
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:3605–3620
https://doi.org/10.1007/s11227-021-03990-3

1 3

In situ visualization of large‑scale turbulence simulations
in Nek5000 with ParaView Catalyst

Marco Atzori1 · Wiebke Köpp2 · Steven W. D. Chien2 · Daniele Massaro1 ·
Fermín Mallor1 · Adam Peplinski1 · Mohamad Rezaei3 · Niclas Jansson3 ·
Stefano Markidis2 · Ricardo Vinuesa1 · Erwin Laure3 · Philipp Schlatter1 ·
Tino Weinkauf2

Accepted: 7 July 2021 / Published online: 2 August 2021
© The Author(s) 2021

Abstract
In situ visualization on high-performance computing systems allows us to analyze
simulation results that would otherwise be impossible, given the size of the simu-
lation data sets and offline post-processing execution time. We develop an in situ
adaptor for Paraview Catalyst and Nek5000, a massively parallel Fortran and C code
for computational fluid dynamics. We perform a strong scalability test up to 2048
cores on KTH’s Beskow Cray XC40 supercomputer and assess in situ visualization’s
impact on the Nek5000 performance. In our study case, a high-fidelity simulation
of turbulent flow, we observe that in situ operations significantly limit the strong
scalability of the code, reducing the relative parallel efficiency to only ≈ 21% on
2048 cores (the relative efficiency of Nek5000 without in situ operations is ≈ 99%).
Through profiling with Arm MAP, we identified a bottleneck in the image composi-
tion step (that uses the Radix-kr algorithm) where a majority of the time is spent
on MPI communication. We also identified an imbalance of in situ processing time
between rank 0 and all other ranks. In our case, better scaling and load-balancing
in the parallel image composition would considerably improve the performance of
Nek5000 with in situ capabilities. In general, the result of this study highlights the
technical challenges posed by the integration of high-performance simulation codes
and data-analysis libraries and their practical use in complex cases, even when effi-
cient algorithms already exist for a certain application scenario.

Keywords In situ visualization · High-performance computing · Computational
fluid dynamics

 * Marco Atzori
 atzori@mech.kth.se

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0790-8460
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03990-3&domain=pdf

3606 M. Atzori et al.

1 3

1 Introduction and background

The availability of high-performance computing (HPC) resources and efficient
computational methods allow the study of complex turbulent flows via time-
dependent high-fidelity numerical simulations. This type of flow is ubiquitous in
nature as well as industrial applications, and it plays a crucial role in phenom-
ena as diverse as atmospheric precipitations and the creation of the lift and drag
forces acting on aircraft.

In the context of computational fluid dynamics (CFD), we consider both direct
numerical and well-resolved large-eddy scale-resolving simulations (DNS and
LES, respectively) as high-fidelity simulations, in which most of the independ-
ent degrees of freedom of the system are resolved explicitly, without the aid of
modeling. In the case of turbulent flows, due to the large-scale separation in both
space and time, such an approach results in computational meshes which may
contain between ≈ 106 and ≈ 109 grid points, and simulations which proceed for
≈ 106 time steps. A relevant example is the DNS of the flow around a wing profile
in [11], which employed 2.3 × 109 grid points. Carrying out these studies is chal-
lenging for two reasons: on the one hand, because of computational costs of the
order of multiple millions of CPU hours, and on the other hand, because the data-
sets created by each simulation can be as large as tens of Terabytes.

To mitigate the first difficulty, researchers have focused on developing codes
with high strong scalability, which requires minimizing communication and load
imbalance between nodes, as discussed, e.g., by Merzari et al. [16] and Offer-
mans [18]. This approach results in software packages that, although they often
employ sophisticated numerical strategies, are relatively simple and can be used
efficiently on a large number of cores. In particular, CFD codes are often limited
to the solution of partial differential equations and do not provide data analysis or
visualization tools. Nek5000 [8], which we consider in this work, is one of such
codes. Because the software employed for the actual simulation is not equipped
with tools for post-processing, the typical workflow followed by CFD researchers
requires to externally store intermediate datasets, which are the input for further
analysis. This standard procedure does not have a significant drawback when the
intermediate datasets are small, as in cases when only time-independent statis-
tics are retained. However, the possibility of carrying out more complex post-
processing analysis, such as to study the time evolution of topological features, is
limited by the second obstacle mentioned above, i.e., very high input/output (I/O)
requirements. The in situ methodology, which consists of coupling a simulation
code with a set of libraries for data analysis, is a natural strategy to overcome this
difficulty, but it will become a viable option for CFD researchers only if the effi-
ciency and scalability of their code are preserved.

In situ methods for flow simulations have gradually matured over the years
since the potential of coupling visualization with simulations was first demon-
strated in the 1990s (Haimes [10]; Ma [14]). With extreme-scale on the hori-
zon, Ma [15] presented the challenges and opportunities of in situ visualization,
later realized by Rasquin et al. [23], combining both in situ visualization with

3607

1 3

In situ visualization of large‑scale turbulence simulations…

computational steering, running the flow solver PHASTA on 160k cores, con-
nected to ParaView running on a separate visualization cluster. More recently,
using Catalyst, Yi et al. [29] demonstrated that both simulations, visualization,
and steering could be executed on the same computational resources. The fea-
sibility of extreme-scale in situ processing was later demonstrated by Ayachit
et al. [2], running PHASTA using SENSEI and Catalyst for in situ visualization
on more than 1 million MPI ranks, achieving a low 13% in situ overhead. Spe-
cifically regarding Nek5000, Damaris/Viz [6] performed in situ visualization
using VisIt, and compared time-partitioning and space-partitioning and the visu-
alization operation is a volume slice. Color plots were also used by Bernardoni
et al. [4] who present a new adaptor for Nek5000 using SENSEI. Furthermore,
Nek5000+SENSEI and ParaView/Catalyst were used for mesh validation by
Shudler et al. [25], who also performed a scalability test up to 420 processes, but
without a direct comparison of the same simulation with and without in situ. At
a similar time as Bernardoni et al. [4] and Shudler et al. [25], we started to work
on a new in situ adaptor for Nek5000 and a standard version of Paraview/Cata-
lyst, which does not require the use of SENSEI for data transfer. In this paper, we
present our implementation, and we describe in detail the impact of a reasonably
complex in situ visualization on the computational cost of the simulation. Note
that the test case that we employ is closer to a full-scale high-fidelity numerical
simulation than those in Refs. [4, 25]. Furthermore, the in situ operations that
we perform include a three-dimensional visualization at higher resolution and the
computation of a scalar quantity in the entire domain, which makes our data anal-
ysis more computationally intensive. The three main contributions of this work
are:

1. We design and implement in situ visualization with Paraview Catalyst [1, 3] in
Nek5000 [9], a widely-used and Gordon-Bell award winner Fortran/C CFD code.
To achieve this, we design and implement a C++ Catalyst adaptor in Nek5000
and a visualization and data analysis pipeline in Python. The test case that we
examined consists of a CFD simulation of realistic size; alongside ParaView is
employed for a standard visualization of vortex clusters in turbulent flows.

2. We measure and analyze the parallel performance of Nek5000 with in situ opera-
tions when running up to 2048 cores on a Cray XC40 supercomputer, identifying
the aggregation step in the visualization pipeline as the major obstacle to achieve
strong scalability.

3. We use the Arm MAP profiler to identify precisely the in situ and message-
passing interface (MPI) functions that are causing performance degradation. We
find that the parallel implementation of the Radix-kr algorithm (used for image
composition) [17, 22] in Paraview Catalyst is responsible for time spent in MPI
communication.

We summarized how the most recent related works differ from the present one in
Table 1.

3608 M. Atzori et al.

1 3

The paper is organized as follows. Section 2 provides an overview of Nek5000
and explains the different steps in designing and implementing in situ visualization
in Nek5000. Section 3 presents the experimental set-up we carry out our perfor-
mance measurements. In Sect. 4, we describe the performance and scaling results
together with information from a parallel profiler. Finally, Sect. 5 summarizes the
paper and draws conclusions.

2 Methodology

While in situ visualization promises a significant reduction of I/O and improves
overall execution performance (simulation and post-processing), co-processing
itself inevitably introduces overhead to code execution. In other words, an excessive
overhead during the in situ analysis and visualization step, despite its benefit, can
hurt the performance and scalability of the simulation. To understand the impact
of in situ visualization on parallel scientific applications, we use a CFD code called
Nek5000 and implement an in situ visualization adaptor using Paraview Catalyst. To
evaluate the impact on execution performance, we run a strong scaling test to under-
stand simulation performance with and without in situ visualization. Hereafter, we
provide a brief description of the two software we consider, of our in situ implemen-
tation and resulting workflow.

2.1 Considered software

The development of Nek5000 started in the late 1980s [9] and is still in progress
today [18, 19, 21, 26]. The code consists of approximately 100,000 lines of code and
is written mainly in Fortran77 (70,000 lines of code) and C (30,000 lines of code).
To achieve massive parallelism, the code uses MPI for parallel communication.
The Nek5000 algorithm is based on the so-called spectral-element method [20], a

Table 1 Overview of prior work on in situ visualization use cases and integrations for massively parallel
computational fluid dynamics codes

CFD code In situ coupling Analysis/vis Hardware Number of cores

PHASTA [29] ParaView/Catalyst Vorticity,
Slice

Titan (Cray XK7),
Mira (IBM BlueGene/Q)

up to 32,768

PHASTA [2] SENSEI with
ParaView/Catalyst

Slice Mira (IBM BlueGene/Q) up to 1,048,576

Nek5000 [6] Damaris/Viz with
VisIt

Slice stremi/Grid’5000
(HP ProLiant)

up to 816

Nek5000 [4] SENSEI with
VisIt/LibSim

Histogram,
Slice

not specified not specified

Nek5000 [25] SENSEI with
ParaView/Catalyst

Clipping Cooley (Intel Haswell) up to 420

Nek5000 (Ours) ParaView/Catalyst Magnitude,
Isosurface

Beskow (Cray XC40,
Intel Haswell)

up to 2048

3609

1 3

In situ visualization of large‑scale turbulence simulations…

high-order variant of the finite-element method. Accordingly, the governing equa-
tions are solved in weak form, and the discretization is implemented following the
Galerkin method [5]. In practice, the computational domain is divided into quadri-
lateral (2D simulations) or hexahedral elements (3D simulations) and, within the ele-
ments, the solution is represented by Lagrangian interpolants. In the present project,
we employed the P

N
− P

N−2 formulation, i.e. in each element velocity and pressure
are defined along each of the three directions on N points with Gauss–Lobatto–Leg-
endre distribution and N − 2 points with Gauss–Legendre distribution, respectively.
For all the cases, we selected N = 12 , meaning that the velocity is represented with
polynomials of the 11th order. Together with the accuracy and low numerical dis-
sipation characteristic of high-order methods, Nek5000 exhibits remarkable scaling
capability. For instance, El Khoury et al. [7] observed linear scaling from 8192 to
65,536 cores on DNS of the turbulent flow across a circular pipe employing more
than 2 × 109 grid points.

We enable in situ visualization in Nek5000 using ParaView Catalyst. ParaView
(and the included in situ library Catalyst) [1] is an open-source data analysis and
visualization tool geared towards large scientific data sets based on the Visualiza-
tion Toolkit (VTK) [24]. It is written in C++ but also provides bindings for other
languages to facilitate large-scale software development. With a custom adapter in
place to translate relevant simulation data into VTK data structures, Catalyst steers
an in-place analysis and visualization through a pipeline. Traditional visualization
is typically a post-processing step that is decoupled to the main simulation. In other
words, the development of a visualization pipeline is often decoupled with the simu-
lation workload. ParaView Catalyst enables this flexibility by decoupling the Cata-
lyst Adaptor and the actual implementation of the pipeline. Instead of including the
pipeline as part of the simulation and adaptor code, they are written in a separated
Python script using the ParaView Python interface. The script defines the steps in
the visualization pipeline and is executed by the Catalyst adaptor during co-process-
ing. In this work, we used the ParaView GUI client to interactively generate a pipe-
line script using a sample dataset (data from one time step of a simulation).

2.2 In situ implementation

One challenge of using ParaView Catalyst for in situ visualization for large-scale
simulation is to have all the relevant components readily compiled and linked. In
the case of Nek5000, one additional challenge is to integrate the Fortran based sim-
ulation code with a Catalyst Adaptor written in C++. However, this can be read-
ily achieved through an additional wrapper that encapsulates and exposes Catalyst
adaptor functions to the simulation code, where VTK data structures are constructed
and registered for co-processing. Thereafter, a visualization pipeline can be sepa-
rately constructed in a Python script (that will be used by the adaptor) using the
ParaView Python interface to define the visualization workflow.

We describe the workflow of in situ visualization in our code with Fig. 1. A simu-
lation is initiated in Nek5000 with all the relevant initial conditions provided, the
simulation initializes and proceeds to time stepping. After each time step has been

3610 M. Atzori et al.

1 3

computed, the simulation code calls the DoCoprocessing() function through the
Fortran adaptor and provides the Catalyst Adaptor with data structures (in VTK)
that are necessary for the visualization. The Nek5000 grid is a collection of struc-
tured sub-grids, each corresponding to one spectral element, with duplicated points
at the elements’ boundaries. The VTK grid is created mapping the spectral-element
grid in an unstructured grid, which is assembled organizing each element sub-grid
in quadrilaterals (2D simulations) or hexahedrons (3D simulations). When called for
the first time, the Catalyst Adaptor reads a user-provided Python script to initialize
a co-processor. Our script defines, among other settings, at which time step interval
the visualizations are created, how the output image is rendered (camera position,
image size, transfer function, etc.), and how the data is processed (e.g., which iso
value is used). The data structures provided by the simulation code to the Adaptor
are processed through the pipeline and eventually writes an output image to disk.
After the initial invocation, the Catalyst Adaptor only needs to update the co-proces-
sor using the latest data for relevant time steps and the pipeline will be invoked. One
exciting feature of in situ visualization with Catalyst is the possibility to stream data
directly to a ParaView GUI client for live visualization during a simulation. How-
ever, our focus is on writing visualization to files in this work.

In our implementation, we took advantage of the fact that general placeholder
subroutines for in situ operations are already present in Nek5000. In particular, these

Fig. 1 Workflow of in situ visualization of an IsoLambda2 simulation using a Catalyst adaptor and a
pipeline script. The visualization pipeline describes the configuration and steps (such as how data is pro-
cessed and rendered) using the ParaView Python interface

3611

1 3

In situ visualization of large‑scale turbulence simulations…

Fortran subroutines include (1) in situ initialization (in_situ_init), which is per-
formed once, after a preliminary time step and before the beginning of the actual
time loop; (2) the in situ processor (in_situ_check), which is performed at the end
of each time step; and (3) insitu finalization (in_situ_end), which is performed once,
after the end of the time loop. We implemented three corresponding Fortran subrou-
tines, which call standard VTK functions and the additional ones developed during
the project (written in C++). The function catalyst_init corresponds to in_situ_init,
and it includes the initialization of the Paraview coprocressor and the reading of the
visualization pipeline. The function catalyst_process corresponds to in_situ_check,
and it includes most of the operation. In this function, a VTK grid is created, organ-
izing the spectral-element mesh in Nek5000, and the set of required scalars and
vector fields are mapped into the VTK grid (e.g., pressure, velocity, and �2). Fur-
thermore, the Paraview coprocessor is called, which executes the instructions in the
visualization pipeline. Lastly, the function catalyst_end corresponds to in_situ_end,
and it includes the finalization of the in situ coprocessor. The structure of the in situ
adaptor implemented in this project is illustrated in Fig. 2.

3 Experimental setup

We present a test case that is designed to be of the size as a small but still realistic
numerical simulation carried out in a typical research project, and much larger
than a tutorial case. The simulation is a highly resolved LES, which describes the
incompressible flow around a NACA4412 airfoil at a chord Reynolds number of
Re

c
= 100,000 (Re

c
= U∞c∕� , where U∞ is the incoming velocity of the flow at a

large distance from the airfoil, c is the airfoil chord length, and � is the fluid kin-
ematic viscosity). The computational domain extends in any direction for at least
2c from the airfoil (see Fig. 3), and appropriate boundary conditions (BCs) are

Fig. 2 Structure of the in situ adaptor implemented in this project. A more detailed description is pro-
vided in the repository documentation at https:// github. com/ KTH- Nek50 00/ InSit uPack age

https://github.com/KTH-Nek5000/InSituPackage

3612 M. Atzori et al.

1 3

imposed [28], to have a consistent velocity distribution. The resolution to accu-
rately simulate the turbulent flow requires a total of 48 × 106 grid points. Note
that this case was included in a study of the flow around a NACA4412 airfoil up
to Re

c
= 1,000,000 [28], and that the simulations at higher Re

c
, and thus higher

resolutions were designed following the same methodology. We refer to Refs. [27,
28] for a more detailed description of the setup, relevance, and physical results.

We consider a pipeline that computes the iso-surface of the �2 criterion [12]
at a single threshold �2 = −200U2

∞
∕c2 that highlights vortical structures in the

wing boundary layer. Additionally, we use an iso-surface of velocity magnitude
close to 0 to extract the wing surface for additional context. Note that our adapter
makes the flow pressure available as well, but the presented pipeline does not use
this additional field.

The iso-surface computation involves the extraction of geometric primitives
i.e. triangles and quadrilaterals and can be done locally on each processor without
communication with processors holding adjacent data points. The visualization
of iso-surfaces in a distributed setting thus entails that each processor computes
and renders the geometry for its subset of the data. Then the partial representa-
tions are combined into an image compositing step and saved to disk. We ren-
der images at a Full HD+ resolution of 1920 × 1280 pixels. An exemplary output
image is shown in Fig. 4.

It is important to note that our choice of the task performed via Catalyst is
the result of a compromise between having a simple and relatively general study
case and using the in situ implementation in a meaningful way. The capability
of avoiding an intermediate dataset on disk is particularly significant if the post-
processing requires data with high temporal frequency, which is not the case of
producing a few static figures. Nevertheless, our experiment still allows compar-
ing the increase in computational cost using an in situ implementation, with the

Fig. 3 Detail of the mesh in the proximity of the NACA4412 airfoil and (insert) side view of the compu-
tational domain. Note that in the side view only the spectral elements are shown

3613

1 3

In situ visualization of large‑scale turbulence simulations…

storage required to perform the same operation with traditional post-processing,
which is our aim.

We perform all the simulations on the Beskow supercomputer at the PDC Centre
for High-Performance Computing (PDC-HPC) at the KTH Royal Institute of Tech-
nology. Beskow is a Cray XC40 system, based on Intel Xeon E5-2698v3 16-core
(2.30 GHz) processors and Cray Aries interconnect network with Dragonfly topol-
ogy. Each Beskow node has 32 cores divided between two sockets, with 16 cores on
each. The RAM for each node is 64 GB. The total number of cores is 53,632. We
do not use hyperthreading when conducting the experiments. We build ParaView
5.6.3 with default parameters, together with the graphic library Mesa 18.3.3 using
the Intel compiler 19.0.1.144, the build-process manager CMake 3.15.3, and Python
3.6.5.7. Nek5000 is also built with the Intel compiler 19.0.1.144. The full build pro-
cess is described in “Appendix”.

4 Results

We carry out a strong scalability test for the pipeline described in Sect. 3, perform-
ing a single simulation with nsteps = 1000 for nCPU = 256 , 512, 1024 and 2048 cores.

The Catalyst visualization pipeline is executed once every 50 time steps. We do
not perform any additional I/O to avoid interfering with the benchmark.

We show in Fig. 5 the average execution time per core during each time step,
denoted by ⟨�t⟩ , for different numbers of cores. Qualitatively, the expected inverse
relation between execution time and the number of cores for strong scalability holds:
An increase in the number of processors leads to a decrease in execution time. Time
steps when visualizations are created and saved to disk (as annotated with Time
steps with in situ workloads) are immediately apparent, showing a clear spike in
execution time.

Fig. 4 Iso-surface of the �
�
 criterion [12] to identify near-wall vortical structures for the 3D turbulent

flow around a NACA 4412 wing section

3614 M. Atzori et al.

1 3

Similar to Fig. 5, we report the average execution time per process during each
time step with and without in situ operations, denoted by ⟨�t⟩ , in Fig. 6. For time
steps without in situ processing, ⟨�t⟩ decreases from ≈ 3.7 s to ≈ 0.47 s when the
number of cores increases from 256 to 2, 048, with a relative parallel efficiency of
≈ 99% . However, for time steps with in situ processing, ⟨�t⟩ only decreases from
≈ 13 s to ≈ 7.7 s, with a relative parallel efficiency of 21% . At the same time, the
in situ approach has an overhead of between ≈ 4.8% and ≈ 31% when using 256 and
2048 cores, respectively. We define overhead as the difference between the average
execution time overall processes, with and without in situ processing and normalized

Fig. 5 Average execution time per process on each time step over the entire simulation for � = ���� in
log scale. Different numbers of scaling configurations, 256 (green), 512 (purple), 1024 (orange), and
2048 (brown) cores, are used in each test case (color figure online)

Fig. 6 Scaling of the mean wall-time per process when scaling the number of processes. The time steps
with and without in situ operations are marked in blue and red respectively. A log scale is used and error
bars indicate the 95% confidence interval

3615

1 3

In situ visualization of large‑scale turbulence simulations…

by the latter. The total overhead (in terms of extra computation time) over the entire
simulation depends on how frequently in situ processing is performed. Given that
a single flow field in double precision has a size of ≈ 2.9 GB, the in situ approach
results in a reduction of ≈ 2.9 × 1000∕50 = 58 GB of required storage space. Fur-
thermore, we observe that altering the frequency of in situ processing yields neg-
ligible changes of ⟨�t⟩ (not shown here). With the same test case, we can estimate
that using in situ analysis once every two time steps (which would save 1459 GB of
storage) will result in an overhead of ≈ 120% and ≈ 780% when using 256 and 2048
cores, respectively. The increasing overhead per increasing number of cores is the
consequence of coupling codes with different scalability properties.

To investigate the lack of scalability and attempt to identify the bottleneck in Cat-
alyst/ParaView, we measure the time spent in pipeline execution for different MPI
ranks. We observe a remarkable imbalance between rank 0 and all other rank and
report the differences in Fig. 7. Interestingly, not only the time spent by the pipe-
line in ranks different than 0 is lower, but it also shows a better scaling. Our results
show that rank 0 is a major bottleneck in the in situ processing pipeline. We initially
suspected image writing to the file system to be the cause of this. However, we used
ParaView with the default setting for image composition and verified that the bot-
tleneck is not I/O related. For this reason, we suspected the image composition itself
to have caused the bottleneck. In particular, the performance scaling of all other
ranks than rank 0 suggests that the compute workload is well distributed, indicating
the collection (assembly) to be an issue, i.e., a part of the in situ implementation is
apparently working as a serial code.

To further explore our observation with regard to the load imbalance between
rank 0 and all other ranks, we profile a full simulation using the Arm MAP profiler1

Fig. 7 Execution time per time step for the in situ visualization pipeline, for MPI rank 0 (pink) and MPI
rank 1 (yellow). Results from other ranks are not reported as they behave similarly to rank 1. A log scale
is used and error bars indicate the 95% confidence interval.

1 https:// www. arm. com/ produ cts/ devel opment- tools/ server- and- hpc/ forge/ map.

https://www.arm.com/products/development-tools/server-and-hpc/forge/map

3616 M. Atzori et al.

1 3

on Beskow using 256 processes on eight compute nodes. MAP is a low-overhead
profiler that enables performance analyses of compute and MPI activities in HPC
applications. We present an extract of the profiling results in Fig. 8. The execution
timeline in Fig. 8a shows five peaks where MPI activity is dominant, representing
both the in situ visualization (DoCoprocessing) and synchronization (nekgsync)
step. We zoom into the timeline of interest where in situ visualization is active in
Fig. 8b and notice that at the selected frames, MAP reports 70.7% of the execution
time is spent on MPI. This can be explained by the activity breakdown, of which
41.4% (out of 70.7%) of the MPI activities come from the visualization pipeline. At
the same time, we can visually confirm that MPI communication (with blue color in
the timeline) is dominating the visualization step, indicating a potential bottleneck in
the pipeline. To investigate the sources of the bottleneck, we expand the call stack
of the in situ processing function, DoCoprocessing, in Fig. 8c. The total core time
breakdown there reveals that the WriteImages operation in the Python co-pro-
cessing pipeline is solely responsible for the 41.4% time spent on communication.
We continue to expand the stack to locate the source of the bottleneck and eventu-
ally arrive at two MPI calls that can explain over 40% of the MPI time. Firstly, we
observe that MPI_Allreduce (7.8%) (Fig. 8d) is used by VTK to perform the
reduction in the update data step; secondly, we notice that a large portion of time
is spent on MPI_Waitany (33.0%) (Fig. 8e) that is used in the image composi-
tion step (icetRadixkrCompose) [17, 22]. In conclusion, the MPI_Waitany
is mainly responsible for the bottleneck and it indicates a major bottleneck in the
image composition algorithm.

Fig. 8 a Profiling of a full Nek5000 simulation using Arm MAP allows us to distinguish between com-
pute and MPI workloads. b The time distribution reveals that MPI accounts for approximately 70.7% of
the execution time when co-processing is active (where 41.4% is from co-processing). c We investigate
the source of the bottleneck by expanding the call stack of the in situ processing function and find that d
a MPI_Allreduce is taking 7.8% of the time. e However, a MPI_Waitany that is used in the image
composition inside the ICE-T library (icetRadixkrCompose) accounts for 33.0% of the time

3617

1 3

In situ visualization of large‑scale turbulence simulations…

5 Discussion and conclusions

The rationale for adopting the in situ approach is to avoid saving an intermedi-
ate dataset for post-processing, which may lead to considerable I/O requirements.
However, in situ operations inevitably have an impact on the overall computa-
tional cost. The goal of our current effort is to investigate how these two con-
tradictory constraints balance for a realistic high-fidelity numerical simulation.
We implemented an adapter for the CFD code Nek5000 that organizes the data
in VTK format, thus making it possible to use ParaView as an in situ post-pro-
cessing tool through the Catalyst API. The test case that we employed is a highly-
resolved LES of the turbulent flow around a wing profile, using approximately
48 × 106 grid points. This is the size of a small but still realistic numerical simu-
lation carried out in turbulence research [28].

Nek5000 exhibits approximately linear scaling when no in situ analysis is per-
formed, however, when the in situ analysis is performed, we observed that the
time per time step becomes significantly higher and it scales poorly when the
number of cores increases. At 2048 cores, we only observe a relative parallel effi-
ciency of ≈ 21% . For these reasons, the usage of the in situ approach is practical
only in two extreme cases: (1) for a relatively large simulation and very low fre-
quency of operations, i.e. when the overhead is negligible, and the storage of even
a few fields is not possible; and (2) for a relatively small simulation, if a high fre-
quency of operation is needed, and there is a severe storage limitation, i.e., when
the much higher but yet reasonable computational cost is preferable than saving a
large dataset.

To understand the lack of strong scalability, we perform detailed timing and
profiling. Timing of co-processing on individual processes reveals that part of the
in situ pipeline is executed by a single MPI process with rank 0, spending consider-
ably more time than other processes. This suggests that part of the pipeline is seri-
alized, thus limiting the achievable parallel speedup (Amdahl’s law). To pinpoint
the issue, we used Arm MAP to perform profiling and discovers that a majority of
the co-processing time is spent on MPI communication. Further investigation shows
that the time is spent on an MPI_Waitany in the image composition step (called
icetRadixkrCompose). Radix-k (and its variant Radix-kr) is an advanced algo-
rithm for large-scale image composition. Being a computation and communication-
intensive workload, the algorithm has been subjected to numerous optimization
efforts [13, 17, 22]. In particular, the algorithm enables a tunable parameter k to
adapt to the system’s interconnect topology. For example, previous works [13] have
performed auto-tuning on the k value for higher performance, but its impact reported
in Ref. [13] is almost negligible compared with the overhead of in-situ operations in
our case. In this work, we have used the default parameters provided by ParaView.
Likely, an improved parallel algorithm in Catalyst for the aggregation step, e.g. non-
blocking or a highly distributed image composition and auto-tuning of multiple
parameters, would lead to a considerable parallel performance gain.

Despite our observations, it is possible that modifications to the pipeline code
or even better-optimized settings could improve the performance significantly. If

3618 M. Atzori et al.

1 3

this is the case, it is important to recognize that simplification of the building
process of data-analysis software is itself a goal worth pursuing. At the time of
writing, we have been in contact and communicated our findings with the Para-
View Catalyst developers to further scrutinize the results, and more work will
be needed in the future. A more general consideration is that the availability of
test cases of practice relevance, e.g., medium-size numerical simulations for CFD
researches, is important to help the adoption of any data-analysis methodology in
new areas, as well as to identify directions of possible performance improvement.
Such improvements will likely ease the effort required and facilitate the uptake in
adopting these new data analysis methods in the research community.

Appendix: Sample workflow

A sample setup of our workflow is available at: https:// github. com/ KTH- Nek50 00/
InSit uPack age. The repository contains the used versions of Mesa, ParaView, and
Nek5000 along with our additions and some sample pipelines. A simpler version of
the test case used here is provided as well. A reduction in Re

c
 to 75,000 compared to

100,000 used in the presented experiments and in the resolution requirements allow
for the example in the repository to be run on a regular work station. Instructions to
set up all dependencies and run the test case are included.

Acknowledgements This study was funded by the Swedish Foundation for Strategic Research, project
“In-Situ Big Data Analysis for Flow and Climate Simulations” (Ref. Number BD15-0082), by the Knut
and Alice Wallenberg Foundation, by the Swedish Research Council (VR), and the Swedish e-Science
Research Centre (SeRC). S. W. D. Chien and S. Markidis acknowledge funding received from the Euro-
pean Commission H2020 program, Grant Agreement No. 800999 (SAGE2). Experiments were per-
formed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC.

Funding Open access funding provided by Royal Institute of Technology.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

https://github.com/KTH-Nek5000/InSituPackage
https://github.com/KTH-Nek5000/InSituPackage
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

3619

1 3

In situ visualization of large‑scale turbulence simulations…

References

 1. Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large data visualization. Vis
Handb 836:717–732

 2. Ayachit U, Bauer A, Duque EPN, Eisenhauer G, Ferrier N, Gu J, Jansen KE, Loring B, Lukic Z,
Menon S, Morozov D, O’Leary P, Ranjan R, Rasquin M, Stone CP, Vishwanath V, Weber GH,
Whitlock B, Wolf M, Wu KJ, Bethel EW (2016) Performance analysis, design considerations, and
applications of extreme-scale in situ infrastructures. In: SC ’16: l, pp 921–932

 3. Ayachit U, Bauer A, Geveci B, O’Leary P, Moreland K, Fabian N, Mauldin J (2015) ParaView
catalyst: enabling in situ data analysis and visualization. In: Proceedings of the First Workshop on
In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp 25–29

 4. Bernardoni B, Ferrier N, Insley J, Papka M.E, Patel S, Rizzi S (2018) In situ visualization and anal-
ysis to design large scale experiments in computational fluid dynamics. In: 2018 IEEE 8th Sympo-
sium on Large Data Analysis and Visualization (LDAV). IEEE, pp 94–95

 5. Deville MO, Fischer PF, Mund EH (2002) High-order methods for incompressible fluid flows. Cam-
bridge University Press, New York

 6. Dorier M, Sisneros R, Peterka T, Antoniu G, Semeraro D (2013) Damaris/viz: a nonintrusive, adapt-
able and user-friendly in situ visualization framework. In: 2013 IEEE Symposium on Large-Scale
Data Analysis and Visualization (LDAV). IEEE, pp 67–75

 7. El Khoury G, Schlatter P, Noorani A, Brethouwer G, Johansson AV (2013) Direct numerical
simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul Combust
91:475–495

 8. Fischer P, Kruse J, Mullen J, Tufo H, Lottes J, Kerkemeier S (2008) Nek5000: Open source spectral
element CFD solver. https:// nek50 00. mcs. anl. gov/

 9. Fischer PF (1989) Spectral element solution of the Navier–Stokes equations on high performance
distributed-memory parallel processors. Ph.D. thesis, Massachusetts Institute of Technology

 10. Haimes R (1994) pv3—A distributed system for large-scale unsteady cfd visualization. In: 32nd
Aerospace Sciences Meeting and Exhibit

 11. Hosseini SM, Vinuesa R, Schlatter P, Hanifi A, Henningson DS (2016) Direct numerical simulation
of the flow around a wing section at moderate Reynolds number. Int J Heat Fluid Flow 61:117–128

 12. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94
 13. Kendall W, Peterka T, Huang J, Shen HW, Ross RB (2010) Accelerating and benchmarking radix-k

image compositing at large scale. EGPGV 10:101–110
 14. Ma KL (1995) Runtime volume visualization for parallel cfd. Tech. Rep. ICASE-95-74, Institute for

Computer Applications in Science and Engineering (ICASE)
 15. Ma KL (2009) In situ visualization at extreme scale: challenges and opportunities. IEEE Comput

Graph Appl 29(6):14–19
 16. Merzari E, Rahaman R, Min M, Fischer P (2018) Performance analysis of nek5000 for single-

assembly calculations. In: ASME 2018 5th Joint US–European Fluids Engineering Division Sum-
mer Meeting: Development and Applications in Computational Fluid Dynamics; Industrial and
Environmental Applications of Fluid Mechanics; Fluid Measurement and Instrumentation; Cavita-
tion and Phase Change, vol. 2. https:// doi. org/ 10. 1115/ FEDSM 2018- 83517. V002T 09A031

 17. Moreland K, Kendall W, Peterka T, Huang J (2011) An image compositing solution at scale. In:
Proceedings of 2011 International Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’11. Association for Computing Machinery, New York, NY, USA. https:// doi.
org/ 10. 1145/ 20633 84. 20634 17

 18. Offermans N (2019) Aspects of adaptive mesh refinement in the spectral element method. Ph.D.
thesis, KTH Royal Institute of Technology

 19. Otero E, Gong J, Min M, Fischer P, Schlatter P, Laure E (2019) OpenACC acceleration for the
PN-PN-2 algorithm in Nek5000. J Parallel Distrib Comput 132:69–78

 20. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expan-
sion. J Comput Phys 54(3):468–488

 21. Peplinski A, Offermans N, Marin O, Fischer P, Schlatter P (2019) Non-conforming elements in
nek5000: pressure preconditioning and parallel performance. In: Sherwin S, Moxey D, Peiró J, Vin-
cent P, Schwab C (eds) Spectral and high order methods for partial differential equations ICOSA-
HOM 2018. Springer, Cham, pp 599–609

https://nek5000.mcs.anl.gov/
https://doi.org/10.1115/FEDSM2018-83517.V002T09A031
https://doi.org/10.1145/2063384.2063417
https://doi.org/10.1145/2063384.2063417

3620 M. Atzori et al.

1 3

 22. Peterka T, Goodell D, Ross R, Shen HW, Thakur R (2009) A configurable algorithm for parallel
image-compositing applications. In: Proceedings of the Conference on High Performance Comput-
ing Networking, Storage and Analysis, SC ’09. Association for Computing Machinery, New York,
NY, USA. https:// doi. org/ 10. 1145/ 16540 59. 16540 64

 23. Rasquin M, Marion P, Vishwanath V, Matthews B, Hereld M, Jansen K, Loy R, Bauer A, Zhou
M, Sahni O, Fu J, Liu N, Carothers C, Shephard M, Papka M, Kumaran K, Geveci B (2011) Elec-
tronic poster: co-visualization of full data and in situ data extracts from unstructured grid cfd at
160k cores. In: Proceedings of the 2011 Companion on High Performance Computing Networking,
Storage and Analysis Companion, SC ’11 Companion. Association for Computing Machinery, New
York, NY, USA, pp 103–104

 24. Schroeder W, Martin K, Lorensen B (2006) The visualization toolkit-an object-oriented approach to
3D graphics, 4th edn. Kitware, Inc, Washington

 25. Shudler S, Ferrier N, Insley J, Papka ME, Patel S, Rizzi S (2019) Fast mesh validation in com-
bustion simulations through in-situ visualization. In: Childs H, Frey S (eds) Eurographics Sympo-
sium on Parallel Graphics and Visualization. The Eurographics Association, Aire-la-Ville, pp 7–16.
https:// doi. org/ 10. 2312/ pgv. 20191 105

 26. Tanarro A, Mallor F, Offermans N, Peplinski A, Vinuesa R, Schlatter P (2020) Enabling adaptive
mesh refinement for spectral-element simulations of turbulence around wing sections. Flow Turbul
Combust 105:415–436. https:// doi. org/ 10. 1007/ s10494- 020- 00152-y

 27. Tanarro A, Vinuesa R, Schlatter P (2020) Effect of adverse pressure gradients on turbulent wing
boundary layers. J Fluid Mech 883:A8. https:// doi. org/ 10. 1017/ jfm. 2019. 838

 28. Vinuesa R, Negi PS, Atzori M, Hanifi A, Henningson DS, Schlatter P (2018) Turbulent boundary
layers around wing sections up to Re

c
= 1, 000, 000 . Int J Heat Fluid Flow 72:86–99

 29. Yi H, Rasquin M, Fang J, Bolotnov I.A (2014) In-situ visualization and computational steering for
large-scale simulation of turbulent flows in complex geometries. In: 2014 IEEE International Con-
ference on Big Data (Big Data), pp 567–572

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Marco Atzori1 · Wiebke Köpp2 · Steven W. D. Chien2 · Daniele Massaro1 ·
Fermín Mallor1 · Adam Peplinski1 · Mohamad Rezaei3 · Niclas Jansson3 ·
Stefano Markidis2 · Ricardo Vinuesa1 · Erwin Laure3 · Philipp Schlatter1 ·
Tino Weinkauf2

1 SimEx/FLOW, Engineering Mechanics, KTH Royal Institute of Technology, 100 44 Stockholm,
Sweden

2 Division of Computational Science and Technology, KTH Royal Institute of Technology,
100 44 Stockholm, Sweden

3 PDC Center for High Performance Computing, KTH Royal Institute of Technology,
100 44 Stockholm, Sweden

https://doi.org/10.1145/1654059.1654064
https://doi.org/10.2312/pgv.20191105
https://doi.org/10.1007/s10494-020-00152-y
https://doi.org/10.1017/jfm.2019.838
http://orcid.org/0000-0003-0790-8460

	In situ visualization of large-scale turbulence simulations in Nek5000 with ParaView Catalyst
	Abstract
	1 Introduction and background
	2 Methodology
	2.1 Considered software
	2.2 In situ implementation

	3 Experimental setup
	4 Results
	5 Discussion and conclusions
	Acknowledgements
	References

