities, and confirmed that it has 100% accuracy for injec-
tion attacks and extremely close to 100% on drop attacks, provided that such
attacks are 2 or more packets long, as expected given the second modifica-
tion. As also shown by Miller and Valasek in [34, 10], high injection rates are
necessary to perform effective injection attacks, and at such injection rates,
the system is still effective.

Rule-based Module. The rule-based module, as the name suggests, per-
forms checks on the traffic by enforcing predefined rules. In general, the
more details the designer has on the system, the more rule-based checks can
be added. However, the main goal of this module in our system is that of
freeing other, heavier modules from detecting simple attacks. Therefore, we
implemented only the following rules:
(1) CAN IDs are whitelisted (in our case, only IDs that were seen in the
training set are allowed).
(2) Fixed bits, which are common in CAN traffic, cannot change.
(3) Signals that follow a fixed pattern, which again are common in CAN
traffic, cannot divert from their pattern (we classify them as PATTERN in
the classification step).

The reason behind the choice of these rules is that we consider them free
from false positives in a real-world scenario. In fact, while we do not have
complete knowledge of the various IDs in the dataset and may, for example,
blacklist an ID that appears only in the test set, in an industrial setting the
list of plausible IDs is defined, similarly to the other rules.

Hamming distance-based Module. The Hamming distance-based IDS
approach is inspired by a work by Stabili et al. [35]. Hamming distance is

24

used to measure the minimum number of substitutions required to change
one string into another. Since it was first proposed in 1950, it has been used
in several disciplines for the most part related to, but not limited to computer
science. The generic formula for computing the Hamming distance between
two words of equal length k is Hd(x, y) =

∑k
i=1 |xi − yi|. The idea behind

Hamming distance-based IDS is to compute acceptable hamming ranges for
consecutive packets of the same CAN ID trace during the training phase,
and consider as anomalies the transitions that violate such range. Stabili et
al. consider the Hamming distance of a single transition for detecting the
anomaly. However, our empirical analysis has shown that it is more effective
to use the sum of the Hamming distances of three consecutive transitions.
In fact, this enables the identification of attacks even in CAN IDs that have
only a small amount of bits that flip, where instead on a single transition the
Hamming range would always be the maximum. Undeniably, this approach
has several limitations against some complex attacks such as a replay attack,
since they may not violate such ranges. However, as further discussed in
our experiments (Section 6.3.4), it causes minimal false positives. From our
study of the state of the art and practical analysis, for some classes of CAN
IDs there are currently no better detection options.

VAR-based Module. Our VAR-based module is the only one that is not
an adaptation of other work but has been designed specifically to lower the
overall computation requirements of CANova by assigning a specific class of
CAN IDs to a module that is less computationally expensive than others.
In fact, VAR is a stochastic process model that generalizes AR models in
order to predict multivariate time series. If we assume that the different
signals (excluded counters and CRCs) inside the payload of a CAN ID are
interrelated, VAR can be a good option to recognize such relationships and
predict the future values of the signals. A generic VAR(p) process (i.e., a
VAR model in which the variables depend on the past p time steps) with K
variables is defined as [36]

yt = v +A1yt−1 +A2yt−2 + ...+Apyt−p + ut (1)

Where y is a K -dimensional vector representing the K variables at the cur-
rent time step t, v is a k -dimensional vector of constants, yt−i is the K -
dimensional vector representing the variables at time step t − i , Ai is the K
x K matrix of coefficients for time step t − i , ut ∼ N (0,Σu).

As the error term ut is unpredictable the one-step ahead predictor can be

25

expressed as:
ŷ = v +A1yt−1 +A2yt−2 + ...+Apyt−p (2)

A similar category of IDSs can be seen as an alternative to more complex
payload-based IDSs for CAN IDs that have highly predictable signals. In
fact, while the VAR-based IDS does not perform on average, on specific
CAN IDs it has an effectiveness comparable to more complex ML methods
while providing much faster predictions. We include these highly predictable
CAN IDs in our classification in the category high auto-correlation. This
IDS module is composed of a VAR(1) model for each CAN ID with more
than one signal and a AR(1) model for each CAN ID with a single signal.
The input variables of the model of each CAN ID are the time series of its
non-counter, non-CRC signals rescaled into the 0-1 range. After the models
are fitted on a training sequence, the detection threshold of each model is
computed on a sequence of other n packets from the corresponding CAN ID.
The first packet of the sequence is used to initialize the history window, the
others compose an input matrix Y of size n − 1 x k , where k is the number
of non-counter, non-CRC signals of the considered CAN ID. For each packet
the one-step ahead predictor is computed using Equation 2 (with p = 1), the
predictions compose a matrix Ŷ of size n − 1 x k . The reconstruction error
matrix is computed as E = Ŷ − Y . Similarly to what was done in [37], [38]
and [25], the reconstruction error matrix is fitted to a multivariate Gaussian
distribution with mean µ (a k -dimensional vector), and covariance matrix Σ
(a matrix of size k x k). These parameters are thus used to compute the
anomaly scores, which are the Mahalanobis distance between the one-step
ahead reconstruction error on each packet and the computed distribution of
non-anomalous packets. Using the Mahalanobis distance has the advantage
of considering not only the average value of each of the k variables but also
their variances and covariances in order to provide a statistical measure of
how much a new prediction is similar to the ones made on clean data [39].
For each packet in the threshold set the anomaly score is computed using the
Mahalanobis distance as follows:

s = (e− µ)TΣ−1(e− µ) (3)

Where e is the one-step-ahead prediction error of the tested packet. The de-
tection threshold is computed as the 99.99 percentile of all the anomaly scores
computed on the threshold dataset. As soon as a new packet to be tested ar-
rives, the one-step-ahead prediction for the current packet is computed and

26

the testing error is computed as e = ŷ − y, where ŷ is the k -dimensional
vector of predictions at current time step and y is the k -dimensional vector
of input signals at a current time step. The anomaly score for the current
packet is computed using Equation 3, measuring how much the new packet is
different from the normal distribution computed on data without anomalies.
If the test score is greater than the detection threshold the packet is marked
as anomalous. To apply VAR to intrusion detection, a model is fit on a clean
(i.e. without anomalies) sequence; the detection threshold is calculated on
the basis of the errors of the one-step-ahead prediction on a different clean
sequence. Anomalies on new data can be defined as prediction errors on the
one-step-ahead prediction that exceed the threshold.

RNN autoencoder-based module. The RNN autoencoder module, based
on Longari et al. CANdito [26] is capable of detecting payload-based anoma-
lies on the vast majority of CAN IDs. The main drawback is that it is
significantly more computationally expensive than the other modules. Thus,
this module is used to evaluate the packets that do not have a faster alter-
native with comparable or better effectiveness. An RNN-based architecture
is effective in modeling time series and has been proposed for CAN traffic
anomaly detection even without the use of an autoencoder [27]. On the
other hand, an autoencoder-based architecture provides several advantages:
autoencoders are simpler to train because the target signals are generated
automatically from the input sequence, avoiding the need for a labeled train-
ing dataset; autoencoders, thanks to being trained in an unsupervised way,
learn a model of the traffic of the network, not the specific anomalies. This
means that autoencoders are potentially able to detect attacks not consid-
ered by their designers or zero-day attacks. Briefly, the architecture of this
module is composed of an input layer of dimension n x k, where n = 40 is
the dimension of the window of packets, k is the number of signals (excluded
counters and CRCs), thus it is variable for the different CAN IDs. The in-
put signals are rescaled in the 0-1 range, a dense layer with 128 units. The
activation function of choice is Exponential Linear Unit (ELU) [40], and two
LSTM layers with 64 units each. The cell and hidden states of the last LSTM
layer of the encoder are used to initialize the states of the first LSTM layer
of the decoder. For further details on the architecture and design, we refer
the reader to CANdito [26].

27

6. Experimental Validation

This section presents the experimental evaluation performed to demon-
strate the effectiveness of CANova. First, we show the capabilities of our
packets’ classifier on a public real-world dataset of legitimate CAN traffic.
Then, we demonstrate the effectiveness of the intrusion detection modules
proposed in this work by comparing their performances on a set of synthetic
attacks injected in the aforementioned dataset over the subset of best-fitted
CAN IDs. Finally, we show that our CANova is more effective than state-of-
the-art solutions on a public dataset with real-world attacks.

6.1. Datasets

We evaluate our work through two public datasets: the ReCAN C-1
dataset [41] used for the first set of experiments and the car-hacking dataset [19]
used for the comparison with the state of the art.

6.1.1. ReCAN C-1 dataset

The ReCAN C-1 dataset [41] contains nine logs of real CAN traffic of an
Alfa Romeo Giulia Veloce. For repeatability purposes, we report in table 4
how the various parts of the dataset have been used. In brief, datasets 1, 2,
6, 8, and 9 have been used to train the different models. Being the longest
log, only dataset 9 has been used for the models trained on a single dataset,
while for models trained on more than one dataset, all these 5 datasets have
been used. Dataset 4 has been used for computing the detection thresholds
for the different modules. Dataset 5 has been used for validation and hy-
perparameter tuning. Finally, dataset 7 has been used only for testing. To
generate the attacks used for testing, we use an attack generator tool pre-
sented in [26]. Briefly, it is a tool to generate datasets that contain a given
anomaly starting from an already existing CAN log. In our case, we generate
the attack datasets providing as input to the tool dataset of the ReCAN C-1
dataset, which is the one we selected for testing.

Injection Dataset: The attacks contained in this dataset consist of packets
added to the existing log, maintaining the original packets unchanged. The
new packets are generated by copying previous traffic and modifying it with
simple rules. The anomalous packets are added with periods that range
between 1

2
and 1

20
of the original one, each sequence has a length between 10

and 50 packets, and at least one physical signal of the packet is modified.

28

Drop Dataset: This dataset is meant to simulate an attack where the
adversary turns off an ECU or its CAN interface and consists of removing
sequences of packets from the original CAN traffic. For each attack, 25
packets with the same ID are removed from the log.

Masquerade Dataset: The attacks contained in this dataset consist in
substituting already existing packets and changing their payload to avoid
modifying their arrival frequency. Aside from this, each anomalous sequence
is 25 packets long, at least one physical signal is always modified, and some
signals are set to a previously captured random value.

Fuzzed Dataset: This dataset simulate fuzzy attacks against various ECUs.
Since detecting attacks if the constant bits are randomized becomes trivial
through the rule-based module, these bits are left untouched. Moreover, this
attack is not implemented in an injection but in a masquerade fashion.

Seamless Change Dataset: The attacks contained in this dataset simulate
a strong attacker that performs a masquerade attack designed to evade IDSs
by changing the payload of packets from a legitimate value to a tampered
one progressively. As a recall, this attack may be implemented by directly
controlling the target ECU or by performing a drop attack and then replac-
ing the payload of the affected packets (i.e., the missing IDs of the shut-down
ECU). To consider the worst-case scenario in which the attacker can perfectly
perform such an attack (i.e., no frequency misalignment or other inconsisten-
cies), we implement it by directly replacing the packets of the target ID. By
doing so, we are simulating an attacker that has full control of the tampered
ECU and is simply re-transmitting the other affected IDs. This attack is
generated on CAN IDs that have at least one physical signal with a length
of 4 or more bits, and only one physical signal is modified per attack. Again
the anomalous sequence is 25 packets long.

Replay Dataset: The attacks in this dataset are sequences of packets iden-
tical to legitimate ones previously recorded from the same ID. These attacks
do not necessarily refer to a real-world scenario since they are not imple-
mented by the adversary with a goal in mind if not that of evading the IDS.
However, they are valuable to compare the ability of the various modules to
detect sequences that are anomalous due to the context in which they are in-
serted, but would be valid in another one. This attack has been implemented
with the same assumptions as the previous one.

29

Table 4: The ReCAN C-1 dataset [41] with the details on how each dataset was used

n. CAN-IDs Frames Used for

1 77 3.062.691 Testing

2 76 364.863 Training

3 76 30.005 Not used

4 83 3.227.315 Training (thresholds)

5 83 1.473.625 Validation

6 83 1.684.769 Training

7 83 2.723.484 Testing

8 82 1.569.776 Training

9 88 10.942.747 Training

6.1.2. Car-hacking dataset

The car-hacking dataset [19] is composed of logs of real-time CAN mes-
sages via the onboard diagnostic (OBD-II) port of two running vehicles (KIA
Soul and Hyundai Sonata) with message attacks. It has four data features,
including timestamp, identifier (ID, in hexadecimal format), data length code
(DLC, valued from 0 to 8) and data payload (8 bytes), and the label of a
CAN message. We refer the reader to [19] for further details on the public
dataset under consideration. It contains normal CAN messages (14,237,978)
and anomaly messages (2,331,497) belonging to three categories of attacks
(for a total of four attacks).

DoS attack: It aims to flood the CAN bus with numerous forged messages
with low ID values in a short time interval. Thus, almost all the commu-
nication resources are occupied so that messages from other nodes will be
delayed or blocked.

Fuzzy attack: Fake messages are sent from malicious ECUs into the CAN
bus at a slower rate than the DoS attack.

Impersonation attacks:, They realize unauthorized service access by spoof-
ing legitimate authentication credentials, such as spoofing the drive gear
and the RPM gauze.

30

6.2. Evaluation Metrics

Before moving on with the experimental setup and the discussion of the
performed experiments, we briefly present metrics and definitions necessary
to comprehend the evaluation of the proposed methods’ performances.

True Positive Rate: TPR = TP
TP+FN

. Also known as Detection Rate or
Recall, is defined as the ratio of the number of detected intrusions over the
total number of actual intrusions. A TPR of 1 means that the model can
find all the intrusions, while a TPR of 0 means that the model cannot find
any intrusions. Note that the False Negative Rate (FNR) can be obtained
as FNR = FN

FN+FN
= 1− TPR.

False Positive Rate:: FPR = FP
TN+FP

FPR refers to the percentage of
normal traffic incorrectly classified as an intrusion. A FPR of 1 means that
all the normal traffic is incorrectly classified, while a FPR of 0 means that
the model commits no errors in classifying normal traffic.

Area Under the Curve: AUC is the area under the Receiver Operating
Characteristic (ROC) curve, which is a visualization of the performance of a
classifier and can be drawn by plotting the FPR vs. TPR of a classifier and
it is a common metric to deal with data imbalance. A perfect classifier has
an AUC of 1. We use AUC to evaluate all of CANova’s modules that have
predictions depending on a score and a threshold.

Precision: Precision = TP
TP+FP

. It is the ratio of TP to the number of
samples detected as attacks.

F1-score: F1 = 2 TP
2 TP+FP+FN

. It is the harmonic average of precision and
TPR. F1-score values range from 0 (bad classifier) to 1 (good classifier).
Matthews Correlation Coefficient (MCC):

MCC =
TP TN − FP FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

It measures the quality of the detection rate in terms of the correlation
coefficient between the observed and predicted classifications. It is a value
between -1 (bad classifier) and +1 (good classifier). Its main advantage
against other metrics is to be not influenced by dataset imbalances, always
providing a sound performance value.

Testing Time per Packet (TTP): TTP = Total detection time
Number of packets

It is the aver-
age time needed to evaluate each packet. All the tests were executed on an
Intel(R) Core(TM) i7-8700K Central Processing Unit (CPU) and a Nvidia

31

Table 5: Periodicity-based attributes (i.e., attribute that defines packets periodicity), their
CAN IDs assignments count and their packet percentage count

Attribute CAN-ID count Packet count %

NON-PERIODIC 11 0.01%
PERIODIC 57 77,32%
SEMI-PERIODIC 1 0,11%
SEMI-PERIODIC HIGH 8 21,13%
SEMI-PERIODIC-LOW 9 1,44%

Table 6: Attributes not based on periodicity, their CAN IDs assignments count and their
packet percentage count. Note that since multiple attributes can be assigned to the same
CAN ID, the number of CAN IDs and packets exceeds the real total number.

Attribute CAN-ID count Packets count %

NOT ENOUGH PACKETS 7 0,0003%
ALWAYS CONSTANT 15 4,1057%
HIGH FREQUENCY 29 92,5541%
HIGH AUTOCORRELLATION 11 37,3972%
FEW FLIPPING BITS 6 0,9874%
FEW FLIPS 17 3,4046%
FEW VALUES 28 13,3762%
FULL BINARY 13 5,9269%
PARTIAL PATTERN 3 4,4002%
FULL PATTERN 3 4,4002%
NO CLASSIFICATION 21 7,6615%

GeForce GTX 1080 Graphics Processing Unit (GPU) running Ubuntu 20.04.2
LTS (Focal Fossa). This metric provides an estimation of the applicability
of an approach in a real-world scenario.

6.3. ReCAN Dataset Experiments

6.3.1. Packet Classification Experiments

CANova is, to the best of our knowledge, the first approach to propose
a classification of packets for intrusion detection on CAN. Moreover, this
type of classification does not lend itself to provide a metric to maximize
for a comparison. However, to explain the evaluation that our classification
provides and to discuss on the insights that are achievable through it, we
briefly present the results of our classification on the ReCAN dataset.

Our results show that a significant amount, almost 23% of packets (see

32

Table 7: RNN autoencoder-based module vs Flow-based module performances comparison.

MCC FPR AUC F1 TPR TTP

Injection
RNN-based IDS 0.4150 0.0277 0.8716 0.3826 0.6901 0.4715 ms
Flow-based IDS 0.9985 0.00004 - 0.9985 1.0 0.0050 ms

Drop
RNN-based IDS 0.3346 0.0238 0.6262 0.3474 0.2300 0.4714 ms
Flow-based IDS 0.9997 0.00004 - 0.9998 0.9998 0.0056 ms

Table 5), is not fully periodic. It is therefore necessary, to avoid excessively
narrowing the field of applicability of an IDS, to take this into consideration
when presenting flow-based solutions.

6.3.2. Flow-based module vs RNN autoencoder-based module

This experiment is meant to show how flow-based approaches are more
effective in detecting the anomalies that change the frequency of packets in
the network than payload-based approaches, as stated in Section 3. To do so
we compare our flow-based module and our RNN autoencoder-based module,
that are improved version of state-of-the-art techniques that we have iden-
tified as the best alternative for respectively flow-based IDSs and payload-
based module. The experiment consists of comparing the performance of
our flow-based module and RNN autoencoder module on different tampered
datasets. As flow-based IDSs do not analyze the payload of the packets we
only focus on the datasets that contain anomalies that either increase or
decrease the number of packets in the network (Injection dataset and Drop
dataset). The experiment is limited to the CAN IDs that show some pe-
riodic behavior (i.e., classified as periodic or semi-periodic), as flow-based
analysis is not possible on the traffic of non-periodic CAN IDs. Finally, the
measure of the average AUC among the CAN IDs is not provided for the
flow-based module, as it does apply a fixed rule and does not use a threshold
to disambiguate between messages that are anomalous or not.

The results (shown in Table 7) show that the RNN autoencoder-based is
less effective in the detection of the analyzed anomalies than the Flow-based
module. Not only the Flow-based module has almost perfect performance
on both the Injection dataset and the Drop dataset, but the TTP is also two
orders of magnitude faster. We can easily conclude that adding the Flow-
based prediction in the sequence does not add significant computation while
providing valuable detection capabilities for specific attacks.

33

Table 8: VAR-based module and RNN autoencoder-based module performances compar-
ison.

MCC FPR AUC F1 TPR TTP

Masquerade
VAR based IDS 0.9180 0.0089 0.9600 0.9385 0.9055 0.0458 ms
RNN based IDS 0.9328 0.0105 0.9737 0.9502 0.9309 0.4560 ms

Seamless Change
VAR based IDS 0.8523 0.0090 0.9782 0.8843 0.8116 0.0464 ms
RNN based IDS 0.8980 0.0104 0.9801 0.9230 0.8810 0.4613 ms

Fuzzed
VAR based IDS 0.9834 0.0090 0.9997 0.9878 0.9994 0.0472 ms
RNN based IDS 0.9802 0.0104 0.9997 0.9856 0.9986 0.4513 ms

Replay
VAR based IDS 0.6582 0.0089 0.8625 0.6920 0.5420 0.0458 ms
RNN based IDS 0.6540 0.0103 0.8584 0.6897 0.5413 0.4483 ms

6.3.3. VAR-based module vs RNN autoencoder-based module

This experiment is meant to present the VAR-based module as a valid
alternative to the RNN autoencoder-based module for a set of highly auto-
correlated CAN IDs. The experiment consists in comparing the performance
of the VAR-based module and our RNN autoencoder over different tam-
pered datasets. As flow-based anomalies can be easily detected by simpler
approaches in this experiment we focus on datasets that contain masquerade
attacks. The experiment is limited to traces of the CAN IDs that are clas-
sified as High autocorrelation, which are the ones on which the VAR-based
module is effective. Results (see Table 8) show that the VAR-based module
has comparable if not better detection performances on the fuzzed and re-
play datasets, but underperforms in the other two, especially in the seamless
change dataset, where it loses more than 0.07 in detection rate. However,
the detection rate is not the only metric that should be taken into consider-
ation. In fact, the TTP of the VAR-based module is one order of magnitude
smaller, and the FPR is always lower, independently from the error rate. In
conclusion, although there is not an evident winner as in the first experiment,
we can conclude that the VAR-based module is a comparable solution to the
RNN-based one.

6.3.4. Hamming distance-based module vs RNN autoencoder-based module

This experiment is meant to present the Hamming distance IDS as a valid
alternative to the RNN autoencoder-based IDS for a set of CAN IDs that
we identified to have a really low variability of the packets. The experiment
consists of comparing the performance of the Hamming distance module-

34

Table 9: Hamming distance-based module and RNN autoencoder-based module perfor-
mances comparison.

MCC FPR F1 TPR TTP

Masquerade
Hamming distance IDS 0.0 0.0 0.0 0.0 0.0054 ms
RNN based IDS 0.3559 0.3153 0.4680 0.7792 0.4560 ms

Seamless Change
Hamming distance IDS 0.1279 0.0 0.03390 0.0172 0.0053
RNN based IDS 0.3253 0.2944 0.2679 0.9828 0.4613 ms

Fuzzed
Hamming distance IDS 0.9439 0.0 0.9627 0.9280 0.0053 ms
RNN based IDS 0.6780 0.2871 0.7944 0.9890 0.4513 ms

Replay
Hamming distance IDS 0.0 0.0 0.0 0.0 0.0052 ms
RNN based IDS 0.0931 0.3326 0.0586 0.6970 0.4493 ms

and the RNN autoencoder over different tampered datasets. As flow-based
anomalies can be easily detected by simpler approaches in this experiment
we only focus on datasets that contain masquerade attacks. The experiment
is limited to traces of the CAN IDs that are classified as both Few flips and
Few values, that are the ones selected for the Hamming distance module into
CANova.

The results for this experiment are poor for both modules. The best
assumption for the poor behavior of the RNN module is that IDs classified
with the Few flips and Few values do not provide enough information for
the detection system to learn their behavior. Interestingly, on this type
of data, the RNN is unable to generalize and tends to consider anomalous
each unseen sequence, leading to an extremely high FPR, which makes the
detection module unfeasible for this type of packets. The Hamming distance-
based module, on the other hand, is only able to detect events that heavily
change the bits between packets, such as replay attacks. It is incapable
of detecting the other, less evident attacks. However, its FPR is 0 even
against the fuzzed dataset. None of the two modules is optimal, but while
the RNN is not feasible due to the high FPR, the Hamming distance-based
module at least provides no downsides to the detection process, having a
TTP that is two orders of magnitude lower than the RNN. In conclusion,
if possible, on packets classified both Few flips and Few values it would be
optimal to exploit a rule-based IDS, which, however, requires knowledge of
the meaning and legitimate behavior of the selected IDs. If not possible,
the Hamming distance-based module does not provide any downsides to the
detection process while being capable of detecting a subset of the possible

35

Table 10: CANova and RNN autoencoder-based module performances comparison.

MCC FPR F1 TPR TTP

Masquerade
CANova 0.8868 0.0161 0.9143 0.8805 0.2660 ms
RNN based IDS 0.8854 0.0265 0.9149 0.9066 0.4560 ms

Seamless Change
CANova 0.8652 0.0156 0.8944 0.8486 0.2688 ms
RNN based IDS 0.8684 0.0263 0.8996 0.8850 0.4613 ms

Fuzzed
CANova 0.9352 0.0151 0.9528 0.9463 0.2674 ms
RNN based IDS 0.9567 0.0231 0.9683 0.9954 0.4513 ms

Replay
CANova 0.6655 0.0158 0.7055 0.5712 0.2636 ms
RNN based IDS 0.6347 0.0286 0.6896 0.5723 0.4483 ms

Injection
CANova 0.6506 0.0190 0.6036 0.9969 0.2640 ms
RNN based IDS 0.4150 0.0277 0.3826 0.6901 0.4715 ms

Drop
CANova 0.9608 0.0165 0.9684 0.9998 0.2113 ms
RNN based IDS 0.3346 0.0238 0.3474 0.2300 0.4714 ms

attacks.

6.3.5. CANova vs the RNN autoencoder-based module

We tested CANova directly against the RNN autoencoder module, which
is an improvement of Longari et al.’s work [25], to present the strengths of
our modular approach.

The results of the experiment against the RNN-based IDS (shown in
Table 10) clearly show the strengths of the modular approach of CANova.
On both the analyzed frequency-based anomalies, thanks to the flow-based
module, CANova can easily outscore the RNN autoencoder-based module on
every metric. Moreover, thanks to the VAR-based and Hamming distance-
based modules that lighten the workload of the slower RNNmodule, CANova’s
TTP approximately halves the one of the RNN. This becomes even more
valueable considering that the average inter-arrival time of packets in our
dataset is 0.3808 ms, hence while CANova would be able to keep up with
the live network traffic, the RNN IDS would not. Finally, regarding one of
the most relevant metrics in a context such as the automotive one, CANova
maintains a lower FPR than the RNN on all attack datasets. It is also im-
portant to notice that although the detection rate metric of the RNN on
the masquerade types of attacks is higher, the MCC, whose main advantage
against other metrics is to be not influenced by datasets’ imbalances, provid-

36

Average FPR

1.0

0.8

0.6

0.4

0.2

0 0FE 7E6 15C 5E0 4B1 1F0 1FA 5A8 5AE 419 417 1E340000412 259

FP
R

2ED

(a) CANova

Average FPR

1.0

0.8

0.6

0.4

0.2

0 5A8 5AE 2ED 419 417 15A 4B1 4AF 256 1E36000B 4AC 412 1E340000 257 259

FP
R

(b) RNN Autoencoder module

Figure 2: False positive rate of CANova’s and the RNN module’s worst fifteen CAN IDs
on a dataset without attacks.

ing a sound performance value, remains comparable if not better on CANova
than on the RNN autoencoder IDS. A second consideration, noticeable from
Figure 2, is that while the RNN false positives derive from various IDs (as
evident by the fact that all the worst fifteen are above the average FPR,
which is already high), the false positives for CANova derive mainly from
the worse 3 to 8 IDs, that in real-world scenarios could be treated manually.

6.4. Car-hacking dataset Experiment: CANova vs. the State of the art

To provide a fair performance comparison, we evaluate the detection per-
formances of CANova on the public car-hacking dataset [19] against the state-
of-the-art IDSs systemized by Wang et al. [14], following the same experimen-
tal procedure. Table 11 contains our results alongside the ones provided by
Wang et al. [14]. Regarding the DoS and Fuzzy attack, we highlight CANova
performances with and without (shown in brackets in Table 11) the frequency
module enabled. This is due to the fact that both attacks indirectly delay
legitimate packet arrival times. However, since the frequency-based module
detects anomalies by analyzing the packets inter-arrival time, it rightfully

2This performance was achieved on consumer-level HW, while Wang at al. [14] evalu-
ation was performed on a machine learning dedicated server.

37

Table 11: Detection Performance Comparison of State-of-the-art IDSs against CANova.
In bold, the best performance by metric and attack category.

IDSs Attacks Accuracy Precision TPR FPR F1-score TTP

Reduced Inception-ResNet [19]

DoS Attack 0.9993 0.9995 0.9963 0.0001 0.9980

1.5633
Fuzzy Attack 0.8730 0 0 0.0002 -

Gear Spoofing Attack 0.8223 0 0 0.0001 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

CANTransfer [20]

DoS Attack 0.9991 0.9990 0.9951 0.0002 0.9971

1.3264
Fuzzy Attack 0.8718 0 0 0.0001 -

Fuzzy Attack (1-shot) 0.8664 0.9794 0.0309 0.0001 0.0599
Gear Spoofing Attack 0.8223 0 0 0.0004 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

CAN-ADF [21]

DoS Attack 0.9938 0.9826 0.9785 0.0033 0.9805

1.4476
Fuzzy Attack 0.8715 0.0505 0.0002 0.0006 0.0004

Gear Spoofing Attack 0.8222 0 0 0.0004 -
RPM Spoofing Attack 0.7769 0.1200 0.0005 0.0012 0.0011

TSP [22]

DoS Attack 0.9802 0.9100 0.9728 0.0183 0.9403

1.1422
Fuzzy Attack 0.8714 0 0 0.0005 -

Gear Spoofing Attack 0.8221 0 0 0.0005 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

O-DAE [23]

DoS Attack 0.9933 0.9742 0.9843 0.0050 0.9792

1.2130
Fuzzy Attack 0.8714 0 0 0.0006 -

Gear Spoofing Attack 0.8222 0 0 0.0004 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

LDAN [42]

DoS Attack 0.9806 0.9099 0.9756 0.0184 0.9416

0.9283
Fuzzy Attack 0.8717 0 0 0.0006 -

Gear Spoofing Attack 0.8224 0 0 0.0001 -
RPM Spoofing Attack 0.7775 0 0 0.0002 -

E-GAN [24]

DoS Attack 0.9806 0.9099 0.9756 0.0184 0.9416

1.0331
Fuzzy Attack 0.8717 0 0 0.0002 -

Gear Spoofing Attack 0.8224 0 0 0.0001 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

HyDL-IDS [29]

DoS Attack 0.9936 0.9819 0.9781 0.0034 0.9800

0.4395
Fuzzy Attack 0.8715 0.0612 0.0002 0.0005 0.0005

Gear Spoofing Attack 0.8221 0 0 0.0001 -
RPM Spoofing Attack 0.7769 0.1042 0.0005 0.0011 0.0009

CANet [31]

DoS Attack 0.9993 0.9992 0.9966 0.0014 0.9979

0.3357
Fuzzy Attack 0.8717 0 0 0.0002 -

Gear Spoofing Attack 0.8223 0 0 0.0001 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

Rec-CNN [30]

DoS Attack 0.9803 0.9097 0.9740 0.0185 0.9408

0.3278
Fuzzy Attack 0.8714 0 0 0.0006 -

Gear Spoofing Attack 0.8221 0 0 0.0005 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

CANova

DoS Attack
0.8119 0.5784 1 0.2535 0.7329

0.25682

(0.9997) (0.9987) (1) (0.0004) (0.9936)

Fuzzy Attack
0.8631 0.6906 1 0.1969 0.8170

(0.9970) (0.9903) (1) (0.0043) (0.9951)
Gear Spoofing Attack 0.9983 0.9928 1 0.0021 0.9964
RPM Spoofing Attack 0.9970 0.9872 1 0.0039 0.9936

38

detects as anomalous all packets subsequent to the attack ones. These de-
layed packets, even if clearly showing vehicle misbehavior that is obviously
detected by a frequency-based detector, are labeled legitimate in the dataset,
leading to a high number of FPs. To verify this issue, we tested CANova on
the same dataset but with the first packet of each ID after an attack labeled
as malicious to show that all FPs are due to the delayed legitimate packets.
The results of this experiment (not shown in Table 11) achieved a 0 FP rate.
To ensure a fair comparison, we decided not to present the results with the
tampered dataset and, instead, show also the performance achieved without
the frequency analysis that distorts the results. Overall, CANova achieves
better performance than the IDSs under analysis regarding all the metrics
with a perfect TPR and accuracy up to 0.9997 on all the attacks. The only
exception is the FPR, where Reduced Inception-ResNet achieves an FPR of
0.0001 against our of 0.2535 (0.0004) for the DoS attack. However, it should
be noticed how Reduced Inception-ResNet is six times slower in obtaining
this result. Most importantly, since the average packet inter-arrival time of
the dataset is 0.7727 ms, a TTP of 1.5633 is not compliant with the real-time
requirements of the automotive domain. In addition, differently from all the
IDSs under analysis, CANova is able to detect all the categories of attacks.

7. Conclusions

In this paper, we directly addressed the limitations of existing research
works on IDSs for CAN, which usually focus on a subset of CAN-ID and on
specific attacks, by proposing CANova, a modular IDS framework that ex-
ploits the characteristics of the different CAN packets to select the Intrusion
Detection Systems (IDSs) that better fits them. In particular, it combines
flow- and payload-based IDSs to analyze the packets’ content and arrival
time. CANova detects simple anomalies (e.g., change in the frequency of the
packets or packets from an invalid CAN-ID) through a flow-based module
and a rule-based module, while packets that pass these tests are analyzed
by one between a Hamming distance-based module, a VAR-based module,
and a RNN autoencoder-based module, depending on the attributes of the
packet found by the classification. As far as we know, CANova is the first
IDS for CAN that is able to exploit a classification of the CAN-IDs to com-
bine different state-of-the-art techniques to improve the performances of the
individual techniques and work on the majority of the CAN-IDs.

39

The experimental results showed that the combination of flow-based mod-
ules with RNN autoencoder-based IDS solutions achieves an almost perfect
detection rate in scenarios in which RNN-based solutions perform badly. On
the other hand, in our tests, the RNN-based solution, while being more than
twice as fast as similar state-of-the-art methods, is not able to perform real-
time detection on the entire CAN traffic. Nonetheless, CANova performed
predictions that are, on average more than 1.5 times faster than the ones pro-
vided by the RNN autoencoder-based IDS only, thanks to the addition of the
VAR-based module, which analyzes a set of highly autocorrelated CAN-IDs,
and the Hamming distance-based module, which analyzes a set of CAN-IDs
with very low variability of the payloads.

Moreover, CANova outperforms state-of-the-art detection methods with
a perfect True Positive Ratio (TPR) and lower time requirements on all the
real-world attacks under analysis.

Future works will focus on improving the overall performances and, in
particular, on further reducing the number of False Positives (FPs), a known
curse of machine learning-based models, but that is of particular importance
in the domain under analysis.

References

[1] S. Longari, A. Cannizzo, M. Carminati, S. Zanero, A secure-by-design
framework for automotive on-board network risk analysis, in: 2019 IEEE
Vehicular Networking Conference (VNC), 2019, pp. 1–8. doi:10.1109/
VNC48660.2019.9062783.

[2] S. Checkoway, D. Mccoy, D. Anderson, B. Kantor, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, Comprehensive
experimental analyses of automotive attack surfaces (08 2011).

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, et al., Experimental
security analysis of a modern automobile, in: 2010 IEEE Symposium on
Security and Privacy, IEEE, 2010, pp. 447–462.

[4] A. de Faveri Tron, S. Longari, M. Carminati, M. Polino, S. Zanero,
Canflict: Exploiting peripheral conflicts for data-link layer attacks on
automotive networks, in: H. Yin, A. Stavrou, C. Cremers, E. Shi (Eds.),
Proceedings of the 2022 ACM SIGSAC Conference on Computer and

40

https://doi.org/10.1109/VNC48660.2019.9062783
https://doi.org/10.1109/VNC48660.2019.9062783
https://doi.org/10.1145/3548606.3560618
https://doi.org/10.1145/3548606.3560618

Communications Security, CCS 2022, Los Angeles, CA, USA, November
7-11, 2022, ACM, 2022, pp. 711–723. doi:10.1145/3548606.3560618.
URL https://doi.org/10.1145/3548606.3560618

[5] S. Longari, M. Penco, M. Carminati, S. Zanero, Copycan: An error-
handling protocol based intrusion detection system for controller area
network, in: L. Cavallaro, J. Kinder, T. Holz (Eds.), Proceedings of the
ACM Workshop on Cyber-Physical Systems Security & Privacy, CPS-
SPC@CCS 2019, London, UK, November 11, 2019, ACM, 2019, pp.
39–50. doi:10.1145/3338499.3357362.
URL https://doi.org/10.1145/3338499.3357362

[6] Cia, Can data link layers in some detail.
URL https://www.can-cia.org/can-knowledge/can/

can-data-link-layers/

[7] T. Instruments, Introductionto the controllerareanetwork(can) (2002).

[8] M. Avatefipour, State-of-the-art survey on in-vehicle network communi-
cation “can-bus” security and vulnerabilities.

[9] A. Palanca, E. Evenchick, F. Maggi, S. Zanero, A stealth, selective,
link-layer denial-of-service attack against automotive networks, in: In-
ternational Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, 2017, pp. 185–206.

[10] C. Miller, C. Valasek, Can message injection, OG Dynamite Edition
(2016).

[11] H. J. Jo, W. Choi, A survey of attacks on controller area networks and
corresponding countermeasures, IEEE Trans. Intell. Transp. Syst. 23 (7)
(2022) 6123–6141. doi:10.1109/TITS.2021.3078740.
URL https://doi.org/10.1109/TITS.2021.3078740

[12] C. Young, J. Zambreno, H. Olufowobi, G. Bloom, Survey of automotive
controller area network intrusion detection systems, IEEE Des. Test
36 (6) (2019) 48–55. doi:10.1109/MDAT.2019.2899062.
URL https://doi.org/10.1109/MDAT.2019.2899062

41

https://doi.org/10.1145/3548606.3560618
https://doi.org/10.1145/3548606.3560618
https://doi.org/10.1145/3338499.3357362
https://doi.org/10.1145/3338499.3357362
https://doi.org/10.1145/3338499.3357362
https://doi.org/10.1145/3338499.3357362
https://doi.org/10.1145/3338499.3357362
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://www.can-cia.org/can-knowledge/can/can-data-link-layers/
https://doi.org/10.1109/TITS.2021.3078740
https://doi.org/10.1109/TITS.2021.3078740
https://doi.org/10.1109/TITS.2021.3078740
https://doi.org/10.1109/TITS.2021.3078740
https://doi.org/10.1109/MDAT.2019.2899062
https://doi.org/10.1109/MDAT.2019.2899062
https://doi.org/10.1109/MDAT.2019.2899062
https://doi.org/10.1109/MDAT.2019.2899062

[13] O. Y. Al-Jarrah, C. Maple, M. Dianati, D. Oxtoby, A. Mouzakitis, In-
trusion detection systems for intra-vehicle networks: A review, IEEE
Access 7 (2019) 21266–21289. doi:10.1109/ACCESS.2019.2894183.

[14] K. Wang, A. Zhang, H. Sun, B. Wang, Analysis of recent deep-learning-
based intrusion detection methods for in-vehicle network, IEEE Trans-
actions on Intelligent Transportation Systems (2022) 1–12doi:10.1109/
TITS.2022.3222486.

[15] H. Song, H. Kim, H. K. Kim, Intrusion detection system based on the
analysis of time intervals of can messages for in-vehicle network, 2016,
pp. 63–68. doi:10.1109/ICOIN.2016.7427089.

[16] A. Taylor, N. Japkowicz, S. Leblanc, Frequency-based anomaly detec-
tion for the automotive can bus, in: 2015 World Congress on Industrial
Control Systems Security (WCICSS), IEEE, 2015, pp. 45–49.

[17] E. Seo, H. M. Song, H. K. Kim, Gids: Gan based intrusion detection sys-
tem for in-vehicle network, in: 2018 16th Annual Conference on Privacy,
Security and Trust (PST), IEEE, 2018, pp. 1–6.

[18] H. Olufowobi, C. Young, J. Zambreno, G. Bloom, Saiducant:
Specification-based automotive intrusion detection using controller area
network (can) timing, IEEE Transactions on Vehicular Technology
69 (2) (2019) 1484–1494.

[19] H. M. Song, J. Woo, H. K. Kim, In-vehicle network intrusion detection
using deep convolutional neural network, Veh. Commun. 21 (2020). doi:
10.1016/j.vehcom.2019.100198.
URL https://doi.org/10.1016/j.vehcom.2019.100198

[20] S. Tariq, S. Lee, S. S. Woo, Cantransfer: transfer learning based intru-
sion detection on a controller area network using convolutional LSTM
network, in: C. Hung, T. Cerný, D. Shin, A. Bechini (Eds.), SAC ’20:
The 35th ACM/SIGAPP Symposium on Applied Computing, online
event, [Brno, Czech Republic], March 30 - April 3, 2020, ACM, 2020,
pp. 1048–1055. doi:10.1145/3341105.3373868.
URL https://doi.org/10.1145/3341105.3373868

[21] S. Tariq, S. Lee, H. K. Kim, S. S. Woo, CAN-ADF: the controller area
network attack detection framework, Comput. Secur. 94 (2020) 101857.

42

https://doi.org/10.1109/ACCESS.2019.2894183
https://doi.org/10.1109/TITS.2022.3222486
https://doi.org/10.1109/TITS.2022.3222486
https://doi.org/10.1109/ICOIN.2016.7427089
https://doi.org/10.1016/j.vehcom.2019.100198
https://doi.org/10.1016/j.vehcom.2019.100198
https://doi.org/10.1016/j.vehcom.2019.100198
https://doi.org/10.1016/j.vehcom.2019.100198
https://doi.org/10.1016/j.vehcom.2019.100198
https://doi.org/10.1145/3341105.3373868
https://doi.org/10.1145/3341105.3373868
https://doi.org/10.1145/3341105.3373868
https://doi.org/10.1145/3341105.3373868
https://doi.org/10.1145/3341105.3373868
https://doi.org/10.1016/j.cose.2020.101857
https://doi.org/10.1016/j.cose.2020.101857

doi:10.1016/j.cose.2020.101857.
URL https://doi.org/10.1016/j.cose.2020.101857

[22] H. Qin, M. Yan, H. Ji, Application of controller area network (CAN)
bus anomaly detection based on time series prediction, Veh. Commun.
27 (2021) 100291. doi:10.1016/j.vehcom.2020.100291.
URL https://doi.org/10.1016/j.vehcom.2020.100291

[23] Y. Lin, C. Chen, F. Xiao, O. Avatefipour, K. Alsubhi, A. Yunianta, An
evolutionary deep learning anomaly detection framework for in-vehicle
networks-can bus, IEEE Transactions on Industry Applications (2020).

[24] G. Xie, L. T. Yang, Y. Yang, H. Luo, R. Li, M. Alazab, Threat analysis
for automotive CAN networks: A GAN model-based intrusion detection
technique, IEEE Trans. Intell. Transp. Syst. 22 (7) (2021) 4467–4477.
doi:10.1109/TITS.2021.3055351.
URL https://doi.org/10.1109/TITS.2021.3055351

[25] S. Longari, D. H. N. Valcarcel, M. Zago, M. Carminati, S. Zanero,
Cannolo: An anomaly detection system based on lstm autoencoders
for controller area network, IEEE Transactions on Network and Service
Management (2020).

[26] S. Longari, A. Nichelini, C. A. Pozzoli, M. Carminati, S. Zanero, Can-
dito: Improving payload-based detection of attacks on controller area
networks (2022). doi:10.48550/ARXIV.2208.06628.
URL https://arxiv.org/abs/2208.06628

[27] A. Taylor, Anomaly-based detection of malicious activity in in-vehicle
networks, Ph.D. thesis, Université d’Ottawa/University of Ottawa
(2017).

[28] M. Marchetti, D. Stabili, A. Guido, M. Colajanni, Evaluation of anomaly
detection for in-vehicle networks through information-theoretic algo-
rithms, in: 2016 IEEE 2nd International Forum on Research and Tech-
nologies for Society and Industry Leveraging a better tomorrow (RTSI),
IEEE, 2016, pp. 1–6.

[29] W. Lo, H. AlQahtani, K. Thakur, A. Almadhor, S. Chander, G. Kumar,
A hybrid deep learning based intrusion detection system using spatial-
temporal representation of in-vehicle network traffic, Veh. Commun. 35

43

https://doi.org/10.1016/j.cose.2020.101857
https://doi.org/10.1016/j.cose.2020.101857
https://doi.org/10.1016/j.vehcom.2020.100291
https://doi.org/10.1016/j.vehcom.2020.100291
https://doi.org/10.1016/j.vehcom.2020.100291
https://doi.org/10.1016/j.vehcom.2020.100291
https://doi.org/10.1109/TITS.2021.3055351
https://doi.org/10.1109/TITS.2021.3055351
https://doi.org/10.1109/TITS.2021.3055351
https://doi.org/10.1109/TITS.2021.3055351
https://doi.org/10.1109/TITS.2021.3055351
https://arxiv.org/abs/2208.06628
https://arxiv.org/abs/2208.06628
https://arxiv.org/abs/2208.06628
https://doi.org/10.48550/ARXIV.2208.06628
https://arxiv.org/abs/2208.06628
https://doi.org/10.1016/j.vehcom.2022.100471
https://doi.org/10.1016/j.vehcom.2022.100471

(2022) 100471. doi:10.1016/j.vehcom.2022.100471.
URL https://doi.org/10.1016/j.vehcom.2022.100471

[30] A. K. Desta, S. Ohira, I. Arai, K. Fujikawa, Rec-cnn: In-vehicle net-
works intrusion detection using convolutional neural networks trained
on recurrence plots, Veh. Commun. 35 (2022) 100470. doi:10.1016/j.
vehcom.2022.100470.
URL https://doi.org/10.1016/j.vehcom.2022.100470

[31] M. Hanselmann, T. Strauss, K. Dormann, H. Ulmer, Canet: An unsu-
pervised intrusion detection system for high dimensional can bus data,
IEEE Access 8 (2020) 58194–58205.

[32] S. Kulandaivel, S. Jain, J. Guajardo, V. Sekar, CANNON: reliable and
stealthy remote shutdown attacks via unaltered automotive microcon-
trollers, in: 42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021, IEEE, 2021, pp. 195–210.
doi:10.1109/SP40001.2021.00122.
URL https://doi.org/10.1109/SP40001.2021.00122

[33] M. Marchetti, D. Stabili, Read: Reverse engineering of automotive data
frames, IEEE Transactions on Information Forensics and Security 14 (4)
(2018) 1083–1097.

[34] C. Miller, C. Valasek, Adventures in automotive networks and control
units, Def Con 21 (260-264) (2013) 15–31.

[35] D. Stabili, M. Marchetti, M. Colajanni, Detecting attacks to internal ve-
hicle networks through hamming distance, in: 2017 AEIT International
Annual Conference, 2017, pp. 1–6. doi:10.23919/AEIT.2017.8240550.

[36] H. Lütkepohl, New Introduction to Multiple Time Series Analysis,
Springer Berlin Heidelberg, 2007.

[37] P. Malhotra, L. Vig, G. Shroff, P. Agarwal, Long short term memory
networks for anomaly detection in time series, in: Proceedings, Vol. 89,
Presses universitaires de Louvain, 2015, pp. 89–94.

[38] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff,
Lstm-based encoder-decoder for multi-sensor anomaly detection, arXiv
preprint arXiv:1607.00148 (2016).

44

https://doi.org/10.1016/j.vehcom.2022.100471
https://doi.org/10.1016/j.vehcom.2022.100471
https://doi.org/10.1016/j.vehcom.2022.100470
https://doi.org/10.1016/j.vehcom.2022.100470
https://doi.org/10.1016/j.vehcom.2022.100470
https://doi.org/10.1016/j.vehcom.2022.100470
https://doi.org/10.1016/j.vehcom.2022.100470
https://doi.org/10.1016/j.vehcom.2022.100470
https://doi.org/10.1109/SP40001.2021.00122
https://doi.org/10.1109/SP40001.2021.00122
https://doi.org/10.1109/SP40001.2021.00122
https://doi.org/10.1109/SP40001.2021.00122
https://doi.org/10.1109/SP40001.2021.00122
https://doi.org/10.23919/AEIT.2017.8240550

[39] K. Wang, S. J. Stolfo, Anomalous payload-based network intrusion de-
tection, in: International workshop on recent advances in intrusion de-
tection, Springer, 2004, pp. 203–222.

[40] D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep
network learning by exponential linear units (elus), arXiv preprint
arXiv:1511.07289 (2015).

[41] M. Zago, S. Longari, A. Tricarico, M. Carminati, M. G. Pérez, G. M.
Pérez, S. Zanero, Recan–dataset for reverse engineering of controller
area networks, Data in brief 29 (2020) 105149.

[42] R. Zhao, J. Yin, Z. Xue, G. Gui, B. Adebisi, T. Ohtsuki, H. Gacanin,
H. Sari, An efficient intrusion detection method based on dynamic
autoencoder, IEEE Wirel. Commun. Lett. 10 (8) (2021) 1707–1711.
doi:10.1109/LWC.2021.3077946.
URL https://doi.org/10.1109/LWC.2021.3077946

45

https://doi.org/10.1109/LWC.2021.3077946
https://doi.org/10.1109/LWC.2021.3077946
https://doi.org/10.1109/LWC.2021.3077946
https://doi.org/10.1109/LWC.2021.3077946

	Introduction
	Background on CAN
	Controller Area Network
	CAN packets
	CAN Security Issues

	Related Works
	Flow-based Detection
	Payload-based IDSs
	Combined IDSs

	Goals and Challenges

	Threat Model
	CANova
	Approach Overview
	Signal extraction and identification
	Classification
	Modular Intrusion Detection System

	Experimental Validation
	Datasets
	ReCAN C-1 dataset
	Car-hacking dataset

	Evaluation Metrics
	ReCAN Dataset Experiments
	Packet Classification Experiments
	Flow-based module vs RNN autoencoder-based module
	VAR-based module vs RNN autoencoder-based module
	Hamming distance-based module vs RNN autoencoder-based module
	CANova vs the RNN autoencoder-based module

	Car-hacking dataset Experiment: CANova vs. the State of the art

	Conclusions

