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Abstract: Investments in transportation infrastructure have been identified as one of the main factors
to promote territorial economic growth. However, appraisal methods currently used in the planning
practice do not consider spatial economic distributional effects, ignoring who within a given region
would receive greater economic benefits from an investment than others (and eventually who might
receive worse). In this paper, a modelling framework is proposed to assess the spatial economic
impacts of transportation infrastructure investments; the method combines spatial regressions with
transportation accessibility analysis, assuming Gross Domestic Product per Capita variation as a
proxy of the economic growth. The application to the case study is related to the Adriatic and Ionian
region, which includes both some EU (Italy, Slovenia, Croatia, and Greece) and non-EU countries
(Bosnia-Herzegovina, Montenegro, Albania, North Macedonia, and Kosovo) and is characterized by
huge disparities in terms of infrastructural assets. The models allow us to both statistically prove
the importance of spatial modelling specifications and to forecast economic impacts that would be
generated by ongoing infrastructure investment plans for the reconstruction of the road and railway
networks in the region; this highlighted where current economic disparities tend to be bridged up, i.e.,
mainly along the foreseen extensions of the Trans-European Transport Network (TEN-T) corridors,
and where not.

Keywords: accessibility analysis; spatial regressions; transportation infrastructure; gross domestic
product; Western Balkans

1. Introduction

Transportation networks play a key role in supporting transportation-based economic
activities [1]; they ease the movement of individuals and goods, stimulating both the
economic and mobility demand growth [2], maintaining fair life quality standards [3],
and facilitating the interaction among groups living in different areas or among economic
activities spatially distributed over different territories. In the era of a globalized economy,
having efficient transportation connections provides a competitive advantage, for instance,
regions with better accessibility to market locations will be generally more productive than
areas with lower accessibility levels [4]. However, in the scientific literature, transportation
accessibility has been only recognized as one of the necessary components for territorial
economic progress [5]; positive economic externalities (such as agglomeration, labor market
economies, high-quality labor force) and favorable policy environments are among the
other ingredients that favor substantial economic growth [6].

Despite the importance of transportation infrastructure and its key role in regional
economic development, appraisal methods used in current practice usually fail in assessing
its impact from a holistic perspective. For instance, traditional cost–benefit analysis [7]
focuses only on efficiency as a single policy objective, ignoring a wider economic estimation.
Moreover, it usually evaluates the overall impact of a given project on a given region,
without considering the evaluation of the distributional effects. Who would receive greater
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benefits within a region following the completion of a given infrastructure? Are there any
areas that could be worsened by higher impacts on potentially competing ones?

To answer these questions, this paper proposes a method based on spatial regressions,
including both transportation and socioeconomic-context-related variables, for the estima-
tion of the economic impact of transportation infrastructure. The contribution of this study
to the existing literature is twofold:

• testing spatial modelling specifications, proving the statistical significance of the
spatially lagged terms in predicting Gross Domestic Product per Capita (GDPC)
variation intended as a proxy of the economic growth;

• forecasting the extent to which the Trans-European Transport Network (TEN-T) ex-
tension in the Adriatic–Ionian (AI) region can contribute to its regional economic
growth.

The case study of the AI region is still underexplored in the scientific literature, despite
being characterized by several peculiarities. The region includes both some EU (Italy,
Slovenia, Croatia, and Greece) and non-EU countries (Bosnia-Herzegovina, Montenegro,
Albania, North Macedonia, and Kosovo) and is characterized by huge disparities in terms
of infrastructural assets.

The remainder of this paper is organized as follows. The next section (i.e., Section 2)
provides a literature review on methodologies to assess the economic impact of transporta-
tion infrastructure. Section 3 describes the proposed methodology, which is subsequently
applied to the case study in Section 4. Results are then discussed in Section 5, while con-
cluding remarks, limitations of the study, and future research directions are finally reported
in Section 6.

2. State of the Art

In the literature, studies dealing with economic impact assessment due to new trans-
portation infrastructure and services use different approaches. These can be clustered
in three groups, according to the method they follow [8,9]: cost–benefit analysis (CBA),
computable general equilibrium (CGE) models, or econometric analysis.

CBA is a tool usually adopted in transportation planning practice to assess whether
a new transportation infrastructure is economically efficient or not. It is based on a com-
parison between costs (e.g., investment, operation, and maintenance) and benefits (e.g.,
travel time savings, tolls and fares savings, greenhouse gases, and local pollutant emission
reductions), all expressed in monetary terms through monetization coefficients where
needed [10]. Even if widely used (e.g., [10–13]), and also due to the fact that it is proposed
and standardized in many national and supranational guidelines (e.g., [6]), CBA still lacks
the ability to properly estimate the wider economic impact of a given project, since it mainly
focuses on the comparison of different projects. Moreover, traditional applications are not
sensitive to distributional effects, evaluating an investment in its entirety, even if better-off
population groups or territories are benefitted at the expense of worse-off ones [14,15].

CGE models are instead commonly used to quantify the economic impacts of trans-
portation infrastructure; these are characterized by a set of simultaneous equations simulat-
ing the interactions between the transportation system and the economic one, considering
they are based on the microeconomic consumer and production theory [16]. CGE models
allow for the extraction of welfare and any other economic metric, since all the relations
and agents’ behavior can be simulated (e.g., [17,18]); however, at the same time, they
are data-demanding and also demanding in terms of spatial and transportation network
characterization.

Lastly, econometric analysis is often used to quantify the overall economic impact
brought by new transportation infrastructure. In this case, there is no need to specify and
explain the economic interdependences between the considered variables; transportation-
and territorial-context-related variables can be considered as an input to obtain measures
such as the Gross Domestic Product per Capita (GDPC) variation as a proxy of the economic
growth. Multiple linear regression models are the basic tool for this kind of analysis
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(e.g., [9,19,20]), but with the aim of capturing complex inter-relationships between variables,
some authors proposed a Structural Equation Model (SEM)-based approach to deal with
the economic impact estimation issue (e.g., [21,22]).

However, these methods are mainly criticized both for not considering spatial interac-
tions among different geographical areas and for assuming a priori that variables included
in the model specification are spatially independent [23]. Spatial econometric theory is
therefore introduced to account for spatial effects (spatial heterogeneity or interdepen-
dency) that usually characterize problems involving territorial analysis and problems in
relation to transportation services and infrastructure [24]. Several authors (e.g., [25–30])
have provided examples of spatial regressions in transportation planning studies and in
general it has been proved that spatial models fit better than non-spatial ones [31], mainly
due to the fact that transportation infrastructure is usually characterized by spatial spillover
effects, affecting not only the region in which it is located, but also neighboring regions
(e.g., [32–36]).

Therefore, to assess the economic impacts of transportation infrastructure investments,
this paper uses a method combining spatial regressions with transportation accessibility
analysis, having the advantages of considering spatially lagged effects between neighboring
areas, being easily specified, and, at same time, not being too burdensome with respect to
data needed.

3. Methodology

The methodological approach schematically depicted in Figure 1 is proposed. Starting
from network performances and territorial attributes, zonal transportation accessibility is
computed and considered as input (together with socioeconomic and political variables) in
spatial regression models to estimate zonal Gross Domestic Product per Capita (GDPC).
GDPC variation, intended as a proxy of economic growth, is indirectly calculated by simu-
lating zonal transportation accessibility variation that would be generated by transportation
infrastructure investments in a project scenario.
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3.1. Accessibility Analysis

Among the accessibility indicators proposed in the literature (see [37,38] for a taxon-
omy of them), the potential accessibility indicator is one of the most commonly used in
transportation planning studies at the regional scale [39–41]. The accessibility indicator
formulation used in this study is the one reported in Equation (1):

ACCo = ∑d Popαd ∗ e−β · Cw,od (1)

where:

• ACCo is the accessibility of the origin zone o to destinations d;
• Popd is the population of the destination zone d;
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• Cw,od is the weighted average of the generalized travel cost Cod,m on the different
considered transportation modes m from the origin zone o to destinations d;

• α and β are two parameters, the output from the estimation of a descriptive trip
distribu-tion model having as its denominator the same wording of the accessibility
indi-cator previously introduced (see [42] for further details).

The generalized travel cost for the generic origin–destination pair (od) on the specific
mode m is calculated using Equation (2):

Cod,m = Tod,m + βcm · cmod,m (2)

where:

• Tod is the travel time on the specific mode m;
• cmod,m is the monetary cost on the specific mode m as expressed in Equation (3).

cmod,m = cmC,od,m + cmKm,m · Kmod,m (3)

• in which cmC,od,m is a constant depending on both the od pair and the mode m; Kmod,m
is the distance through the mode m, in kilometers, between the origin zone o and
destination zone d, and cmKm,m is the average unitary cost per kilometer €/km referred
to in the mode m;

• βcm is an estimated coefficient.

3.2. Spatial Regression Models

To justify the use of spatial regression models, testing for the presence of significant
spatial autocorrelation in the dependent variable (GDPC, in this study) is needed. To
this end, the Moran’s Index (MI) is used; it stems from Pearson’s correlation coefficient
and ranges between −1 and +1, where a larger absolute value indicates higher spatial
autocorrelation in data [43]. It is defined according to the formula in Equation (4):

MI =
N∑N

i=1 ∑N
j=1 wij(yi − y)

(
yj − y

)
∑N

i=1 ∑N
j=1 wij∑N

i=1(yi − y)2 (4)

in which:

• N is the number of zones;
• wij represents the elements of the spatial weight matrix W, escribing the spatial rela-

tionship between zone i and zone j;
• yi is the dependent variable, i.e., GDPC, related to zone i;
• y is the average of the dependent variable among all the observations.

To test the complexity of spatial relationships between the considered variables,
four different spatial model specifications are tested. The Spatial Durbin Model (SDM)
(Equation (5)) allows us to capture spatial effects in an unrestricted way, including the
spatial contribution of both the dependent and independent variables. The Spatial Autore-
gressive Model (SAR) (Equation (6)) instead includes only the spatial effect of the dependent
variable, nullifying the spatial effects of the independent ones, unlike the SDM. On the
contrary, the Spatially Lagged X Model (SLX) (Equation (7)) considers only the spatial effect
of the independent variables, without including the spatial effect of the independent one in
the model specification. Finally, the Spatial Error Model (SEM) (Equation (8)) considers the
spatial contribution only in the error term, which therefore has a spatial specification. Start-
ing from considerations in [6], socioeconomic-, political-, and transportation-context-related
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independent variables are considered; these are the same in all the modelling specifications
in order to provide a final nested comparison.

ln(GDPCi) = αi +ρ
N
∑

j=1
wijln

(
GDPCj

)
+ θ1

N
∑

j=1
wijln

(
EMPRATE j

)
+θ2

N
∑

j=1
wijEQI j + θ3

N
∑

j=1
wij ACCj + β1lnEMPRATEi + β2EQIi

+β3 ACCi + εi

(5)

ln(GDPCi) = αi +ρ
N
∑

j=1
wijln

(
GDPCj

)
+ β1lnEMPRATEi + β2EQIi + β3 ACCi

+εi

(6)

ln(GDPCi) = αi +θ1
N
∑

j=1
wijln

(
EMPRATE j

)
+ θ2

N
∑

j=1
wijEQI j + θ3

N
∑

j=1
wij ACCj

+β1lnEMPRATEi + β2EQIi + β3 ACCi + εi

(7)

ln(GDPCi) = αi + β1lnEMPRATEi + β2EQIi + β3 ACCi + ui

ui = λ
N
∑

j=1
wijuj + εi

(8)

where:

• ln(GDPC) is the N size vector of the natural logarithm of the GDPC, in which N
is the sample size; h ∈ {i; j}, in which i refers to the considered zone and j to the
neighboring ones;

• ln(EMPRATE) is the N size vector of the natural logarithm of the employment rate;
• EQI is the N size vector of the European Quality of Government Index (see [44]);
• ACC is the N size vector of the potential accessibility indicator calculated through

Equation (1);
• wij represents the elements of the spatial weight matrix W;
• α is the N size vector of the intercept;
• ε is the N size vector of the independent normally distributed error terms, with 0 mean

and constant variance σ2;
• u is the N size vector of the spatially dependent error terms;
• ρ, λ, βk, θk are estimated regression coefficients; k ∈ {1; 2; 3}.

Among the above specifications, the spatial model that best fits is then subsequently
used for GDPC variation forecast with reference to one or more project scenarios.

4. Application to the Adriatic and Ionian Region Case Study

The application is related to the Adriatic and Ionian (AI) region (Figure 2); it is
currently characterized by a high level of disparities between countries from the economic,
political, and social perspectives, but also from point of view of infrastructural assets.
Moreover, it includes both some EU countries (Italy, Slovenia, Croatia, and Greece) and
non-EU ones (Bosnia-Herzegovina, Montenegro, Albania, North Macedonia, and Kosovo).
The application is limited to road, rail, and maritime transportation, identified as the
most relevant transportation modes for the purpose of our analysis and in relation to the
considered case study. This section is organized as follows. Data sources used are briefly
described in Section 4.1, accessibility analysis related to the current scenario is reported
in Section 4.2, while spatial regression model estimation results are shown in Section 4.3.
Gross Domestic Product per Capita (GDPC) forecast due to the TEN-T network extension
in the AI region is finally reported in Section 4.4.
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4.1. Data Source

The analysis focuses on a sample consisting of 225 NUTS-3 zones included in the AI
region. For each zone, and neighboring zones where needed, several socioeconomic data
have been collected. Particularly, zonal population (Pop), employment rate (EMPRATE), and
Gross Domestic Product per Capita (GDPC) come from worldwide [45], European [46,47],
and National Statistical Offices [48–50] publicly available databases. The European Quality
of Government Index (EQI) has been directly taken by [44] for the European countries,
while it has been estimated starting from World Bank data [51] for non-European ones.
Transportation-related variables come from ad hoc macro-simulation transportation models
related to road, rail, and maritime transportation developed for the AI region within the
PTV VISUM software; the modelled multimodal network consists of about 60,000 nodes
and 200,000 links, a quarter of which are related to rail transportation. Even though the
focus is on the AI region, the model also includes 136 EU and non-EU zones to simulate the
interaction with the former. All the data used for spatial modelling estimation refer to the
base year of the analysis, i.e., 2017.

4.2. Current Scenario Accessibility Analysis

With reference to the current scenario, multimodal accessibility analysis results are
shown in Figure 3. The map highlights an east–west accessibility pattern; the western part
of the AI region (i.e., the one mainly composed by the Italian provinces) has an average
accessibility level greater than the Balkan countries. This is mainly due to the greater
performances of the existing Italian transportation infrastructural asset in relation to the
Balkan one; high capillarity together with high multimodal network performances guaran-
tee lower generalized travel costs and, subsequently, more opportunities for interaction for
those living in this area. Moreover, with reference to Italy, it is worth noting a north–south
accessibility pattern: the northern regions benefit from greater accessibility due to both a
greater transportation network density and to their structural geographical location, i.e.,
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geometrically more central in relation to the distribution of the European population than
peripheral southern Italian areas.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 15 
 

greater transportation network density and to their structural geographical location, i.e., 

geometrically more central in relation to the distribution of the European population than 

peripheral southern Italian areas. 

 

Figure 3. Accessibility indicator [*10,000] map related to the current scenario. 

4.3. Spatial Regression Model Estimations 

As a preliminary step, the presence of spatial autocorrelation of the dependent vari-

able (i.e., GDPC) has been probed, and the resulting Moran’s Index (𝑀𝐼) is equal to 0.92; 

this has been then tested against the one obtained by randomizing the sample through a 

Monte Carlo simulation (i.e., the one referring to a dataset with no spatial structure). The 

hypothesis that two MIs are statistically equal has been rejected (p-value < 0.001).  

Results from the spatial regression model estimations using year 2017 cross-sectional 

data are reported in Table 1. A queen-based contiguity binary matrix 𝑊 has been used, 

having a row-normalized weight and elements 𝑤𝑖𝑗 ≠ 0 if zone 𝑖 and zone 𝑗 are neigh-

bors, and 𝑤𝑖𝑗 = 0 if vice versa. Moreover, a k-Nearest Neighbors criterion has been used 

to account for the presence of islands, which rely on maritime connection toward the land 

zones. 

Table 1. Results from spatial regression model (SDM, SAR, SLX, SEM) estimations. 

 SDM SAR SLX SEM 

ln(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) (𝛽1) 0.161 *** 0.126 ** 0.115 0.150 ** 

𝐸𝑄𝐼 (𝛽2) 0.402 *** 0.226 *** 0.414 *** 0.468 *** 

𝐴𝐶𝐶 (𝛽3) 0.262 *** 0.044 0.263 * 0.292 *** 

W ∙ ln(𝐸𝑀𝑃𝑅𝐴𝑇𝐸) (𝜃1) −0.131  0.139  

𝑊 ∙ 𝐸𝑄𝐼 (𝜃2) −0.241 ***  0.244 *  

𝑊 ∙ 𝐴𝐶𝐶 (𝜃3) −0.231 ***  −0.009   

𝛼𝑖 2.040 *** 2.497 *** 9.102 *** 9.206 *** 

𝜌 0.800 *** 0.711 ***   

𝜆    0.808 *** 

Figure 3. Accessibility indicator [*10,000] map related to the current scenario.

4.3. Spatial Regression Model Estimations

As a preliminary step, the presence of spatial autocorrelation of the dependent variable
(i.e., GDPC) has been probed, and the resulting Moran’s Index (MI) is equal to 0.92; this
has been then tested against the one obtained by randomizing the sample through a
Monte Carlo simulation (i.e., the one referring to a dataset with no spatial structure). The
hypothesis that two MIs are statistically equal has been rejected (p-value < 0.001).

Results from the spatial regression model estimations using year 2017 cross-sectional
data are reported in Table 1. A queen-based contiguity binary matrix W has been used,
having a row-normalized weight and elements wij 6= 0 if zone i and zone j are neighbors,
and wij = 0 if vice versa. Moreover, a k-Nearest Neighbors criterion has been used
to account for the presence of islands, which rely on maritime connection toward the
land zones.

As expected, β1, β2, and β3 coefficients measuring the direct impacts (i.e., not spatially
lagged) of the independent variables on the dependent one are positive in all model
specifications; an increase in the employment rate or in the quality of government or in the
transportation accessibility of zone i generates an increase in the GDPC of the same zone.
θ2 and θ3 coefficients measuring the spatially lagged impacts of EQI and ACC, respectively,
are highly statistically significant (p-value < 0.001) only in the SDM specification. They both
have negative signs, highlighting the presence of a “spatial competition” effect between
neighboring areas, for instance, an increase in the transportation accessibility in nearby zone
j will negatively affect the GDPC of zone i due to both a potential greater attractiveness
and a more competitive accessibility advantage of the former (zone j). The SEM model has
the λ coefficient, the one associated with the spatially lagged error, with a high statistical
significance (p-value < 0.001), highlighting the presence of spatial effects not explicitly
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considered in this model specification, except in the error term. Furthermore, both the SEM
and the SLX have higher intercepts with respect to the other estimated models and these
are also highly statistically significant, indicating how both exclude important variables in
their specification (for instance, the spatially lagged GDPC).

Table 1. Results from spatial regression model (SDM, SAR, SLX, SEM) estimations.

SDM SAR SLX SEM

ln(EMPRATE) (β1) 0.161 *** 0.126 ** 0.115 0.150 **
EQI (β2) 0.402 *** 0.226 *** 0.414 *** 0.468 ***
ACC (β3) 0.262 *** 0.044 0.263 * 0.292 ***

W · ln(EMPRATE) (θ1) −0.131 0.139
W · EQI (θ2) −0.241 *** 0.244 *
W · ACC (θ3) −0.231 *** −0.009

αi 2.040 *** 2.497 *** 9.102 *** 9.206 ***
ρ 0.800 *** 0.711 ***
λ 0.808 ***

Observations 225 225 225 225
Pseudo-R2 0.904 0.891 0.901
Multiple R2 0.730

Log Likelihood −0.45 −13.93 −116.1 −3.84
Akaike Inf. Crit. 18.91 39.86 248.1 19.69

LR Test 231.2 *** 211.4 *** 231.6 ***
Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

With the aim of identifying the model that fits best, a comparison through the Akaike
Information Criterion (AIC) has been performed; the Spatial Durbin Model proved to be
preferrable (i.e., lower AIC value) and it has been used for GDPC forecasting reported in
Section 4.4. This is also proof of how spatial relationships between variables play a funda-
mental role in the economic impact assessment of transportation infrastructure; among all
the estimated models, the SDM is the only one that considers the spatial effect of both the
dependent (GDPC) and independent variables (EMPRATE, EQI, ACC), capturing the most
complex spatial relationships between nearby areas, unlike the other model specifications.

4.4. GDPC Variation Forecast Due to the TEN-T Network Extension in the AI Region

The simulated project scenario includes all the road and rail projects as per [52],
extending the TEN-T network in the AI region, as reported in Figure 4.

Results from the project scenario accessibility calculation are reported in Figure 5; the
map shows how the greatest percentage variations are related to the Balkan area. This is in
line with what might be expected, considering that most of the investments are located in
the Western Balkans.

Considering the whole AI region, the average accessibility increase was found to be
equal to +14% (see Table 2). It is worth noting that the coastal area of Bar (Montenegro),
together with the surrounding ones, presents the highest benefit in terms of relative ac-
cessibility variation (+93.1%); this is due to important road (the Blu Highway, included
in the Mediterranean TEN T Corridor) and railway projects located in the same area. The
same goes for Bosnia-Herzegovina; this benefit was found to be on average a +37.8%
accessibility increase, touching higher percentages where road and rail projects included
both in the South East Europe Transport Observatory (SEETO) Corridor Vc or Route 2
are located. Serbia also benefits from a significant increase in accessibility (up to +62%
variation), mainly due to the reconstruction and modernization of the railway line that is
part of the Orient-Est/Med TEN-T corridor.
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Table 2. Accessibility values [*10,000] and absolute/relative changes between current and project scenario.

Country

Accessibility Values
(*10,000) Accessibility Changes

Current
Scenario

Project
Scenario Absolute Relative Relative NUTS 3

Range [Min–Max]

Albania 2138 2771 634 29.6% [12.4–54.7%]
Bosnia-Herzegovina 2428 3344 916 37.8% [4.5–93.0%]

Croatia 5333 5709 376 7.1% [1.0–20.9%]
Greece 2460 2634 175 7.1% [0.0–42.0%]

Italy 13,671 13,865 194 1.4% [0.1–30.2%]
Kosovo 3920 4972 1052 26.8% [13.7–39.8%]

Montenegro 1580 2321 741 46.9% [21.5–93.1%]
North Macedonia 4255 5540 1285 30.2% [15.6–45.6%]

Serbia 4180 5264 1084 25.9% [2.6–62.1%]
Slovenia 9391 9748 356 3.8% [0.8–15.7%]

Adriatic–Ionian Average 6735 7216 481 14.0% [0.0–93.1%]

Taking these new zonal accessibility values as input, the estimated Spatial Durbin
Model (see Section 4.3) has been used for GDPC forecasting. Results in terms of zonal
GDPC percentage variations are reported in Figure 6; the map highlights how some areas
experience a GDPC increase (blue-colored zones on which the darker is the blue, the higher
is the GDPC % increase), while it decreases in some others (light red-colored areas).
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5. Discussion

The estimated Gross Domestic Product per Capita (GDPC) percentage variation due
to road and railway projects extending the TEN-T network in the Adriatic and Ionian (AI)
region was found to be equal to +0.9% on average at the NUTS-3 level. Even though it is
not directly comparable since it is context-specific, it is worth noting that the estimated
value is in line with those previously obtained by other authors, for instance, [19], using
a Spatial Durbin Model specification, stated that the Eastern European countries (includ-
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ing Estonia, Latvia, Lithuania, Poland, the Czech Republic, Slovakia, Hungary, Slovenia,
Croatia, Romania, Bulgaria, and Greece) could benefit from the TEN-T core road corridors’
completion with a GDPC increase ranging from +0.9% to +1.3%. Apart from the average
value, the GDPC percentage variation estimated in this study ranges between −0.8% and
+10.2% at the NUTS-3 level for the AI region, where higher percentages are related to
non-EU countries characterized by underdeveloped transportation networks (e.g., North
Macedonia or Serbia). In fact, average National GDPC increases reported in Table 3 show
that Western Balkans countries benefit from a +1.8% GDPC increase on average, unlike the
EU countries, where the economic impacts are lower (+0.2% on average).

Table 3. GDPC values [€] and absolute/relative changes between current and project scenario.

Country
GDPC Values (€) GDPC Changes

Current
Scenario

Project
Scenario Absolute Relative Relative NUTS 3

Range [Min–Max]

Albania 3495 3540 45 1.3% [−0.5–4.1%]
Bosnia-Herzegovina 4574 4635 61 1.3% [−0.3–4.5%]

Croatia 9940 9993 53 0.5% [−0.4–3.0%]
Greece 13,516 13,539 23 0.2% [−0.3–2.0%]

Italy 26,338 26,378 40 0.2% [−0.1–0.8%]
Kosovo 3482 3543 60 1.7% [−0.1–4.2%]

Montenegro 6908 6998 90 1.3% [−0.4–3.2%]
North Macedonia 4497 4645 149 3.3% [0.9–10.1%]

Serbia 4390 4479 90 2.0% [−0.8–10.2%]
Slovenia 18,229 18,386 157 0.9% [−0.2–3.2%]

Adriatic–Ionian Average 14,177 14,235 58 0.9% [−0.8–10.2%]
EU Countries inside the

AI Region average 19,321 19,367 46 0.2% [−0.4–3.2%]

non-EU Countries inside
the AI Region average 4482 4562 80 1.8% [−0.8–10.2%]

As was found from the modelling estimation, the spatially lagged effect on GDPC,
i.e., the influence of the neighboring areas, is negative and can sometimes be predominant.
The positive effect on GDPC given by (direct or indirect, i.e., through network effects)
accessibility increases in the whole study area is sometimes overbalanced by negative
spatially lagged effects, resulting in a GDPC positive variation polarization, mainly where
interventions are located, to the detriment of the nearby zones.

For instance, Italy has an infrastructural enhancement on the Adriatic and Tyrrhenian
corridors, resulting both in a positive GDPC variation on coastal areas (up to to +0.8%) and
a slight GDPC decrease in the nearby Apennine hinterland regions (up to −0.1%). Another
example is related to inland areas of Bosnia-Herzegovina and Croatian coastal areas; while
the former benefit from a +2.7% GDPC increase on average, the latter have a decrease of up
to −0.3% and −0.4%, respectively. In addition, some Albanian areas experience negative
economic impacts since they are geographically located in an “investment shadow area”;
they are surrounded by important infrastructural enhancements, but they do not benefit
from them, as their rail and road network is not well-integrated and connected.

The potential conflict between direct and spatial spillover effects has also been high-
lighted by [53]; as in this study, they confirm the possibility of having negative spillover
effects caused by increased territorial competition exceeding direct positive ones, therefore
suggesting to policymakers that these impacts should always be taken into account in
transportation project appraisal [54]. However, there are other studies (for instance, [55])
finding neither positive direct nor negative spillover effects of transportation investment
on the regional growth, arguing that other factors such as investment in research and
development or regional migration rates are far more important than transportation-related
variables in explaining regional economic welfare.

In this study, the statistical significance of both socioeconomic (i.e., the employment
rate EMPRATE) and political-context-related variables (i.e., the quality of government index
EQI) in estimating GDPC has been proven, suggesting how policies and decisions affecting
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contexts other than real-world transportation could positively impact regional economies.
In particular, a positive impact on GDPC can be achieved by acting on different systems
(for example, the socioeconomic, the political, or the transportation systems), and different
policies, not limited to transportation, should be evaluated in a comparative way, especially
with reference to those areas where investments in transportation infrastructure are not
cost-efficient due to the topography of the territory in which they would be located.

6. Conclusions

In this paper, a modelling framework is proposed to assess the spatial economic
impacts of transportation infrastructure investments; it combines spatial econometric
techniques with transportation accessibility analysis to estimate the variation of zonal
Gross Domestic Product per Capita (GDPC), assumed as a proxy of the economic growth.
The application to the Adriatic and Ionian (AI) region case study is presented; among its
peculiarities, the area includes both EU (Italy, Slovenia, Croatia, and Greece) and non-EU
countries (Bosnia-Herzegovina, Montenegro, Albania, North Macedonia, and Kosovo) and
is characterized by high disparities in terms of infrastructural assets.

The estimated models allowed us to prove the importance of considering the spatial
relationship between variables in transportation infrastructure economic impact evaluation.
The Spatial Durbin Model specification was found to be the one that best fits; among those
tested, it is the only model specification able to capture complex spatial relationships be-
tween nearby areas, considering spatially lagged effects generated from both the dependent
(GDPC) and independent variables (i.e., the employment rate EMPRATE, the quality of
government index EQI, and the transportation accessibility indicator ACC).

Finally, the estimated SDM model has been used to forecast GDPC variation due to
road and rail investments foreseen in the AI region by supranational strategies, as per [52].
It allows us to first quantitatively measure the zonal GDPC variation due to an increased
multimodal transportation accessibility, and second it allows us to outline where current
economic disparities tend to be bridged up (i.e., mainly along the foreseen extensions of
the TEN-T corridors) and where not, suggesting the need of new policies to fill these gaps.

Among the limitations of this research, it is worth mentioning the modelling estimation
using cross-sectional data. The use of panel data would have given more robust estimates;
however, to the best of our knowledge, longitudinal data related to variables considered
in this study are not publicly available for Western Balkan countries. Moreover, spatial
modelling estimations have been performed using data related to 2017, i.e., a few years
before disruptive crises such as the COVID-19 pandemic and the Ukraine war happened;
these had and will have impacts on regional economies that the model fails to capture by
its very nature.

Another limitation is that the simulated project scenario considers only road and
railway projects in the AI region, ignoring those located in neighboring countries; results for
the edge zones must be therefore carefully evaluated. Future research should address these
limitations in order to obtain, on the one hand, more accurate estimates, and on the other,
more reliable results for the bordering areas to draw up wider considerations. Moreover,
a possible follow-up to this study could evaluate the impact on regional economies of
investments in transportation nodes that are not considered in this study. This would
be possible by adapting the proposed methodology by introducing a service frequency
variable in the accessibility indicator formulation, consequently simulating the impact that
would be generated by increases in service frequencies allowed by nodal (such as ports or
airports) capacity enhancements.
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8. Rokicki, B.; Stępniak, M. Major transport infrastructure investment and regional economic development—An accessibility-based

approach. J. Transp. Geogr. 2018, 72, 36–49. [CrossRef]
9. Cascetta, E.; Cartenì, A.; Henke, I.; Pagliara, F. Economic growth, transport accessibility and regional equity impacts of high-speed

railways in Italy: Ten years ex post evaluation and future perspectives. Transp. Res. Part A Policy Pract. 2020, 139, 412–428.
[CrossRef] [PubMed]

10. Delft, C.E.; Directorate-General for Mobility and Transport (European Commission); van Essen, H.; van Wijngaarden, L.; Schroten,
A.; Sutter, D.; Bieler, C.; Maffii, S.; Brambilla, M.; Fiorello, D.; et al. Handbook on the External Costs of Transport: Version 2019–1.1;
Publications Office of the European Union: Luxembourg, 2020.

11. Boardman, A.E.; Greenberg, D.H.; Vining, A.R.; Weimer, D.L. Cost-Benefit Analysis: Concepts and Practice; Cambridge University
Press: Cambridge, UK, 2017.

12. De Rus, G. The BCA of HSR: Should the Government Invest in High Speed Rail Infrastructure? J. Benefit-Cost Anal. 2011, 2, 1–28.
[CrossRef]

13. Willis, K.; Garrod, G.; Harvey, D. A review of cost–benefit analysis as applied to the evaluation of new road proposals in the U.K.
Transp. Res. Part D Transp. Environ. 1998, 3, 141–156. [CrossRef]

14. Bröcker, J.; Korzhenevych, A.; Schürmann, C. Assessing spatial equity and efficiency impacts of transport infrastructure projects.
Transp. Res. Part B Methodol. 2010, 44, 795–811. [CrossRef]

15. Adler, M.D. Cost-Benefit Analysis and Distributional Weights: An Overview; Duke University: Durham, NC, USA, 2013.
16. Robson, E.N.; Wijayaratna, K.P.; Dixit, V.V. A review of computable general equilibrium models for transport and their applications

in appraisal. Transp. Res. Part A Policy Pract. 2018, 116, 31–53. [CrossRef]
17. Chen, Z. Measuring the regional economic impacts of high-speed rail using a dynamic SCGE model: The case of China. Eur. Plan.

Stud. 2019, 27, 483–512. [CrossRef]
18. Haddad, E.A.; Hewings, G.; Perobelli, F.S.; Dos Santos, R.A.C. Regional Effects of Port Infrastructure: A Spatial CGE Application

to Brazil. Int. Reg. Sci. Rev. 2010, 33, 239–263. [CrossRef]
19. Goldmann, K.; Wessel, J. TEN-T corridors–Stairway to heaven or highway to hell? Transp. Res. Part A Policy Pract. 2020, 137,

240–258. [CrossRef]
20. Crescenzi, R.; Di Cataldo, M.; Rodríguez-Pose, A. Government quality and the economic returns of transport infrastructure

investment in european regions. J. Reg. Sci. 2016, 56, 555–582. [CrossRef]
21. Maucorps, A.; Jestl, S.; Römisch, R. The Effects of the EU Cohesion Policy on Regional Economic Growth: Using Structural Equation

Modelling for Impact Assessment; Vienna Institute for International Economic Studies: Wien, Austria, 2020.
22. Jiang, X.; He, X.; Zhang, L.; Qin, H.; Shao, F. Multimodal transportation infrastructure investment and regional economic

development: A structural equation modeling empirical analysis in China from 1986 to 2011. Transp. Policy 2017, 54, 43–52.
[CrossRef]

23. Chen, Z.; Haynes, K. Spatial Impact of Transportation Infrastructure: A Spatial Econometric CGE Approach; Springer International
Publishing: Berlin/Heidelberg, Germany, 2015; pp. 163–186.

http://doi.org/10.1080/02513625.2013.826539
http://doi.org/10.1016/S1361-9209(98)00010-8
http://doi.org/10.1016/j.jtrangeo.2011.09.004
http://doi.org/10.1016/S0966-6923(01)00013-8
http://doi.org/10.1016/j.jtrangeo.2018.08.010
http://doi.org/10.1016/j.tra.2020.07.008
http://www.ncbi.nlm.nih.gov/pubmed/32834669
http://doi.org/10.2202/2152-2812.1058
http://doi.org/10.1016/S1361-9209(97)00035-7
http://doi.org/10.1016/j.trb.2009.12.008
http://doi.org/10.1016/j.tra.2018.06.003
http://doi.org/10.1080/09654313.2018.1562655
http://doi.org/10.1177/0160017610368690
http://doi.org/10.1016/j.tra.2020.04.010
http://doi.org/10.1111/jors.12264
http://doi.org/10.1016/j.tranpol.2016.11.004


Sustainability 2023, 15, 5126 14 of 15

24. LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: New York, NY, USA, 2009.
25. Bolduc, D.; Laferrière, R.; Santarossa, G. Spatial Autoregressive Error Components in Travel Flow Models: An Application to

Aggregate Mode Choice. In New Directions in Spatial Econometrics; Anselin, L., Florax, R.J.G.M., Eds.; Springer: Berlin/Heidelberg,
Germany, 1995; pp. 96–108.

26. Haider, M.; Miller, E.J. Effects of Transportation Infrastructure and Location on Residential Real Estate Values: Application of
Spatial Autoregressive Techniques. Transp. Res. Rec. J. Transp. Res. Board 2000, 1722, 1–8. [CrossRef]

27. Hackney, J.K.; Bernard, M.; Bindra, S.; Axhausen, K.W. Predicting road system speeds using spatial structure variables and
network characteristics. J. Geogr. Syst. 2007, 9, 397–417. [CrossRef]

28. Ibeas, Á.; Cordera, R.; Dell’Olio, L.; Coppola, P.; Dominguez, A. Modelling transport and real-estate values interactions in urban
systems. J. Transp. Geogr. 2012, 24, 370–382. [CrossRef]

29. Cordera, R.; Coppola, P.; Dell’Olio, L.; Ibeas, Á. Is accessibility relevant in trip generation? Modelling the interaction between trip
generation and accessibility taking into account spatial effects. Transportation 2017, 44, 1577–1603. [CrossRef]

30. Cordera, R.; Coppola, P.; Dell’Olio, L.; Ibeas, Á. The impact of accessibility by public transport on real estate values: A comparison
between the cities of Rome and Santander. Transp. Res. Part A Policy Pract. 2018, 125, 308–319. [CrossRef]

31. Lopes, S.; Brondino, N.C.M.; Da Silva, A.N.R.; Da Silva, A.R. GIS-Based Analytical Tools for Transport Planning: Spatial
Regression Models for Transportation Demand Forecast. ISPRS Int. J. Geo-Inf. 2014, 3, 565–583. [CrossRef]

32. Zeng, C.; Song, Y.; Cai, D.; Hu, P.; Cui, H.; Yang, J.; Zhang, H. Exploration on the spatial spillover effect of infrastructure network
on urbanization: A case study in Wuhan urban agglomeration. Sustain. Cities Soc. 2019, 47, 101476. [CrossRef]

33. Yu, N.; de Jong, M.; Storm, S.; Mi, J. Spatial spillover effects of transport infrastructure: Evidence from Chinese regions. J. Transp.
Geogr. 2013, 28, 56–66. [CrossRef]

34. Gutiérrez, J.; Condeço-Melhorado, A.; Martín, J.C. Using accessibility indicators and GIS to assess spatial spillovers of transport
infrastructure investment. J. Transp. Geogr. 2009, 18, 141–152. [CrossRef]

35. Lopez, E.; Monzón, A.; Ortega, E.; Quintana, S.M. Assessment of Cross-Border Spillover Effects of National Transport Infrastruc-
ture Plans: An Accessibility Approach. Transp. Rev. 2009, 29, 515–536. [CrossRef]

36. Moreno, R.; López-Bazo, E. Returns to Local and Transport Infrastructure under Regional Spillovers. Int. Reg. Sci. Rev. 2007, 30,
47–71. [CrossRef]

37. Geurs, K.T.; van Wee, B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp.
Geogr. 2004, 12, 127–140. [CrossRef]

38. Reggiani, A. Accessibility, Trade and Locational Behaviour; Routledge: London, UK, 2019.
39. Coppola, P.; Nuzzolo, A. Changing accessibility, dwelling price and the spatial distribution of socio-economic activities. Res.

Transp. Econ. 2011, 31, 63–71. [CrossRef]
40. Ortega, E.; Lopez, E.; Monzón, A. Territorial cohesion impacts of high-speed rail at different planning levels. J. Transp. Geogr.

2012, 24, 130–141. [CrossRef]
41. Monzón, A.; Ortega, E.; López, E. Efficiency and spatial equity impacts of high-speed rail extensions in urban areas. Cities 2013,

30, 18–30. [CrossRef]
42. Cascetta, E. Transportation Systems Analysis: Models and Applications; Springer: Boston, MA, USA, 2009.
43. Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B Methodol. 1948, 10, 243–251. [CrossRef]
44. Charron, N.; Lapuente, V.; Annoni, P. Measuring quality of government in EU regions across space and time. Pap. Reg. Sci. 2019,

98, 1925–1953. [CrossRef]
45. World Bank National Accounts Data, and OECD National Accounts Data Files. GDP (Constant 2015 US$). Available online:

https://data.worldbank.org/indicator/NY.GDP.MKTP.KD (accessed on 7 August 2022).
46. European Commission-ARDECO Online-Knowledge for Policy. Available online: https://knowledge4policy.ec.europa.eu/

territorial/ardeco-online_en (accessed on 7 August 2022).
47. Eurostat-Statistics. Available online: https://ec.europa.eu/eurostat/databrowser/view/NAMA_10R_3GDP/default/table?

lang=en (accessed on 7 August 2022).
48. Agency for Statistics of Bosnia and Herzegovina-Statistics. Available online: https://bhas.gov.ba/?lang=en (accessed on

13 August 2022).
49. Kosovo Agency of Statistics-Statistics. Available online: https://askdata.rks-gov.net/pxweb/en/ASKdata/ (accessed on

13 August 2022).
50. INSTAT-Albanian Institute of Statistics-Statistics. Available online: https://www.instat.gov.al/en/ (accessed on 13 August 2022).
51. World Bank—Worldwide Governance Indicators (WGI) Database. Available online: http://info.worldbank.org/governance/wgi/

(accessed on 24 August 2022).
52. European Commission (2021) Proposal for a Regulation of the European Parliament and of the Council on Union Guidelines for

the Development of the Trans-European Transport Network, Amending Regulation (EU) 2021/1153 and Regulation (EU) No
913/2010 and Repealing Regulation (EU) 1315/2013. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=
COM%3A2021%3A812%3AFIN (accessed on 11 July 2022).

53. Del Bo, C.F.; Florio, M. Infrastructure and Growth in a Spatial Framework: Evidence from the EU regions. Eur. Plan. Stud. 2012,
20, 1393–1414. [CrossRef]

http://doi.org/10.3141/1722-01
http://doi.org/10.1007/s10109-007-0050-4
http://doi.org/10.1016/j.jtrangeo.2012.04.012
http://doi.org/10.1007/s11116-016-9715-5
http://doi.org/10.1016/j.tra.2018.07.015
http://doi.org/10.3390/ijgi3020565
http://doi.org/10.1016/j.scs.2019.101476
http://doi.org/10.1016/j.jtrangeo.2012.10.009
http://doi.org/10.1016/j.jtrangeo.2008.12.003
http://doi.org/10.1080/01441640802627974
http://doi.org/10.1177/0160017606296728
http://doi.org/10.1016/j.jtrangeo.2003.10.005
http://doi.org/10.1016/j.retrec.2010.11.009
http://doi.org/10.1016/j.jtrangeo.2011.10.008
http://doi.org/10.1016/j.cities.2011.11.002
http://doi.org/10.1111/j.2517-6161.1948.tb00012.x
http://doi.org/10.1111/pirs.12437
https://data.worldbank.org/indicator/NY.GDP.MKTP.KD
https://knowledge4policy.ec.europa.eu/territorial/ardeco-online_en
https://knowledge4policy.ec.europa.eu/territorial/ardeco-online_en
https://ec.europa.eu/eurostat/databrowser/view/NAMA_10R_3GDP/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/NAMA_10R_3GDP/default/table?lang=en
https://bhas.gov.ba/?lang=en
https://askdata.rks-gov.net/pxweb/en/ASKdata/
https://www.instat.gov.al/en/
http://info.worldbank.org/governance/wgi/
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM%3A2021%3A812%3AFIN
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM%3A2021%3A812%3AFIN
http://doi.org/10.1080/09654313.2012.680587


Sustainability 2023, 15, 5126 15 of 15

54. Elburz, Z.; Nijkamp, P.; Pels, E. Public infrastructure and regional growth: Lessons from meta-analysis. J. Transp. Geogr. 2017, 58,
1–8. [CrossRef]

55. Crescenzi, R.; Rodríguez-Pose, A. Infrastructure and regional growth in the European Union. Pap. Reg. Sci. 2012, 91, 487–513.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jtrangeo.2016.10.013
http://doi.org/10.1111/j.1435-5957.2012.00439.x

	Introduction 
	State of the Art 
	Methodology 
	Accessibility Analysis 
	Spatial Regression Models 

	Application to the Adriatic and Ionian Region Case Study 
	Data Source 
	Current Scenario Accessibility Analysis 
	Spatial Regression Model Estimations 
	GDPC Variation Forecast Due to the TEN-T Network Extension in the AI Region 

	Discussion 
	Conclusions 
	References

