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Abstract—With the advent of self-driving vehicles, autonomous
driving systems will have to rely on a vast number of heteroge-
neous sensors to perform dynamic perception of the surrounding
environment. Synthetic Aperture Radar (SAR) systems increase
the resolution of conventional mass-market radars by exploiting
the vehicle’s ego-motion, requiring very accurate knowledge of
the trajectory, usually not compatible with automotive-grade
navigation systems. In this setting, radar data are typically
used to refine the navigation-based trajectory estimation with
so-called autofocus algorithms. Although widely used in remote
sensing applications, where the timeliness of the imaging is
not an issue, autofocus in automotive scenarios calls for simple
yet effective processing options to enable real-time environment
imaging. This paper aims at providing a comprehensive theoret-
ical and experimental analysis of the autofocus requirements in
typical automotive scenarios. We analytically derive the effects of
navigation-induced trajectory estimation errors on SAR imaging,
in terms of defocusing and wrong targets’ localization. Then,
we propose a motion estimation and compensation workflow
tailored to automotive applications, leveraging a set of stationary
Ground Control Points (GCPs) in the low-resolution radar images
(before SAR focusing). We theoretically discuss the impact of
the GCPs position and focusing height on SAR imaging, high-
lighting common pitfalls and possible countermeasures. Finally,
we show the effectiveness of the proposed technique employing
experimental data gathered during open road campaign by a 77
GHz multiple-input multiple-output radar mounted in a forward-
looking configuration.

Index Terms—SAR, Automotive, MIMO, Autofocus, Motion
compensation.

I. INTRODUCTION

The evolution to fully-autonomous vehicles requires the
usage of a huge and heterogeneous set of sensors, such as
cameras, LiDARs, radars, acoustic, etc., to enable advanced
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environmental perception [1]. Cameras and LiDARs are, re-
spectively, passive and active optical sensors able to create
high-resolution images and/or point clouds of the surrounding.
If properly integrated, they can provide the vehicles with the
capability of detect and classify objects in the environment.
Automotive-legacy Multiple-Input Multiple-Output (MIMO)
radars working in W-band (76 − 81 GHz [2]) are widely
employed to obtain measurements of radial distance, veloc-
ity and angular position of remote targets [3]. Advantages
of radars are more than a few: they work in any weather
condition, do not need any external source of illumination and
are available at low cost. However, mass-market automotive
radars are characterized by a poor trade-off between angular
resolution - typically above 1 deg -, range, bandwidth and Field
Of View (FOV), challenging their usage for high-resolution
environment mapping in automated driving [2], [4].

Significant effort was spent in recent works to increase the
accuracy of environmental perception by means of Synthetic
Aperture Radar (SAR) techniques [5]–[9]. With SAR, a mov-
ing radar sensor is employed to synthesize a large antenna
array (synthetic aperture) by coherently combining different
acquisitions in different positions of the trajectory; the range
resolution, dictated by the bandwidth, remains the same as for
conventional real aperture radars, while the angular resolution
increases proportionally to the length of the synthetic aperture
(typically ≪ 1 deg). In [5], an automotive SAR system has
been simulated using a radar mounted on a sliding rail. In [6],
a 77 GHz radar with 1 GHz of bandwidth was mounted on
the rooftop of a car to obtain images with resolution as small
as 15 cm. The system proved to be capable of imaging the
scene composed by cars, fences, sidewalks, houses and more.
In [7] and [8], SAR images were used to search for free
parking areas, while a 300 GHz SAR implementation (with 40
GHz of bandwidth) is presented in [9], showing millimeter-
accurate imaging capabilities on a slowly traveling van along a
linear path. A preliminary investigation on a cooperative SAR
system aimed at increasing the resolution in scarce bandwidth
conditions is by our previous work [10]. The recent work in
[11] provide a comparison between compares SAR imaging
and occupancy grid maps, showing the SAR superiority in
terms of imaging accuracy.

All the aforementioned works underline how the knowledge
about instantaneous radar position is of utmost importance for
automotive SAR systems. Errors in motion estimation, due to
inaccurate navigation data, make the SAR images to appear
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rotated and defocused [12]. In principle, SAR requires navi-
gation accuracy to be better than the wavelength (4 mm in W-
band) [13], but the requirement is on the relative motion within
the synthetic aperture, that extends up to tens of centimeters.
Early works on automotive SAR [14], [15] propose simple
accelerometer- and/or gyroscope-based Motion Compensation
(MoCo), other [16] consider the usage of odometric wheel
speed, for approximately linear trajectories. Our previous
work [17] demonstrated a good SAR imaging quality in urban
scenarios, employing an ad-hoc fusion of multiple sensors
such as Global Navigation Satellite System (GNSS), Inertial
Measurement Units (IMUs), odometer and steering angle.
However, these former works highlighted the need of a proper
residual motion correction in arbitrary dynamic conditions,
where automotive-grade navigation solutions are not accurate
enough.

Therefore, the residual motion estimation and compensation
is still and open issue. Traditionally, air-borne and space-borne
SAR systems make use of radar data on top of navigation
ones to refine the positioning accuracy with an autofocus
procedure [18]–[22]. By and large, all autofocus routines
are characterized by the use of detected targets in lower
resolution images to estimate the residual platform velocity,
using the navigation-estimated data as a-priori information.
On the contrary, very little work has been done in the
automotive field, where simple yet effective approaches are
of utmost importance. The most relevant contributions on
residual motion estimation and compensation are in [23]–[27].
In [23], for instance, an autofocus procedure has been em-
ployed for the focusing of SAR images without dealing with
MIMO SAR and providing just simulation results. In [24], a
complete automotive-based SAR system has been proposed,
based on a new approach for motion compensation. As the
vehicle changes its velocity, the radar’s parameters such as
the pulse repetition frequency is changed, to avoid distortions
in the final SAR image. The paper however does not cope
with errors in the knowledge of the vehicle trajectory. Two
similar approaches are in [26] and [27]. In the former, the
authors use a standard range-Doppler radar to refine the ego-
motion estimation of the vehicle. This information is not used,
however, to focus a SAR image. In the latter, instead, two
radars are used: one for the ego-motion estimation and the
other for the SAR image formation.

To the best of authors’ knowledge, no work discusses the
theoretical and practical requirements of a motion compensa-
tion routine in the specific automotive context. In this paper,
we analyze the effect of typical vehicle motion estimation
errors on SAR imaging, highlighting the major sources of
image degradation and providing the theoretical requirements
in terms of maximum tolerable velocity errors. Then, we
outline a possible autofocus workflow, exploiting a set of co-
registered low-resolution images obtained by focusing the data
received by a MIMO radar mounted on the vehicle. These
low-resolution images provide the location of a set of Ground
Control Points (GCPs) that are first used to retrieve the residual
Doppler frequency and, consequently, the velocity error. We
provide the guidelines for correctly choosing GCPs to avoid
possible pitfalls that will degenerate into erroneous residual

motion estimation and, consequently, to image degradation.
For instance, we give insights to properly selecting the GCPs
as well as the effects on SAR imaging of an error in the
focusing height and wrong angular localization of a GCP.
The expected theoretical performance of the residual motion
estimation and compensation are also assessed. It is worth
remarking that the contribution of this paper is not to propose a
novel autofocus algorithm, but rather to emphasize all the pos-
sible factors affecting the motion compensation performance
in typical automotive scenarios, where a real-time or quasi-
real-time SAR imaging is required. Therefore, we also discuss
the computational burden of autofocus, opting for simple yet
effective processing options.

The work is validated by experimental data gathered by
a 77 GHz MIMO radar mounted on the front bumper of
a car in a frontal-looking configuration. The vehicle is pur-
posely equipped with navigation sensors to provide the prior
trajectory estimation, input of the autofocus procedure. The
results confirm the proposed approach’s validity, which allows
obtaining cm-accurate images of urban environments.

The paper is organized as follows: in Section II, an intro-
duction to Frequency Modulated Continuous Wave (FMCW)
MIMO SAR processing is provided; Section III reports the
analytical derivation of the effects of motion errors on SAR
focusing and provides the theoretical limits to the accuracy of
navigation data for a correct SAR imaging of the environment.
Section IV describes the proposed autofocus workflow, vali-
dated with experimental data in Section V. Finally, Section VI
draws the conclusion.

II. FMCW SAR PROCESSING

For the sake of clarity, in this section we propose a review
of the core aspects of FMCW radars [28], MIMO and SAR
processing. Each system is described, the geometry of the
problem is explained, strengths and limitations are reported.

A. FMCW Preliminaries

Let us consider a FMCW radar operating in W-band, located
in the origin of a 2D scenario, emitting a chirp signal of
duration Tp every Pulse Repetition Interval (PRI). The emitted
signal is:

stx(t) = exp{j(2πfct+ πKt2)} × rect

[
t

Tp

]
(1)

where t is the fast-time variable, fc is the carrier frequency, K
is the chirp rate measured in [Hz/s] and the overall frequency
sweep covers a bandwidth B. After range compression, the
demodulated and compressed signal can be expressed as [29]:

src(r; r0) = Tp sinc

[
r − r0
ρr

]
exp

{
−j 4π

λ
r0

}
(2)

where λ is the carrier wavelength and ρr = c/(2B) is the
range resolution.

For an exemplary bandwidth B = 3 GHz, the range
resolution is approximately 5 cm. A radar system with a single
antenna will provide a resolution equal to the beam-width
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Fig. 1. Geometry of the radar acquisition: (a) MIMO radar; (b) SISO SAR,
at height q from ground, consisting of a single-antenna moving platform,
transmitting a pulse for each PRI; (c) MIMO SAR with antenna array
orthogonal to motion (forward looking configuration). Notice that other
deployments of the radar are possible (for arbitrary squint angles)

in the direction orthogonal to range (azimuth). To provide
an enhanced angular resolution it is common practice to use
arrays of antennas, either real or virtual.

B. MIMO Processing

By using a MIMO radar, we have Ntx transmitting antennas
and Nrx receiving . Each possible pair of TX-RX form a
virtual radar channel leading to an equivalent virtual array
composed by N = Ntx × Nrx virtual elements. Figure 1a

shows a Uniform Linear Array (ULA) displaced along y, with
an inter-antenna spacing of ∆y.

Let us consider a 2D scenario. According to (2), the Rx
signal at the n-th antenna from the target in x0 is:

src(r, n;x0) = Tp sinc

[
r − r(n;x0)

ρr

]
×

× exp

{
−j 4π

λ
r(n;x0)

} (3)

where r(n;x0) is the distance from the target in x0 to the n-th
antenna. Assuming a plane wave impinging the antenna array,
it is:

r(n;x0) ≈ r0 − n∆y sinϕ0 (4)

where r0 = r(0;x0) is the distance between the target and the
center of the array and ϕ0 = tan−1(y0/x0) is the observation
angle (angular position of the target in the FOV). Combining
(3) with (4), we obtain:

src(r, n;x0) = Tp sinc

[
r − r0
ρr

]
×

× exp

{
−j 4π

λ
r0

}
exp

{
j
4π

λ
n∆y sinϕ0

}
,

(5)

i.e., a truncated spatial sinusoid across the array of frequency
fx = (2/λ) sinϕ0. The corresponding array resolution is:

ρϕ =
λ

2N∆y cosϕ
[rad]. (6)

In Figure 2, we show an example from real data of a MIMO
image acquired by an 8 channel array: the angular resolution
is roughly 15 deg at the boresight.

C. SAR Processing

The core of SAR is to jointly process several radar pulses
gathered by a radar mounted on a moving platform to improve
the resolution of a MIMO radar. For the sake of simplicity,
let us consider a single antenna moving on a platform and a
target in x0 = [x0, y0, z0]

T (3D scene). The geometry of the
problem is depicted in Figure 1b. The RC signal can be written
by substituting in (3) the antenna index n with the slow-time
τ :

src(r, τ ;x0) = Tp sinc

[
r − r(τ,x0)

ρr

]
×

× exp

{
−j 4π

λ
r(τ,x0)

}
.

(7)

There are several algorithms that can be used for the so-called
focusing. The most adequate for non linear trajectories is the
Time Domain Back Projection (TDBP) [30], [31]. The TDBP
integral for a generic pixel in the scene x = [x, y, z]T can be
written as:

I(x) =

∫
τ∈T

src(r(τ,x), τ ;x0) exp

{
+j

4π

λ
r(τ,x)

}
dτ (8)

where I(x) is the final SAR image, T is the considered
synthetic aperture time and r(τ ;x) = ∥x−p(τ)∥ is the time-
varying antenna-to-pixel distance at a given time τ , function
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Fig. 2. MIMO image acquired by an 8 channel array. With 8 elements spaced
by λ/4 the angular resolution is roughly 15 deg at the boresight.

of the position of the Antenna Phase Center (APC) represented
by the vector p(τ) = [px(τ), py(τ), pz(τ)]

T.
The whole TDBP algorithm is divided in three steps: (i) the

RC data for a single pulse is evaluated at position r(τ ;x) (ii)
the interpolated data is phase rotated by exp {j(4π/λ)r(τ ;x)}
compensating for the two-way path phase (iii) the procedure
is repeated for every pulse into the synthetic aperture and the
results are coherently summed.

A very simple interpretation of the TDBP algorithm can be
given if we assume a 2D geometry and a rectilinear trajectory
of the platform with constant velocity. Although the latter
assumptions may seem too simplistic for a urban environment,
they are only used herein to give a intuitive interpretation of
the TDBP algorithm and the aberrations induced by trajectory
errors on the SAR image. However, TDBP can take into
account any trajectory, possibly non-linear and with non-
uniform velocity, as far as it is known during focusing.

Let us therefore assume the platform traveling at ground
level (i.e, q = 0 or θ = 90 deg for all the pixels in the FOV)
along the x axis with a velocity v = [vx, 0, 0]. If the target is
located at a generic x0 = [x0, y0, 0]

T, we have, under plane
wave approximation:

r(τ ;x) ≈ r0 + sin ξvxτ (9)

where ξ = π/2− ϕ.
The TDBP integral (8) now reduces to:

I(x) ≈
∫

τ∈T

C exp

{
−j 4π

λ
[sin ξ − sin ξ0]vyτ

}
dτ ≈

≈ T sinc

[
2vxT

λ
(ξ − ξ0)

] (10)

where we assume a constant illumination of the target along
the whole aperture time, i.e., |src(r(τ,x), τ,x0)| = C. The
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Fig. 3. MIMO SAR image focussed using an aperture length of T = 40
ms. The angular resolution is greatly improved with respect to the standard
MIMO image. The amplitudes are normalized and in linear scale.

last term in (10) is valid for small angles, i.e., ξ → 0 and ξ0 →
0.The expression of (10) is the Fourier transform of a truncated
complex sinusoid with frequency fd = 2vxξ0/λ, therefore the
result will be a cardinal sine function in the Doppler frequency
domain centered in fd.

Up to now we derived the SAR processing for a Single-
Input-Single-Output (SISO) architecture. In MIMO systems,
instead, we have multiple APCs (real or virtual) travelling
on the same platform, as exemplified in Figure 1c for a
forward looking configuration (other configurations, such as
side-looking, are also possible). To have a MIMO SAR,
we first observe that at each slow time τ we can form a
low resolution MIMO image by simple spectral analysis (see
Section II-B) or by TDBP leading to:

Im(x, τ)=

N∑
n=1

src[r(n, τ ;x), n, τ ;x0]exp

{
j
4π

λ
r(n, τ ;x)

}
,

(11)
where Im(x, τ) is the low resolution image obtained by the
focusing of the N signals received at time instant τ . The
final SAR image is then obtained by coherently summing all
the complex-valued low-resolution MIMO images along the
synthetic aperture:

I(x) =
∑
τ∈T

Im(x, τ). (12)

The angular resolution of SAR systems improves significantly
compared to conventional MIMO radars, where the effective
aperture N∆y is substituted by the synthetic aperture length
As = vxτ :

ρsar
ϕ =

λ

2As sinϕ
[rad] (13)

The angular resolution is then converted into spatial resolution
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Fig. 4. The same scene of Figure 3, but now corrupted by a severe
velocity error along x. The image collapses inwards. (∆vx = 35 cm/s).
The amplitudes are normalized and in linear scale.

in the direction of motion with a linear relationship ρx ≈ rρsar
ϕ .

Notice that the maximum spatial resolution of a MIMO radar
is for ϕ = 0 deg, while for a SAR corresponds to ϕ = 90 deg
(orthogonal to the synthetic aperture). For a system operating
at 77 GHz mounted on a vehicle traveling at 14 m/s (54 km/h),
we obtain a resolution of 0.2 deg at the synthetic aperture
boresight by exploiting 50 cm of aperture. The cross-range
spatial resolution is 11 cm at r = 30 m of distance. The
spatial resolution is inherently dependent on the range and
angular position of the target. For example, for a target at
45 degrees w.r.t. the boresight of the array and at 20 meters
of distance, the resolution obtained by exploiting 25 cm of
aperture is roughly 22 cm. The same resolution is obtained
exploiting the same aperture in a location at 10 meters of
distance and 20 degrees of angular position. Figure 3 shows
the same scene of Figure 2, but this time exploiting the car’s
motion to form a synthetic aperture of T = 40 ms. Notice that
Figure 3 is a normalized SAR image (i.e., the amplitude value
is between 0 and 1). The angular resolution is greatly improved
allowing for better recognition and localization of the targets.
The last thing to mention is the presence of moving targets in
the scene. SAR imaging relies on the knowledge of the relative
velocity between a target and the sensor. Fixing the target
velocity at zero, means focusing the static scenario. In an urban
environment, however, several moving targets are present. It
is possible to change the scene focusing velocity leading to an
image that shows just moving targets at the specific velocity.
The imaging of moving targets is outside of the scope of this
paper.
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Fig. 5. The same scene of Figure 3, but now corrupted by a severe velocity
error along y. The image is rotated (∆vy = 35 cm/s). The amplitudes are
normalized and in linear scale.

III. IMPACT OF MOTION ESTIMATION ERRORS ON SAR
FOCUSING

We recall that each SAR processor, described by (8),
requires the knowledge of the APC positions at each slow time
τ for the computation of the range values r(τ ;x). In principle,
the vehicle trajectory must be known with an accuracy within
the wavelength (millimeters for typical automotive radars). In
practice, it is sufficient to track the relative APC motion along
a synthetic aperture, i.e., to know the position displacement. In
this section, we focus on velocity errors, as stationary position
errors do not affect the quality of the SAR images, while linear
position errors due to velocity errors lead to image distortion.
We first analytically derive the effect of a velocity error on
the focused SAR image I(x), then we set the theoretical
requirement on velocity estimation accuracy, discussing the
implications for typical automotive SAR systems and justify-
ing the usage of both navigation and radar data to properly
perform the residual motion estimation and compensation.

In the following, we model the navigation output as a noisy
biased estimate of the true vehicle’s position p(τ) and velocity
v(τ) = [vx(τ), vy(τ), vz(τ)]

T. Let us define the vehicle’s
instantaneous velocity provided by the navigation system as:

vnav(τ) = v(τ) + ∆v(τ), (14)

where ∆v(τ) = [∆vx(τ),∆vy(τ),∆vz(τ)]
T is the velocity

error. In the following analytical developments, the velocity
v(τ) as well as the velocity estimation error ∆v(τ) from nav-
igation data will be assumed as constant within the synthetic
aperture time. We again underline that the constant velocity
assumption is not mandatory for SAR imaging but greatly
simplifies the problem providing a closed form solution for
the effects of an error in velocity. On the other hand, the
constant velocity estimation error from a-priori navigation
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data is a reasonable assumption that allows for a simple yet
realistic modeling of the signal and a robust estimation of the
residual motion, as detailed in Section IV. This hypothesis
has been used in several works such as [32]–[34]. A residual
acceleration error, instead, has been proven in [35] to gen-
erate a slight defocusing. We deem, however, that for short
apertures, in the order of tens of milliseconds, the impact of
residual accelerations can be neglected (as demonstrated by
Figure 15 in Section V). In any case, for longer integration
times, the problem can be solved by portioning the data
into sub-apertures and treat them separately by assuming no
acceleration error inside each sub-aperture.

From (9), we observe that a constant velocity error maps
to a linear range over time, and therefore to a linear phase.
If the trajectory is perfectly known (∆v = 0), the complex
exponential in the TDBP integral of (8) will perfectly com-
pensate the phase term of (7) on the pixel x0 where the target
is located, leading to a constructive sum and to a well focused
image. Conversely, if the estimate of the trajectory contains
an error ∆v ̸= 0, the phase term in (7) will not be perfectly
compensated in (8), thus leading to a destructive sum and to a
defocused image. Moreover, there is an angular displacement
of the target in the SAR image leading to a wrong localization.
To gain insight on the role of velocity errors in automotive
SAR imaging, consider again 2D geometry, with a vehicle
traveling along x at ground level (q = 0) at velocity vx and
a target placed in x0 = [0, r0, 0]

T. For a velocity error in
the direction orthogonal to the motion (∆vy ̸= 0), the range
expression (9) for small angles ξ becomes:

r(τ ;x) ≈ r0 + sin ξ vxτ + cos ξ∆vyτ (15)

and the TDBP integral for small angles ξ (10) can be then
rewritten as:

I(x) ≈
∫

τ∈T

C exp

{
−j 4π

λ

(
ξ − ξ0 −

∆vy
vx

)
vxτ

}
dτ, (16)

that is again a Fourier integral resulting in a sinc function, but
now centered in ξ0 − (∆vy/vx). The error is in the angular
localization of the target, ∆ξ = ∆vy/vx, converts into a
position error:

∆x = r0∆ξ, (17)

hindering the precise target localization especially for
medium/long ranges. For instance, in Figure 4 we image the
same scenario of Figure 3, but corrupted by a strong velocity
error along the direction of motion ∆vx = 35 cm/s: the SAR
image seems to collapse inward. A similar observation can be
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Fig. 7. The maximum tolerable velocity error in function of the total
integration (aperture) time. The higher the integration time, the more stringent
are the constraints on the knowledge of the car’s velocity. The tolerances are
evaluated for different operational frequencies of the radar.

made for Figure 5, where the velocity error is in the direction
orthogonal to the nominal motion (∆vy = 35 cm/s). The scene
is rotated as predicted by (16).

The analysis can be generalized to the 3D domain with
target position x = [x, y, z]T (at range r =

√
x2 + y2 + z2

from the center of the synthetic aperture) and 3D velocity of
the vehicle v = [vx, vy, vz]

T. The phase of the received signal
in (7) can be linearized as:

ψ(x, τ) ≈ 4π

λ
r −

(
k(x)Tv

)
τ (18)

where

k(x) =
4π

λ
[sin θ cosϕ, sin θ sinϕ, cos θ]T. (19)

An error in the velocity is therefore transferred into a phase
error

∆ψv(x, τ) =
∂ψ(x, τ)

∂v
∆v =

(
k(x)T∆v

)
τ. (20)

When ∆v = 0, the residual phase ∆ψv(x, τ) over a target at
x is zero; conversely, when ∆v ̸= 0, the phase shows a linear
behavior with τ , representing a residual Doppler frequency. It
is also interesting to notice that the phase error is higher in
those areas of the FOV pointed by vector ∆v. If the dominant
contribution of the velocity error is in the direction of motion
x, for instance, the area of the final image that will be more
corrupted by the velocity error is the one around x.

It is now useful to assess the maximum tolerable velocity
error. From (16), a velocity estimation error maps into a target
positioning error in the final SAR image as well as in a mild
defocusing effect. The latter effect has less impact, as it is
quantitatively discussed in Appendix. The maximum tolerable
velocity error is defined as the one that induces a localization
error within the angular resolution. Eq. (16) can be generalized
as:

∆vmax
r

v⊥
=

λ

2A⊥
s

(21)
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where ∆vmax
r is the maximum tolerable radial velocity error in

an arbitrary direction defined by (θ, ϕ) (line of sight), v⊥ and
A⊥

s are, respectively, the nominal vehicle’s velocity and the
component of the synthetic aperture orthogonal to the line of
sight. In Figure 6 the geometry of acquisition is depicted with
the quantities just mentioned highlighted. We can also express
the absolute tolerable velocity by recognizing that A⊥

s = v⊥T ,
where T is the integration time, thus:

∆vmax
r =

λ

2T
(22)

Figure 7 depicts the maximum tolerable radial velocity error
as function of the total integration time and for different
operational wavelengths. For a long integration time (high
azimuth resolution) and shorter wavelengths, the requirements
on the accuracy become very strict, in the order of 1 cm/s. For
instance, for a car moving at 15 m/s, an angular resolution of
ρsar
ϕ = 0.2 deg at ϕ = 90 deg (allowing 1 m of cross-range

resolution at 30 m at 77 GHz) implies T ≈ 40 ms, therefore
the velocity error shall be within vmax

r = 5 cm/s. Notice that,
reducing the frequency of operation, e.g., to 24 GHz, does
not relax the requirement: an angular resolution of ρsar

ϕ = 0.2
deg requires an aperture time T ≈ 125 ms, leading again to
∆vmax

r ≈ 5 cm/s. Automotive-legacy navigation systems can
provide an average velocity error ranging from 5 cm/s down
to 2− 3 cm/s for expensive commercial Real-Time Kinematic
(RTK) setups, possibly integrating GNSS, inertial sensors and
magnetometers [36]. However, these systems heavily rely on
GNSS signals, that may be absent or inaccurate in some
scenarios (urban canyons with strong multipath or tunnels).
Moreover, car navigation systems must deal with unpredictable
driver’s maneuverings, leading to a velocity error that could
be as high as 10− 20 cm/s [37]. Although the fusion of inex-
pensive heterogeneous in-car sensors data was demonstrated to
provide accurate imaging in moderate dynamics [17], a reliable
SAR imaging for autonomous driving applications calls for the
integration of navigation and radar data.

IV. MOTION ERROR ESTIMATION AND COMPENSATION

This section outlines the proposed residual motion estima-
tion and compensation technique to estimate and compensate

trajectory errors starting from a set of low resolution MIMO
images {Im(x, τ)}τ∈T . We remark that this paper aims at
providing the practical guidelines for the implementation of
autofocus in the automotive scenario and discuss possible
pitfalls, rather than proposing novel autofocus kernels, as the
core is well known in the literature [33]. After the estimation
of the motion error, each MIMO image is first corrected by a
phase term referred to as Trajectory Phase Screen (TPS), then
a well-focused SAR image is obtained by (12). Figure 8 shows
the complete SAR data processing and autofocus workflow. In
the following, we detail each portion of the block diagram.

A. From raw data to a stack of low-resolution images

The vehicle is equipped with a MIMO FMCW array able
to generate an equivalent virtual array of N elements. At each
slow time, each one of the N elements of the array receives a
radar echo. Each received signal is first RC and then subject
to the TDBP for the generation of the M low resolution
images in the duration of the synthetic aperture T : each image
Im(x, τ) is formed by back-projecting in the FOV the N
signals received at each APC of the array at the time instant
τ . Notice that the combination of PRI and number of MIMO
channels of the radar must ensure to have unambiguous low
resolution images. If the TDBP is performed over a common
grid for all the slow time instants, all the images are already
compensated for range migration. Conversely, if the focusing
of the MIMO images is done using a simple Fourier transform
as discussed in Section II-B, the images must be then co-
registered to a common grid through an interpolation step [30].
The former approach has been used in this work.

B. Autofocus

The core of the procedure, i.e., the autofocus routine, takes
as input the set of M low resolution images {Im(τ,x)}τ∈T .
As discussed in Section III, the presence of a constant error
in the estimated velocity ∆v by navigation leads to a linear
residual range (or phase) after TDBP, leading to a distorted
image. The autofocus procedure starts from the linear residual
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system becomes tolerable to focusing heights errors.

phase ∆ψv(x, τ) in (20), representing a complex sinusoid of
angular frequency:

∆ω(x) = k(x)T∆v, (23)

that provides a single equation for three unknowns (the
three components of the velocity error). Exploiting the low-
resolution images at each slow time, it is sufficient to detect
few stable GCPs in the scene to have an overdetermined linear
system of equations. If we consider a total of P stationary
GCPs we can write:

∆ω(x0)
∆ω(x1)
∆ω(x2)

...
∆ω(xP )


︸ ︷︷ ︸

∆ω

=


k0x k0y k0z
k1x k1y k1z
k2x k2y k2z
...

...
...

kPx kPy kPz


︸ ︷︷ ︸

K

∆vx∆vy
∆vz


︸ ︷︷ ︸

∆v

+


n0
n1
n2
...
nP


︸ ︷︷ ︸

n

(24)

where n ∼ CN (0, σ2
nI) is the circularly complex Gaussian

noise vector of power σ2
n representing the uncorrelated noise

on the estimates of the residual frequencies ∆ω. The process
of selection of stable GCPs can be performed by looking at
the amplitude statistics of the scene. In particular, we opt for
the computation of the incoherent average (i.e., the average
of the amplitudes) of all the M low resolution images and
take just the brightest targets. Since the linear system (24)
has only three unknowns, it is typically sufficient to detect
20 to 50 GCPs to obtain a reliable estimate. Therefore, the
thresholding on the amplitude for the GCP selection can
be very stringent. The rejection of moving targets will be
discussed later on in this section. Another key aspect in the
selection of GCP is the accuracy on their localization. An
error in the focusing height and/or an error in the estimation
of the angular position of the GCPs can prevent a correct
estimation of the residual motion error.

1) Error in the focusing height of GCP: In (8), the 3D
coordinate x of every pixel of the backprojection grid can be
arbitrarily chosen. It is common practice to choose a fixed
focusing height, i.e., x = [x, y, z = z′]T. In a real scenario,
however, the height of the target is not known and it is possibly
different from z′ [38]. The difference between the true position
and the focusing plane is denoted by ∆z. If the target is not
truly at that position, another linear residual phase term arises.
The expression of such residual phase can be easily derived
considering that an error on z is equivalent to an error on the
elevation angle θ, thus:

∆ψz(x, τ) =
∂ψ(x, τ)

∂θ
∆θ =

[(
k′
θ(x)

Tv
)
∆θ

]
τ (25)

where k′
θ(x) = (4π/λ)[cos θ cosϕ, cos θ sinϕ, − sin θ]T is

the derivative of k(x) with respect to θ and

∆θ =
∆z

r sin θ
. (26)

Notice that (25) is again linear in slow time: both an error in
the velocity and an error in the focusing height manifest as
a linear phase in time. The residual linear phase over a GCP
depends on the nominal velocity of the vehicle v, the angles
(θ, ϕ), the range r and the error of focusing height ∆z. It is
now possible to compute the maximum tolerable error in term
of ∆z which will again depend on the GCP position (r, θ, ϕ)
and on the vehicle velocity v. Exploiting the requirement on
the radial velocity (22), the maximum tolerable height error is
the one that generates a Doppler frequency corresponding to
∆vmax

r . In Figure 9, we show the maximum tolerable height
error for 77 GHz radar with T = 200 ms integration time,
represented for each pixel in the scene. Notice that, according
to (26), in far range the system is very robust even to big
elevation errors. This is a direct consequence of large r and
steep incidence angles (θ ≈ 90 deg). The suggestion is then
to select GCPs in the far range of the scene. In any case,
the residual linear phase due to target’s elevation can be also
estimated and compensated by an interferometric processing,
disposing of at least two ULAs displaced along z.

2) Error in the angular localization of GCP: The same
reasoning used for an error in the focusing height can be
applied to an error in the angular localization of a GCP.
Without velocity focusing height errors, the residual Doppler
frequency is exactly zero over a given target. Due to the finite
sampling of the MIMO images, however, it can happen that the
peak of the Impulse Response Function (IRF) representing the
target is not detected, as shown in Figure 10. The mis-detection
could happen also due to the in-avoidable presence of noise.
In blue, the continuous IRF with an angular resolution given
by the physical length of the array, the sampling positions
being depicted in red while the detected GCP in purple. If the
detected GCP is not at the peak of the cardinal sine function,
a residual Doppler frequency is present.

Let us call ∆ϕ the error on the angular localization of a
GCP. We have:

∆ψϕ(x, τ) =
∂ψ(x, τ)

∂ϕ
∆ϕ =

[(
k′
ϕ(x)

Tv
)
∆ϕ

]
τ (27)
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where k′
ϕ(x) = (4π/λ)[− sin θ sinϕ, sin θ cosϕ, 0]T is the

derivative of k(x) with respect to ϕ. The residual angular
Doppler frequency is then:

∆ωϕ =
∂ψ(x, τ)

∂ϕ
∆ϕ =

(
k′
ϕ(x)

Tv
)
∆ϕ =

4π

λ
v⊥∆ϕ. (28)

Again, the maximum tolerable angular error is the one
that will generate a Doppler frequency corresponding to
∆vmax

r . In Figure 11, the maximum tolerable angular error
∆ϕ is depicted for every pixel in the field of view. The
car is supposed to travel along x at 15 m/s. In this case,
v⊥ is ≈ 0 for the pixels exactly in front of the car, thus
allows for a larger ∆ϕ. The worst case is for ϕ ≈ 90 deg,
where the accuracy in GCP detection must be the maximum.
GCP detection accuracy can be refined with a parabolic
interpolation to reduce unwanted phase effects.
It is important to highlight that, with a sufficient number
of GCPs, the angular error becomes irrelevant since the
errors will be both positive and negative and the average will
approach zero. The same is not true for elevation error where
a significant bias towards positive or negative errors may be
present.

Once the GCPs have been detected, a frequency estimation
is performed through a Fast Fourier Transform (FFT) of the
phase of each GCP, and the position of the peak in the
frequency domain is extracted to form ∆ω in (24). It is
possible that a moving target (bike, another vehicle, pedestrian,
etc.) is detected as a GCP, preventing a correct residual motion
estimation. It is mandatory to discard outliers before the
inversion of (24), by imposing a threshold on the maximum
frequency that is possible to find on a given GCP. As a
rule of thumb, the value of the threshold can be derived
from the accuracy of the navigation data: if the the nominal
accuracy is, for instance, 20 cm/s, it is unlikely to find a
GCP with a residual Doppler frequency much higher than
the one corresponding to 20 cm/s. It is worth to stress that,
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Fig. 11. Maximum tolerable angular error in GCP detection. The nominal
vehicle velocity is set to 15 m/s along x, the nominal radar height over ground
is 0.5 m, the maximum radar slant range is 30 m. The system is tolerable to
angular errors in the direction of the motion.

the more accurate the navigation data, the more robust is the
outlier rejection and, consequently, the better the performance
of the whole procedure. Notice that it is of utmost importance
to discard moving targets from the set of selected GCPs,
otherwise performance penalties occur. The hard thresholding
on the maximum allowed residual Doppler frequency allows
for an easy and fast rejection of moving targets.

The linear system (24) can therefore be solved using the
Weighted Least Square (WLS) method:

∆̂v = (KTWK)−1KTW∆ω (29)

where W is a proper weighting matrix. Each GCP can be
weighted according to some specific figure of merit such as
the amplitude of the GCP or the prominence of the peak
in the frequency domain. In the first case, stronger targets
(higher radar cross section) will weigh more in the linear
inversion while, in the latter case, more weight is given to
those targets with a more pronounced linear phase behavior.
We used a simple weighted linear inversion due to its low
computational burden, ideal for real time applications. It is
worth remarking that the matrix inversion (29) might be
unstable. In a typical automotive environment, the radar is
mounted close to the road, thus θ ≈ 90 deg for every GCP. The
direct consequence is that the residual radial velocity vector
of any given GCP has components only in the x, y plane and
not in the z direction, therefore a residual velocity along z
has no possibility to be detected with satisfactory accuracy.
It is even more straightforward from (18): if ∆vz ̸= 0 there
is no consequence on the residual phase if θ = 90 deg. The
solution can be to avoid the estimation of ∆vz by removing
the last column of K and the last row of ∆v. The quality of
the velocity estimate ∆̂v can be assessed by its covariance
matrix, that is:

C
∆̂v

= (KTWK)−1σ2
n. (30)

Notice that, in practice, the exact value of σ2
n is unknown, but

with a sufficient number of GCP it can be roughly estimated
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from the residual of (24), providing some realistic values for
the accuracy of the velocities’ estimates. Equation (30) can
provide also some insights on how to choose GCP in the scene.
For the sake of simplicity, we assume equal unitary weights for
each GCP (W = I), we normalize the noise power (σ2

n = 1)
and we consider a 2D geometry (θ = 90 deg). In this scenario
we have:

C
∆̂v

=
1

|KTK|

[
kT
y ky −kT

xky

−kT
y kx kT

xkx

]
(31)

where kx = [k0x, k
1
x, . . . , k

P
x ]

T, ky = [k0y, k
1
y, . . . , k

P
y ]

T, and
|·| denotes the determinant of a matrix. If we choose all the
GCPs closely spaced in front of the car (i.e., ϕ → 0 deg),
the estimation of ∆vy will be much more unreliable than the
estimate of ∆vx since kT

xkx ≫ kT
y ky . The same reasoning

is valid for GCPs closely spaced at the side of the car (i.e.,
ϕ → 90 deg): the only reliable estimate is on ∆vy . The
extreme case is when all the GCP are closely grouped together:
in this case the matrix K is close to be singular and the
estimates of the residual velocities are useless. Notice that
the residual velocities estimated in (29) can be also used to
improve the ego-motion estimation of the vehicle. In this case
it is sufficient to integrate the residual velocities to obtain
the residual trajectory and then compensate the error in the
original trajectory provided by the navigation unit.

A final note shall be made about the computational com-
plexity of the autofocus algorithm. The workflow has been
designed tailoring real-time automotive imaging for safety-
critical applications, thus the computational complexity shall
be very low for each step. The most demanding task is the
computation of the FFT over each GCP. The computational
complexity depends on the number of frequency points over
which the FFT is evaluated. Nevertheless, the number of GCPs
is very low (less than 50 for a reliable estimate of just two pa-
rameters). Moreover, the hard thresholdings for the selection of
GCPs and outliers’ rejection have a computational complexity
which is negligible compared to the more demanding TDBP.
The computational burden of the whole procedure is so low
to allow for real-time imaging even without software/hardware
optimizations.

C. SAR image formation

Once the residual velocities have been found, it is possible
to compute the forward problem for each pixel x in the scene

TABLE I
SYSTEM PARAMETERS USED IN THE CAMPAIGN

Parameter Value
Carrier frequency (fc) 77 GHz

Bandwidth (B) 1 GHz
Pulse length (Tp) 55 µs

PRF 7 KHz
Active TX channels 2
Active RX channels 4

Maximum range 40 m
Geometry (Mode) forward looking

and for each τ (i.e., each one of the M low resolution MIMO
images). This leads to a set of estimated TPS:

∆̂ψ(x, τ) =
(
k(x)T∆̂v

)
τ (32)

Each low resolution image is phase-compensated using the
estimated TPS:

Îm(x, τ) = Im(x, τ) exp
{
−j∆̂ψ(x, τ)

}
. (33)

and then coherently summed to obtain the final high-resolution
SAR image

I(x) =
∑
τ∈T

Îm(x, τ). (34)

The final SAR image is now properly focused, localized and
ready to be used in safety critical systems such as advanced
autonomous driving systems.

V. RESULTS WITH REAL DATA

To validate the proposed technique, we carried out an exten-
sive acquisition campaign using a fully equipped vehicle. The
radar system is a proprietary ScanBrick® by Aresys® and it
is based on the Texas Instruments AWR1243 Single-Chip 77-
and 79-GHz FMCW transceiver [39]. The maximum available
bandwidth is 4 GHz for a range resolution up to 3.75 cm.
The mounting position of the radar on the vehicle is precisely
known. The entire radar equipment is based on standard auto-
motive hardware suitable for future mass-market production.
The radar is mounted in a forward looking geometry, thus the
boresight of the MIMO array is pointing in the direction of
motion. We employed just 2 out of 3 Tx antennas and all the 4
Rx ones, leading to a virtual array of N = 8 elements, spaced
by λ/4. The angular resolution of the low-resolution images
Im(τ ;x) is approximately 16 deg.The transmitted signal has
1 GHz of bandwidth leading to a range resolution of 15 cm.
We remark that the SAR angular resolution, even in forward-
looking geometry, is still defined by Eq. 13. All the system’s
parameters are summarized in Table I. Notice that in all
the previous works in literature, the radar was mounted side
looking. In fact, a SAR in forward looking geometry, without
an array displaced along the direction orthogonal to the motion
(y) would lead to a totally left/right ambiguous SAR image.
The presence of a ULA with the elements displaced along
y helps to unambiguously reconstruct the image (as in our
case study). The car equipment (Figure 12) is complemented
by navigation sensors to provide the estimated trajectory as
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Fig. 13. SAR intensity image without employing any autofocus procedure.
The amplitudes are normalized and in linear scale.

input to the procedure. The on-board navigation equipment
comprises: (i) two internal 3 Degrees of Freedom (DoF) IMUs,
measuring lateral and longitudinal acceleration, along with
heading rate; (ii) an occupant restraint controller, consisting
in a 3 DoF IMU placed in the rear part of the car, measuring
longitudinal and lateral acceleration as well as heading rate,
the purpose is the airbag activation during a crash; (iii) four
wheel encoders, measuring the odometric velocity of each
wheel; (iv) a steering angle sensor at the frontal wheels; (v) an
on-radar IMU+GNSS sensor [36]. The sensors’ data are fused
with an Unscented Kalman Filter (UKF) approach described
in our previous work [17].

The acquisition campaign has been carried out in a straight
road with several targets in the FOV of the radar. We selected a
portion of the trajectory made by M = 256 slow time samples
and we processed the dataset with and without running the
autofocus workflow. The nominal speed of the vehicle in the
selected synthetic aperture was 36 km/h, thus, for a PRI of 0.14
ms, leads to an average synthetic aperture length As ≈ 40 cm.

The result of the SAR processing without autofocus (only
navigation-based MoCo) is depicted in Figure 13. It is inter-
esting to notice how the image is completely corrupted by an
error on the estimated trajectory. The image seems to collapse
inward (i.e., towards the line at x = 0). Some details are still
preserved, nevertheless, the localization accuracy of the targets
might not be sufficient for safety-critical autonomous driving
systems.

The autofocus workflow starts from the detection of a set
of GCPs from the incoherent average of all the low resolution
MIMO images. In Figure 14, the incoherent average is repre-
sented along with the detected GCPs (highlighted in yellow).
The first observation is that, as expected, the spatial resolution
of the MIMO image formed with the ULA is greatly lower
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Fig. 14. Incoherent average of all the low resolution MIMO images. The
selected GCPs are depicted with yellow diamonds.

than Figure 13). The second and most important observation
is that the low-resolution images are not severely corrupted
by trajectory estimation errors as the SAR one.Over the de-
tected GCPs, the residual Doppler frequency is then estimated
through FFT. In Figure 15a, the unwrapped residual phase over
all the GCPs is depicted. The phase is linear for every GCP
and the slope is proportional to the residual radial velocity of
the car as seen by the position of the GCP, confirming that the
constant velocity estimation error is a reasonable assumption.
The result of the FFT is depicted in Figure 15b and the red
asterisks are the detected frequency peaks. The position of
such peaks will form the observation vector ∆ω in (24). The
frequency resolution depends on the observation time T . A
trade off is now evident: longer synthetic apertures allows for
higher spatial resolution and, from the autofocus perspective, a
higher residual Doppler resolution. The price to be paid is the
possibility of non-constant velocity errors in longer apertures
(acceleration errors) and increased computational burden. It is
also important to notice that Figure 15b shows the sampled
version of the Doppler spectrum of a GCP. The sampling in
the frequency domain can be made finer by zero-padding the
time domain signal before the FFT. This guarantees that the
position of the peak of the sinc function is precisely detected.

The inverse problem (29) is solved for the detected GCPs
leading to the residual velocities in Table II, reported with
the theoretical accuracy. First of all, the estimated residual
velocities are within the confidence bound of the employed
navigation sensors [17]. The error is higher in the direction of
motion, and, since we work in a forward looking geometry,
all the GCPs are distributed in front of the car, thus higher
accuracy in the residual motion estimation is expected in
this direction. On the other hand, the error in the direction
orthogonal to the motion is much lower and estimated with
more uncertainty.
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Fig. 15. (15a) Unwrapped phase over the selected GCP: a residual phase is
linear in slow time indicating the presence of a residual motion error; (15b)
Result of the frequency estimation over the selected GCP: a linear phase
represents a sinusoid. Notice how the cardinal sines functions are not centered
in zero.

Once the residual velocities are estimated, each low reso-
lution image is TPS-compensated and the coherent average
forms the final SAR image as from (34). The image is repre-
sented in Figure 16. While Figure 13 reports a collapsed scene
towards the center of the image, now the profile given by the
parked cars is correctly straight also in far range. A few details
of Figure 16 are depicted in Figure 17. At the top of the figure
we reported the image from the camera. In the lower part, three
details are shown on the SAR image. The green box includes
two parked cars, the yellow box shows parked cars with a
free parking slot. Notice that this area was totally corrupted
by the motion error in Figure 13. Lastly, the red box shows
the most important detail of the experimental activity, i.e., a
standing pedestrian nearby the parked car. This is a possibly
dangerous scenario for autonomous driving, as a stationary
pedestrian is a comparably weak target with respect to the car
(in terms of radar cross section), that cannot be distinguished
by the Doppler signature. However, the pedestrian is clearly
separated from the car in the final image, showing the full
potential of SAR imaging in automotive scenarios.

A further experimental case study is reported in Figure

TABLE II
RESIDUAL VELOCITY ESTIMATED BY AUTOFOCUS AND RELATED

ACCURACY

Parameter Estimate (cm/s) Accuracy (cm/s)
∆vx -6.24 1.08
∆vy -3.64 3.06
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Fig. 16. Normalized SAR image after employing the proposed autofocus
procedure. The amplitudes are normalized and in linear scale.

18. Again, the SAR image without autofocus is corrupted
by a severe residual velocity estimation error, being collapsed
outward. With autofocus, the correct environment is precisely
imaged (Figure 19). Some meaningful details are shown in
Figure 20. At the top, the camera image showing the richness
of the scene: cars, parking slots, poles, fences and buildings
are present. In the green box, two cars are depicted with a
free parking space in the middle. In the yellow box, we show
the fence and some cars in far range, while, in the red box,
parked cars at the right of the vehicle are shown.

These SAR images can now be used as an input product
along with LiDAR or cameras in advanced autonomous driving
systems, possibly using statistical analysis tools [40], [41].

VI. CONCLUSION

The generation of SAR images requires a precise knowledge
of the trajectory of the moving platform. For automotive
applications and synthetic apertures of tens of centimeters to
few meters length, velocity estimation errors from inaccurate
navigation data are the major source of SAR image quality
degradation, causing defocusing and targets’ mis-localization.
The higher the carrier frequency and the synthetic aperture
length, the higher the accuracy needed on velocity estima-
tion, with maximum tolerable errors as low as 1 cm/s. In
these cases, inexpensive automotive-legacy navigation systems
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Fig. 17. (top) Optical image of the scene. (bottom left) Cars parked to the left of the moving vehicle. (bottom center) Parked car in the far field and free
parking lot. (bottom right) Pedestrian standing near to a parked car. The amplitude is normalized.
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Fig. 18. Normalized SAR image before employing the proposed autofocus
procedure. The amplitudes are normalized and in linear scale.
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Fig. 19. Normalized SAR image after employing the proposed autofocus
procedure. The amplitudes are normalized and in linear scale.
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Fig. 20. (top) Optical image of the scene. (bottom left) Cars parked to the left of the moving vehicle. (center) Fence and parked cars in the far field of view.
(right) Parked cars to the right of the moving vehicle. The amplitude is normalized.

based on in-car sensors are not accurate enough, as the
accuracy is typically not lower than 10 cm/s.

This paper analytically derives the effect of typical residual
motion estimation errors on automotive SAR focusing, setting
the theoretical required accuracy on velocity estimation to
avoid image degradation. In addition, we propose a complete
residual motion estimation and compensation workflow based
on both navigation data and a set of low-resolution images
generated by a physical or virtual radar array mounted on the
car. First, a frequency analysis is carried out over a set of
static GCPs detected in the low-resolution images, retrieving
the residual vehicle’s velocity. The latter is then used to a
phase-compensate the low-resolution images, obtaining well-
focused SAR images. We evaluate the impact of errors in
both the estimated target’s height and angular sampling of
low-resolution radar images, providing guidelines on how to
properly choose GCPs. As a rule of thumb, it is recommended
to choose a sparse set of GCP in far range, allowing for a better
estimate of both longitudinal and transversal components of
the residual velocity and minimizing the effects of a wrong
focusing height of the GCPs. Moreover, the more accurate
are navigation data, the more robust is the selection of GCPs
against outliers, justifying the joint usage of navigation and
radar data.

The entire workflow is validated using a real dataset ac-

quired using a forward-looking MIMO radar working in W-
band mounted on a vehicle moving in an open road. The pro-
posed workflow has proven to be able to estimate centimetric
velocity errors and then to correctly recover the SAR image.

APPENDIX
DEFOCUSING INDUCED BY VELOCITY ESTIMATION ERRORS

A velocity estimation error in the direction orthogonal to
the line of sight of a given target (see Figure 6) induces a
defocusing in the SAR image. To quantify this defocusing,
let us consider a platform moving along x at a velocity vx
and a target placed at range r0 along y, i.e., in x = [0, r0, 0].
The received and range compressed signal at slow time τ is,
ignoring the amplitudes:

src(τ) = exp

{
−j 4π

λ
r(τ)

}
(35)

where r(τ) ≈ r0 +
v2
x

2r0
τ2 is the slow-time-varying range.

Signal (35) can be represented in the Doppler frequency
domain as:

Src(f) = exp

{
−jπ f

2

Kr

}
(36)
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where Kr = 2v2x/(λr0) is usually referred to as frequency-
modulation rate. A velocity estimation error along x, namely
∆vx maps into an erroneous knowledge of Kr:

K̂r =
2

λ

(vx +∆vx)
2

r0
= Krα (37)

where the scaling factor α = (1+ ∆vx
vx

)2 accounts for the ve-
locity estimation error. We can perform azimuth compression
using a matched filter approach (which is equivalent to TDBP
for the model (35)), whose frequency domain expression is:

H(f) = exp

{
+jπ

f2

K̂r

}
(38)

thus the azimuth compressed signal is:

Saz(f) = Src(f)H(f) = exp

{
−jπ

(
α− 1

K̂r

)
f2

}
(39)

Following the assumption of stationary phase [30], we have
that the target is approximately smeared in slow-time domain
by:

∆τ =

(
α− 1

K̂r

)
PRF ≈ 2T

∆vx
vx

(40)

where PRF = 2Tv2x/(λr0) is the pulse repetition frequency
of the radar and (α−1)/K̂r ≈ (λr0∆vx)/v

2
x. The last term in

(40) is equivalent to an azimuth smearing in meters of ∆ϕ =
2T∆vx. If we impose again that the maximum smearing must
not exceed one azimuth resolution cell we obtain the limits on
the maximum velocity error:

∆vmax
⊥ =

ρsar
az

2T
(41)

where ρsar
az is the SAR azimuth resolution for a given ϕ,

and the velocity error along x has been generalized to an
arbitrary orthogonal direction with respect to ϕ. Notice that
(41) resembles (22), but instead of the wavelength λ we have
the azimuth resolution ρsar

az at the numerator, thus the radial
velocity error limit is much more stringent. As an example,
for an observation time of T = 130 ms, a wavelength of λ = 4
mm and a resolution of ρsar

az = 15 cm we have vmax
⊥ = 57 cm/s,

while vmax
r = 1.5 cm/s.
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[4] S. Brisken, F. Ruf, and F. Höhne, “Recent Evolution of Automotive
Imaging Radar and its Information Content,” IET Radar, Sonar Naviga-
tion, vol. 12, no. 10, pp. 1078–1081, 2018.

[5] H. Iqbal, M. B. Sajjad, M. Mueller, and C. Waldschmidt, “SAR
imaging in an automotive scenario,” in 2015 IEEE 15th Mediterranean
Microwave Symposium (MMS). Lecce, Italy: IEEE, Nov. 2015, pp.
1–4. [Online]. Available: http://ieeexplore.ieee.org/document/7375430/

[6] R. Feger, A. Haderer, and A. Stelzer, “Experimental verification of a
77-GHz synthetic aperture radar system for automotive applications,”
in 2017 IEEE MTT-S International Conference on Microwaves for
Intelligent Mobility (ICMIM), 2017, pp. 111–114.

[7] A. Laribi, M. Hahn, J. Dickmann, and C. Waldschmidt, “Performance
Investigation of Automotive SAR Imaging,” in 2018 IEEE MTT-S Inter-
national Conference on Microwaves for Intelligent Mobility (ICMIM),
2018, pp. 1–4.

[8] R. Wang, J. Pei, Y. Zhang, M. Li, Y. Huang, and
J. Wu, “An Auxiliary Parking Method Based on Automotive
Millimeter wave SAR,” in IGARSS 2019 - 2019 IEEE
International Geoscience and Remote Sensing Symposium. Yokohama,
Japan: IEEE, Jul. 2019, pp. 2503–2506. [Online]. Available:
https://ieeexplore.ieee.org/document/8898521/

[9] S. Stanko, S. Palm, R. Sommer, F. Kloppel, M. Caris, and N. Pohl,
“Millimeter resolution SAR imaging of infrastructure in the lower THz
region using MIRANDA-300,” in 2016 European Radar Conference
(EuRAD), 2016, pp. 358–361.

[10] D. Tagliaferri, M. Rizzi, S. Tebaldini, M. Nicoli, I. Russo, C. Mazzucco,
A. V. Monti-Guarnieri, C. M. Prati, and U. Spagnolini, “Cooperative
Synthetic Aperture Radar in an Urban Connected Car Scenario,” in 2021
1st IEEE International Online Symposium on Joint Communications
Sensing (JC S), 2021, pp. 1–4.

[11] T. Grebner, P. Schoeder, V. Janoudi, and C. Waldschmidt,
“Radar-Based Mapping of the Environment: Occupancy Grid-Map
Versus SAR,” IEEE Microwave and Wireless Components Letters,
vol. 32, no. 3, pp. 253–256, Mar. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9703257/

[12] H. Wu, “Motion Compensation for Near-Range Synthetic Aperture
Radar Applications,” Ph.D. dissertation, 2012.

[13] S. Tebaldini, F. Rocca, M. Mariotti d’Alessandro, and L. Ferro-Famil,
“Phase Calibration of Airborne Tomographic SAR Data via Phase
Center Double Localization,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 54, no. 3, pp. 1775–1792, Mar. 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7308057/

[14] H. Wu and T. Zwick, “A novel motion compensation algorithm for
automotive SAR : Simulations and experiments,” in German Microwave
Conference Digest of Papers, 2010, pp. 222–226.

[15] H. Wu, L. Zwirello, X. Li, L. Reichardt, and T. Zwick, “Motion
compensation with one-axis gyroscope and two-axis accelerometer for
automotive SAR,” in 2011 German Microwave Conference, 2011, pp.
1–4.

[16] T. Gisder, F. Harrer, and E. Biebl, “Application Of A Stream-Based
SAR-Backprojection Approach For Automotive Environment Percep-
tion,” in 2018 19th International Radar Symposium (IRS), 2018, pp.
1–10.

[17] D. Tagliaferri, M. Rizzi, M. Nicoli, S. Tebaldini, I. Russo, A. V. Monti-
Guarnieri, C. M. Prati, and U. Spagnolini, “Navigation-Aided Automo-
tive SAR for High-Resolution Imaging of Driving Environments,” IEEE
Access, vol. 9, pp. 35 599–35 615, 2021.

[18] D. Wahl, P. Eichel, D. Ghiglia, and C. Jakowatz, “Phase
gradient autofocus-a robust tool for high resolution SAR phase
correction,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 30, no. 3, pp. 827–835, Jul. 1994. [Online]. Available:
http://ieeexplore.ieee.org/document/303752/

[19] A. Reigber, P. Prats, and J. Mallorqui, “Refined estimation of time-
varying baseline errors in airborne SAR interferometry,” IEEE Geo-
science and Remote Sensing Letters, vol. 3, no. 1, pp. 145–149, Jan.
2006, conference Name: IEEE Geoscience and Remote Sensing Letters.

[20] P. Prats, K. A. Camara de Macedo, A. Reigber, R. Scheiber, and
J. J. Mallorqui, “Comparison of Topography- and Aperture-Dependent
Motion Compensation Algorithms for Airborne SAR,” IEEE Geoscience
and Remote Sensing Letters, vol. 4, no. 3, pp. 349–353, Jul. 2007.
[Online]. Available: http://ieeexplore.ieee.org/document/4271465/

[21] X. Mao and D. Zhu, “Two-dimensional Autofocus for
Spotlight SAR Polar Format Imagery,” IEEE Transactions on
Computational Imaging, pp. 1–1, 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7574265/

[22] S. Tebaldini, T. Nagler, H. Rott, and A. Heilig, “Imaging the internal
structure of an alpine glacier via l-band airborne sar tomography,” IEEE



16

Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp.
7197–7209, 2016.

[23] H. Wu and T. Zwick, “Automotive SAR for Parking Lot Detection,” in
2009 German Microwave Conference, 2009, pp. 1–8.

[24] T. Kan, G. xin, L. xiaowei, and L. zhongshan, “Implementation of Real-
time Automotive SAR Imaging,” in 2020 IEEE 11th Sensor Array and
Multichannel Signal Processing Workshop (SAM), 2020, pp. 1–4.

[25] S. Gishkori, L. Daniel, M. Gashinova, and B. Mulgrew,
“Imaging Moving Targets for a Forward Scanning SAR
without Radar Motion Compensation,” Signal Processing,
vol. 185, p. 108110, Aug. 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0165168421001481

[26] D. Kellner, M. Barjenbruch, J. Klappstein, J. Dickmann, and K. Di-
etmayer, “Instantaneous ego-motion estimation using Doppler radar,”
in 16th International IEEE Conference on Intelligent Transportation
Systems (ITSC 2013), 2013, pp. 869–874.
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