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ABSTRACT Ripening is a very important process that contributes to cheese quality, as its characteristics are
determined by the biochemical changes that occur during this period. Therefore, monitoring ripening time
is a fundamental task to market a quality product in a timely manner. However, it is difficult to accurately
determine the degree of cheese ripeness. Although some scientific methods have also been proposed in the
literature, the conventional methods adopted in dairy industries are typically based on visual and weight
control. This study proposes a novel approach aimed at automatically monitoring the cheese ripening
based on the analysis of cheese images acquired by a photo camera. Both computer vision and machine
learning techniques have been used to deal with this task. The study is based on a dataset of 195 images
(specifically collected from an Italian dairy industry), which represent Pecorino cheese forms at four degrees
of ripeness. All stages but the one labeled as ‘‘day 18’’, which has 45 images, consist of 50 images. These
images have been handled with image processing techniques and then classified according to the degree of
ripening, i.e., 18, 22, 24, and 30 days. A 5-fold cross-validation strategy was used to empirically evaluate
the performance of the models. During this phase, each training fold was augmented online. This strategy
allowed to use 624 images for training, leaving 39 original images per fold for testing. Experimental results
have demonstrated the validity of the approach, showing good performance for most of the trained models.

INDEX TERMS Cheese ripening, image analysis, image processing, machine learning, image classification,
deep learning.

I. INTRODUCTION
Dairy products have a high commercial value in the food
industry, even considering that they are a source of proteins,
calcium, and micro-nutrients with beneficial effects on bone
and muscle health. In addition, thanks to their probiotic
content, they increase the health of the digestive tract and
positively influence the microbiome.

Among dairy products, cheese is a popular food produced
and consumed in many parts of the world. The cheese qual-
ity depends on several characteristics, including chemical
components, internal structure, physical properties, and other
attributes such as oxygen and dielectric properties [1]. Other
important aspects that determine the quality of the final
product are sensory aspects stimulated by specific properties
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and components of the cheese. Not incidentally, the trans-
formations of the milk constituents that affect the cheese
quality occur during the ripening phase. In particular, several
biochemical changes (lipolysis and proteolysis) that occur
during this process significantly affect the cheese’s flavor,
aroma, and texture [2]. Consequently, monitoring the degree
of ripeness is a mandatory step in the product quality assur-
ance process [3]. Unfortunately, accurately determining the
degree of maturation of the cheese is not trivial, even when
considering only a specific product. The point here is that
this process is not entirely predictable or controllable, being
influenced by many factors –including season, the origin
of the milk, processing steps, and temperature of the stor-
age places [4]. On the other hand, an error in determining
the maturation level of cheese typically has many negative
consequences. In particular, for soft cheeses, the decision
to place them on the market must be made within hours,
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as the ripening process usually takes a few weeks. In either
case (i.e., cheese not mature enough or cheese too mature),
a product of lower quality than expected is sent to the market,
with potential risks for the company in terms of income or
prestige (also note that keeping aged cheeses in the dairy has
warehouse costs). Visual inspection and weight checking are
the conventional methods adopted in dairy industries to assess
cheese ripeness. In both cases, despite the training of the
personnel involved, there is room for occasional errors, which
can result in costs for the companies. Moreover, checking an
entire batch of cheese with these methods can be very time-
consuming, so most often, only some samples are checked
out. For all these motivations, the dairy sector’s interest is
growing in adopting cutting-edge technologies capable of
effectively monitoring the maturation process.

In recent years, non-invasive techniques for monitoring
cheese ripening have been adopted, typically based on the
analysis of physicochemical, chromatographic, and elec-
trophoretic characteristics. However, these techniques are
time-consuming and expensive [5]. Other non-invasive meth-
ods based on spectroscopic techniques have also been pro-
posed in the literature. Without claim to be exhaustive, some
works are recalled from now on. Dufour et al. [6] analyzed
the mid-infrared and fluorescence of sixteen different kinds
of cheese collected at four ripening times. The similarity
maps obtained by applying principal component analysis
(PCA) to the acquired spectra demonstrated the feasibility of
discriminating the cheeses according to their ripening times.
FT-NIR (Fourier Transform Near-Infrared) and FT-IR
(Fourier Transform Infrared) spectroscopy have been applied
in [7] to study the shelf-life of Crescenza cheese. Spectral
data were acquired from cheese samples collected at different
times for twenty days. The PCA applied to this data detected
the decrease in the ‘‘freshness’’ of Crescenza and defined the
critical day during the shelf-life period. Del Campo et al. [8]
used mid-infrared spectroscopy to study the characterization
of the ripening stages of Emmental cheeses. Using PCA, the
authors could discriminate among four categories of cheese
ripening. Specifically, these groups include samples ripened
during i) 21, 27, and 34 days, ii) 51 and 58 days, iii) 65 days,
and iv) about 85 days (i.e., the samples as found at the end of
the ripening process). Soto-Barajas et al. [9] proposed a study
aimed at predicting cheese ripening and the types of milk
mixtures used therein. Artificial neural networks (ANNs)
were designed and trained with data reporting those cheeses’
fatty acid composition and NIR spectra. The ANNmodel was
able to predict the ripening of cheeses acquired in a period of
six months.

Among the various food industry-related tasks in which
we can frame our work, the spectrum of tasks addressed is
extremely diverse. The problem of food quality and authen-
ticity determination is a hot topic [10]. In this context,
Jahanbakhshi et al.proposed methods based on computer
vision and deep learning techniques to detect adulteration in
turmeric powder [11], [12], while Al-Sarayreh [13] proposed
a novel method based on the combination of spectral and

textural information from red meat images to identify pos-
sible adulteration. Other important topics are certainly food
recognition, retrieval, and classification [14], [15], [16] as a
potential help in making recipes [17], for example, or food
calorie estimation [18], [19].

This work is primarily motivated by the need to implement
a non-invasive approach able to automatically and accurately
determine the degree of ripeness of the cheese. This approach
has the advantage of automating cheese control, eliminating
common human errors that can lead to placing a non-quality
product on the market. All the above mentioned aspects are
addressed in this work. The goal is to implement an auto-
mated system to ensure the production of a quality product.

This paper proposes a new non-invasive approach for mon-
itoring the cheese ripening process using advanced com-
puter vision (CV) and machine learning (ML) techniques.
Specifically, cheese images acquired with an ordinary camera
are processed with CV techniques and then classified using
relevant ML algorithms.

Our original contribution is fivefold: i) four different
categories of visual handcrafted (HC) descriptors were exten-
sively studied and compared; ii) the classification perfor-
mance of different families of ML classifiers was analyzed
and compared; iii) ten different convolutional neural net-
works in an end-to-end deep learning (DL) classificationwere
evaluated; iv) a novel image processing pipeline, from the
image acquisition to the ripeness classification, is proposed;
v) an extensive comparative analysis in a novel domain and
an effective pipeline to solve the task is proposed.

To the best of our knowledge, this is the first study aimed
at evaluating cheese ripening by analyzing images acquired
through a photo camera.

The remainder of this article is organized as follows.
Materials and methods are described in Section II.
Experimental settings and the corresponding results are
reported in Section III. A discussion of the results follows
in Section IV, together with the challenges raised by this task.
Finally, conclusions are drawn in Section V.

II. MATERIALS AND METHODS
The automated monitoring of the cheese ripeness was
approached as a supervised classification problem, charac-
terized by the need to correctly map a cheese image to its
actual maturation degree. Specific strategies based on DL
and machine learning have been implemented and used to
tackle this classification problem. In particular, DL algo-
rithms were used with a twofold aim: i) to build classifier
models and ii) to employ them for feature extraction. Both
tasks were addressed using off-the-shelf convolutional neu-
ral network (CNN) architectures proposed in the literature.
Beyond the adoption of DL techniques and architectures,
several classifier models were constructed from handcrafted
features obtained by image processing techniques and fea-
tures extracted from CNNs. As for the dataset used in this
study, all images were collected in a local dairy industry.

VOLUME 10, 2022 122613



A. Loddo et al.: Automatic Monitoring Cheese Ripeness Using Computer Vision and Artificial Intelligence

TABLE 1. Table reports the number of images for a ripening period of
18 days (i.e., 18_Aged), 22 days (i.e., 22_Aged), 24 days (i.e., 24_Aged)
and 30 days (i.e., 30_Aged).

The dataset consists of cheese images representing four
degrees of ripeness of a specific type of soft cheese.

This section is organized as follows: the image dataset is
first described in Section II-A; then the pipeline aimed at
preprocessing the dataset is described in Section II-B; and
afterward the extracted features are described in Section II-C.
Subsequently, the adopted DL and ML algorithms are briefly
recalled in Section II-D and Section II-E. Finally, the per-
formance measures used to assess the models are reported
in Section II-F.

A. DATASET CHARACTERISTICS
The dataset used in this research was built by collecting
images of a Pecorino cheese produced by a Sardinian (Italy)
dairy company. The specific product is classified as soft
cheese, as its maturing period reaches its completion in
20-25 days. The dataset was built with the support of the Sar-
dinian agency for the implementation of regional agricultural
and rural development programs (LAORE1).

The dataset consists of 195 images representing the
selected Pecorino cheese forms at four degrees of ripeness,
i.e., 18, 22, 24, and 30 days. All stages but the one labeled
as ‘‘day 18’’, which has 45 images, consist of 50 images
(see Table 1).

The highly trained staff of the dairy ensured that no accel-
eration or slowdown was observed in the selected forms. As a
consequence, those labeled as ‘‘day k’’ represent that day in
an ideal ripening process. Note that for this specific product,
the ripening process completes on ‘‘day 24,’’ which means
that the forms labeled as ‘‘day 18’’ and ‘‘day 22’’ should
be considered insufficiently ripe. Conversely, those labeled
‘‘day 30’’ should be regarded as overripe.

The camera used to acquire images was a Nikon D750,
with a CMOS 35.9 × 24.0 mm sensor and a resolution
of 24Mpixel. All dataset images have a resolution of 4, 016×
6, 016 or 6, 016× 4, 016. A sample image for each category
is shown in Figure 1.

B. DATA PREPROCESSING
Data preprocessing consists of a pipeline of two steps,
i.e., image segmentation, and cropping. As shown by the
sample reported in Figure 1, a non-uniform background char-
acterizes all the images. As not beneficial for the classifi-
cation task, it has been removed by a proper segmentation

1https://www.sardegnaagricoltura.it

process that allowed substituting the original background
with a neutral and constant one.
Image segmentation - Initially represented in RGB color

space, all images were first converted to HSV space, being
more representative of the contrast between the cheese and
background region. Then, the images were segmented by a
threshold approach, taking the saturation channel as a ref-
erence. Specifically, the images were segmented (i.e., bina-
rized) by choosing an automatic adaptive threshold based
on the local average intensity (first-order statistics) in the
neighborhood of each pixel [20]. Thanks to the binarization
process, the object of interest, represented by the cheese
region, was properly extracted by selecting the bounding box
of the biggest region, i.e., the cheese region. This opera-
tion made it possible to preserve the information related to
the cheese region without influences dictated by the uneven
background.
Image cropping - Once the cheese region was segmented,

an imagewas produced, whose dimensionswere derived from
the size of the region itself. This image is formed by a constant
background (black color was chosen) and the segmented
object of interest. The cropped images obtained from the ones
depicted in Figure 1 are presented in Figure 2. The images
thus generated are then provided to the next stage of analysis,
which is the feature extraction, or directly used as input for
a convolutional neural network – depending on the chosen
classification approach.

It is worth noting that an additional step has been applied
while implementing the DL-based approaches. In this case,
after cropping, the images have also been scaled according to
the input shape (i.e., 224× 224 or 299× 299) of the adopted
CNN architectures.

C. FEATURE EXTRACTION
Prior to this stage, a thorough image preprocessing pipeline
allowed us to obtain representative images of the cheese
acquired during the ripening process. Then different feature
sets in various combinations were extracted and used to train
the selected MLmodels. According to Putzu et al. [21], these
features can be grouped into four main categories: invariant
moments, texture, color, and deep features. The first three
categories are handcrafted, while the last one includes all
features extracted bymeans of CNNs. The selected categories
represent a broad spectrum of existing descriptors in com-
puter vision and are used in multiple activities, e.g., indus-
try [22], biomedicine [23], [24], [25], agriculture [26], [27],
video-surveillance [28], [29]. To the best of our knowl-
edge, no ‘‘off-the-shelf’’ solution is available in the litera-
ture for this purpose. In fact, the existing methods presented
in Section I address different types of cheese and ripening
days. This prompted us to develop an ad hoc image processing
pipeline that makes use of the above descriptors.
Invariant Moments - An image moment is a weighted

average (i.e., the moment) of the image pixel intensities used
to extract some properties from an image. Moments are used
in image analysis and pattern recognition to describe objects
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FIGURE 1. Samples of cheese image for each class of ripeness.

FIGURE 2. Samples of cropped cheese image for each class of ripeness.

after segmentation. In this work, four types of moments were
used (i.e., Hu, Zernike, Legendre, and Chebyshev). Let us
briefly summarize them.

• Hu moments (HM) have been proposed by Hu [30] to
solve pattern recognition problems. They are invariant
to translation, scale, and rotation changes.

• Legendre moments (LM) are obtained using Legendre
polynomials as the kernel function. First introduced by
Teague [31], they belong to the class of orthogonal
moments and can be used to attain a near zero value
of redundancy measure in a set of moment functions.
These moments can be used to highlight independent
characteristics of the image [32].

• Zernike moments (ZM) are based on the Zernike poly-
nomials, an orthogonal sequence of polynomials on the
unit disk. These orthogonal moments are used to repre-
sent image properties without redundancy [33].

• Chebyshev moments (CH) were first proposed by
Mukandan et al. [34]. Unlike Zernike and Legendre

moments, they belong to the class of discrete orthog-
onal moments. Hence, the implementation of these
moments does not involve any numerical approximation.
They are derived from Chebyshev polynomials and can
extract global features in an image by varying moment
order [35]. Here, first and second-order Chebyshev
moments (denoted as CH_fi and CH_se) were extracted.

All mentioned invariant moments have been calculated
with an order ranging from 3 to 10, being aware that higher
orders would only increase the computation time by adding
features representative of irrelevant details or noise [35].
Texture features - The texture features evaluated in

this proposal were focused on fine textures. In particular,
the histogram of the Local Binary Pattern (LBP), con-
verted to a rotation invariant form, viz. LBP_ri [36], was
extracted and used as the feature vector. Also, thirteen
Haralick features extracted from theGray Level Co-occurrence
Matrix (GLCM) [37] converted into rotation invariant fea-
tures, viz. HAR_ri (see [37]). More specifically, four kinds
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of GLCM were computed, all with d = 1 and θ =

[0◦, 45◦, 90◦, 135◦]. As for LBP, a map in the neighborhood
characterized by r and n equal to 1 and 8, respectively, was
calculated.
Color features - The color histogram (Hist) and color

autocorrelogram (AC) features were extracted as color fea-
tures. The former describes the overall color distribution
in the image, from which seven statistical descriptors were
computed: mean, standard deviation, smoothness, skewness,
kurtosis, uniformity, and entropy. For ease of analysis and
computations, they were calculated from images converted
to grayscale. The latter is used to find the spatial correlation
of identical colors by encoding their spatial color distribu-
tion [38]. More specifically, the probability of finding two
pixels of the same color at a distance d is saved. Four distance
values were used for our experiments: d = 1, 2, 3, 4. Once
extracted, the four probability vectors were concatenated to
generate a single feature vector.
Deep features - The term refers to the features of an

image extracted from the deep layers of a CNN. The deep
features were extracted from off-the-shelf CNN architectures
pretrained on the well-known natural image dataset Ima-
geNet [39]. Specifically, these features represent the activa-
tion values obtained from one of the most significant layers
at the end of the network [40], [41]. In this study, according
to the architecture, deep features were extracted: i) from the
penultimate layer, ii) from the last fully connected layer or
iii) from the last pooling layer to obtain features that represent
the learned global knowledge of the network (see Table 2).

Note that the fine-tuning strategy for the classification
phase was not considered to preserve the generalization abil-
ity of the networks [42], [43].

D. DEEP LEARNING STRATEGIES
CNNs are powerful architectures that are increasingly and
successfully used to address a variety of image classification
problems in different domains [27], [44], [45]. In addition,
they transformed the manual design of feature extraction into
an automated process, being able to take advantage of the
activations of their layers to obtain the learned features.

In this study, different CNN architectures have been used
to build classifier models to address the problem at hand
and to perform the feature extraction task. Features extracted
by the selected CNNs were used to train different models
according to the ML algorithm described in Section II-E.
In particular, regarding the end-to-end deep learning strategy,
pretrained models’ weights on ImageNet were considered.
They were optimized by fine-tuning the pretrained models
with the common practice of freezing all layers except the last
(three) fully-connected layers from training. With this solu-
tion, transfer learning was adopted to reduce the problem of
insufficient training data and avoid the risk of overfitting [46].
The CNN architectures used in this study (see Table 2) are
briefly recalled hereinafter.
AlexNet – Proposed byKrizhevsky et al. [47], AlexNet con-

sists of a cascade of convolutional and max-pooling layers,

TABLE 2. The table reports some information related to the CNNs used in
this study. In particular, their names and related references, number of
trainable parameters, image input size, and the layer used for feature
extraction are reported for each CNN.

ended by 3 fully-connected layers. It is the shallowest among
the considered architectures, containing only 5 convolutions
layers.
ResNet – This name is used to denote a set of deep

architectures based on residual learning [49], composed
of skip-connections or recurrent units between blocks of
convolutional and pooling layers. Furthermore, the blocks
are followed by a batch normalization [55]. In this work,
three versions of ResNet have been used, i.e., ResNet-18,
ResNet-50, and ResNet-101 (note that the specified number
represents the network depth).
GoogleNet – In 2014, Szegedy et al. [48] proposed the

GoogLeNet architecture, which is based on blocks of incep-
tion layers. Each block is a set of convolution layers, while
the filters used can vary from 1 × 1 to 5 × 5, thus allowing
multi-scale learning. GoogLeNet uses global average pooling
instead of max-pooling.
Inception-v3 – The Inception-v3 [50] architecture is also

based on the concept of inception layers but improves
GoogLeNet through the use of factorized, smaller, and
asymmetric convolutions. The Inception models are famous
for their multi-branch architectures, having a set of filters
(1 × 1, 3 × 3, 5 × 5, and so forth) that are merged with
concatenation in each branch.
Inception-ResNet-v2 –Devised as a combination of ResNet

and Inception architectures [51], multiple-sized convolu-
tional filters are combined with residual connections in
the Inception-Resnet block. Inception-ResNet-v2 consists of
4 max-pooling and 160 convolutional layers.
DarkNet –Mostly based on the existing concepts of incep-

tion and batch normalization, one of the versions of DarkNet
embeds 53 convolutional layers. This architecture is the back-
bone network for the object detection method You Only Look
Once (YOLO) [52].
DenseNet – Proposed with L(L + 1)/2 connections [53],

this architecture was introduced to overcome the fact that
traditional CNNs had some layers L equal to the number
of connections. For each layer, the outputs of all previous
layers are used as input to the next layer. The number of
filters used in each convolutional layer varies according to the
growth rate parameter (viz. k). In this study, DenseNet-201
with k = 32 has been adopted.
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EfficientNet – Proposed by Tan et al., EfficientNet [54]
uses compound scaling to uniformly and efficiently scale
width, depth, and resolution of the network. Eight versions
of EfficientNet exist, from B0 to B7. In this study, B0 has
been adopted.

E. MACHINE LEARNING STRATEGIES
Handcrafted and deep features have been separately used
to feed the chosen ML classifiers, i.e., k-Nearest Neighbor
(k-NN) [56], Support Vector Machine (SVM) [57], Decision
Tree (DT) [58], Random Forest (RF) [59] and a two-layer
MultiLayer Perceptron (MLP), with 10 hidden layers. These
ML algorithms are briefly summarized hereinafter.
k-NN – To categorize an observation, a k-NN classifier uses

a local strategy that involves the k nearest neighbor training
examples, together with a voting policy that yields a predic-
tion starting from the selected neighbors. In this proposal,
an image is classified according to the nearest image found in
the training set, meaning that k is set to 1. Euclidean distance
has been used as a distance measure. Note that with k = 1,
no voting strategy is actually required.
SVM – SVMs are binary classifiers that categorize observa-

tions according to their position with respect to a hyperplane
drawn in accordance with the so-called ‘‘support vectors’’.
By default, an SVM is linear; however, when no hyper-
plane can properly discriminate between negative and posi-
tive observations, the original problem can be projected into a
multidimensional space employing suitable kernel functions.
In this proposal, a Gaussian radial basis function (RBF) has
been used as the kernel. Note that multiclass problems can be
dealt with SVMs using the One-vs-Rest (OvR) approach.
DT – Downstream of training, a DT can predict the cate-

gory of observation by simply looking at the set of embedded
if-then rules that have been inferred from training data. The
deeper the tree, the more complex the decision rules.
RF – An RF is an ensemble of DTs. To ensure diversity

among the DTs, ad-hoc rules are enforced during training.
As a result, RFs are typically robust concerning the imbal-
ance of data, allowing better control overfitting and better
generalizations. In this work, the number of DTs has been set
to 100.

F. PERFORMANCE MEASURES
The classification performance has been measured in terms
of accuracy, precision, specificity, sensitivity, F1-score, and
Matthews Correlation Coefficient (MCC). Straightforward
definitions of these measures for binary classification prob-
lems are given hereinafter, followed by their generalizations
for multiclass problems.

1) STANDARD DEFINITIONS FOR BINARY CLASSIFICATION
PROBLEMS
An example (say e) is characterized by a pair 〈i, t〉, where i is a
list of feature values and t is the assigned category (i.e., target
category). A dataset D is defined as a set of examples. When
the number of target categories in D is 2, we face a binary

problem. In this case, the categories found therein can be
called negative and positive. To measure the performance of
a binary classifier on a dataset D, each instance occurring
therein will be labeled as negative or positive, depending
on the classifier’s output. According to the classification
outcome and the actual target value, an instance will increase
one of the following values:
• true negatives (TN) - Number of instances belonging to
the negative class that have been correctly predicted;

• false positives (FP) - Number of instances belonging to
the negative class that have been incorrectly predicted.

• false negatives (FN) - Number of instances belonging
to the positive class that have been incorrectly predicted;

• true positives (TP) - Number of instances belonging to
the positive class that have been correctly predicted.

According to these quantities, the above-mentioned mea-
sures can be described as follows:
• Precision – Fraction of positive instances correctly clas-
sified among all instances classified as positive:

P =
TP

TP+ FP
(1)

• Sensitivity (or recall R) – Measures the ability of the
classifier to predict the positive class against FN (also
called true positive rate):

SEN =
TP

TP+ FN
(2)

• Specificity – Measures the ability of the classifier to
predict the negative class against FP (also called true
negative rate):

SPE =
TN

TN + FP
(3)

• F1-score – Defined as the harmonic mean between pre-
cision and recall:

F1 = 2 ·
P · R
P+ R

(4)

• Accuracy – Ratio between the number of instances cor-
rectly classified and the total number of instances:

ACC =
TP+ TF

TP+ TF + FP+ FN
(5)

Note that a different definition of accuracy may also
be adopted when working with unbalanced datasets.
It is called balanced or unbiased accuracy, which is
defined as the mean between specificity and sensitiv-
ity. This alternative measure completely ignores the
imbalance.2 In symbols:

BA =
SPE + SEN

2
(6)
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In this work, balanced accuracy is used to measure the
performance of classifiers, as some experimental set-
tings generate an imbalance among the classes.

• MCC – MCC combines TN, FP, FN, and TP. Rang-
ing from −1 to +1, MCC provides a high score only
when the classifier shows a good performance in both
categories:

MCC = TP·TN−FP·FN
√
(TP+FP)·(TP+FN )·(TN+FP)·(TN+FN )

(7)

2) STANDARD DEFINITIONS FOR MULTICLASS
CLASSIFICATION PROBLEMS
As pointed out, the cited measures can also be generalized to
deal with multiclass classifiers. A straightforward strategy to
meet this need is calculating the measures for each category
using an OvR approach. Downstream of this process, the
average value of each binary measure is calculated, thus
yielding an informative value for the multiclass model. Three
different averaging methods could be used – i.e., micro,
macro and weighted. In this work, macro averaging has been
adopted. In summarizing, for a classification problem on K
classes, the measures with macro averaging are calculated as
follows:
• Macro Average Precision (with Pk denoting per-class k
precision):

P =

∑K
k=1 Pk
K

(8)

• Macro Average Sensitivity (with SENk denoting per-
class k sensitivity):

SEN =

∑K
k=1 SENk
K

(9)

• Macro Average Specificity (with SPEk denoting per-
class k specificity):

SPE =

∑K
k=1 SPEk
K

(10)

• Macro Accuracy (with ACCk denoting per-class k accu-
racy):

ACC =

∑K
k=1 ACCk
K

(11)

• Macro Average F1-score (with P and R denoting macro
average precision-recall and macro average recall):

F1 = 2 ·
P · R
P+ R

(12)

Multiclass MCC and BA were not calculated with macro
averaging. Hence, their reformulation is separately provided.

2Note that standard accuracy on imbalanced datasets may provide overop-
timistic (or overpessimistic) estimations of the classifier’s ability to discrimi-
nate between classes. To contrast this ‘‘bias’’, one may define accuracy as the
mean performed over specificity and sensitivity, so that the class imbalance
is not taken into account.

TABLE 3. This table reports the number of images for the three classes
problem. Images acquired for a ripening period of 18 days and 22 days
were grouped together to represent nonmature cheese (i.e., unripened).
Images acquired on the 24th day of ripening represent the ideal ripeness
(i.e., ideal). Too mature cheese is acquired on the 30th day of ripening
(i.e., over-ripened).

• MCC directly takes into account all categories of a
multiclass confusion matrix.

MCC =
c · s−

∑K
k pk · tk√

(s2 −
∑K

k p
2
k ) · (s

2 −
∑K

k t
2
k )

(13)

where
– c =

∑K
k Ckk represents the total instances correctly

predicted for each class k;
– s =

∑K
i

∑K
j Cij; represents the total number of

instances
– pk =

∑K
i Cki; represents the total prediction for the

class k
– tk =

∑K
i Cik . represents the times that class k truly

occurred
• Balanced Accuracy is calculated as follows:

BA =

∑K
k=1 SENk
K

(14)

Note that SENk denotes the per-class k sensitivity.
Hence, multiclass BA coincides with the definition of
macro sensitivity.

III. RESULTS
In this section, experimental results are presented. The exper-
imental setup is described in Section III-A, whereas the
results achieved forML- andDL-based strategies are reported
in Section III-B and in Section III-C.

A. EXPERIMENTAL SETUP
Experiments have been carried out on a workstation
equipped with the following hardware: Intel(R) Core(TM)
i9-8950HK@ 2.90GHz CPU, 32 GB RAM, and an NVIDIA
GTX1050 Ti GPU with 4GB of memory. All the implemen-
tations and experimental evaluations have been realized with
MATLAB R2021b.

Initially, the preprocessed dataset has been used to build
classifier models able to map a cheese image to one of the
four ripening times (i.e., 18_Aged, 22_Aged, 24_Aged, and
30_Aged). Then, the class labels were reduced to three to
better take into account the needs of the dairy company, for
which the most relevant aspects were to identify whether
a cheese form is not mature yet (days 18 and 22), mature
(day 24), or too mature (day 30) (see Table 3). Finally, the
selected ML and DL strategies have been tested for this new
classification problem.
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TABLE 4. This table reports the number of sample images used for
training and test set for the four-class problem.

TABLE 5. This table reports the number of sample images used for
training and test set for the three-classes problem.

TABLE 6. Hyperparameters settings for CNNs fine-tuning.

Image augmentation has also been applied before training
the models to avoid overfitting. Specifically, the training
set has been augmented by adding three images for each
sample. The added images have been obtained by rotating
the original ones with an angle of 90◦, 180◦, and 270◦. 5-fold
cross-validation has been adopted as a testing strategy. This
strategy repeatedly performs training and testing on the same
dataset while ensuring the statistical reliability of the results.
In particular, at each step, the dataset is split into 80% for
training and 20% for the test set (see Table 4 and Table 5).
As for CNNs, their fine-tuning has been performed using the
hyperparameters reported in Table 6.

B. MACHINE LEARNING BASED CLASSIFICATION
As introduced in Section II-E, five different classifiers have
been used to conduct the ML-based experiments.

This section only reports the performance achieved by the
best classifier models (i.e., the SVM with RBF kernel). The
interested reader can find a complete report of the achieved
performance for all the ML algorithms in Appendix . The
results obtained with both the four- and three-classes clas-
sification tasks are reported in the following subsections.

1) RESULTS FOR THE FOUR-CLASSES CLASSIFICATION TASK
Apart from HM, models trained using the HC features
achieved good performance with a low standard deviation
for all invariant moments. As for SVM, the best performance
has been achieved by training the model with LM features

TABLE 7. Best descriptor-class performance obtained with the SVM
classifier on the four classes task. The table reports the performance in
terms of accuracy, precision, sensitivity, specificity, F1 score, Matthew’s
correlation coefficient, and balanced accuracy.

TABLE 8. Results for the four classes task obtained training the SVM
classifier with features extracted from CNNs. The table reports the
performance in terms of accuracy (ACC), precision (P), sensitivity (SEN),
specificity (SPE), F1 score, Matthew’s correlation coefficient, and
balanced accuracy (BA).

(see Table 7). In fact, every category of moments produced
satisfactory results with a limited amount of features (66 for
LM, with order 10, and for both CH, with order 8), except
for HM and ZM. The former, with only 7 features, proved
insufficiently representative (F1 equal to 32.2%). The second,
whose best results were obtained with an order of 7 and
9 repetitions, performed satisfactorily despite performance
lower than those measured for LM and CH.

As for the textural features, HAR_ri achieved the best
performance, even though it is very far from the results
obtained with the invariant moments (in fact, F1 is only
48.6%, which makes the corresponding model hard to use).
Finally, the best color feature was the autocorrelogram,
with the same issues described for HAR_ri. In addition,
HAR_ri and AC have the highest standard deviation, as well
as HM.

Table 8 reports the performance obtained by training the
SVM with the features extracted by the CNNs. The best and
second-best results are emphasized in bold. An SVM trained
with features extracted by ResNet-101 and DenseNet201
achieved the best results. Although the SVM trained with
the features extracted by ResNet-101 reached the highest
absolute results, DenseNet201 gets similar (though slightly
lower) results. However, it shows a significantly better stan-
dard deviation for each performance measure (about half that
of ResNet-101). Finally, the number of features considered
for the classification task is far higher with respect to the
HC categories. In fact, ResNet-101 provided 2,048 features,
and DenseNet201 1,920.
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TABLE 9. Performance obtained with the SVM classifier trained with
features extracted from CNNs on the three-classes task. The table reports
the performance in terms of accuracy, precision, sensitivity, specificity, F1
score, Matthew’s correlation coefficient, and balanced accuracy.

TABLE 10. Best descriptor-class performance obtained with the SVM
classifier on the three-classes task. The table reports the performance in
terms of accuracy, precision, sensitivity, specificity, F1 score, Matthew’s
correlation coefficient, and balanced accuracy.

2) RESULTS FOR THE THREE-CLASSES CLASSIFICATION TASK
The results reported in Table 10 highlight a behavior consis-
tent with that observed on the four-classes problem. In fact,
the models trained using the LM features and CH features
(both with order 10) obtained a performance above 90%
for all assessed performance measures. More specifically,
Legendre moments, with order 10, performed better, with
F1 = 95.8%, MCC = 94.0%, and BA = 97.1%, with only
66 features. The models trained with HM and ZM features
(best results with order 10 and repetitions 6) performed worse
than the other invariant moments. Even with HAR_ri, they
significantly worsen the results obtained on the four-classes
task. Again, in this case, AC is the best color descriptor.
However, it reached 51.5% of F1.

As for the results obtained by training the ML models
with the deep features, the performance for this task is also
relatively high, although in some cases, some performance
measures have a significant drop (e.g., GoogLeNet and
ResNet-18 obtainedMCCof 77.7% and 75.5%, respectively).
However, several architectures performed very well. Among
all, the features extracted from ResNet-50 achieved the best
performance (i.e., F1 = 98.0% and BA = 98.4%), with a
considerably reduced standard deviation (below 2.3% for all
measures, but MCC). However, AlexNet gets the second-best
performance in terms of accuracy, precision, F1, and MCC,
whereas ResNet-101 in terms of sensitivity, specificity, and
balanced accuracy. Both best and second-best are emphasized
in bold.

C. DEEP LEARNING BASED CLASSIFICATION
Section II-D introduced the CNN architectures investigated
in this work. This section reports the results (see Table 11)

obtained with a fine-tuning strategy adopted on the dataset
under this study.

a: RESULTS FOR THE FOUR-CLASSES TASK
In this task, in which the deep features are used for train-
ing, the models perform well, with only a few exceptions.
Although all CNN architectures achieved a good perfor-
mance, three of them (i.e., Inception-ResNetv2, DarkNet-53,
and ResNet-18) outperformed the others. Specifically,
Inception-ResNetv2 and DarkNet-53 achieved the best accu-
racy, precision, and specificity, with the former showing a
lower standard deviation for the three measures. DarkNet-53
achieved better sensitivity, MCC, and balanced accuracy,
while Inception-ResNetv2 obtained the best F1 scores.
In general, the performance measures of ResNet-18 were
slightly lower than those obtained with Inception-ResNetv2
and DarkNet-53. However, a lower standard deviation has
been obtained on all measures.

Supported by the results, ResNet-18 can be a potentially
robust solution to the problem.

b: RESULTS FOR THE 3-CLASS TASK
Regarding the results obtained in this task, what immediately
emerges is the very high variability among the various folds
on which the CNN architectures were tested. The standard
deviations have considerably high values. For example, the
best architecture, Inception-v3, produced an F1 of 74.3%,
with a standard deviation of 23.4%. The results of the remain-
ing networks confirm the same behavior.

IV. DISCUSSION
The experiments showed a different behavior of the trained
classifiers for the three- and four-classes tasks. In particular,
the results on the four-classes task tend to be similar to
those obtained for the three-classes task when approached
with ML-based strategies. In fact, considering HC features,
invariant moments alone allow for considerably high perfor-
mance with low standard deviation. Moreover, although no
single descriptor emerges as the absolute best for both tasks,
it is important to point out how Legendre and Chebychev
moments (both types) achieved high performance, very close
to the absolute best regardless of the order examined. This
aspect makes this category highly versatile, and representa-
tive of the classes of the problem studied.

The same trend for both classification tasks can be
observed when features extracted by CNNs are used to train
the SVM. As a general rule, the features extracted from
ResNet-101 seem feasible to represent the classes of this
study.More specifically, ResNet-101 features are the absolute
best referring to the four-classes task, while they are the
second-best in the three-classes one. However, in the last
scenario, they permit comparable performance to the best
features, i.e., ResNet-50. In any case, a residual network
architecture may be suitable to address the problem.

Summing up the ML approach results, as seen from the
performance measures presented in Appendix , the SVM is
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TABLE 11. Performance obtained with the fine-tuned CNNs on the
four-classes task.

TABLE 12. Performance obtained with the fine-tuned CNNs on the
three-classes task. The table reports the performance in terms of
accuracy, precision, sensitivity, specificity, F1 score, Matthew’s
correlation coefficient, and balanced accuracy.

the most suitable classifier when trained with HC features.
The same is true for classifiers trained with features extracted
from pretrained CNNs. All of the remaining four classifi-
cation models can be within the performance of the SVM
trained with features extracted from residual networks for
both tasks.

In contrast, the results obtainedwith CNNs in classification
significantly differ between the two tasks analyzed. In fact,
as expressed above, the results of the CNNs on the four
classes tend to be high, albeit with fairly high standard devia-
tions. However, this issue does not plague ResNet-18, which
has the best results from a standard deviation perspective and
the second-best absolute results on various measures.

The scenario noticeably changes when analyzing the
CNNs results on the three classes. In fact, unlike the previous
task, standard deviations are very high, making this approach
unfeasible with this task and leaving open questions and room
for further investigations regarding the significance of the
four different classes, how to address the problem derived
from the fusion of classes 18_Aged and 22_Aged, and how
the conditions of acquisition and subsequent preprocessing
may have affected the data processed by CNNs.

Some relevant trends emerge, shifting attention to the over-
all results obtained by the classifiers used. First, as evidenced
by Table 13 and Table 14, the best-performing classifier is the
SVM in both configurations. Specifically, in the three-class
configuration, the SVM obtains an F1 approaching 95% with
both handcrafted and deep features, exceeding by two per-
centage points the F1 obtained by the best CNN, Inception-
ResNetv2. In the four-class-class configuration, the SVM

obtains 98.0% with features extracted from ResNet-50, and
and 95.8% with Legendre moments, exceeding by more than
20 percentage points the best result obtained by the best
CNN, ResNet-101 in this case. The Random Forest classifier,
trained with the features extracted from DenseNet201 in the
first configuration and with both types of features in the
second configuration, also achieved comparable and better
results than CNN. Second, Legendre moments proved to be
the best handcrafted features for the SVM. In fact, in the first
configuration, the performance is comparable. In one case,
features extracted from ResNet-101 achieve 94.9% of F1,
while Legendre’s moments obtain 94.8%. However, the dif-
ference in the number of features is important. In the former
case, ResNet-101 brings in 2,048 features, while Legendre’s
moments are just 66, with a significant computational advan-
tage. In the second configuration, the difference is slightly
more significant. Specifically, the features extracted from
ResNet-50 allow an F1 of 98% with 2,048 features, while
Legendre’s moments stop at 95.8%, but with just 66 fea-
tures. This demonstrates the high representative power of the
descriptors examined, especially Legendre’s moments, for
the task.

The proposed method has also been compared with other
solutions offered in the literature. Nevertheless, a direct com-
parison with the methods proposed in the literature cannot
be implemented. In fact, to the best of our knowledge, the
presented approach is the first designed to evaluate cheese
ripening by analyzing images acquired through a photo cam-
era. In contrast, other methods analyze chemical or spectro-
scopic parameters. Moreover, all the methods proposed in
the literature focus on different types of cheese and ripening
times.

In any case, some works have reported quantitative per-
formance. More specifically, Del Campo et al. [8] proposed
a PCA-based model that discriminates among four ripen-
ing stages of Emmental cheeses, using mid-infrared spec-
troscopy. This model achieved 87% cross-validation accuracy
on 14 samples, and 57% test set accuracy on 14 samples.
The key difference with our work is that the characterization
of ripening was analyzed over a longer time frame. Also,
Soto-Barajas et al. [9] proposed an ANN trained with data
reporting the fatty acid composition and the NIR spectra of
sixteen milk mixtures, obtaining 50% accuracy in discrim-
inating among the types and 100% in classifying unknown
cheese samples for the ripening time.

Despite the similarities that exist with other proposals,
this work should be considered innovative, also for its abil-
ity to reach 98.0% classification accuracy in discriminating
between the different phases of ripeness. Being non-invasive
and end-to-end automatable, it is also useful for identifying
problems that may arise within the cheese storage, for exam-
ple, an inappropriate temperature.

As for future work, different margins of improvement are
left. First, only the top layers of the CNNswere trained to take
full advantage of the pretrained models and avoid overfitting
issues related to the reduced size of the acquired dataset.
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TABLE 13. Best performance obtained with all the classifiers involved on the three-classes task. The table reports the performance in terms of accuracy,
precision, sensitivity, specificity, F1 score, Matthew’s correlation coefficient, and balanced accuracy. For each classifier, results obtained with the best
handcrafted feature are shown on the top row. The result produced by using the features extracted from the best CNN are reported on the
bottom row. The last row shows the best result produced by CNNs.

TABLE 14. Best performance obtained with all the classifiers involved on the four-classes task. The table reports the performance in terms of accuracy,
precision, sensitivity, specificity, F1 score, Matthew’s correlation coefficient, and balanced accuracy. For each classifier, results obtained with the best
handcrafted feature are shown on the top row. The result produced by using the features extracted from the best CNN are reported on the
bottom row. The last row shows the best result produced by CNNs.

Although the results were inferior to those obtained with ML
classifiers, we plan to investigate targeted training on differ-
ent layers of the CNNs, possibly even from scratch. Second,
combining some of the extracted heterogeneous features to
train the classifier models may further benefit the classifiers
investigated so far. Third, a most informed feature selection
strategy could greatly help the generalization process for
most of the selected ML techniques. Fourth, adopting Gen-
erative Adversarial Networks (GANs) to extend the dataset
could expand the dataset’s variance and allow the proposed
methods to be hardened against differences in texture, illu-
mination, shape, etc. Fifth, another factor that can be taken
into account is how much the background of the images
may affect both feature extraction and the performance of
the classification algorithms. In this way, the system could
be tuned to use the most appropriate one for the task at
hand.

V. CONCLUSION
The proposed study addressed the issue of implementing
a novel non-invasive methodology aimed at monitoring the
cheese ripening process in order to automatically detect the
maturation status. A novel methodology has been presented,
which synergistically makes use of CV and ML to identify
the cheese maturation status by analyzing images acquired
with an ordinary photo camera. This methodology has been

applied to specific Pecorino soft cheese produced by a Sar-
dinia dairy company.

A dataset consisting of images of cheeses with an
ideal ripeness, in contrast with other images representing
unripened and over-ripened cheeses, has been built to test
the proposed methodology. Different classifier models have
been built, based on ML and DL strategies. These models
allowed us to perform a comparative study on i) heteroge-
neous handcrafted descriptors, ii) deep features extracted by
different pre-trained CNNs, iii) classification performance of
DL and ML algorithms. The best classification performance
has been obtained with models trained using ML strategies,
with particular reference to the SVM classifier.

As it can be easily applied to inspect an entire batch of
cheese, the proposed methodology can be beneficial to aban-
doning the habit of sampling cheese and guessing the status
of the rest of the cheese forms. For its non-invasiveness and
considering that learned models can produce a result with a
time order of milliseconds, it lends itself to easy integration
into industrial production. Moreover, being related only to
image analysis, it could be applied to different types of cheese
with an easy customization process.

Taking into account what has been said so far and
expressed in Section IV, we consider the proposed approach
suitable for deployment in real-time systems, thanks to the
short inference times. In fact, the proposed method can be
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TABLE 15. Performance obtained with the kNN classifier trained with HC
and deep features for the four-classes task. The table reports the
performance in terms of accuracy, precision, sensitivity, specificity,
F1 score, Matthew’s correlation coefficient, and balanced accuracy.

TABLE 16. Performance obtained with the RF classifier trained with HC
and deep features for the four-classes task. The table reports the
performance in terms of accuracy, precision, sensitivity, specificity,
F1 score, Matthew’s correlation coefficient, and balanced accuracy.

TABLE 17. Performance obtained with the DT classifier trained with HC
and deep features for the four-classes task. The table reports the
performance in terms of accuracy, precision, sensitivity, specificity,
F1 score, Matthew’s correlation coefficient, and balanced accuracy.

successfully used within the context of a dairy industry
that needs to keep automated, near real-time checks on the

TABLE 18. Performance obtained with the MLP classifier trained with HC
and deep features for the four-classes task. The table reports the
performance in terms of accuracy, precision, sensitivity, specificity, F1
score, Matthew’s correlation coefficient, and balanced accuracy.

TABLE 19. Performance obtained with the kNN classifier trained with HC
and deep features for the three-classes task. The table reports the
performance in terms of accuracy, precision, sensitivity, specificity,
F1 score, Matthew’s correlation coefficient, and balanced accuracy.

TABLE 20. Performance obtained with the RF classifier trained with HC
and deep features for the three-classes task. The table reports the
performance in terms of accuracy, precision, sensitivity, specificity,
F1 score, Matthew’s correlation coefficient, and balanced accuracy.

ripening status of cheeses in storage. In addition, it applies
to monitoring the storage situation in order to prevent or
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TABLE 21. Performance obtained with the DT classifier trained with HC
and deep features for the three-classes task. The table reports the
performance in terms of accuracy, precision, sensitivity, specificity,
F1 score, Matthew’s correlation coefficient, and balanced accuracy.

TABLE 22. Performance obtained with the MLP classifier trained with HC
and deep features for the three-classes task. The table reports the
performance in terms of accuracy, precision, sensitivity, specificity,
F1 score, Matthew’s correlation coefficient, and balanced accuracy.

verify potential issues, such as maintaining an appropriate
temperature for ripening.

However, several areas for improvement remain, ranging
from combining heterogeneous features to adopting feature
selection techniques. In addition, studying the influence of
the background of photos or their illumination could make
an important contribution to improving the robustness of the
system.

Finally, as the results obtained by the CNNs with the
three-classes setup have left open questions, it must be con-
sidered that artificial intelligence applications are requested
to offer a high level of accountability and transparency. There-
fore, explanations for algorithm decisions and predictions
can be explored to justify their reliability and provide high
interpretability for the end users.

APPENDIX.
NUMERICAL RESULTS
See Tables 15–22.
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