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ABSTRACT 38 

Gene flow, demography, and selection can result in similar patterns of genomic variation and 39 

disentangling their effects is key to understanding speciation. Here, we assess transcriptomic variation to 40 

unravel the evolutionary history of Gryllus rubens and Gryllus texensis, cryptic field cricket species with 41 

highly divergent mating behavior. We infer their demographic history and screen their transcriptomes for 42 

footprints of selection in the context of the inferred demography. We find strong support for a long history 43 

of bidirectional gene flow, which ceased during the late Pleistocene, and a bottleneck in G. rubens 44 

consistent with a peripatric origin of this species. Importantly, the demographic history has likely strongly 45 

shaped patterns of neutral genetic differentiation (empirical FST distribution). Concordantly, FST based 46 

selection detection uncovers a large number of outliers, likely comprising many false positives, echoing 47 

recent theoretical insights. Alternative genetic signatures of positive selection, informed by the 48 

demographic history of the sibling species, highlighted a smaller set of loci; many of these are candidates 49 

for controlling variation in mating behavior. Our results underscore the importance of demography in 50 

shaping overall patterns of genetic divergence and highlight that examining both demography and 51 

selection facilitates a more complete understanding of genetic divergence during speciation. 52 

 53 

  54 
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INTRODUCTION 55 

The study of speciation and the origins of earth’s biodiversity are at the core of evolutionary biology. An 56 

important first step is understanding the mechanisms that drive genetic divergence between closely related 57 

groups of organisms. In the age of next-generation sequencing, our understanding of these mechanisms is 58 

rapidly advancing. However, a variety of processes such as gene flow, local variation in recombination 59 

and mutation rates, linked or background selection, and divergent selection often simultaneously influence 60 

genetic variation between diverging lineages and the different processes may leave similar signatures in 61 

the genome (Noor and Bennett 2009; Feder et al. 2012; Nachman and Payseur 2012; Cutter and Payseur 62 

2013; Seehausen et al. 2014; Burri et al. 2015). Therefore, to understand how populations diverge, how 63 

reproductive isolation evolves, and how this affects the genome, it is essential that we examine both 64 

selective and neutral processes.  65 

Recently, the role of gene flow in speciation has drawn renewed attention (Smadja and Butlin 2011; Feder 66 

et al. 2013; Sousa and Hey 2013; Servedio 2015; Ravinet et al. 2017). It was once thought that 67 

reproductive barriers could only evolve in allopatry (Mayr 1963; Bolnick and Fitzpatrick 2007). However, 68 

this view has shifted due to accumulating evidence for varying rates of gene flow during early divergence 69 

(Bolnick and Fitzpatrick 2007; Nosil 2008; Bird et al. 2012). Although ‘true’ sympatric speciation is likely 70 

rare, there is nowadays a general acceptance that some amount of gene flow occurs during many 71 

speciation events, i.e. parapatric speciation (Coyne and Orr 2004; Smadja and Butlin 2011; Arnold 2015). 72 

Speciation with gene flow has attracted special attention because strong divergent selection in 73 

combination with high migration rates may lead to higher (than background) genomic divergence in the 74 

regions harboring loci important for reproductive isolation and local adaptation (Turner et al. 2005; Nosil 75 

et al. 2009; Cutter and Payseur 2013; Feder et al. 2013; Ravinet et al. 2017). However, variation in levels 76 

of divergence across the genome may also strongly depend on locally reduced intraspecific diversity due 77 

to demographic effects or variation in mutation and recombination rates (Nachman and Payseur 2012; 78 

Cruickshank and Hahn 2014; Burri et al. 2015). Additionally, the likelihood of detecting the effects of 79 

selection above background levels of genomic variation is highly dependent on the genetic architecture of 80 
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the traits under selection (Jiggins and Martin 2017) and the strength of selection (Ortiz-Barrientos and 81 

James 2017). These caveats warrant caution in the interpretation of the results from genomic scans, 82 

especially without a detailed understanding of the behavioral ecology and evolutionary history of the 83 

study system (Ravinet et al. 2017). Thus, a primary goal of studies aiming to elucidate the effects of 84 

selection on genetic variation should be to consider patterns left by neutral or demographic processes that 85 

could occlude the genomic signature of selection. 86 

Here, we bring this goal into practice by inferring demographic history and characterizing the resulting 87 

patterns of genetic variation in the absence of selection. We then use the resulting neutral expectation to 88 

inform our inference of putative signatures of selection. For this approach, we use transcriptomic data 89 

from two sexually isolated field cricket species, Gryllus rubens and Gryllus texensis. Given their current 90 

distributions (Fig. 1), it is likely that interspecific gene flow has played a dominant role in the evolutionary 91 

history of G. texensis and G. rubens; although, contemporary gene flow is unlikely based on lack of 92 

genetic or phenotypic evidence supporting hybridization in nature (Walker 1998; Gray and Cade 2000; 93 

Higgins and Waugaman 2004) and reinforcement (Gray and Cade 2000; Izzo and Gray 2004). 94 

Additionally, a mitochondrial study found evidence that suggests G. rubens has a peripatric origin from G. 95 

texensis (Gray et al. 2008) and thus divergence between G. texensis and G. rubens may be associated with 96 

a strong bottleneck for the latter but not the former species.  97 

In addition to demographic processes selection also likely played a role in the divergence of G. texensis 98 

and G. rubens. There is striking variation in acoustic sexual communication behavior in this system, 99 

involving multiple traits that compose the wing-generated calling song produced by cricket males and 100 

corresponding female preferences. This implies a strong selective pressure on genes related to mating 101 

signals. Variation in the cricket mating song depends on (i) the morphology and resonant properties of the 102 

wings, (ii) neural networks called central pattern generators that control rhythmic wing movement, and 103 

(iii) neuromuscular properties of the muscles that affect the temporal rhythm of the song (reviewed in 104 

Gerhardt and Huber 2002). Similarly, song recognition and preference in females are controlled by a 105 

complex network of neurons and likely depend on properties of ion channels, in particular potassium 106 
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channels mediating inhibitory effects (Hennig et al. 2014; Schoneich et al. 2015; Göpfert and Hennig 107 

2016). If there is indeed a strong selective pressure on mating behavior in this system, selection signatures 108 

are expected to be biased towards gene products that affect the properties of muscles, neuromuscular 109 

junctions, and neurotransmitter activity related to rhythmic behaviors and perception, as well as mating 110 

behavior variation more broadly. Importantly, combining the inference of putative selection signatures 111 

with the demographic analyses allows us to interpret the perceived effects from selection in the 112 

appropriate historical context and make predictions about the joint effects from neutral and selective 113 

forces during population divergence. 114 

 115 

MATERIALS & METHODS 116 

Study system 117 

Gryllus texensis and G. rubens are widely distributed across the southern Gulf and Mid-Atlantic States in 118 

North America, with a broad sympatric region from eastern Texas through western Florida (Fig. 1). Males 119 

are morphologically cryptic (Gray et al. 2008) and there is no documented ecological divergence (Gray 120 

2011). However, females differ in the length of the ovipositor (Gray et al. 2001), which tentatively reflects 121 

ecological adaptation to different soil types (Bradford et al. 1993). In nature, divergence in acoustic 122 

signals and preferences is a strong premating barrier acting through both species-specific long-distance 123 

mate attraction songs (Walker 1998; Gray and Cade 2000; Blankers et al. 2015a) and close-range 124 

courtship songs (Gray 2005; Izzo and Gray 2011). Reproductive isolation is maintained in the zone of 125 

overlap, but there is no evidence for reproductive character displacement, indicating that reinforcement is 126 

unlikely to affect divergence in these species (Higgins and Waugaman 2004; Izzo and Gray 2004). 127 

Sample collection 128 

Animals were collected in the USA in Lancaster and Austin (TX; ca. 80 G. texensis females) and in Lake 129 

City and Ocala (FL; ca. 40 G. rubens females) in autumn 2013 (Fig. 1 black dots). Collected females, 130 

which are typically already inseminated in the field, were housed in containers in groups of up to 15 131 
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individuals with gravel substrate, shelter, and water and food ad libitum. Each container also contained a 132 

cup with vermiculite for oviposition. During two weeks, eggs were collected and transferred to new 133 

containers; hatchlings were then reared to adulthood. We used laboratory-raised offspring of the field-134 

caught females between one and three weeks after their final molt rather than field-caught specimens to 135 

standardize rearing conditions across all samples. All animals (males and females) were played back an 136 

artificial stimulus resembling the conspecific male song for 10 minutes prior to sacrificing the animal. The 137 

rationale here was that one of our primary objectives was to look at genetic divergence in relation to 138 

mating behavior polymorphism. In case specific genes involved in female preference behavior were only 139 

expressed upon hearing a male song signal, this could potentially be overcome by a brief play back 30 – 140 

120 minutes prior to RNA preservation. Stimulus play back occurred for females and males to standardize 141 

the RNA sampling method across sexes. Within two hours of stimulus presentation, we sacrificed the 142 

cricket, removed the gut and then preserved the body in RNAlater following the manufacturer’s 143 

instructions; samples were then stored at -80 ºC until RNA isolation. A total of five males and five 144 

females were used from each of the two populations for each species (40 individuals in total; randomly 145 

sampled across containers when there were multiple containers for crickets from the same population). 146 

Total RNA extraction and directional, strand-specific Illumina library preparation were done as described 147 

in a recently published transcriptomic resource for Gryllus rubens (Berdan et al. 2016). 148 

SNP calling 149 

Raw reads were processed using Flexbar (Dodt et al. 2012) to remove sequencing primers, adapters, and 150 

low quality bases on the 3’ end of the individually barcoded reads. Samples were mapped to the G. rubens 151 

reference transcriptome (Berdan et al. 2016) using Bowtie2 (Langmead and Salzberg 2012) with default 152 

parameters but specifying read groups to mark reads as belonging to a specific individual. Duplicate reads 153 

were marked using ‘picard’ (http://broadinstitute.github.io/picard). The Genome Analysis Toolkit (GATK, 154 

DePristo et al. 2011; Van der Auwera et al. 2013) was used to call genotypes with the GATK-module 155 

‘UnifiedGenotyper’(Van der Auwera et al. 2013). The variants were then filtered to only retain high 156 

quality SNPs based on the recommendations on the GATK website 157 
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(https://gatkforums.broadinstitute.org/gatk/discussion/comment/30641, accessed on 05/05/2015) and as 158 

described in a previous study (Berdan et al. 2015). The minor allele frequency (MAF) cut-off was set at 159 

0.025 (a minimum of two copies of the allele).  160 

Our sampling design was optimized to standardize the conditions under which we stored RNA samples, 161 

but potentially introduced a bias towards collecting related individuals. This may affect both demographic 162 

inference and the summary statistics used to identify selective sweeps. To correct for the potential cryptic 163 

relatedness, we used the PLINK methods-of-moments approach (Purcell et al. 2007) implemented in the 164 

SNPrelate package (Zheng et al. 2012) in R (R Development Core Team 2016) to estimate kinship 165 

coefficients for all pairs based on the allele frequencies within each population sample. We excluded eight 166 

individuals that showed estimated kinship coefficients above 0.125 (half-sib level) with other individuals 167 

from their population, leaving 17 G. texensis and 15 G. rubens individuals for all downstream analyses. 168 

The demographic history 169 

We first tested whether the sampled populations show geographic genetic structure. We inspected allele 170 

frequency variation within and between species and populations using principal component analysis. We 171 

also ran STRUCTURE (Falush et al. 2003), once for each species separately and once combining the 172 

species, using a single SNP locus per contig (8,835 randomly drawn SNPs). We used the admixture model 173 

with sampling location as prior information. We ran STRUCTURE with an MCMC chain length of 174 

100,000 and with a burn-in length of 10,000 for K=1 through K=5 (K=4 for the species-specific runs) with 175 

three repetitions for each K-value. Results were analyzed using STRUCTURE HARVESTER (Earl and 176 

vonHoldt 2012) using the log-likelihood to compare K=1 versus all other values for K and the delta K 177 

method (Evanno et al. 2005) to compare K=2 versus all higher values of K. 178 

To investigate the demographic history of G. rubens and G. texensis, we used the approximate Bayesian 179 

computation framework (ABC, Beaumont et al. 2002). We used ABCsampler from the ABCtoolbox 180 

package (Wegmann et al. 2009) to simulate our data under different demographic scenarios in fastsimcoal 181 

v2.5.2.3 (Excoffier and Foll 2011; Excoffier et al. 2013) and to calculate summary statistics using 182 

arlsumstat v.3.5.1.3 in Arlequin v 3.5 (Excoffier and Lischer 2010). We performed the analysis using the 183 
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sequences from 1000 randomly drawn contigs (not including contigs with zero SNPs), using fixed 184 

recombination and mutation rates (both 1e-8) and the same minor allele frequency cut-off for the 185 

simulated data as for the observed data (0.025). To ensure that a MAF of 0.025 for the observed data was 186 

still maintained after removing the potentially related individuals, we removed all singletons that arose 187 

post subsampling. We initially calculated all between population summary statistics supported by 188 

arlsumstat. Then, using partial least squares regression (PLS), we retained the summary statistics with the 189 

highest predictive power (i.e. those with high factor loadings on the PLS components that significantly 190 

increase the predictive power of parameter estimates) for demographic estimates: the between-species 191 

mean and standard deviation of the number of polymorphic sites, the number of private polymorphic sites, 192 

Tajima’s D, and nucleotide diversity (π) in each species, as well as pairwise (between species) FST and π. 193 

All statistics were calculated as averages across contigs. 194 

We compared four possible (groups of) models: a simple divergence model (DIV; 4 parameters for 195 

population sizes and the timing/magnitude of demographic events), three models involving gene flow 196 

(either continuous, ancient or recent gene flow/secondary contact; CGF, AGF, RGF; 6-7 parameters), 197 

three models involving a bottleneck (for either or both species; RB, TB, BB; 6-8 parameters), and a model 198 

combining the most likely gene flow and most likely bottleneck model (AGFRB; 9 parameters). We 199 

intentionally considered only relatively simple models with few parameters to avoid the risk of 200 

overparameterization (Csilléry et al. 2010). For each model, we ran 200,000 iterations to do model 201 

selection. Prior ranges for population sizes and time points were chosen on a log-uniform scale spanning 202 

across several orders of magnitude and for bottleneck size and migration rates on a uniform scale not 203 

overlapping zero (Table 1). 204 

After simulating the scenarios, model selection and posterior predictive checks were performed in R. 205 

Because of their similarity, the three bottleneck models and the three gene flow models were treated as 206 

two groups of models that were first tested inter-se; the best model of each group was then tested against 207 

the DIV and best combined models. We first retained the 1% of the samples that had the smallest 208 

Euclidean distance between the summary statistics of the simulated data and the observed data (‘1% 209 
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nearest posterior samples’ from hereon) for each scenario separately. We then obtained a set of linear 210 

discriminants that maximized the distance among models within the nested categories (gene flow and 211 

presence of bottleneck). Next, posterior model probabilities were calculated based on these linear 212 

combinations of summary statistics using the ‘postpr’ function in the ‘abc’ package (Csilléry et al. 2012). 213 

The first two model selection steps were used to retain one gene flow and one bottleneck model with the 214 

highest posterior probability (‘best model’ from hereon). A third round of model selection was used to 215 

select among a simple divergence scenario (DIV), the best gene flow and bottleneck scenarios (AGF and 216 

RB, respectively; see Results), and a scenario combining the best gene flow and the best bottleneck 217 

scenario (AGFRB). Model selection was validated by performing leave-one-out cross validation with 218 

logistic regression using the ‘cv4postpr’ function. Here, one simulated sample, chosen at random from the 219 

posterior distribution, is left out and considered to be the “true” model while repeating the model selection 220 

step (with the remaining posterior samples) to evaluate the robustness of the model selection (Csilléry et 221 

al. 2012). 222 

To estimate demographic parameters, we then ran 1,000,000 new simulations under the model(s) with the 223 

highest posterior probability. Posterior predictive checks were performed by calculating the predicted R2 224 

and root mean squared error prediction (RMSEP) using the ‘pls’ package (Mevik and Wehrens 2007). We 225 

also used the ‘cv4abc’ function from the ‘abc’ package to evaluate prediction error. We estimated the 226 

demographic parameters with the ‘abc’ function using non-linear regression and a tolerance rate of 0.05. 227 

An important goal of this study was to assess the effects of demography, in particular the timing of gene 228 

flow, on the patterns of transcriptome-wide genetic variation (e.g. the FST distribution), rather than only on 229 

summary statistics. This will provide important insight into the extent to which loci that have evolved in 230 

the absence of selection are expected to confound the signatures of selection. We thus estimated a null 231 

distribution of the allele frequency spectrum (i.e. Tajima’s D, Tajima 1989) under the best fitting 232 

demographic model (see below). In addition, for the 1% nearest posterior samples of the models 233 

simulating continuous, recent, and ancestral gene flow and the AGFRB model we obtained the simulated 234 
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FST distribution for each posterior sample. The median and variation of these distributions were then 235 

visually contrasted with the observed FST distribution.  236 

The role of selection  237 

To assess the role of selection in driving genetic divergence, we employ three approaches that differ in 238 

their sensitivity to distinguish signals of selection from the confounding effects from past demographic 239 

events. All else being equal, variation in allele frequencies between populations is expected to increase 240 

more rapidly in the presence of selection. However, the most common measure of the variance in allele 241 

frequencies among populations, FST, which is also a common test statistic to distinguish selected loci from 242 

the genomic background, has been criticized as a reliable indicator from various angles (e.g. Narum and 243 

Hess 2011; Cruickshank and Hahn 2014; Lotterhos and Whitlock 2014). Other methods may be better 244 

suited for detection of selected loci given strong demographic effects. For instance given sufficiently long 245 

divergence times and high levels primary or secondary gene flow, elevated sequence divergence (dxy) may 246 

be expected to better contrast the regions harboring loci involved in reproductive isolation from the rest of 247 

the genome (Nachman and Payseur 2012; Cruickshank and Hahn 2014). Additionally, a recent selective 248 

sweep may increase between population differentiation and decrease within population diversity and shift 249 

allele frequency spectrum (AFS) towards a higher frequency of rare alleles. Although demographic effects 250 

may also shift the AFS, these effects can be modeled and taken into account. Here, we contrast an FST 251 

outlier scan (the “FST approach” from hereon) with two alternative methods that should be better suited to 252 

withstand demographic effects (hereafter “dxy approach” and the “selective sweep approach”, 253 

respectively).  254 

We considered loci to be potentially under positive or divergent selection if they exceeded genomic 255 

background levels of (1) FST, (2) absolute sequence divergence (dxy), or (3) frequencies of rare alleles 256 

(Tajima’s D), low diversity (π), and high differentiation (FST). For the FST approach, we used the 257 

hierarchical island model (Slatkin and Voelm 1991) implemented in Arlequin (Excoffier et al. 2009; 258 

Excoffier and Lischer 2010). To accommodate the data to Arlequin’s input file restrictions, we only 259 

considered SNPs with MAF > 5% (81,125 SNPs). We pooled the two G. rubens populations in one group 260 
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and two G. texensis populations in another group and performed 100,000 simulations to establish the 261 

neutral expectations for the relationship between among population heterozygosity and FST. We 262 

considered all loci with FST higher than the 99th quantile for a given level of heterozygosity to be selection 263 

outliers.  264 

For the dxy approach and the selective sweep approach, we used VCFtools (Danecek et al. 2011) to 265 

calculate the following summary statistics: Tajima’s D (Tajima 1989), nucleotide diversity π (Nei and Li 266 

1979), and weighted FST (Weir and Cockerham 1984) in 1000 bp windows, and the absolute difference 267 

between the frequency of the major allele in the two species. We also calculated the average interspecific 268 

pairwise distance dxy for each window as dxy = π/(1-FST ), where π is the mean of the nucleotide diversity 269 

across species and FST is the weighted mean FST (Hudson et al. 1992; note that this method is similar to the 270 

often used dxy = pi(1-pj) + pj(1-pi), with pi and pj are the major or minor allele frequencies in species i and 271 

j, averaged across windows, weighed by the number of SNPs). For the dxy approach, we retained the top 272 

1% contigs with respect to dxy predicting that these loci have diverged relatively early in the evolutionary 273 

history and remained shielded from gene flow throughout. For the selective sweep approach, we retained 274 

all loci that had Tajima’s D below the 5% lowest simulated Tajima’s D values under the inferred 275 

demographic scenario and with values for π and FST in the lowest and highest 10%, respectively. As this 276 

approach uses intraspecific population genetic data, we retained sets of outlier loci for both species 277 

separately 278 

For all sets of outliers we checked for enriched Gene Ontology terms using ‘topGO’ (Alexa and 279 

Rahnenfuhrer 2016), part of the Bioconductor toolkit in R. The GO annotation was obtained from the G. 280 

rubens reference transcriptome (Berdan et al. 2016), which used the GO mapping module in Blast2Go 281 

(Conesa et al. 2005). We limited our gene set enrichment to biological process terms only and used the 282 

parent-child algorithm (Grossmann et al. 2007) to correct the P values for the ‘inheritance problem’ (i.e., 283 

the problem that higher GO terms inherit annotations from more specific descendant terms leading to false 284 

positives). We considered any GO term significantly enriched if the false discovery rate (Benjamini and 285 

Hochberg 1995) associated with the corrected P-value was below 10%. To get a more detailed picture of 286 
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the putative functions of a given outlier locus, we looked up the functional annotation for the 287 

corresponding predicted gene product (i.e. the homolog with the highest similarity) on Flybase (Gramates 288 

et al. 2017) if that locus had been annotated using the Drosophila melanogaster proteome (see Berdan et 289 

al 2016 for details regarding transcriptome annotation). 290 

RESULTS 291 

Transcriptomic divergence 292 

We sequenced RNA from 40 individuals (20 G. rubens and 20 G. texensis) on a HiSeq 2000 (Illumina, 293 

San Diego, CA, USA) obtaining on average 51,046,578 100-bp reads per individual (range 37,887,468-294 

72,304,968) at a sequencing depth of eight libraries per lane. Reads mapped to the G. rubens 295 

transcriptome at an average rate of 83.2% (Table S1). Mapping rates were not higher in G. rubens despite 296 

the use of the G. rubens transcriptome (G. rubens: 83.0%; G. texensis: 83.0%; P = 0.9968), but females 297 

mapped at a significantly higher rate than males (86.0% versus 79.6%; P < 0.0001). At a MAF cut-off of 298 

0.025 we found a total of 175,244 SNPs across 8835 contigs. The average transition-transversion ratio was 299 

1.6:1. Nucleotide diversity (π) was similar among G. rubens (π = 0.11, σπ = 0.14) and G. texensis (π = 300 

0.13, σπ = 0.15). Median D was 0.07 (first quantile: 0.05, third quantile 0.20) and 2.7% of the SNPs 301 

(4,828) were fixed between the species (Fig. 2A). Average Tajima’s D was negative for both species, but 302 

the distribution across loci showed substantial variation (Fig. 2B, C).  303 

The demographic history 304 

We found no substantial evidence for genetic structure in the two populations considered within either 305 

species. The species axis was the predominant axis of variation among individuals in the Principal 306 

Component Analysis (23.93% of total SNP variation, Fig. S1A), followed by axes separating G. texensis 307 

(PC2, 6.13% and PC3, 4.60%) and G. rubens (PC4, 4.35%) individuals. Variation within species was not 308 

related to geographic locations from which the individuals were collected (Fig. S1B, C). STRUCTURE 309 

further supported the finding that neither of the species was strongly differentiated geographically. The 310 

optimal K equaled 2 when we ran STRUCTURE with both species included (Fig. S2). Examining 311 
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population structure within species revealed weak evidence for population substructure in both species at 312 

K=2, but K = 1 was the most parsimonious given the spread in log-likelihoods across K-values (Fig. S2). 313 

These results are robust across different subsets of SNPs and sample sizes (Fig. S3). 314 

To infer the role of gene flow and bottlenecks during the evolutionary history of G. texensis and G. 315 

rubens, we used a nested rejection procedure to select the best model out of eight different models varying 316 

in the presence and timing of bottlenecks and gene flow (Fig. 3). First, we compared the gene flow models 317 

with each other. The gene flow model with the highest posterior probability was the ‘ancestral gene flow’ 318 

model (AGF Pposterior = 0.99 versus continuous gene flow, CGF: Pposterior < 0.01, and recent gene flow, RGF: 319 

Pposterior =0.01). Then we compared the bottleneck models with each other and found that the ‘G. rubens 320 

bottleneck’ model had the highest posterior probability (RB Pposterior = 0.67 versus G. texensis bottleneck, 321 

TB: Pposterior = 0.43 and both bottleneck, BB: Pposterior < 0.01). We then combined these best models into a 322 

model with both ancestral gene flow and a bottleneck for G. rubens (AGFRB) and compared that model 323 

against a simple divergence model (DIV), the best gene flow model (AGF), and the best bottleneck model 324 

(RB). In this final model comparison, the combined model had the highest posterior probability (AGFRB: 325 

Pposterior = 0.68; AGF: Pposterior = 0.22; DIV: Pposterior = 0.02; RB: Pposterior = 0.08; Fig. 3, Fig. 4). Similar 326 

results were obtained using the full sample, including additional, but potentially related individuals: 327 

AGFRB: Pposterior = 0.75; AGF: Pposterior = 0.21; DIV: Pposterior = 0.03; RB: Pposterior = 0.01. 328 

As posterior probabilities may differ even among very similar models, it is critical to evaluate statistical 329 

support for model choice. Overall, model choice was well supported. For each selection step, we used 330 

cross validation to verify that models can be distinguished by assuming one of the models is the ‘true’ 331 

model and then performing 1,000 independent model selection steps under that assumption. The accuracy 332 

with which the assumed ‘true’ model was chosen was high for the gene flow models (98%, 96%, and 52% 333 

for AGF, CGF, and RGF, respectively), bottleneck models (76%, 66%, and 71% of the time for RB, TB, 334 

and BB respectively), and the final model selection step (75%, 82%, 82%, 84% for DIV, AGF, RB, 335 

AGFRB, respectively). It is important to note that the AGFRB model had the highest support overall and 336 
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final model selection was well supported, but there is overlap of the posterior distribution of the summary 337 

statistics in multivariate space between the AGF and AGFRB models (Fig. 4).  338 

Because there was some overlap between the posteriors of AGF and AGFRB (Fig. 4), and AGFRB only 339 

differs from AGF in the addition of a bottleneck, both models were used for demographic parameter 340 

estimates. Divergence times were distributed rather widely in both the AGF and AGFRB scenario and 341 

posterior density distributions were widely overlapping., The median divergence time varied between 342 

350,000 years ago (700,000 generations ago) for AGF and double that for AGFRB. The ancestral effective 343 

population size was estimated around 200,000, almost an order of magnitude higher than the model 344 

estimates for current effective population sizes in G. rubens (~31,000 for AGFRB and ~18,000 for AGF) 345 

and G. texensis (~60,000 and ~28,000; Table 1, Table S2, Fig. 6A). A bottleneck for G. rubens was 346 

estimated at 15% of the current effective population size (Table 1, Fig. 6C) and recovery to current 347 

population sizes was achieved around 50,000 years ago (Table 1, Fig. 6B). Ancestral gene flow was 348 

bidirectional (median m = 0.18 and m = 0.27 for gene flow from G. texensis into G. rubens and vice versa, 349 

respectively; Table 1, Fig. 6C) and ceased around 18,000 years ago (Table 1, Table S2, Fig. 6B). The 350 

parameter estimates for the main model, AGFRB, were robust to the inclusion of additional, but 351 

potentially related, individuals; the estimates for times and population sizes were slightly higher and the 352 

inclusion of more samples gave similar results but at slightly higher accuracy (narrower HPD interval, 353 

Table S3, Fig. S4). 354 

Statistical support for parameter inference varied across demographic events. Overall, the observed 355 

summary statistics fell well within the range of the simulated multivariate summary statistics under the 356 

AGF and AGFRB models (Fig. 4) and 95% HPD intervals of the distributions were generally narrow (Fig. 357 

6, Table 1). For some demographic parameters (current population sizes for G. rubens [NRUB] and G. 358 

texensis [NTEX], and time since cessation of gene flow [TISO] support was high (R2 > 0.81; RMSEP < 0.44); 359 

for other parameters estimated error rates were appreciably higher (Table 1, Table S2).  360 

We compared FST distributions simulated under the AGF, CGF, RGF, and AGFRB models with the 361 

observed FST distribution as a measure of the effect of demography on the patterns of transcriptome-wide 362 
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genetic variation. We found that the observed distribution (red line in Fig. 5) closely matched the 363 

simulated distribution of the two models with ancestral gene flow for most parts, including the secondary 364 

peak at the highest FST bin (0.95 < FST ≤ 1.00, Fig. 5C, D). In contrast, the observed FST distribution 365 

showed substantial mismatch with the recent and continuous gene flow models. 366 

The role of selection  367 

The FST approach gave by far the highest number of outlier contigs. There were 514 contigs (5.8% of 368 

contigs) that had at least one SNP designated as a selection outlier (99th quantile) in Arlequin’s FST based 369 

hierarchical island method. There were no significantly (FDR < 10%) enriched Gene Ontology categories 370 

among the predicted gene products of these contigs and the most strongly enriched categories included 371 

mitochondrial processes, GTPase activity and cellular metabolism (Table S4, Table S5, Fig S5).  372 

There were 80 contigs with dxy values in the 99th percentile. The putative gene products corresponding to 373 

these 80 contigs were significantly (FDR < 10%) enriched for pheromone biosynthesis, hormone 374 

biosynthesis, mating behavior, and protein maturation (Table S4). Several of the most divergent loci 375 

match genes involved in Drosophila melanogaster sex pheromone pathways, such as α-esterase and 376 

Desaturase1, mushroom body development and neuromuscular synaptic targets, such as S-lap1, tartan, 377 

including those involved in flight muscle activity (Stretchin-Mlck), and acoustic mating behavior, such as 378 

Juvenile hormone esterase and calmodulin (Table S6).  379 

We retained 55 and 92 contigs that showed possible signatures of recent selective sweeps (Tajima’s D 380 

below 5% of the simulated sequences under the AGFRB scenario and π and FST in the 90th percentile) in 381 

G. texensis and G. rubens, respectively. The combined set of outlier loci was not significantly enriched for 382 

any biological processes after FDR correction. The most strongly enriched GO terms were predominantly 383 

higher order GO terms such as ‘organelle organization’, ‘primary metabolic process’, and ‘regulation of 384 

biological process’, but also contained more specific terms: ‘sperm mitochondrion organization’, ‘oocyte 385 

fate determination’, and ‘regulation of female receptivity’ (Table S4). Six contigs were shared between the 386 

species-specific sets of loci that showed potential signatures of a recent selective sweep signature. Three 387 

of these have no functionally characterized gene products. The other three are neuroglian (nrg), which is 388 
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involved in various aspects of nervous system development and associated with male and female courtship 389 

behavior in D. melanogaster; discs large 1 (dlg1), which affects neuromuscular junctions and changes 390 

fruit fly behavior across several domains including circadian activity and courtship; and secretory 23 391 

(sec23), which is an important component in differentiation of extra-cellular membranes in neurons and 392 

epithelial cells (Table S7). Several other gene products associated with contigs in the species- specific sets 393 

have functional roles in calcium or potassium channel activity (e.g., nervana2, expressed in the 394 

Drosophila auditory organs), nervous system development (e.g. muscleblind, which also alters female 395 

receptivity during courtship), veined-wing song generation (e.g. period), as well as many genes related to 396 

metabolic and cellular processes. 397 

There was one (unannotated) contig shared between the dxy approach and the selective sweep approach. 398 

Additionally, among the 514 outlier loci detected in Arlequin encompassed 11 contigs also found with the 399 

dxy approach, and 25 and 9 contigs respectively that were shared with the G. rubens and G. texensis 400 

specific selective sweep approach. These included the genes described above that are potentially related to 401 

sex pheromones biosynthesis (Desat1), flight muscle activity (Mlc-k), sensory neuron development (nrg), 402 

and auditory pathway ion channel activity (nrv2).  403 

DISCUSSION  404 

Here, we illuminate the role of demographic and selective processes in shaping genetic variation during 405 

speciation. Combined insight in putative neutral (neutral divergence given the demographic history) and 406 

selective effects allowed us to infer the evolutionary history of Gryllus rubens and G. texensis, sibling 407 

species with large, overlapping distributions and strong phenotypic divergence in sexual traits with limited 408 

divergence in other phenotypes. We find strong support for a long history of ancestral gene flow and a 409 

bottleneck in G. rubens. Importantly, our data lend support to the hypothesis that loci showing high 410 

relative genetic differentiation compared to the genomic background may have evolved in response to 411 

demographic events and drift rather than in response to election. Interestingly, several of the loci with 412 

show signatures of positive or divergent selection after taking into account the effects from demography 413 

are potential orthologs of D. melanogaster genes involved in premating isolation, a major source of 414 
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reproductive isolation between G. rubens and G. texensis. This work represents an important first step in 415 

assessing the contribution of neutral and selective forces to genetic divergence in a model system for 416 

sexual selection research. 417 

Neutral divergence and demography  418 

We sequenced the transcriptomes of 40 individuals across four populations. Our observed 419 

transition:transversion ratio of 1.6:1 compares well with the estimate (1.55) from another cricket species 420 

pair, G. firmus and G. pennsylvanicus (Andrés et al. 2013), and suggests that sequencing errors did not 421 

contribute unduly to SNP discovery. Divergence across ~175K SNPs showed a bimodal and slightly right-422 

skewed distribution of absolute (allele frequency) divergence, D (Fig. 2), and genetic differentiation, FST 423 

(Fig. 5). The FST distributions simulated under our top two scenarios were also right-skewed and strongly 424 

resembled the observed distribution of genetic differentiation, in strong contrast to FST distributions 425 

corresponding to other models. Most importantly the simulated distributions under the most likely 426 

demographic scenarios, AGF and AGFRB, showed secondary peaks at FST > 0.95. This indicates that a 427 

significant proportion of our fixed loci may have risen to fixation stochastically due to neutral processes (a 428 

combination of drift, population size variation, and gene flow) while gene flow homogenizes other 429 

(random) parts of the genome. Concordantly, the FST based approach uncovered substantially more loci 430 

with putative signatures of positive selection than methods based on allele frequency spectra (with 431 

thresholds informed by inferred demographic history) or absolute sequence divergence (514 contigs in the 432 

FST approach versus ~50-90 contigs in the other approaches). Our findings emphasizes the shortcomings 433 

of traditional FST outlier approaches to discern selection effects from genomic background variation 434 

(Narum and Hess 2011; Lotterhos and Whitlock 2014). 435 

We find strong evidence for a long history of bidirectional gene flow before G. rubens and G. texensis 436 

became fully reproductively isolated around 18,000 years ago, sometime during the last Pleistocene 437 

glacial cycles. This finding adds to a growing body of work that suggest divergence can occur in the face 438 

of gene flow (Bolnick and Fitzpatrick 2007; Nosil 2008; Bird et al. 2012; Feder et al. 2013). A large 439 

amount of recent work has focused on the role of gene flow in speciation, especially in combination with 440 
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divergent or positive selection. In the genic view of speciation (Wu 2001) most areas of the genome are 441 

homogenized among populations during divergence with gene flow, and regions showing excess 442 

differentiation are thus likely protected by selection. This idea has been tested in many model systems 443 

with mixed results (Turner et al. 2005; Ellegren et al. 2012; Nosil et al. 2012; Cruickshank and Hahn 444 

2014; Burri et al. 2015; Marques et al. 2016). Recent work suggests that genomic mosaics may in fact be 445 

mostly a consequence of linked selection caused by differences in recombination rates and density of 446 

selected loci and are thus expected to be conserved in pairwise comparisons even among distantly related 447 

taxa (Nachman and Payseur 2012; Burri et al. 2015; Van Doren et al. 2017). Our results support this idea 448 

as our demographic simulations recreated heterogeneous patterns similar to our observed data. Although 449 

selection certainly contributed to transcriptome divergence in G. rubens and G. texensis our results 450 

suggest a larger role for neutral divergence shaped by the effects of migration and population size 451 

variation and echo recent insights into the importance of considering neutral divergence when interpreting 452 

potential selection effects (e.g. reviewed in Ravinet et al. 2017).  453 

In addition to bi-directional gene flow, the early stages of divergence between G. texensis and G. rubens 454 

were also influenced by a substantial bottleneck in G. rubens. There is some overlap between the AGF (no 455 

bottleneck) and AGFRB (with a G. rubens bottleneck) scenarios in the simulated summary statistic 456 

distribution, but the latter has a substantially higher posterior probability and corroborates the peripatric 457 

origin for G. rubens hypothesized in a previous study (Gray et al. 2008). Although that study used a single 458 

mitochondrial locus, it was done with extensive geographic sampling, and both studies suggest a 459 

bottleneck for G. rubens. Furthermore, estimates of strong admixture between populations within species 460 

and divergence time estimates are overlapping (this study: median ~ 0.35 - 0.70 million years ago; Gray et 461 

al. study: 0.25 – 2.0 mya). Estimates for current effective population sizes (roughly between 30 and 60 462 

thousand for the AGFRB model and between 20 and 30 thousand for the AGF model) are surprisingly low 463 

given the potential census population size for G. texensis is in the millions (Gray et al. 2008). Potentially, 464 

the discrepancy is due to recent population expansion (Ptak and Przeworski 2002; Nadachowska-brzyska 465 
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et al. 2013) or variation in individual mating success (Lande and Barrowclough 1987), as is observed in 466 

wild populations of closely related species (Ritz and Köhler 2010; Rodriguez-Munoz et al. 2010). 467 

The role of selection  468 

A central aim of this study was to elucidate the role of selection during divergence within the context of 469 

the inferred demographic history. The species have strongly divergent mating behaviors with no evidence 470 

for reinforcement (Gray and Cade 2000; Higgins and Waugaman 2004; Izzo and Gray 2004; Blankers et 471 

al. 2015a). Many other cricket species show similarly strong divergence in various aspects of their mating 472 

behavior and several lines of evidence from various taxa indicate that this is at least in part driven by 473 

selection (Gray and Cade 2000; Bentsen et al. 2006; Shaw et al. 2007; Bailey 2008; Thomas and Simmons 474 

2009; Oh and Shaw 2013; Blankers et al. 2017; Pascoal et al. 2017). Here, we show that the striking 475 

behavioral divergence is to some extent reflected in elevated sequence divergence of loci with putative 476 

functions in acoustic and chemical mating behavior. We find evidence that the set of loci showing the 477 

highest levels of sequence divergence are enriched for contigs bearing significant similarity to genes with 478 

known function in mating behavior in D. melanogaster. In addition, among the six contigs that showed 479 

evidence for a selective sweep in both species, three are potential orthologs of genes that affect 480 

neuromuscular properties in fruit flies and have effects on the flies’ mating behavior. Several other 481 

species-specific outliers are potential orthologs of genes that can be tied to mating behavior variation in 482 

Drosophila spp. 483 

Given the substantial time since divergence and the long history of gene flow, high sequence divergence is 484 

expected for loci that have experienced limited homogenizing effects from gene flow relative to the rest of 485 

the genome. The theoretical support for speciation with gene flow driven by divergence in secondary 486 

sexual characters is very thin at best (van Doorn et al. 2004; Weissing et al. 2011; Servedio 2015). Here 487 

we provide exciting and rare evidence for speciation with primary gene flow while both phenotypic (Gray 488 

and Cade 2000), quantitative genetic (Blankers et al. 2015b, 2017), and genomic analyses (this study) 489 

highlight a role for selection on (acoustic) mating behavior in driving reproductive isolation. A compelling 490 

alternative interpretation of the findings here is that the peripatric origin of G. rubens has allowed for an 491 
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initial phase of reduced gene flow; during this phase mating signals and preferences may have diverged 492 

sufficiently (aided by a founder effect following a population bottleneck) to maintain reproductive 493 

isolation during a subsequent phase of range expansion culminating into the contemporary, widespread, 494 

and largely overlapping species’ distributions. More empirical studies examining the role of gene flow and 495 

selection in systems characterized by strong sexual isolation are needed to test the theoretical predictions 496 

for speciation by sexual selection. However, this study along with other recent findings in finches 497 

(Campagna et al. 2017), fresh water stickleback (Marques et al. 2017), and cichlids (Malinksy et al. 2015) 498 

provide exciting first genomic insights into the joint effects from mating behavior divergence, sexual 499 

selection, and gene flow in the earliest phases of speciation. 500 

We acknowledge that there are likely to be false positives among the detected outliers, as both linked 501 

(background) selection and demographic effects are expected to confound the signatures of positive or 502 

divergent selection (Cruickshank and Hahn 2014; Ravinet et al. 2017) and a priori expectations also 503 

increase the risk of “storytelling” (Pavlidis et al. 2012). By using coalescent simulations under the inferred 504 

evolutionary history, we have accounted for some confounding effects from demography. However, there 505 

is still potential neutral genetic variation that is unaccounted for, most notably the potentially confounding 506 

effects of recent population expansion and variation in recombination rates. We therefore caution that 507 

there is the uncertainty associated with the results obtained here and with genomic scans on quantitative 508 

traits in general (Jiggins and Martin 2017). Nevertheless, our findings provide exciting incentive for 509 

validation using alternative methods (e.g., QTL mapping) and follow-up functional genomic analyses.  510 

Unsurprisingly, not all “outlier” contigs could be linked to mating behavior. The rest of these outliers are 511 

likely comprised of three groups: (1) Loci that are physically linked to loci under selection: In the earliest 512 

phases of speciation, only loci directly under strong divergent selection will differ. However, gene 513 

frequencies at tightly linked loci will also change and, given sufficient time as well as low to moderate 514 

migration and recombination rates, these loci will be swept to fixation along with selected sites (Smith and 515 

Haigh 1974) in a process called divergence hitchhiking (Feder et al. 2012; Via 2012); (2) Loci that are 516 

under selective forces that we have not yet elucidated: It is unlikely that divergent selection only targets 517 
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loci involved in mating behavior and other traits may be differentiated between G. rubens and G. texensis. 518 

For example, females differ in the length of the ovipositor (Gray et al. 2001), a trait which reflects 519 

potential ecological adaptation to different soil types (Bradford et al. 1993); (3) Loci that are not under 520 

selection: Genetic drift can cause loci to drift to fixation and demographic effects such as bottlenecks and 521 

migration patterns (Holsinger and Weir 2009) can aid this process. Our simulations predict a significant 522 

number of fixed loci (1.90% on average for the AGFRB scenario) solely due to neutral processes (Fig. 5). 523 

Additionally, practical limitations of discovering low-frequency SNPs causing ascertainment bias (Clark 524 

et al. 2005) can contribute to misinterpretation of the patterns of genetic diversity (Vitti et al. 2013). A 525 

genomic map of Gryllus and further analyses would make strong headway into determining which of these 526 

categories the other potential outliers fall into. 527 

Finally, there may be loci that are under selection but that were not detected by our scan because they 528 

simply were not being expressed. We sequenced samples from first generation laboratory offspring rather 529 

than animals directly from the field. Despite the fact that there are no differences between G. texensis and 530 

G. rubens in ecology, microhabitat use, or feeding behavior have been described (but note there is 531 

variation in the ovipositor length which is a potential adaptation to soil properties), the laboratory 532 

conditions have potentially limited our potential to detect genetic differences related to local adaptation. 533 

In summary, this study underlines the importance of considering the joint effects from neutral divergence 534 

and selection in understanding the speciation process. Our results also offer unprecedented insight into the 535 

evolutionary history and the role of demography and selection in driving transcriptomic divergence in two 536 

sexually isolated field cricket sister species. We inferred that a long period of bidirectional, ancestral gene 537 

flow and a bottleneck in G. rubens preceded completion of reproductive isolation (Fig. 3,6). Importantly, 538 

the timing of gene flow appears to have significantly influenced the pattern of divergence (i.e. the FST 539 

distribution) that we observe (Fig. 5). We also uncovered several loci that show signatures of positive or 540 

divergent selection and show that these contigs are potentially associated with courtship behavior, 541 

neuromuscular development, and chemical mating behavior. Future work will place these data on a 542 

genomic map allowing us to determine how genetic divergence is distributed relative to loci under 543 
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selection. These findings provide important steps towards understanding the role of selective and neutral 544 

processes in shaping patterns of divergence and the role of sexual selection during speciation-with-gene 545 

flow. They also highlight the strength of combining information on (i) the phenotypes that contribute to 546 

reproductive isolation, (ii) demographic inference, and (iii) scans for loci under selection. 547 
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 779 

FIGURE LEGENDS 780 

Fig. 1. Geographic distributions for G. texensis (red) and G. rubens (blue). The sympatric zone is marked 781 
with turquoise. The distributions are approximate and based on the Singing Insects of North America data 782 
base (http://entnemdept.ufl.edu/Walker/buzz/). The black dots in Texas and Florida represent the sampling 783 
locations for G. texensis and G. rubens, respectively.  784 
 785 
Fig. 2. Genomic divergence. The distribution of the interspecific allele frequency difference, D, across  786 
SNPs (A), of the absolute divergence, dxy, in 1000 bp windows (B), and of Tajima’s D in 1000 bp 787 
windows for G. rubens (C) and G. texensis (D), respectively 788 
  789 
Fig. 3. Demographic scenarios for Approximate Bayesian Computation. Eight scenarios were simulated 790 
under the ABC framework. (A) A simple divergence scenario (DIV) with a log uniform prior on the 791 
divergence time (TSPLIT), the ancestral population size (NANC) and the current effective population sizes for 792 
G. rubens and G. texensis (NRUB, NTEX). (B) Three different gene flow models with either continuous gene 793 
flow (CGF), ancestral gene flow (AGF), or recent gene flow (secondary contact; RGF) were additionally 794 
defined by parameters describing migration rates (MTEX>>RUB, MRUB>>TEX; uniform priors not overlapping 795 
zero) and the time point since cessation of gene flow (TISO) or of secondary contact (TCONT), both with log 796 
uniform priors. (C) Three bottleneck models defined by the time since recovery to current population sizes 797 
(TBOT; log uniform prior) and the relative population size reduction (BOTSIZE; uniform prior not 798 
overlapping zero) for G. rubens (RB), G. texensis (TB), or both (BB). (D) An additional model (AGFRB) 799 
combining the best gene flow (AGF) and best bottleneck (RB) model, marked by the black, dashed 800 
rectangles. The posterior probabilities for model selection are given left of the square (opening) brackets 801 
for the three gene flow and the three bottleneck models, and right of the square (closing) brackets for the 802 
final model selection step. 803 
 804 
Fig. 4. Distribution of observed and simulated data sets in multivariate summary statistic space. For each 805 
of the four models used in the final model selection step (see also Fig. 3) the distribution of the 1% 806 
posterior samples with the smallest Euclidean distance to the observed data is shown relative to the 807 
coordinates of the observed data. The multivariate summary statistic space is constrained by the first two 808 
linear discriminants representing linear combinations of the summary statistics used in model selection 809 
(see text for details). 810 
  811 
Fig. 5. FST distributions of simulated and observed data. The distribution of Weir and Cockerham’s FST as 812 
calculated by the program arlsumstat are shown for 2,000 simulated data sets for different demographic 813 
model: recent gene flow (secondary contact; RGF), continuous gene flow (CGF), ancestral gene flow 814 
(AGF), and the AGFRB model. Observed data (1,000 1kbp sequences) are represented by the red solid 815 
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line. The histograms show the density (y-axis) to enhance comparison between simulated and observed 816 
data.  817 
 818 
Fig. 6. Demographic parameter estimation. For the AGFRB (A-C) and the AGF (D-F) models, the density 819 
distribution of the ancestral and current population sizes (A, D), the time since divergence, cessation of 820 
gene flow, and recovery to current population sizes after the bottleneck (B, E), and the migration rates and 821 
bottleneck size (C, F) are shown. The density lines have been trimmed to the existent parameter 822 
distribution (i.e., no density extrapolation) and have been smoothed by adjusting the bandwidth. For lines 823 
within one panel the same smoothing bandwidth has been used. 824 
 825 
SUPPLEMENTARY INFORMATION 826 
Table S1. Individual RNA-seq read mapping statistics 827 
Table S2. ABC estimates for the AGF scenario 828 
Table S3. ABC estimates for the full sample (including 8 individuals from half-sib pairs), AGFRB 829 
scenario 830 
Table S4. GO enrichment results for FST, dxy, and selective sweep outliers. 831 
Table S5. FST outlier loci.  832 
Table S6. dxy outlier loci 833 
Table S7A,B Selective sweep outlier loci for G. texensis and G. rubens 834 
Fig S1-S7. See figures for figure legends. 835 
 836 
Table 1. ABC estimates. Prior distributions (log-scale), posterior predictive checks and posterior 837 
parameter estimates (log scale, median and 95% highest posterior density interval) for the model are 838 
shown. 839 

Parameter 

Priora Validation Posterior 

minimum maximum R2 RMSEP 2.5% Median 97.5% 

LOG10(NANC) 4.0 6.0 (lu) 0.13 0.93 4.68 5.34 5.99 

LOG10(NRUB) 3.0 6.0 (lu) 0.90 0.32 4.03 4.50 4.70 

LOG10(NTEX) 3.0 6.0 (lu) 0.75 0.50 4.51 4.78 4.87 

LOG10(TSPLIT)b 5.0 7.0 (lu) 0.02 0.99 4.86 6.19 7.16 

LOG10(TISO)b 3.0 7.0 (lu) 0.90 0.32 4.20 4.55 4.76 

LOG10(TBOT)b 5.0 7.0 (lu) 0.48 0.72 4.42 5.01 6.16 

BOTSIZE 0.01 0.5 (u) 0.16 0.91 -0.04 0.15 0.48 

MTEX>>RUB 0.01 0.5 (u) 0.06 0.97 0.01 0.18 0.54 

MRUB>>TEX 0.01 0.5 (u) 0.06 0.97 0.01 0.27 0.74 
a priors are uniformally (u) or log-uniformally (lu) distributed and do not overlap zero for migration rates 840 
and bottleneck size. 841 
b the timing of demographic events is in (logarithm of) number of generation and both species have two 842 
generations annually. 843 
 844 
 845 
  846 
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Table S1. Individual RNA-seq read mapping statistics. Mapping rates were calculated using bowtie2 with 847 
default parameters.  848 

Sample ID Species Population Sex Mapping rate 

30037 rub G. rubens Ocala f 84.52% 

30038 rub G. rubens Ocala f 85.33% 

30039 rub G. rubens Ocala f 85.66% 

30040 rub G. rubens Ocala f 84.35% 

30041 rub G. rubens Ocala f 84.85% 

30057 rub G. rubens Lake City f 88.40% 

30059 rub G. rubens Lake City f 88.86% 

30060 rub G. rubens Lake City f 87.83% 

30061 rub G. rubens Lake City f 90.23% 

30052 rub G. rubens Ocala m 78.01% 

30053 rub G. rubens Ocala m 80.72% 

30055 rub G. rubens Ocala m 79.76% 

30063 rub G. rubens Lake City m 77.70% 

30064 rub G. rubens Lake City m 77.56% 

30065 rub G. rubens Lake City m 70.75% 

30027 tex G. texensis Lancaster f 83.09% 

30028 tex G. texensis Lancaster f 83.20% 

30029 tex G. texensis Lancaster f 81.61% 

30030 tex G. texensis Lancaster f 83.80% 

30031 tex G. texensis Lancaster f 80.42% 

30043 tex G. texensis Austin f 91.78% 

30044 tex G. texensis Austin f 90.01% 

30046 tex G. texensis Austin f 87.70% 

30032 tex G. texensis Lancaster m 76.17% 

30033 tex G. texensis Lancaster m 77.76% 

30034 tex G. texensis Lancaster m 77.24% 

30035 tex G. texensis Lancaster m 80.79% 

30036 tex G. texensis Lancaster m 76.77% 

30047 tex G. texensis Austin m 86.40% 

30049 tex G. texensis Austin m 88.52% 

30050 tex G. texensis Austin m 79.15% 

30051 tex G. texensis Austin m 86.18% 

 849 
 850 
 851 
 852 
 853 
  854 
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Table S2. ABC estimates for the AGF scenario. Prior distributions (log-scale), posterior predictive checks 855 
and posterior parameter estimates (log scale, median and 95% highest posterior density interval) for the 856 
model are shown. 857 

Parameter 

Priora Validation Posterior 

minimum maximum R2 RMSEP 2.5% Median 97.5% 

LOG10(NANC) 4.0 6.0 (lu) 0.0 0.96 4.76 5.31 5.81 

LOG10(NRUB) 3.0 6.0 (lu) 0.93 0.27 3.81 4.26 4.55 

LOG10(NTEX) 3.0 6.0 (lu) 0.93 0.27 3.98 4.45 4.69 

LOG10(TSPLIT)b 5.0 7.0 (lu) 0.06 0.97 4.61 5.83 7.04 

LOG10(TISO)b 3.0 7.0 (lu) 0.79 0.46 4.21 4.56 4.73 

MTEX>>RUB 0.01 0.5 (u) 0.17 0.91 0.03 0.24 0.49 

MRUB>>TEX 0.01 0.5 (u) 0.12 0.94 0.01 0.26 0.51 
a priors are uniformally (u) or log-uniformally (lu)distributed and do not overlap zero for migration rates 858 
and bottleneck size. 859 
b the timing of demographic events is in (logarithm of) number of generation and both species have two 860 
generations annually. 861 
 862 
Table S3 ABC estimates for the full sample (including 8 individuals from half-sib pairs), AGFRB 863 
scenario. Prior distributions (log-scale), posterior predictive checks and posterior parameter estimates (log 864 
scale, median and 95% highest posterior density interval) for the model are shown. 865 

Parameter 

Priora Validation Posterior 

minimum maximum R2 RMSEP 2.5% Median 97.5% 

LOG10(NANC) 4.0 6.0 (lu) 0.05 0.974 4.94 5.32 5.72 

LOG10(NRUB) 3.0 6.0 (lu) 0.89 0.333 4.70 4.79 4.87 

LOG10(NTEX) 3.0 6.0 (lu) 0.88 0.346 4.73 4.85 4.94 

LOG10(TSPLIT)b 5.0 7.0 (lu) 0.01 0.997 5.49 6.23 6.74 

LOG10(TISO)b 3.0 7.0 (lu) 0.81 0.438 4.27 4.53 4.72 

LOG10(TBOT)b 5.0 7.0 (lu) 0.02 0.990 5.14 5.19 5.32 

BOTSIZE 0.01 0.5 (u) 0.01 0.995 0.09 0.15 0.23 

MTEX>>RUB 0.01 0.5 (u) 0.12 0.938 0.05 0.12 0.18 

MRUB>>TEX 0.01 0.5 (u) 0.12 0.938 0.01 0.18 0.75 
a priors are uniformally (u) or log-uniformally (lu) distributed and do not overlap zero for migration rates 866 
and bottleneck size. 867 
b the timing of demographic events is in (logarithm of) number of generation and both species have two 868 
generations annually. 869 
 870 

 871 
  872 
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Table S4. GO enrichment results. The top ten terms of the Gene Ontology enrichment is shown for the dxy 873 
outliers and the Allele Frequency Spectrum (AFS) outliers. For each Biological Process, the number of 874 
annotated transcripts and the number of observed and expected transcripts in the sample with a given 875 
annotation are shown. The Fisher’s exact test P-value is corrected using the parent-child algorithm 876 
(Grossmann et al. 2007). The FDR is the false discovery rate based on the corrected P-values. 877 
 878 

GO Term #Annot #Sample #Exp P-value FDR 

  FST     

GO:0032543 mitochondrial translation 10 4 0.34 0.00056 1 

GO:0043087 regulation of GTPase activity 54 10 1.85 0.00123 1 

GO:0071695 anatomical structure maturation 2 2 0.07 0.00141 1 

GO:0010822 
positive regulation of mitochondrion 

organization 
5 3 0.17 0.0026 1 

GO:0044267 cellular protein metabolic process 1773 74 60.58 0.00318 1 

GO:0022411 cellular component disassembly 56 7 1.91 0.00398 1 

GO:0000910 cytokinesis 248 19 8.47 0.00428 1 

GO:0043603 cellular amide metabolic process 577 30 19.72 0.00526 1 

GO:0030716 oocyte fate determination 58 6 1.98 0.00564 1 

GO:0050789 regulation of biological process 4028 160 137.63 0.00566 1 

  dxy     

GO:0042811 pheromone biosynthetic process 44 4 0.2 4.30E-06 0.0027 

GO:0042810 pheromone metabolic process 49 4 0.22 3.60E-05 0.0071 

GO:1903317 regulation of protein maturation 24 3 0.11 3.70E-05 0.0071 

GO:0042446 hormone biosynthetic process 82 4 0.37 4.50E-05 0.0071 

GO:1903318 negative regulation of protein maturation 23 3 0.1 0.0001 0.0152 

GO:0044705 multi-organism reproductive behavior 359 6 1.62 0.0002 0.0232 

GO:0019098 reproductive behavior 367 6 1.65 0.0005 0.0380 

GO:0007618 mating 400 6 1.8 0.0005 0.0380 

GO:0006551 leucine metabolic process 3 2 0.01 0.0011 0.0734 

  AFS     

GO:0006996 organelle organization 2271 41 21.7 0.0003 0.3545 

GO:1902589 single-organism organelle organization 1791 32 17.1 0.0004 0.3545 

GO:0044238 primary metabolic process 4836 59 46.2 0.0007 0.4181 

GO:0090066 regulation of anatomical structure size 375 12 3.6 0.0014 0.5867 

GO:0050789 regulation of biological process 4028 52 38.5 0.0025 0.5867 

GO:0030382 sperm mitochondrion organization 6 2 0.1 0.0027 0.5867 

GO:0065007 biological regulation 4463 56 42.7 0.0027 0.5867 

GO:0007294 germarium-derived oocyte fate determination 46 4 0.4 0.0028 0.5867 

GO:0030716 oocyte fate determination 58 4 0.6 0.0033 0.5867 

GO:0045924 regulation of female receptivity 7 2 0.1 0.0035 0.5867 

GO:0006996 organelle organization 2271 41 21.7 0.0003 0.3545 

 879 
 880 

 881 

 882 
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Fig S1. Population substructure in G. rubens and G. texensis. Variation in allele frequencies between 

species and between populations within species (Lake City and Ocala for G. rubens; Lancaster and Austin

for G. texensis)is shown. The allele frequency variation in all 175,244 SNPs is summarized in the first 

four principal components teasing apart the species (PC1), and the populations in G. texensis (PC 2) and 

G. rubens (PC 4). Note that clustering along the PCs explaining within species variation among 

populations is much weaker compared to clustering of the species along PC1.
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Lancaster Austin

Fig S2.STRUCTURE results. For each of the species, STRUCTURE was run for 100,000 iterations at 

values for K=1 through K=4 (K=5 for the species combined). The mean natural logarithm of the probability

and the delta K (increase or decrease in likelihood between consecutive runs for different values of K) were

 inspected to determine the most likely predicted number of populations. A run of G. rubens and G. texensis 

separately showed in both cases that, although the highest likelihood was for K=2 , differences with K=1 

were only marginal and a defined pattern in population substructure was absent (see also the bar plots at the 

bottom). The run for the species combined (K=2) shows no introgression of G. texensis genes into the 

G. rubens or vice versa.
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Figure S3. Relative natural log transformed probability of the data under different values for K. The raw

probabillities from STRUCTURE relative to the maximum probability is shown for each K, for three random

sets of 8835 SNPs (one per contig), and for G. rubens, G. texensis, and for the species combined (excluding

eight individuals to correct for cryptic relatedness). Within each panel, the dots show each of the three 

iterations and the lines show the trend in the average difference in probability with the maximum probability

for three different sample sizes: two random individuals per population (red),  five random individuals per

population (green), and all the individuals sampled from the populations.
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Fig S4. Demographic parameter estimation for the model with all 40 individuals. For the AGFRB (A-C) and the

AGF models (D-F)  the density distributions of the the ancestral and current population sizes (A,D), the time since

divergence, cessation of gene flow, and recovery to current population sizes after the bottleneck (B,E), and the 

migration rates and bottleneck size (C,F) are shown. The density lines have been trimmed to the existent parameter 

distribution (i.e., no density extrapolation) and have been smoothed by adjusting the bandwidth. For lines 

within one panel the same smoothing bandwidth has been used.
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Fig. S5. Arlequin FST based selection scan. The circles represent estimates for the FST and 

between population heterozygosity for all SNPs with MAF > 0.05 (81,125 SNPs). The blue 

dashed and red solid line are the median and 99th quantile, respectively, of the simulated null 

distribution for this relationship under a hierarchical island model. Any SNPs above the red solid 

lines were considered outliers.
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