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ABSTRACT The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple
clinical trials and healthcare procedures. Cardiovascular diseases monitoring, usually involving electrocar-
diogram (ECG) traces analysis, is one of the most promising and high-impact applications. Nevertheless,
to fully exploit the potential of IoMT in this domain, some steps forward are needed. First, the edge-
computing paradigm must be added to the picture. A certain level of near-sensor processing has to be
enabled, to improve the scalability, portability, reliability and responsiveness of the [oMT nodes. Second,
novel, increasingly accurate data analysis algorithms, such as those based on artificial intelligence and Deep
Learning, must be exploited. To reach these objectives, designers, and programmers of [oMT nodes, have
to face challenging optimization tasks, in order to execute fairly complex computing tasks on low-power
wearable and portable processing systems, with tight power and battery lifetime budgets. In this work,
we explore the implementation of a cognitive data analysis algorithm, based on a convolutional neural
network trained to classify ECG waveforms, on a resource-constrained microcontroller-based computing
platform. To minimize power consumption, we add an adaptivity layer that dynamically manages the
hardware and software configuration of the device to adapt it at runtime to the required operating mode.
Our experimental results show that adapting the node setup to the workload at runtime can save up to 50%
power consumption. Our optimized and quantized neural network reaches an accuracy value higher than
97% for arrhythmia disorders detection on MIT-BIH Arrhythmia dataset.

INDEX TERMS Adaptive system, health information management, Internet of Things, low power electron-
ics, neural network, remote sensing, runtime, wearable sensors.

I. INTRODUCTION

The Internet of Things (IoT) paradigm, declined in the
so-called Internet of Medical Things (IoMT), enables seam-
less collection of a wide range of data streams, that can be
analyzed to extract relevant information about the patient’s
condition. However, in order to make IoMT really ubiquitous
and effective, a step forward is needed to improve scalability,
responsiveness, security, privacy. Most of the efforts aiming
in this direction focus on the adoption of an edge-computing
approach. Data streams, acquired by sensors, can be pro-
cessed, at least partially, at the edge, before being sent to the
cloud, on adequate portable/wearable processing platform.
This provides several advantages. First, it reduces bandwidth
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requirements. Near-sensor processing can extract from raw
data more compact information. In this way, less communi-
cation bandwidth is required to the centralized server, and,
at the same time, the energy consumption related to wireless
data transmission is drastically reduced. Second, near-sensor
processing can improve reliability. Monitoring must not rely
necessarily on connection availability and, if immediate feed-
back to the user and/or local actuation is needed, the delays
through the network can be avoided. Moreover, pre-processed
information can be delivered to the cloud, preserving user
privacy avoiding the propagation of sensitive raw data.

An extremely important field of application of IoMT is
related to the treatment of cardiovascular diseases (CVD),
a major public health problem that generates millions of
deaths yearly and impacts significantly on health-related pub-
lic costs. As an example, in 2016, ~17.6 million (95% CI,
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17.3-18.1 million) deaths were attributed to CVD globally,
representing an increase of 14.5% (95% CI, 12.1%-17.1%)
since 2006 [1]. In Europe, the CVD impact on the economy
is estimated to be around €210 billion [2]. It is commonly
accepted that machine learning and IoT are important for
creating a novel assisted living methodology [3], this is also
true for CVD monitoring. In [3], many aspects regarding
assisted living and how to improve the quality of this category
of devices are discussed, some of them are: the introduction of
machine learning can allow the device to adapt autonomously
to the environment and reduces manual interventions by an
operator; the combination of artificial intelligence (AI) and
IoT leads to improvements from the point of view of comfort
and energy saving, allows constant monitoring of the envi-
ronment and learning from its behavior. CVD treatment with
remote monitoring involves in most cases analysis of elec-
trocardiogram (ECG) signals. Creating embedded platforms
implementing such kind of analysis is promising, but, at the
same time, very challenging, for several reasons:

« Requires edge computing at low energy/cost budget:
Sensor nodes must be wearable and affordable to imple-
ment ubiquitous patient monitoring. Given the high data
rate produced by ECG sensors, raw data wireless data
transmission requires an energy budget that cannot be
negligible when the task is implemented in a portable
and inexpensive computing device.

« Requires cognitive computing: state-of-the-art anoma-
lies detection tasks are based on the analysis of manu-
ally designed features with are hard to craft and extract
online from the ECG waveforms. Thus the community
is shifting focus to techniques based on neural networks
and deep learning, that rely on automatically learned
features. However, existing approaches that use deep
learning for the recognition of anomalies on the ECG
trace, rarely pay attention to energy consumption to be
deployed on low-power processing systems. Thus, pretty
often do not take into account workload reduction and
post-deployment accuracy evaluation.

+ Requires adaptivity: Intensity of the processing work-
load is very dependent on the needed level of detail and
also intrinsically data-dependent. Information to be ana-
lyzed is usually contained in waveform shapes of ECG
peaks, thus the rate of sample frames to be analyzed
is directly dependent on the patient’s heartbeat rate.
This paves the way to energy consumption reduction by
means of an adaptive management of the system, that
reconfigures itself on the basis of the detected data and
on the chosen operating mode (OM).

In this work, we explore the implementation of a system for
at-the-edge cognitive processing of ECG data. We have con-
ceived a hardware/software setup for the processing system
inside the IoMT node. We have used SensorTile, a compact
processing device developed by STMicroelectronics, as a
reference microcontroller platform. The system makes use
of a quantized convolutional neural network, specifically
sized and trained to run on a low-power microcontroller, that
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has been validated in post-deployment and recovers accu-
racy drops that arise in real online utilization. Moreover,
we take a step further in hardware/software optimization
using adaptivity, allowing the system to reconfigure itself,
to suit different operating modes and data processing rates.
To this aim, besides executing the tasks that implement sensor
monitoring and on-board processing, the system includes a
component called ADAM (ADAptive runtime Manager), able
to dynamically manage the hardware/software configuration
of the device optimizing power consumption and perfor-
mance. ADAM creates and manages a network of processes
that communicate with each other via FIFOs. The morphol-
ogy of the process network varies to match the needs of
the operating mode in execution. ADAM can be triggered
by re-configuration messages sent by the external environ-
ment or by specific workload-related variables in the sam-
pled streams (e.g. patient’s heartbeat pace). When triggered,
ADAM changes the morphology of the process network,
switching on or off processes, and reconfigures the inter-
process FIFOs. Moreover, depending on the new configura-
tion it changes the hardware setup of the processing platform,
adapting power-relevant settings such as clock frequency,
supply voltage, peripheral gating.

The remainder of this paper is as follows: Section II
describes the landscape of related work in literature,
Section III describes an overview of the overall SoS picture,
Section IV presents the proposed template for the node and
the reference target platform and the reference application
model. Moreover it presents the details of the ADAM com-
ponent. Section V describes how the chosen template has
been declined to implement ECG monitoring, the proposed
operating modes and the processing tasks coexisting in the
application. Section VI discusses our experimental results.
Section VII shows a comparison of our experimental results
with work similar to our own, in addition to highlighting the
main limitations of our system. Finally, Section VIII outlines
our conclusions.

Il. RELATED WORK

In this section we will mention some of the works pro-
posed in literature that offer IoT solutions for health care.
Many of these solutions involve collecting and analyzing data
only on the cloud. The cognitive edge-computing paradigm
on the other hand introduces many advantages in terms of
responsiveness, accuracy and data security. We will focus on
works dealing with ECG monitoring and anomalies detection,
showing how deep learning-based analysis achieves detec-
tion accuracy values equal to or better than more traditional
methods.

Multiple solutions involving the use of sensor networks
in hospitals or at home and the IoMT are proposed in lit-
erature [4]-[6]. Most of these studies exploit a cloud-based
analysis: data is usually encapsulated in standard formats
and sent to remote servers for data mining. Most research
work takes into account wearability and portability as main
objectives when developing loMT-based data sensing archi-
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tectures, thus devices available on the market can guarantee
autonomy for days or weeks [7], [8]. Commercial devices
such as Medtronic SEEQ Mobile Cardiac Telemetry (MCT)
System and ViSi Mobile System have been designed to fit
non-invasively into the skin and body, both devices allow
vital sign monitoring, in particular, the first one, focuses on
cardiac activity. These devices provide for raw data streaming
to the cloud and arrhythmias recognition, however, power
consumptions in different operating modes are not specified,
and no data relating to the detection accuracy are available.

Although artificial intelligence (Al) is not a new concept,
its application in smart homes and smart environments still
has critical issues. On the other hand, the combination of Al
and IoT opens up new possibilities, allowing for new types
of intelligent pervasive systems and platforms, providing
the highest level of comfort, energy savings, and new per-
sonalized services for residents of intelligent environments.
To really use cognitive computing at the edge, more complex
and accurate algorithms, such as those exploiting artificial
intelligence or deep learning, must be targeted. Their effi-
ciency has been widely demonstrated on high-performance
computing platforms. Some examples are [9], where an
NVIDIA GeForce GTX 1080 Ti (11 GB) is used, [10], that
uses a 3.5 GHz Intel Core 17-7800X CPU, RAM 32 GB, and a
GPU NVIDIA Titan X (Pascal, 12 GB), or [11], based on an
i7-4790 CPU at 3.60 GHz. However, how to map state-of-the-
art cognitive computing on resource-constrained platforms is
still an open question. There is an ever-increasing number
of approaches focusing on machine learning and artificial
intelligence to identify specific events in sensed data. In [12]
and [13] authors exploit ANN (artificial neural networks) to
detect specific conditions from the proposed data. In [13],
an ANN is used to identify the emotional states (happiness
or sadness) of the patient. However, network topologies are
still very basic and highly tuned, and customized to fit on the
target device.

As already described in Section I, cardiovascular diseases
are one of the most frequent causes of death worldwide,
which is why there is also a strong interest among the sci-
entific community to address this issue. There are several
works that implement ECG monitoring on customized chips,
it is shown that with low energy consumption it is possible
to classify cardiac anomalies in real-time even using Al
methods. In [14] wavelet theory was adopted to perform
features extraction and classification, an accuracy of 97.25%
was achieved on arrhythmias recognition. In [15] an excel-
lent job of researching the compromise between complex-
ity and performance on different classifiers with different
lead configurations was made. In particular, they obtained
good results with a linear discriminant analysis (LDA) using
the spectral energy of the PQRST complexes as features.
In [16] a Naive Bayes classifier is exploited, they obtained
an accuracy equal to 86% on arrhythmias recognition using
the PQRST points detected with a Pan-Tompkins algorithm
as features. In [17] a wavelet-based algorithm is used to
extrapolate morphological and temporal features, a Principal
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Component Analysis (PCA) is used to reduce the dimen-
sionality and redundancy of the features. An accuracy of
97.4% was obtained with an evolutionary ANN (Artificial
Neural Network). In [18] and [19] possible implementations
of arrhythmia classification algorithms based on spiking neu-
ral networks are shown.

Other works focus on implementing efficient off-the-shelf
commercial devices to facilitate easier community adoption
of these techniques. Several target technologies have been
used in the literature, such as FPGAs or microcontroller-
based boards. A substantial number of research works are
dedicated to studying IoT devices in the medical field, in par-
ticular ECG monitoring and anomalies detection. In [20]
and [21], authors deal with simple ECG monitoring on wear-
able devices. In [22] and [23], authors treat with particular
attention the aspect of Signal Quality Assessment (SQA),
identifying the signal quality level is useful for knowing when
to ignore the input data or even when to put the device into
a sleep state. In [24] a system that uses Compressive Sens-
ing (CS) to compress bio-signals in a power-efficient way is
proposed. In [25], authors propose a monitoring device with
a particular focus on low energy consumption.

In some works proposed in the literature dealing with ECG
signal monitoring, local processing is used only for imple-
menting easy checks on raw data and/or marshaling tasks
for wrapping the sensed data inside standard communication
protocols [26]-[29]. On the other hand, there are numerous
works in the literature that exploit cognitive computing for
CVD detection, even at the edge. Some of this work and its
experimental results will be compared with our own. The
cognitive approach that involves the use of convolutional
neural networks (CNNs) shows promise in terms of accuracy
in detecting ECG signal arrhythmias compared to other tra-
ditional strategies based or not on artificial intelligence algo-
rithms [30]-[32]. Moreover, in most cases, the use of CNNs
allows to classify an ECG signal even if not pre-processed.
The most common strategies present in many state-of-the-art
works that allow to improve the efficiency of these IoT nodes
are: moving the inference operations at the edge, choosing
a low-power device, quantization techniques to speed up the
network execution of the inference stage.

In [33] the importance of real-time monitoring is discussed,
they propose a system capable of recognizing anomalies on
ECG, testing their methodology with various machine learn-
ing techniques.

In [31], in addition to the comparison with other techniques
used to analyze the ECG trace, Latent Semantic Analysis
techniques were used to improve the accuracy of the network.
Both training and inference take place on the cloud side, our
aim is to move the inference to the edge of a low-power
device in order to reduce latency times and reduce energy
consumption due to wireless communication.

In [34] excellent results were obtained for ventricular
arrhythmias and supraventricular arrhythmias classification:
99.6% and 99.3% for accuracy value, 98.4% and 90.1% for
sensitivity value, 99.2% and 94.7% for positive predictive
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value, respectively. In [34] a double CNN is used, one of them
takes as input the frequency domain information of the ECG
signal (a fast Fourier transform is performed). This methodol-
ogy, despite the excellent results in terms of accuracy, was not
taken into consideration in our case because it’s particularly
expensive to perform on a microcontroller.

In [35], the authors obtain excellent results in terms of
accuracy, they used a method similar to the one used in [36]
to combine the output features of three independent neural
networks (VGG19, AlexNet, and Inception-v3) and then clas-
sify them as a single output. The methodology used allows a
significant increase in terms of accuracy (97.6%) compared
to the use of neural networks chosen individually, however,
this method is too resource-expensive in terms of memory
and computational load to be executed in a microcontroller
such as the one we selected. In [32], again, there is proof of
how neural networks obtain good results if compared with
methods such as K-nearest neighbors (KNN) and random
forest (RF) (95.98% on MIT-BIH Supraventricular Arrhyth-
mia Database) and the inference occurs directly from the IoT
node but the power consumption remain relatively high once
again, they are used in fact non-low power devices such as
Raspberry Pi 4 or Jetson Nano. Always in [32], a good job
of research has been done on the morphology of the CNN
network that was more suitable for inference on ECG signals,
the network we used provides a structure very similar to the
one chosen in [32].

In [37], good results are obtained in terms of accuracy
(96% using MIT Arrhythmia dataset), the inference does not
occur on the Cloud side, nor on the sensorial device at the
edge, but from a device located within the same WBAN
network. The sensory device, therefore, remains in constant
communication with the outside to send the raw data of the
signal. An approach similar to [38] was chosen, an embed-
ded device was chosen that is able to perform the inference
directly on the node. In [38], a study was made on the varia-
tion of accuracy as a function of different quantization levels,
they choose a precision of 12-bit with an accuracy of 97%, but
it’s visible that already from 6-bit upwards the accuracy levels
exceed the 90%. Power consumption is around 200 mW dur-
ing computation and the node is based on FPGA technology.

In [39] ResNet, AlexNet, and SqueezeNet neural networks
are used, an accuracy of 97% is achieved. In addition to the
use of much more expensive computational neural networks,
there is an overhead due to encoding the raw ECG signal into
a JPEG image. The platforms chosen are Arduino UNO for
signal acquisition and Raspberry Pi 3B+ to process the raw
signal, making the power consumption considerably higher
than a solution based only on microcontroller.

Other works with which we are confronted are [40]-[43].

Table 1 lists and describes the main works we were con-
fronted with. On one hand, the community has designed novel
ultra-low power processing platforms, providing previously
unmatched computation capabilities on typical Al and data
analysis workloads. In this work, we extend [44] taking into
account that in the current state-of-the-art landscape, network
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topologies, processing platforms and software tools can be
much more complex. In summary, as a main novel contribu-
tion, we propose:

e The definition of a hardware/software/firmware
architectural template for the implementation of a
remotely-controlled sensory node, allowing for near-
sensor cognitive data processing for cardiac anomalies
detection.

« Its validation on a state-of-the-art data analysis based on
a Convolutional Neural Network.

o The evaluation of the effectiveness of in-place comput-
ing and operating mode dynamic optimization on ARM
microcontroller platform, as a method to reduce the
power consumption of the node.

a Cloud

m infrastructure
loT
gateway
= = = = Network of

remotely-controlled
sensory nodes

FIGURE 1. General overview of the proposed system.

Ill. ADAPTIVE SENSOR NODE ARCHITECTURE

Figure 1 shows an overview of the system architecture as
envisioned in this work. We see the network as composed of
three levels. The lower level is composed of the sensor nodes,
which acquire information from the environment. They are
connected to the upper level using Bluetooth technology. The
nodes are capable of reacting, reconfiguring their operating
mode, to commands sent from higher levels, or to workload
changes that can be detected near-sensor, thanks to the inter-
nal component called ADAptive runtime Manager which will
be described later. The intermediate level consists of several
gateways, in charge of collecting the data from the sensor
nodes and send them to the upper level. To test the approach
presented in this work, the gateway was implemented with a
Raspberry Pi 3 running a Linux operating system.

For the same purpose, the cloud-based infrastructure,
on top of the stack, has been implemented using Google App
Engine. Data is stored securely on the cloud, and can be used
for analysis or simply visualized by a healthcare professional.
Such kind of user, accessing a web-based interface, can also
send downstream commands to the nodes, to communicate
a required change of the operating mode, e.g. changing the
needed detail of acquisition of the patient’s parameters.
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TABLE 1. Structure of some devices proposed in literature.

Reference Node technology Processing placement Power Accuracy and Dataset Classification
consumption method
[34] — — — MIT-BIH ventricular arrhythmias and CNN
supraventricular arrhythmias
classification: 99.6% and 99.3% for
accuracy value, 98.4% and 90.1% for
sensitivity value, 99.2% and 94.7%
for precision value, respectively
[31] — training and inference — 94% for sensitivity vale, 99,3% for CNN + LSA
on cloud accuracy value on custom dataset method
[40] — — — accuracies of 93.63% for ventricular RBM and
ectopic beats and 95.57% for DBN
supraventricular ectopic beats on
MIT Arrhythmia dataset
[41] — — — MIT-BIH dataset, NSVFQ classes: DNN
99,09%, 98,55% and 99,52% for
accuracy, sensitivity and specificity
value, respectively
[35] — — — 97.6% accuracy on MIT-BIH dataset CNN
for ventricular tachyarrhythmia
desease
[42] Intel 17-4700MQ at 2.4 GHz (eight inference on edge - accuracy up to 99% for ventricular adaptive
CPUs) and 16-Gb memory, but ectopic beats and up to 97.6% for implementation
designed to run on cheaper and less supraventricular ectopic beats on of 1-D CNNs
powerful architectures MIT Arrhythmia dataset
[37] hierarchical structure training on cloud, — 96% for accuracy value on MIT CNN
inference on edge Arrhythmia dataset
[38] FPGA inference on edge 200 mW ! 97% accuracy value for NLRAV quantized
classes on MIT Arrhythmia dataset CNN
[32] Jetson Nano (Quad-core ARM A57 inference on edge — 95.27% accuracy value for NSVF CNN
@ 1.43GHz), Raspberry Pi 4 classes on MIT-BIH Supraventricular
(Quad-core CortexA72 @ 1.5GHz), Arrhythmia Database
Raspberry Pi 3 (Quad-core
Cortex-A53 @ 1.4GHz)
[39] Arduino UNO and Raspberry Pi 3B+ inference on edge — 97% for accuracy value for: rhythm, DNN
QRS widening, ST depression, and
ST elevation categories for detecting
arrthythmia disorders on MIT
Arrhythmia dataset
[43] Raspberry Pi 3 training on cloud, — 98% for accuracy value for: CNN
inference on edge normal(NOR), Left Bundle Brunch
Block(LBB), Right Bundle Brunch
Block (RBB), Paced beat(PAB),
Premature Ventricular
Contraction(PVC), Atrial Premature
Contraction(APC), Ventricular Flutter
Wave(VFW) and Ventricular Escape
Beat(VEB) beats for detecting
arrthythmia disorders on MIT
Arrhythmia dataset
Our work ST SensorTile inference on edge 9mw I MIT-BIH dataset, NLRAV and quantized
NSVEFQ classes: 97.42% and 96.98% CNN

for accuracy value, 98.26% and
98.22% for sensitivity value, 98.28%
and 98.52% for precision value,
respectively

"When fully active.
'The device adapts itself to the workload and operating mode, the reported value is the power consumption in case of maximum workload.
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In this paper, attention will be focused only on the sensor

node.
e N
Middleware and OS support
\ J
e N
Hardware platform fb SO (?k
\ qt ) gating )

FIGURE 2. 1oMT node architecture overview.

IV. loMT NODE ARCHITECTURE

The sensor node architecture itself can be seen as a layered
structure, schematized in Figure 5. In the following sections,
a detailed description of each level is provided. The bottom
layer is the hardware platform, which may be any kind of
programmable microcontroller, that integrates sensors to take
care of data acquisition, one or more processing elements,
to manage housekeeping and pre-processing, and an adequate
set of communication peripherals, implementing transmis-
sion to the gateway. The hardware platform is managed at run-
time by a firmware/middleware level, potentially including
some operating system (OS) support, to enable the manage-
ment and scheduling of software threads. Moreover, this level
must expose a set of low-level primitives to control hardware
architecture details (e.g. access to peripherals, frequency,
power operating mode, performance counting, etc.), and a
set of monitoring Application Programming Interfaces (APIs)
to continuously control the status of the hardware platform
(e.g. energy and power status, remaining battery lifetime) and
to characterize the performance of the different application
tasks on it.

At the top of the node structure, there is the software appli-
cation level, which executes tasks designed according to an
adequate application model based on process networks, to be
easily characterized and dynamically changed at runtime.

To implement adaptivity, we add to the application an addi-
tional software agent, that we call ADAM (ADAptive runtime
Manager), which is in charge of monitoring all the events
that may trigger operating mode changes (workload changes,
battery status, commands from the cloud) and reconfigures
the process network accordingly, to minimize power/energy
consumption. Reconfiguration actions may involve changes
in the process network topology (activation/deactivation of
tasks and restructuring of the inter-task connectivity) and
playing with the power-relevant knobs exposed by the archi-
tecture (e.g. clock frequency, power supply, supply voltage).
As mentioned, to assess the feasibility of our approach based
on dynamic reconfiguration, we have used a single-core
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microcontroller, namely an off-the-shelf platform designed
by STMicroelectronics named SensorTile. In the follow-
ing, we will describe the main features of such platforms,
exploited in this work.

We have chosen SensorTile to represent a class of plat-
forms available on the market equipped with a single-core
low-power 10T node, usually integrating a wide scope of
sensors and peripherals to increase usability. These solu-
tions often integrate mid- to low-end processing elements,
capable of executing simpler near-sensor processing tasks
on a low energy budget, using optimized libraries to recover
performance and lightweight operating systems to enable the
coexistence of multiple software processes.

A. HARDWARE PLATFORM LAYER
The SensorTile measures 13.5 x 13.5 mm. It’s equipped with
an ARM Cortex-M4 32-bit low-power microcontroller. The
small size and low power consumption allow the device to
be powered also by the battery and obtaining good results
in terms of autonomy without having to give up portability.
Several architectural knobs can be used to adapt the platform
to different conditions. SensorTile can work in two main
modalities: run mode and sleep mode, in which different
subsets of the hardware components are active. Moreover,
in each mode, the chip can be set to a different system
frequency (from 0.1 MHz to 80 MHz). Depending on the
chosen system frequency and operating state, the device uses
different voltage regulators to power the chip.

In Table 2, we list some configurations selectable using the
mode-management APIs offered by the platform vendor.

TABLE 2. SensorTile current consumption in different operating states.

RUN (Range 1) at 80 MHz 120 A/ MHz
RUN (Range 2) at 26 MHz 100 uA/ MHz
LPRUN at 2 MHz 112 pA/ MHz
SLEEP at 26 MHz 35uA/ MHz
LPSLEEP at 2 MHz 48 A/ MHz

For our experiments, we have chosen to use two
approaches to dynamically reduce power consumption:

« to change system frequency (and consequently voltage
regulator settings) over time according to the workload.

o to use the sleep mode of the microcontroller when-
ever possible. The operating system automatically sets a
sleep state when there are no computational tasks queued
to be performed and a timer-based awakening can be
used to restart the run mode when needed.

B. MIDDLEWARE/OS LAYER

In addition to the API offered by the manufacturer, we used
other middleware components to manage multiple computa-
tion tasks at runtime and to execute CNN-based near-sensor
processing with an adequate performance level.
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1) FREERTOS

SensorTile runs FreeRTOS as RTOS (Real-time Operating
System). This firmware component is aimed at developers
who intend to have a real-time operating system without too
much impact on the memory footprint of the application.
The size of the operating system is between 4 kB and 9 kB.
Some features offered by the operating system are real-time
scheduling functionality, communication between processes,
synchronization, time measurements. One of the most impor-
tant aspects that led us to choose FreeRTOS is that of having
the possibility to enable thread-level abstraction to represent
processing tasks to be executed on the platform and to timely
manage their scheduling at runtime.

FreeRTOS creates a system task called idle task, which
is set with the lowest possible execution priority. When this
task is executed, the system tick counter is deactivated and
the microcontroller is put in a sleep state. Due to the priority
setting, the idle task is only executed if there are no other tasks
waiting to be called by the scheduler.

FreeRTOS does not natively support the frequency varia-
tion of the system. Once the frequency has changed, timing
functions would be completely de-synchronized. We had to
modify part of the OS support, to enable system frequency
changes without impact on the rest of the OS functionality.

2) CMSIS

In order to be capable of executing in-place processing of
the sensed data, we have exploited the Cortex Microcon-
troller Software Interface Standard (CMSIS), an optimized
library specifically targeting Cortex-M processor cores [45].
It includes several modules having many libraries capable of
optimizing mathematical functions based on the type of archi-
tecture used. Of particular interest is the CMSIS-NN module,
inside there are various optimized functions that allow cog-
nitive computational implementations. While CMSIS pro-
vides quite extensive support for neural network execution,
we had to add some changes to support the use cases that
are described in the following, namely to enable mono-
dimensional convolutions on one-dimension sensor data
streams.

C. APPLICATION MODEL

In this section, we describe the application model that we
have used to create and analyze the application, the source
code is available at our public repository.! We selected an
application structure based on process networks. Tasks are
represented as independent processes, communicating with
each other via FIFO structures, using blocking read and
write communication primitives to avoid data loss in case
of busy pipeline stages. Processes may be potentially exe-
cuted in parallel, in case of available processing resources,
potentially improving performance using a software
pipeline.

1 https://github.com/matteoscrugli/adam-iot-node-on-stm3214
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In particular, for each sensed variable to be monitored,
we build a chain of tasks that operate on the sensed data
(Figure 3).

(DD

FIGURE 3. Simple task chain.

A chain of processes is generated for each sensor node,
so that, if required by changes in the operating mode, it’s
possible to dynamically turn on and off the useful and non-
useful components.

For each sensor, we envision four types of general tasks:

o Get Data Task: takes care of taking data from the sensing

hardware integrated into the node.

o Process Task: it’s possible to have multiple tasks of
this type, representing multiple stages of in-place data
analysis algorithm. Having more than one task of this
type allows a prospective user to select, for example,
a certain depth of analysis, which determines an impact
on the required communication bandwidth, detail of the
extracted information, and power/energy consumption.

o Threshold Task: this task allows to filter data depend-
ing on the results of the in-place analysis. For exam-
ple, a threshold task may be used to send data to the
cloud only when specific events or alert conditions are
detected. Its purpose is to limit data transfers from the
node.

o Send Task: is the task in charge of outwards communi-
cation to the gateway.

Considering the selected process network model,
activation/deactivation of tasks or entire chains correspond-
ing to sensors can be implemented by:

« enabling/stopping the periodic execution of the involved

task;

« reconfiguring the FIFOs to reshape the process chain
accordingly.

In this way, it’s possible to select multiple application con-
figurations, corresponding to operating modes characterized
by different levels of in-place computing effort, bandwidth
requirements, monitoring precision.

D. ADAPTIVITY SUPPORT: THE ADAPTIVE RUNTIME
MANAGER
Within the process network, a task was exclusively dedi-
cated to the management of dynamic hardware and software
reconfiguration of the platform. We have implemented such
reconfiguration in a software agent called ADAptive runtime
Manager (ADAM). ADAM can be activated periodically by
means of an internal timer. It evaluates the status of the
system, monitoring:

« reconfiguration commands from the gateway;

« changes in the workload, e.g. rate of events to be pro-

cessed. For example, a task may have to be executed
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periodically, with a rate that depends on the frequency
of certain events in the sensor data. This poses real-
time constraints that may be varying over time in a data-
dependent manner.

« other relevant variables (e.g. battery status).

Depending on such input, ADAM can react to change the
platform settings, performing different operations:

« Enable or disable the individual tasks of the sensor task

chain or the entire chain;

o Choose whether to set the microcontroller in a sleep

mode or not;

o Set the operating frequency of the microcontroller to

increase/reduce performance level;

« Reroute the data-flow managed by the FIFOs according

to the active tasks.

Figure 4 shows an example of the reconfiguration of the
system that may be applied by ADAM, deactivating a pro-
cess task, to switch from an operating mode that sends pre-
processed information to the cloud to another sending raw
data.

This proposed application model can be easily declined in
different use cases and application domains involving sensor
monitoring and near-sensor processing. Adapting to new sce-
narios could require for example to add different or additional
process data tasks and/or connecting them in a different order.
Nevertheless, the possibility of switching between different
configurations by reconfiguring the process network would
be preserved.

CACLCAO

FIGURE 4. Two possible configurations of a generic system.

V. DESIGNING THE APPLICATION: OPERATING MODES
AND PROCESSING TASKS

To implement ECG monitoring, we have applied the pre-
viously described application model to deploy an adequate
waveform analysis application on SensorTile. A single-lead
configuration was chosen due to the practical convenience of
not having too many electrodes attached to the skin. Lead II
is often read individually and therefore adequate in case that
as little data as possible needs to be processed. In particular,
the modified limb lead II (MLII) configuration was chosen,
the same configuration present in the records of the MIT-BIH
arrhythmia database, these recordings will be taken into con-
sideration during the training. We built a prototype using an
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AD8232 sensor module from Analog Devices, connected to
the ADC converter integrated into the reference platform.
The device supports a single-lead configuration, with two or
three electrodes. The official documentation proposes differ-
ent solutions to manage the signal noise, the compromise is
between signal distortion and rejection of motion artifacts.
The chosen configuration assumes that the patient remains
relatively still during the measurement, and therefore, motion
artifacts are less of an issue. The AD8232 is configured with
a 0.5 Hz two-pole high-pass filter followed by a two-pole,
40 Hz, low-pass filter. A third electrode is driven for optimum
common-mode rejection.
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FIGURE 5. Frequency response of the circuit configuration chosen for the
AD8232.

In this section, we describe the supported operating modes,
that can be selected at runtime, and the processing tasks
coexisting in the different operating modes.

A. OPERATING MODES

We have enabled three different operating modes to be
selectable by the user, by sending adequate commands from
the cloud. Operating modes are shown in Figure 6.

1) OPERATING MODE: RAW DATA
The first operating mode envisions sending the entire data
stream acquired by the sensor node to the gateway. There is
therefore no near-sensor data analysis enabled, and it poses
fairly high requirements in terms of bandwidth. In this oper-
ating mode are:
o Multiple samples are been grouped and inserted into
a packet of 20 Bytes (8 ECG data 16 bit, 1 times-
tamp 32 bit).
o The sample rate of the ADC is set to 330 Hz, considering
sending multiple samples at a time, one Bluetooth packet
is sent every 24 ms.

2) OPERATING MODE: PEAK DETECTION
This operating mode does not provide visual access to
the whole ECG waveform. A healthcare practitioner, when
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Operating mode 1: Raw data.

Operating mode 2: Peak detection.

D

Operating mode 3: CNN processing.

-

FIGURE 6. ECG application model.

selecting this mode when accessing the data, can select to
monitor only heartbeat rate, requiring a lower level of detail
in the information sent to the cloud. As a common technique
to reduce the power consumption related to communication
when sampled values are not interesting, a healthcare prac-
titioner could also set thresholds and receive a notification
only when thresholds are exceeded. In this operating mode,
four tasks are active:

o Get data task

o Process data (peak detection)

o Threshold task (alert heartbeat rate evaluation)

o Send task
This operating mode processes samples to search for signal
peaks and consequently computes the heartbeat rate. The
first task (Figure 6) collects data from the sensor (as in
raw data operating mode), the second analyzes the signal
analysis and calculates the heart rate, and the fourth allows
data transmission. The threshold task is used to determine
if data must be sent to the cloud. For example, no data is
sent if the heartbeat rate is controlled between two high and
low alert values. The peak detection algorithm it’s not very
critical in terms of time and power consumption, it will be
better discussed in Section V-B. The size of the package
sent is 5 Bytes packet (1 heartbeat rate value, represented
on 8 bit, 1 time-stamp 32 bit). The transmission rate is given
dependent, in the worst case a package is sent for each peak
detected. Thanks to the threshold task, the communication-
related power consumption is heartbeat-dependent, since the
execution of the send task is triggered only when the heart-
beat exceeds the preset threshold defined by the medical
staff.
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3) OPERATING MODE: CNN PROCESSING

In the latter operating mode, a further level of analysis is
introduced. An additional task implements a convolutional
neural network, classifying the ECG waveform to recognize
physically relevant conditions. Using such classification tech-
nique, the practitioner can monitor the morphology of the
signal without the need of sending the entire data stream to the
cloud, saving transmission-related power/energy consump-
tion. The neural network implemented recognizes anomalous
occurrences in the ECG tracing, in this case, communications
with the gateway occur only in case of anomaly detection. The
enabled tasks are:

o Get data task

o Process data 1 task (peak detection)

o Process data 2 task (CNN)

e Threshold task (anomalous

waveform)

« Send task
The required communication bandwidth is more similar to
peak detection OM than raw data OM, however, with respect
to peak detection OM, computing effort is higher. The node
executes the 1D convolution neural network similar to the one
described in [46]. We have designed the system be capable
of classifying ECG peaks according to alternative sets of
categories, each composed by 5 classes, named NLRAV and
NSVFQ (see Figure 9). The design process used to select,
train and deploy the specific neural network topology is
explained in Section V-C.

The size of the data transferred to the cloud is 6 Bytes
(1 heartbeat data 8 bit, 1 label data 8 bit, 1 timestamp 32 bit).
The CNN, threshold and send tasks are executed only if
a peak is detected, the activation frequency of these tasks,
therefore, depends directly on the heart rate value.

shapes in the ECG

B. THE PEAK DETECTION ALGORITHM

The processing of the ECG signal is activated in peak detec-
tion and CNN OM, in both operating modes it’s necessary
to identify the R peaks in the signal, therefore a simplified
version of the Pan Tompkins algorithm was used in order
to obtain the position of the R peaks during data acquisition
from the sensor. The reference study to implement the R peak
recognition algorithm is [47].

An exploration was made with different combinations of
filters and mathematical functions blocks in order to reduce
the computational load as much as possible and at the same
time obtain a good level of peak detection accuracy. The
accuracy on the MIT-BIH Arrhythmia dataset was validated
for each step of the exploration. The Figure 7 shows the block
diagram representing the signal processing algorithm chosen
after the exploration, composed by: DC filter, low pass filter
(fc = 11Hz), derivative and squared block. If CNN OM is
enabled, the signal is segmented, a number of samples equal
to the input size of the neural network are considered to
generate a frame and the detected peak is centered in it.

Figure 8 shows the raw signal in blue color and the filtered
one in red from two different recordings. A peak is detected
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FIGURE 7. Filtering block diagram.

when a filtered signal exceeds a predefined threshold, then
returns to a local minimum point and the delay introduced by
the filter is taken into account, the threshold value may be set
differently for each recording.
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FIGURE 8. Raw signal and filtered one from two different recordings.

A detected peak is considered a true positive when it is
associated with a dataset peak in a neighborhood of 50 sam-
ples within the track under analysis. Equation 1 and 2 shows
the sensitivity (true positive rate) and precision (positive pre-
dictive value) data of the peak detection algorithm on the
MIT-BIH arrhythmia database:

TPR = = 0.99674, 1

TP + FN

PPV = = 0.99421. 2)

TP + FP

Table 3 shows true positive, false positive, false negative of
the peak detection algorithm with a tolerance of 50 samples.

False positives are the peaks detected by the algorithm that
cannot be matched to any in the dataset. False negatives are
the peaks in the dataset that are not detected by the detection
algorithm. We report in Table 4 the distribution of the type
of peaks present in the dataset and in the false positives
subset, the NSVFQ labels are reported since they cover all
useful types of classes present in the dataset. The extreme
case corresponds to analyze an ECG trace containing only V
peaks, in this case, 0.97% of peaks are not detected. In litera-
ture, there are more advanced real-time algorithms that obtain
sensitivity and precision values similar or higher than those
obtained with our algorithm, such as [48] and [49]. In [49]
more offline algorithms are shown with higher sensitivity and
precision values, the authors state that it is easy to address
the same results in the real-time case for their method. Our
aim is to find an algorithm that achieves high sensitivity and
accuracy values and at the same time it provided a low com-
putational load and an easy integration on the microcontroller.
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TABLE 3. True positives, false positives, and false negatives of our peak
detection algorithm with a tolerance of 50 samples for each ECG
recording on MIT-BIH arrhythmia database.

File P FpP FN File TP FpP FN
100 2273 0 0 201 1957 5 6
101 1865 7 0 202 2135 3 1
102 2187 0 0 203 2929 75 51
103 2084 0 0 205 2653 0 3
104 2219 27 11 207 1832 192 28
105 2559 61 14 208 2936 47 19
106 2025 6 2 209 3003 9 2
107 2134 1 3 210 2639 24 11
108 1639 30 118 212 2746 0 2
109 2531 5 1 213 3248 1 3
111 2123 3 1 214 2256 6 6
112 2538 4 1 215 3363 2 0
113 1794 0 1 217 2202 2 6
114 1877 2 2 219 2153 0 1
115 1953 0 0 220 2048 0 0
116 2391 7 21 221 2426 4 1
117 1535 6 0 222 2482 3 1
118 2278 6 0 223 2605 6 0
119 1987 1 0 228 2033 53 21
121 1861 2 2 230 2256 3 0
122 2476 1 0 231 1571 0 0
123 1518 3 0 232 1778 4 2
124 1619 0 0 233 3072 1 7
200 2599 10 2 234 2753 0 0

TABLE 4. Classes distribution over the dataset or the false negative
subset.

Classes Classes distribution
Dataset  FN subset  FN subset / Dataset
N 90369 255 0,28 %
S 2781 8 0,29 %
A% 7230 70 0,97 %
F 803 4 0.5 %
Q 3895 7 0,18 %

C. DESIGNING THE CNN: TRAINING AND OPTIMIZATION
As seen in Section II, introducing deep learning into this type
of device brings numerous benefits. Beyond that, we chose
the neural network described in this section for its high accu-
racy, low computational load, latency, and power consump-
tion. These results will be better described in the dedicated
section (Section VI).

We have exploited a training procedure using and compris-
ing a static quantization? step, the source code is available at
our public repository.> This process enables the conversion
of weights and activations from floating-point to integers and
allows to implementation of the CNN using the CMSIS-NN
optimized function library, which expects inputs represented
with 8-bit precision. In static quantization”, which takes place
right after quantization, float values are converted to gint§
format. We set the procedure to force bias values to be null,

2https://pytor(:h.org/tutorials/aclvanced/static_quantization_tutorial.html
3 https://github.com/matteoscrugli/ecg-classification-quantized-cnn
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while, to quantize weights, MinMax observers* are inserted

inside the network to detect the output values dynamics in
each layer. On the basis of the reported distribution, scale and
zero-point values are selected and used to convert effectively
and prevent data saturation.

The functions implementing convolution and fully con-
nected layers in the CMSIS-NN library provide for out-
put shifting operations to apply the scale factor on the
outputs, allowing for scaling values ranging from —128
to 127. The quantization procedure in PyTorch, on the other
hand, requires a scale value that is not necessarily a power
of 2. For this reason, we slightly modified the CMSIS
functions to support arbitrary scale values. Such modifi-
cation has led to a limited increase in inference execu-
tion time. As an example of such performance degradation,
we report here the execution time increase for two examples
CNN topologies, named 20_20_100 and 4_4_100 networks
(network name indicates the main topology parameters as
convlOutputFeatures_ conv2QutputFeatures_ fclQOutputs),
corresponding to respectively 2,87% and 10.52%.

TABLE 5. Hyperparameters used during the training phase.

Hyperparameter Value Hyperparameter Value
Epochs 200 Optimizer SGD
Batch size 32 Learning rate 0.01
Loss criterion Cross Entropy Momentum 0.9
ES patience 5 ES evaluation Every epoch

1) MODEL EXPLORATION

In order to select an optimized CNN topology implementing
the classification task required for the system, we have carried
out a design space exploration process, comparing tens of
neural network topologies in terms of accuracy reached after
training and in terms of computing workload associated with
executing the inference task on SensorTile. We have explored
multiple topologies composed by two convolution layers,
two down-sampling layers, and two fully connected layers,
as represented in Figure 9, the size of the input sample frame
is equal to 198.

Explored topologies feature different numbers of out-
put channels from each layer. The results are reported in
Figure 10, showing the most interesting results for both the
NLRAV and NSVFQ classes. Models NLRAV_20_20_100 and
NSVFQ_20_20_100 achieve the highest accuracy value as
shown in Equation 3 and 4. The training set is composed by
70% of the elements of the entire dataset and they are chosen
randomly. Figure 11 shows the trend of the accuracy value
during the training stage. As shown in Table 5, a maximum
number of epochs has been set equal to 200 and, to avoid
overfitting effects, the early stopping (ES) algorithm was
chosen. This algorithm stops the training phase if it detects
an increase in the loss value [50], the loss is evaluated every

4https://pytorch‘org/docs/stable/_modules/torch/quantization/observer.
html
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Fully con-
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Input

(N) Normal beats

(L) Left bundle branch block
(R) Right bundle branch block
(A) Atrial premature contraction

(N) Normal beats

(S) Superventricular ectopic beats
(V) Ventricular premature contraction
(F) Fusion beats

(V) Ventricular premature (Q) Unclassificable beat

contraction

FIGURE 9. CNN structure and two possible classes of labels.

epoch and a patience value of 5 is chosen, i.e. the training
stops only if a loss increment is detected for 5 consecutive
epochs. The loss values for each epoch during the training
phase are reported in Figure 11.

TP + TN
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NLRAV 2020100 = 75— —op o
3)
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NSVFQ_20.20_100 = Zop——ou—op o = 09889,
“4)
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FIGURE 10. Exploration of the chosen neural network model, the name
comes from labels_ conv1OutputFeatures_ conv2OutputFeatures_
fc10Outputs.

Figure 12 shows a Pareto plot representing accuracy
and energy consumption for the most accurate topologies
identified by the exploration.
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FIGURE 11. Results obtained from the training of the model having:
20 output features for Conv1, 20 output features for Conv2
and 100 output for Fc1.
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FIGURE 12. For the most accurate models, the energy consumption for a
single CNN task call is shown. The dotted lines represents the maximum
allowable drop in accuracy (0.5% with respect to the most accurate
model) for NLRAV (red line) and NSVFQ (blue line) classes. The models
marked with an “x” do not respect the constraints imposed on the
minimum necessary accuracy value.

For both classes NLRAV and NSVFQ, only one neural
network model must be selected which allows to reduce
power consumption as much as possible but, at the same time,
does not lead to an excessive drop in accuracy. A maximum
accuracy drop equal to 0.5% with respect to the most accurate
model (represented in Figure 12 by the dotted lines) was
chosen. The reported energy consumption is associated with
a single CNN inference task execution on SensorTile. Models
that are above the 0.5% threshold are considered to be valid,
and, for each set of labels, the valid model that consumes less
energy is chosen to be refined in the next steps and deployed
on the board. Eventually, we have selected NLRAV_4_4_100
and NSVFQ_4_4_100. The accuracy values are reported in
Equation 5 and 6.

ACCNLRAV = 0.9908, 5)
ACCnsvEg = 0.9869. (6)
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2) POST-DEPLOYMENT DEGRADATION AND REFINEMENT
WITH AUGMENTATION

The ECG peaks in the reference dataset are perfectly centered
in the frame of samples that is received in input by the CNN
during the training stage. As a consequence, the network is
trained to recognize the chosen classes as long as the peak
is centered in the signal frame. The peak detection algorithm
on the SensorTile, on the other hand, operates online on the
incoming signals and would not always detect the peak in the
same position specified in the dataset.

To assess the accuracy degradation after the deployment,
we calculated post-deployment accuracy values by:

« considering false positive and false negative peaks pro-
duced by the peak detection algorithm, which need to be
accounted for in Equation 5 and 6.

o using a post-deployment validation dataset, composed
by the same samples in the original one, but modified to
be centered as dictated by the peak detection algorithm
during online analysis.

In these conditions, there is a degradation in accuracy, the
results will be shown and discussed in Section VI. Pre-
deployment accuracy, therefore, does not consider the afore-
mentioned non-idealities.

To overcome the deriving inaccuracy, the chosen networks
have been retrained for refining their precision in case of
imperfectly centered input frames. We have used a data aug-
mentation technique to create a larger dataset that contains
not only perfectly centered peaks in the frame but also off-
center ones. Operations like translating the training signal for
a few samples in each direction can often greatly improve
generalization [50]. We have chosen to create a dataset that
contained peaks translated (with respect to those contained
in the starting dataset) to the left or to the right by a num-
ber of samples multiple of 3, with a maximum translation
of 48 samples. Once the dataset augmentation has been gen-
erated (larger than the one initially used), during the training
phase, a number of elements equal to the size of the dataset
initially used are taken into consideration, these elements are
chosen randomly for each epoch.

Raw signal

-025
A SN Y //v’\'mww
-0.50 t okt LS

-0.75

9850 9900 9950 10000 10050 10100 10150
Ssample

FIGURE 13. Qualitative example of augmentation.

VI. EXPERIMENTAL RESULTS
In this section, we show our main experimental results.
We first show a detailed accuracy evaluation to show the
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effectiveness of the data augmentation procedure and the
class-level classification capabilities of the designed CNNss.
Moreover, we present measures of the energy consumption of
the entire system and we highlight the energy contributions of
each task. To estimate power consumption in each operating
mode, we have performed a thorough set of experiments
measuring energy consumption in different setup conditions.
The results were used to create a model highlighting the
contribution of each task to the energy consumption of the
node.

TABLE 6. Parameters used for NLRAV_4_4_100 and NSVFQ_4_4_100
training phase.

Layer Input Output Input Output Kernel
dimension dimension features features size
Convolutional 198 192 1 4 7
Max pooling 192 96 4 4 2
Convolutional 96 90 4 4 7
Max pooling 90 45 4 4 2
Fully connected 180 100 - - -
Fully connected 100 5 — — —

A. PRE-DEPLOYMENT CNN ACCURACY

As anticipated in Section V-C1, after the topological explo-
ration on neural networks, we selected the NLRAV_4_4_100
and NSVFQ_4_4_100 models. A pre-deployment accuracy
of 99.08% and 98.69% was obtained for classes NLRAV and
NSVFQ respectively. Table 6 summarizes the layer param-
eters used during the training phase. Figure 14a and 14b,
show the Receiver Operating Characteristic (ROC) curve and
Area Under Curve (AUC) value for NLRAV_4_4_100 and

NSVFQ_4_4_100 with augmentation. Eventually, Figure 15
shows the confusion matrix for the two selected networks.
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FIGURE 14. ROC curve and AUC value for NLRAV_4_4_100 and

NSVFQ_4_4_100 models with augmentation support.

B. POST-DEPLOYMENT CNN ACCURACY

As mentioned above, when considering the ideally centered
samples in the dataset, the selected CNNs are very accurate.
The precision of the classification, however, decreases sig-
nificantly when peaks are detected online and imperfectly
centered. In fact, for the selected neural network models,
a post-deployment accuracy equals to 94.52% and 94.09%
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FIGURE 15. Consufion matrix for NLRAV_4_4_100 and NSVFQ_4_4_100.

for NLRAV_4_4_100 and NSVFQ_4_4_100 respectively is
obtained. As a solution to such accuracy degradation, we have
enriched the training set with samples derived from the orig-
inal ones by applying some artificial shifting as described
in Section V-C2. Data augmentation techniques reduce the
specialization of the CNN on the perfectly centered validation
set, sightly dropping the accuracy to a value of 98.37% and
97.76% for NLRAV and NSVFQ respectively. On the other
hand, ECG recordings with anomalous peaks, that are diffi-
cult to be perfectly centered by the peak detection algorithm,
are expected to be classified much more accurately. To prove
the obtained improvements, we report a detailed classifica-
tion analysis. In Figure 16, we report the number of false
positives and false negatives cases resulting from the peak
detection algorithm, and we classify the remaining cases, true
positives, with the neural network selected for NLRAV and
NSVFQ classes. Such classification is executed on the post-
deployment validation set mentioned in Section V-C.

The improvement in post-deployment accuracy after data
augmentation is shown in Equations 7 and 8.

ACCNLRAV_post = 0.9742, 7
ACCNSVFQ post = 0.9698. 8)

Data augmentation techniques allows recovering most
(around 2.9%) of the drop due to imperfect centering of the
input ECG peaks. Data augmentation has obviously no effect
on the drop due to misdetections, which still determine 1.7%
degradation with respect to the pre-deployment phase.

Peak detection false positive Peak detection false negative
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FIGURE 16. False positives and false negatives cases resulting from the
peak detection algorithm and classification with remaining true positive
cases for NLRAV and NSVFQ classes using CNNs trained with
augmentation techniques.
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Figure 17 shows a more detailed view of the effects of
the quantization procedure and of the augmentation on the
accuracy, focusing on the classification of the peaks detected
online. The two leftmost plots represent the accuracy levels
when no augmentation is exploited. The accuracy, as can be
noticed in the leftmost bar of each plot is very high, with
small variability over the different tracks, and is only slightly
decreased when quantization is applied to obtain a fixed-point
implementation. However, when considering the positioning
of the peak as identified by the online detection, as shown
in the two rightmost bars of each plot, precision degrades
on some of the tracks, as can be noticed by the presence of
multiple outlier tracks with very bad classification accuracy.
This happens independently on the data representation format
since the behavior is similar for both the fixed- and floating-
point implementations. The two graphs on the right show the
impact of data augmentation. As may be noticed by the right-
most bars in these two plots, general accuracy is significantly
improved: classification works correctly for all the tracks and
even the outliers show an accuracy higher than 90%.

NLRAV, without augmentation NLRAV, with augmentation
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FIGURE 17. Taking into consideration the true positive peaks obtained
with a tolerance equal to 50 samples, the statistical distribution of the
accuracy values for each ECG recording, obtained from the classification
on the validation set, is represented. The floating-point and fixed point
models are tested, inference with centered and non-centered peaks is
also tested. In orange, the median value.

C. POWER CONSUMPTION MEASURES

With the purpose of measuring the power consumption of our
reference platform, the SensorTile board, we monitored the
current absorption through an oscilloscope and a Shunt resis-
tor. We used ANALOG Discovery 2 to measure the voltage
on the shunt resistor, Figure 18 shows the circuit schematic
used to measure the power consumption, in particular: Vyss
is equal to 5V, R ; is the shunt resistor, LD39115J18 (Sen-
sorTile component) is a voltage regulator, Vpp is the power
supply voltage of the entire chip. The voltage regulator holds
Vpbp at a stable voltage of 1.8V. As input, it accepts a voltage
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between 1.5 and 5.5V, then voltage drops on R are expected.
The Figure 19 shows some data on power consumption
derived from experimental results, the individual cases will
then be taken and discussed.

Vi1
+ m _
(N
I R, 1090 5
o AVAVAY: IN OuT ——
Vuss Vbp
j_ EN GNDﬂ:
LD39115J18

FIGURE 18. Circuit used to measure power consumption.
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FIGURE 19. The graph summarizes the energy consumption for different
heartbeat rates, when data sending is enabled (Tx) or not (No Tx). Raw
OM does not depend on heartbeat nor on the threshold settings and the
threshold task is disabled, so only one value is shown.

1) CASE: 50 bpm

With low heart rates values, considerable energy savings are
obtained even without adapting the system frequency to the
workload. In fact, peak detection OM and CNN processing
OM are workload-dependent, which in this case is low. For
the latter reason, they consume less than the raw data OM,
which constantly sends data to the cloud. There is a further
energy saving given by the reduction of the system frequency
according to the workload, in this case the peak detection OM
is set to 2 MHz and the CNN processing OM is set to 4 MHz.
The raw data OM, the worst case, works always at 8 MHz.
The Figure 19 also shows the power consumption values if
data transmission to the cloud is present or not (Tx, No tx),
as already said, the decision is up to the threshold task.

2) CASE: 100 bpm
Peak detection OM and CNN processing OM keep the same
operating frequency of the previous case. Thus there is a
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slight increase in power consumption for such modes, only
due to the more intense data-dependent workload. Obviously,
no change in raw data OM in terms of power consumption.

3) CASE: 200 bpm

Compared to the previous cases, again, there are no changes
in the raw data OM. An increase of the working frequency to
8 MHz is required to sustain the CNN processing OM. The role
of the threshold task, that implies the difference between the
Tx and the No Tx bar for the CNN processing OM, is more
important. Even with this very high rate, the CNN-based
monitoring is still convenient with respect to the raw data
OM, confirming the usefulness of near-sensor processing.

D. POWER MODEL AND OPERATING MODE POWER
CONSUMPTION ESTIMATION

We have performed a thorough set of experiments measuring
energy consumption in different setup conditions. The results
were used to create a model highlighting the contribution of
each task to the energy consumption of the node. By inter-
polating the experimental results on power consumption in
the different use cases and knowing the duration of each
task, we were able to build a model capable of estimating
the energy consumption of the device under each possible
use case. Table 7 shows the energy values for each task
in the process network. Table 8 instead shows the power
consumption of the platform in idle state and ECG sensor.

TABLE 7. Summary of consumption and execution time for each task.

Task type Number of  Execution Energy
cycle time contribution
(8 MHz)
Get data 841 105 s Ey =296 uJ
Get data + peak 1550 + 841 300 ps Egp =3.76 nJ
CNN 4_4_100 361360 45ms E. =148.78 uJ
CNN 20_20_100 1719582 215ms E; = 660.37 uJ
Threshold 910 114 ps By =2.73pJ
Send data ~ 25000 ~ 3ms Es =83.96 uJ

TABLE 8. Summary of consumption of peripherals.

Device Power consumption

2 MHz 4 MHz

8 MHz

2.609mW 3.101mW 4.546 mW
237 uW 237uW 237 uW

Platform in idle state
ECG sensor

At this point it’s possible to easily estimate the power
consumption relative to each operating mode, the resulting
equations that calculate the power consumption for each
operating mode are:

o Prawdata oM

(Eg + aEy) - fs + Pidgle + Psensor

1702

® [ peak detection OM
Egp fs + (Et + Es) fp + Pidle + Psensor

. Pcnnprocessing oM

Egp 'fr + (Ec +E + Es) 'fhr + Pidgle + Prsensor

where:

« f5 is the sampling frequency,

o fur is the heart rate,

e fp is the peak data sanding frequency,

o o~ ! it’s the number of samples inserted in a BLE
package,

e Pjg. power consumption of the platform in idle state,
depends on the system frequency,

o Pgensor energy consumption of the ECG sensor.

Operating mode Raw

Operating mode Peak

— 0.08 MW
__

Operating mode CNN

Idle

ECG sensor
Raw

Peak

= CNN

mmm Threshold
= Send

w\

FIGURE 20. Estimation of energy consumption for each task of each
operating modes at 60 bpm.

Figure 20 shows the estimate of the power consumption
of the device and the contributions of each task in case the
heart rate is around 60 bpm. The purpose of Figure 20 is
to graphically show the power consumption contributions of
the tasks for each operating mode. The following list shows
the estimated battery life (600 mAh, 3.7V Li-Ion) for each
operating mode:

o Raw data OM: 10.29 days

o Peak detection OM: 23.49 days

o CNN processing OM: 20.20 days
Considering the results in terms of battery life just reported,
it is possible to assert that the different optimizations have
made possible higher energy efficiency for enabling on-edge
processing OMs compared to raw OM. To summarize, the
increase in efficiency is mainly due to the introduction of the
ADAM component and various optimizations in the design
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and development phase. ADMA, to this aim, sets the micro-
controller in sleep/active mode and selects, at runtime, opti-
mal clock frequency, and power supply to respects the real-
time constraints. These hardware-related settings are also
optimized at runtime to exploit the data-dependent nature of
the workload (based on the heart rate). Finally, we have
considered power optimization as the main objective when
taking all the design and development choices. We have used
a simplified peak detection algorithm. Moreover, we have
explored a large number of neural network models to obtain
good results in terms of accuracy values with smaller com-
putational resources, with respect to those used in litera-
ture. Thanks to quantization and CMSIS APIs, the single
instruction, multiple data (SIMD) microcontroller’s capabil-
ities have been exploited as much as possible, significantly
increasing the performance of neural network inference and
reducing the memory footprint.

VIl. WORK COMPARISON

In this section we compare to the works discussed in
Section II that deals with inference at-the-edge. Table 9 sum-
marizes the results in terms of neural network accuracy on
MIT-BIH dataset. As may be noticed, our system gets results
higher or very close compared to the alternatives, despite
being, to the best of our knowledge, the only work actually
evaluating post-deployment accuracy, and considering all the
contributions to errors deriving by all the steps in the online
processing system. Only for the precision metric, there are
works that report higher values, but exploiting platforms
with much higher computational capabilities than those of a
microcontroller and more complex neural networks.

In [32] a good results in terms of accuracy and precision
is obtained, the F-score value is not reported and was there-
fore calculated from the reported confusion matrix. Power
consumption is not provided but a higher value is expected
compared to our as their methodology is tested on platforms
such as Jetson Nano and RaspberryPi.

In [37] the inference does not occur in the Cloud side
but from an intermediate device placed in the same WBAN
network as the sensory node, the latter will have the task of
transmitting all the data acquired in raw format thus leading
to a possible excessive power consumption of the node. Also
in this case the F-score parameter was calculated from the
results proposed within the paper.

In [38], a good result in terms of accuracy has been
obtained, however, they report far higher power consumption
than our methodology. The higher consumption is due to the
fact that they used an FPGA-based platform and their system
is capable of classifying 335 beats per second.

In [43] they obtain good results in terms of accuracy,
although in the work there are not many references to how
they were calculated and there are no supporting confusing
matrix, making the calculation of the remaining parameters
not possible. Here too, a Raspberry is used as a reference
platform, which leads to a significantly increasing of power
consumption if compared to those obtained in our work.
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TABLE 9. Results in terms of accuracy value on MIT-BIH dataset (see
classes names in Figure 9).

Work  Accuracy Sensitivity Precision  F-score Diseases
[32]  95.98% — 95.9% 93.5% NSVF
[37] 96% 76.18%  44,51%  61,6% NSVFQ
[38] 97% — — - NLRAV
[43] 98% - - - [1]
Our  99.08% 98% 96,31%  98,12% NLRAV
Our  98.69%  95,52% 92,6% 96, 16% NSVFQ
Post-deployment results

Our  97.42%  96,92% 91,50%  94,89% NLRAV
Our  96.98%  95,35% 85,17% 91,12% NSVFQ

1 Normal (NOR), Left Bundle Brunch Block (LBB), Right Bundle Brunch
Block (RBB), Paced beat (PAB), Premature Ventricular Contraction(PVC),
Atrial Premature Contraction (APC), Ventricular Flutter Wave (VFW) and
Ventricular Escape Beat (VEB).

A. OUR METHODOLOGY LIMITATIONS
In this work a proof of concept system is presented. Beyond
the aim of our research, the presented system shows some
limitations that will be briefly commented in this section.

The major limitations are the movement artifacts, since we
have chosen an acquisition configuration having a filtering
that allows a low distortion of the signal, our system is
therefore addressable in a hospital environment, where the
patient remains relatively still during monitoring. An inter-
esting future work is to make the most of the capabilities of
the neural network to be able to recognize motion artifacts in
the signal without having to manually search for the features
that need to be monitored.

Another limitation is not having validated our methodol-
ogy with that provided by the ANSI/AAMI EC57:2012 or
BHD (British Hypertension Society) standards.

VIIl. CONCLUSION

We have defined a hardware/software template for the devel-
opment of a dynamically manageable IoMT node, studied to
execute in-place analysis of the sensed physiological data.
Its implementation has been tested on a low-power plat-
form, able to exploit a CNN-based data analysis to recognize
anomalies on ECG traces. The device is able to reconfigure
itself according to the required operating modes and work-
load. The ADAM component, able to manage the recon-
figuration of the device, plays a substantial role in energy
saving. A quantized neural network reaches an accuracy value
higher than 97% on MIT-BIH Arrhythmia dataset for NLRAV
and NSVFQ diseases classification. We measured an energy-
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saving up to 50% by activating in-place analysis and man-
aging the hardware and software components of the device.
This work demonstrates how the feasibility of increasing
battery lifetime with near-sensor processing and highlighting
the importance of data-dependent runtime architecture man-
agement.
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