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Abstract
Ride comfort is a relevant performance for road vehicles. The suspension system can
filter vibration caused by the uneven road to improve ride comfort. Optimization of
the road vehicle suspension system has been extensively studied. As detailed models
require significant computational effort, it becomes increasingly important to develop
an efficient optimization framework. In this work, a multi-fidelity surrogate-based
optimization framework based on the Approximate Normal Constraint method and
Extended Kernel Regression surrogate modeling method is proposed and applied.
An analytical model and a multi-body model of the suspension system are used as
the low-fidelity and high-fidelity models, respectively. Compared with other well-
known methods, the proposed method can provide good accuracy and high efficiency.
In addition, the proposed method is applied to different types of vehicle suspension
optimization problems and shows good robustness and efficiency.

Keywords Multi-fidelity surrogate model · Multi-objective optimization · Road
vehicles design · Suspension systems

1 Introduction

The suspension system of road vehicles plays an important role in attenuating vibra-
tions and shocks caused by road roughness. The suspension system is quite complex
and difficult to be modeled accurately due to its high nonlinearity, such as damping
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nonlinearity, friction between components, geometric nonlinearity of the suspension,
etc. Many analytical models have been introduced to describe the vibration response
of the road vehicle, such as quarter-car models with 2 degrees of freedom (DOFs) (Ha
1985; Gobbi and Mastinu 2001; Alkhatib et al. 2004), 4-DOFs half-car models (Sun
and Chen 2003; Yanfei and Xuan 2013), and 7-DOFs full vehicle models (Kim and
Ro 2002; Sulaiman et al 2012), and even more DOFs models (Setiawan et al. 2009).
These models can predict the vibration response at the center of mass by simplifying
the full vehicle system to a rigid body systemwith springs and dampers. Among them,
the 2-DOF model is widely used because of its simplicity and acceptable accuracy
(Genta and Morello 2009).

With the development of computer aided engineering (CAE) technology, in order
to accurately describe the behaviour of the suspension system, more detailed models
(i.e., high-fidelity models) have been developed, such as finite element model (FEM),
and multi-body models, which can consider the body as a flexible body and take into
account more nonlinearities. However, in general, the simulation of a high-fidelity
model requires a great deal of computational effort and time. To improve the com-
putational efficiency, surrogate-based methods are adopted to generate ’black box’
models that can describe the behaviour of these computationally expensive models
(Gobbi et al. 1999, 2014; Chen et al. 2015). Typical methods for generating surrogate
models are artificial neural network (ANN) (Jain et al. 1996), support vector regres-
sion (SVR) (Drucker et al. 1996), kriging (Cressie 1990), and kernel regression (KR)
(Wand and Jones 1994). Surrogate models can replace the original models to predict
the response of the system with low computational effort. But, in order to obtain high
prediction accuracy, a large amount of initial data is usually required to fit a surrogate
model. Thus, for time-consuming high-fidelitymodels, this approach is still inefficient.

Multi-fidelity modeling methods take advantage from both low-fidelity and high-
fidelity models. The core idea is to correct the low-fidelity data according to the
high-fidelity data. Typically, low-fidelity data is used to capture general trends in
system response, while high-fidelity data is used to provide accurate estimations and
calculate the deviation of low-fidelity models (Peherstorfer et al. 2018). Some multi-
fidelitymethods have been proposed and applied in the engineering field.Among them,
kriging methods based on gaussian process are the most used (Kennedy and O’Hagan
2000; Han et al. 2013; Han and Görtz 2012; Zhonghua et al. 2020; Zhao et al. 2021;
Jesus et al. 2021). Co-Kriging (Kennedy andO’Hagan 2000)was proposed and applied
to design an oil reservoir.Han et al. (2013) combined gradient-enhanced kriging (GEK)
and generalized hybrid bridge function (GHBF) to significantly improve the efficiency
and accuracy in aero-loads prediction. Zhao et al. (2021) employed adaptive multi-
fidelity sparse polynomial chaos-kriging (AMF-PCK) to predict aerodynamic data,
and conducted a comparisonwith some popular kriging-basedmethods to demonstrate
efficiency and accuracy. In addition, artificial neural networks basedmethods have also
been used for multi-fidelity modeling. Leary et al. (2003) applied knowledge-based
artificial neural networks (KBNN) to beams optimization problems. Multi-fidelity
deep neural network (MFDNN)was proposed to handle the complex high dimensional
optimization problems (Meng and Karniadakis 2020) and adopted to optimize the
aerodynamic shapes (Zhang et al. 2021). However, most of them require pre-definition
of the weighting of low-fidelity models in different regions or only can take one low-
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fidelity model into account. In order to overcome this drawback, Lin et al. (2019)
proposed the extended kernel regression (EKR) method which is able to consider
multiple non-hierarchical low-fidelity models and choose proper low-fidelity models
in different regions automatically.

The optimization algorithm also plays an important role in improving the efficiency.
Evolutionary algorithms have been widely used in multi-objective optimization prob-
lems. For example, Deb et al. (2002) proposed the NSGA-II algorithm using fast
non-dominated sorting and crowding distance strategy, which is very efficient and
suitable for many optimization problems. The benefit of evolutionary algorithms is
that the gradient computation is not required, but a large number of running parame-
ters affect convergence and accuracy. In order to reduce the computational complexity,
the multi-objective problem can be converted into a set of equivalent single-objective
problems, by applying the ε-constraint method (Mastinu et al. 2007), the normal
constraint method (NC) (Messac et al. 2003), and the weighted sum method (Mar-
ler and Arora 2010). Zhang and Li (2007) proposed a multi-objective evolutionary
approach based on decomposition (MOEA/D) to decompose a multi-objective prob-
lem into a set of single-objective problems, which combines a surrogate model to
increase computational efficiency (Zhang et al. 2010). Normal constraint-based opti-
mizationmethods, such as smart normal constraint (SNC) (Hancock andMattson2013;
Munk et al. 2018), augmented normalized normal constraint (A-NNC) (Bagheri and
Amjady 2019), and enhanced normalized normal constraint (ENNC) (Yazdaninejad
et al. 2020), etc., have been widely used to obtain the Pareto frontier efficiently. Nor-
mal constraint based methods usually use a series of single-objective optimizations to
obtain the anchor points and the Pareto points requiring a huge amount of simulations.
In order to reduce the number of simulations, Gobbi et al. (2014) proposed a local
approximation based on the normal constraint method, which is named approximate
normal constraint (ANC), in which an artificial neural network was used to estimate
the local response and updated iteratively to obtain the accurate Pareto frontier, and
conducted a comparison with other popular optimization methods showing high effi-
ciency and effectiveness.

In this paper, from the perspective of improving the optimization efficiency, a
multi-fidelity based optimization method is proposed and applied on a road vehicle
suspension optimization problem. The algorithm combines the approximate normal
constraint method and the extended kernel regressionmethod. In order to obtain a high
fitting accuracy of the surrogate model, a complete factorial analysis is used to select
the optimal parameters for the EKR method. The surrogate model is updated with the
new data at each iteration until the convergence condition is met. The effectiveness
and efficiency are verified by comparison with other methods selected from the liter-
ature. In addition, the generality of the used method power the way of the proposed
combined approach to other problems or the same problem with more complicated
low-fidelity or high-fidelity models.

This paper is organized as follows: Sect. 2 presents the description of the suspen-
sion optimization problem and the multi-fidelity models used. Section3 introduces the
proposed multi-fidelity based optimization method. The numerical results of the cal-
ibration of EKR parameters, a comparison with other algorithms, and generalization
are shown and discussed in Sect. 4. Section5 concludes the paper.
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2 Problem description

In this section, the classical suspension system design problem is presented. A 2 DOFs
linear analytical suspension system model and a 2 DOFs multi-body model including
damping non-linearity and shock absorber friction are used as low and high fidelity
models to describe the ride comfort performance of the road vehicle, respectively.

2.1 Ground vehicle suspension optimal design

The problem studied is a classical vehicle suspension system optimal design prob-
lem. When the car is driving on uneven road, the road unevenness causes vibration
of the body through tires and suspension. Ride comfort is a metric of the vehicle’s
effectiveness in shielding occupants from uneven road excitation (Genta and Morello
2009).

Let us to define the vertical displacements of the wheel and vehicle body as z1
and z2, respectively, and the contact force between the tires and the ground as Fz .
The ride comfort performance is expressed in terms of standard deviation of the body
vertical accelerationσz̈2 (discomfort), tire-ground contact forceσFz (roadholding), and
the relative displacement between wheel and body σ(z2−z1) (working space), which
are conflicting performance indices related to the vehicle performance (Gobbi and
Mastinu 2001). The suspension stiffness, named k2, and damping, named c2, which
have a relevant impact on discomfort, road holding and working space, are used as
design variables. Thus, the suspension optimal design problem is defined as follows

min
k2, c2

: f = [ σz̈2(k2, c2), σFz (k2, c2), σ(z2−z1)(k2, c2) ]

s.t . : k2min ≤ k2 ≤ k2max , c2min ≤ c2 ≤ c2max

(1)

where f is the vector of objective functions, k2 and c2 are the design variables. k2min ,
k2max , c2min , and c2max are all positive numbers, which are the lower and upper bounds
of suspension stiffness and damping, respectively.

2.2 Low-fidelity model

The low-fidelity model considered is the well-known quarter car linear model (shown
in Fig. 1), which describes the vehicle as a 2 DOFs system. The masses m2 and m1
respectively represent the sprung mass, which is the vehicle body mass supported by
the suspension, and the unsprung mass i.e. the part other than the sprung mass, which
is approximately the sum of the mass of the wheel and the mass of the suspension.
k1 is the radial stiffness of the tire. The stiffness k2 and damping c2 of the suspension
system are considered linear. The wheel motion z1 and the vehicle body motion z2
with the road input r can be described as follows

m1 z̈1 − c2 (ż2 − ż1) − k2 (z2 − z1) + k1 (z1 − r) = 0
m2 z̈2 + c2 (ż2 − ż1) + k2 (z2 − z1) = 0

(2)
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Fig. 1 Quarter car linear model
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The uneven road input can be described considering its power spectral density
(Dodds and Robson 1973)

Sr (ω) = Abv

ω2 , (3)

where Ab is the road irregularity parameter, v is the vehicle speed and ω is the spatial
frequency.

According to Gobbi and Mastinu (2001), when a vehicle runs on an uneven road,
by converting the Eq. (2) to a Laplace transformation, discomfort (σz̈2 ), road holding
(σFz ), and working space (σ(z2−z1)) can be derived as follows

σz̈2 = A ·
√

(m1 + m2)

m2
2c2

k22 + k1c2
m2

2

σFz = A ·
√

(m1 + m2)
3

m2
2c2

k22 − 2
m1k1 (m1 + m2)

m2c2
k2 + k1r2 (m1 + m2)

2

m2
2

+ k21m1

c2

σ(z2−z1) = A

√
m1 + m2

c2

where A =
√
1

2
Ab · v

(4)

2.3 High-fidelity model

High-fidelitymodels can accurately describe the real systemworking conditions.How-
ever, in general, the simulation of high-fidelity models is computationally expensive.
In this study, the low-fidelity model describes the full vehicle system as a 2 DOFs lin-
ear system, whereas in reality, the damping characteristic of the damper is non-linear,
and the relative sliding between the damper piston and the rod guide also generates
coulomb friction forces (Yabuta et al. 1981; Lizarraga et al. 2008) not described by
low-fidelity model. Thus, a multi-body model (shown in Fig. 2) that also considers the
nonlinearity of damper and the friction in the shock absorber is used as a high-fidelity
model to simulate the vehicle vibration response accurately while running an uneven
road. The non-linear damping and friction are defined as follows
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Fig. 2 Multi-body model i.e.,
high-fidelity model

Fig. 3 Nonlinearity in the
suspension system of the
high-fidelity model
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Fc2 = c2 · v
1/3
c

Fμ = Aμ · sgn(vc)
(5)

where Fc2 is the suspension damping force (N) and Fμ is the friction (N). vc is the
damper velocity (m/s), c2 and Aμ are damping coefficient (Ns/m) and friction coef-
ficient, respectively, and are positive constants. The non-linear damping and friction
characteristics are shown in Fig. 3.

The high-fidelitymodel is simulated on an uneven road that has the same parameters
as the low-fidelity one for 40 s, while recording the vertical acceleration of the vehicle
body, the contact force between the tire and the ground, and the relative displacement
between wheel and body in time history. The standard deviations of the recorded
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data are computed to get the ride comfort performance indexes (i.e, discomfort, road
holding, and working space).

3 Multi-fidelity surrogate-based optimizationmethod

In this section, a local approximation multi-objective optimization algorithm com-
bining multi-fidelity surrogate models is proposed for the road vehicle suspension
design.

3.1 Main algorithm

Figure 4 shows the main structure of the proposed algorithm. In the first loop, the
initial dataset which contains both low-fidelity and high-fidelity data is generated by
design of experiments (DOE) and the surrogate model is created by the initial dataset
based on EKR method introduced in Sect. 3.2. The Pareto set is then generated on
the surrogate model using the ANC method described in Sect. 3.3. Within this phase,
each Pareto solution is evaluated by the high-fidelity model, and a trust region is used
to judge whether the results of the surrogate model and the high-fidelity model are
consistent. The trust region is calculated using the following equation:

Δtrust = c × ‖ fh‖2 (6)

where the constant c describes the percentage of the trust region radius relative to the
two-norm of the high-fidelity result fh . If the result of the surrogate model is within
this trust region, this solutionwill be selected in the Pareto solutions sorting procedure.
In subsequent loops, the surrogate model will be redesigned based on low-fidelity and
high-fidelity responses of all optimal results generated by the ANC method in the
current loop until the stopping condition is met, regardless of whether the trust region
condition is satisfied.

3.2 Extended Kernel Regression (EKR) method

The extended kernel regression (EKR) is applied to generate surrogate models in this
work. The EKR provides accurate predictions based on kernel regression (KR) by
correcting the low-fidelity data according to the response of the high-fidelity model,
and performing a local regression on the corrected data (Lin et al. 2019).

Two types of scaling function are considered to correct the response of low-fidelity
models (Lin et al. 2019). The first one is the additive scaling function, which assumes
that the difference between the high-fidelity model and the low-fidelity model is about
the same at new design points. Thus, the output of low-fidelity can be corrected as
follows

f̃
l j
i (x) = yl j (x) +

(
fh

(
x0i

)
− fl j

(
x0i

))
,∀i ∈ N ,∀ j ∈ J (7)
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Fig. 4 Flow chart of the
proposed multi-fidelity
surrogate-based optimization
algorithm

where f̃
l j
i is the corrected output of the j th low-fidelity model at the new design x

with the i th initial design point x0i .
(
fh

(
x0i

) − fl j
(
x0i

))
is the difference between

high-fidelity model and the j th low-fidelity model at the i th initial design points x0i .
The multiplicative scaling function is another type of scaling function described as
follows

f̃
l j
i (x) = fh

(
x0i

)
fl j

(
x0i

) · fl j (x),∀i ∈ N ,∀ j ∈ J , (8)

where the corrected output is defined as the ratio of high-fidelity model output fh
(
x0i

)
to low-fidelity model output fl

(
x0i

)
at the i th initial design points x0i multiplied by

the low-fidelity model output fl j (x) at the new design x.
After correcting the low-fidelity data, a polynomial is fitted locally on the corrected

j-th low-fidelity data f̃
l j
i (x) with distance-based weights through Kernel regression

(Wand and Jones 1994). The system response can be estimated by using the j-th
low-fidelity model as follows

f̂l j (x) = eT1 â
l j
x = eT1

(
XT

x WxXx

)−1
XT

x Wx F̃l j ,∀ j ∈ J (9)

123



Multi-fidelity surrogate-based optimal design of road…

where x = [x1, . . . , xd ]T is the unobserved design point, d is the number of design
variables, and

Xx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
(
x01 − x

)T · · ·
[(
x01 − x

)p]T
1

(
x02 − x

)T · · ·
[(
x02 − x

)p]T
...

...
. . .

...

1
(
x0n − x

)T · · ·
[(
x0n − x

)p]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

is an n × (dp + 1) matrix, n is the number of initial design points, p is the poly-
nomial order, e1 is a (dp + 1)-dimensional vector whose first element is 1 and

the rest are 0, F̃l j =
[
f̃
l j
1 (x), . . . , f̃

l j
n (x)

]T
is the set of corrected low-fidelity

data. Wx = diag
{
K1,Θ1

(
x01 − x

)
, . . . , K1,Θ1

(
x0n − x

)}
is an n × n matrix, where

K1,Θ1

(
x0i − x

)
is the Gaussian Kernel function, defined as follows

K1,Θ1

(
x0i − x

)
=

d∏
k=1

exp

{
− 1

2θ1k

(
x0ik − xk

)2}
,∀i ∈ N , (11)

where Θ1 = diag {θ11, . . . , θ1d}, and θ1k > 0, k = 1, . . . , d are parameters to be
selected.

The final predictions are obtained by weighted averaging the estimates from dif-
ferent corrected low-fidelity surrogate models, as follows

f̂EK R(x) =
∑
j∈J

wl j (x) f̂l j (x) (12)

where wl j is the weight representing the relative reliability of the j-th low-fidelity
model, detailed in (Lin et al. 2019). A MATLAB toolbox developed by Lin et al.
(2020) provides the EKR code and a manual.

3.3 Approximate Normal Constraint (ANC) method

The suspension optimal design problem is a classical multi-objective optimization
problem, in which objectives are in conflict with each other. Let us consider a general
multi-objective problem

min
x

: f (x) = [ f1(x), f2(x), . . . , fn(x)], x ∈ R
n

s.t . : g(x) ≤ 0

h(x) = 0

(13)
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Fig. 5 Convert multi-objective
problem to a set of
single-objective problems

where f (x) is the vector of objective functions at design x, g(x) and h(x) are the
inequality constraint and the equation constraint of the optimization problem, respec-
tively.

The ANC method is based on the normal constraint (NC) method (Messac et al.
2003) to approximate Pareto solutions by using surrogate models. In the NC method,
also shown in Fig. 5, the anchor points, which are the minima of each objective func-
tion, are first obtained. Then, the utopia hyperplane containing all anchor points is
constructed. The normal planes of a point P on the utopia hyperplane are used as
constraints to divide the objective domain into feasible and infeasible regions, con-
verting the multi-objective problem into a single-objective problem with non-linear
constraints. Bymoving the position of point P , we can get the complete Pareto frontier.
The optimization problem can be converted as follows

min
x

: fi (x), x ∈ R
n

s.t . : g(x) ≤ 0

h(x) = 0

vi j · ( f (x) − P) ≤ 0 ∀ j �= i

vi j = Fi − F j ∀ j �= i

(14)

where fi (x) is the response of the i-th objective function at design x; vi j is the vector
connecting the i-th and the j-th anchor points; Fi and F j are the minima of the i th
and j th objective functions respectively.

In the ANC method, the surrogate model of objective functions (in this work,
discomfort, road holding, and working space) is first obtained by fitting the initial data,
and then using the utopia plane of the surrogate model instead of the one introduced
in the NC method (Gobbi et al. 2014). The reason for this choice is that ANC has
shown high efficiency on road vehicle suspension optimization problems with respect
to widely used algorithms, and has a promising potential to further improve efficiency
by including the multi-fidelity surrogate method (Gobbi et al. 2014). Algorithm 1
briefly shows how the ANC algorithm works in this optimization framework.
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Algorithm 1: ANC algorithm works in ANC-EKR optimization framework.

Input: Surrogate model of all n objective functions: f̂ s (x) =
[
f̂s1(x), f̂s2(x), . . . , f̂sn(x)

]
;

In this work, the surrogate model is generated via EKR method.

Output: Estimated Pareto solutions: x̂, Fs (x̂)

Step 1. Determine the anchor points F̂i :
for i = 1, . . . , n do

Solve:
min
x

: f̂si (x), x ∈ R
n ←− in our problem: discomfort, road holding, and working space

s.t . : g(x) ≤ 0
h(x) = 0

return the minima of the i-th objective function F̂i

Step 2. Construct the normalized utopia hyperplane containing anchor points F̂i , according to
(Messac et al. 2003).

Step 3. Randomly sample Np points P j on utopia hyperplane.—For the example in Fig. 6, 15
points are sampled at each iteration.

Step 4. Define and solve the equivalent optimization problem via NC algorithm:
for j = 1, . . . , Np do

Solve:
min
x

: f̂si (x), x ∈ R
n

s.t . : g(x) ≤ 0
h(x) = 0
C(x, P j ) ≤ 0

return the Pareto result of the surrogate model x̂, Fs (x̂)

Step 5. Output the estimated Pareto result x̂, Fs (x̂) to the main program.

Fig. 6 Random sampling on the
normalized utopia plane—μ1,
μ2 and μ3 are the normalized
functions of f1, f2 and f3,
respectively

3.4 Stopping condition

The stopping condition is very important for a stochastic search problem. The stopping
condition is usually defined by the distance between the true Pareto frontier and the
approximated one (Rudolph and Agapie 2000). However, the true Pareto frontier is
unknown in advance, and searching for the true Pareto frontier on a high-fidelity
model is too computationally expensive. For multi-fidelity surrogate-based problem,
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the consistency between the corrected surrogate model and the high-fidelity model can
ensure that the algorithm converges to the optimal solution (Peherstorfer et al. 2018;
Jones 2001). In this work, the root mean squared error (RMSE) is adopted to describe
the consistency between the high-fidelity model and the surrogate model. The RMSE
is defined as follows

RMSE =
√

1

N

(‖(Fs − Fh)‖22
)

(15)

where N is the number of Pareto solutions. Fs is the Pareto frontier obtained from
the surrogate model, Fh is the corresponding solution with the high-fidelity model.
The fitting error of the surrogate model should be very tiny relative to the high-fidelity
model, and theutopia solution is theminimaof the surrogatemodel. The error condition
can therefore be defined as the ratio of the fitting error to the two-norm of the utopia
solution. It is also necessary to obtain a sufficient number of Pareto solutions. Thus,
the stopping condition is defined as follows

RMSE∥∥Futopia
∥∥
2

< 2% and N > 50 (16)

where Futopia is the utopia solution. Under condition (16), the algorithm is terminated
and returns the last Pareto frontier. Otherwise, the surrogate model is updated with the
new data.

4 Results and discussion

The proposed optimization algorithm is applied to a suspension optimal design prob-
lem for a small car. The parameters used in low-fidelity and high-fidelity models, as
well as the optimization algorithm, are shown in Table 1. In this section, a factorial
design based on sensitivity analysis is conducted to select the parameters of EKR
method, see Sect. 4.1. In Sect. 4.2, the efficiency and effectiveness of the proposed
algorithm for the road vehicle suspension optimization problem are demonstrated by
comparing with state of art algorithms. Furthermore, the generality of the algorithm is
demonstrated by applying it to other types of vehicle suspension optimization prob-
lems.

4.1 Calibration of EKR parameters

In order to obtain surrogate models with high accuracy, a full factorial design is
performed to obtain the parameters of the surrogate model for each objective function.
As described in Sect. 3.2, the selection of scaling functions, the regression polynomial
order, and the initial DOE size are very important choices that influence the fitting
accuracy of the EKR method. A sensitivity analysis is conducted in order to obtain
an accurate surrogate model for each objective function. For the scaling function, 2
levels are considered: additive and multiplicative. The initial DOE size has 3 levels:
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Table 1 Relevant parameters used in a small car optimal design approach

parameter symbol Description of parameters Value Unit

m1 Unsprung mass 31 kg

m2 Sprung mass 229 kg

k1 Tire stiffness 120 N/mm

k2 Suspension stiffness (design variable) [6, 50] N/mm

c2 Suspension damping (design variable) [0.5, 4] Ns/mm

Ab Road irregularity parameter 1.4e−5 m

v Vehicle speed 20 m/s

Aμ Friction coefficient 20 –

c Trust region coefficient 2% –

Np The number of samples in utopia hyperplane 15 –

9, 16 and 25, and the polynomial order has 3 levels: 0, 1 and 2. Experiments are run
50 times with full parameter settings, and the initial DOE points are resampled using
the Latin hypercube sampling method. A set of 400 checkpoints, which are the same
for all experiments, are sampled uniformly in the feasible domain. Accuracy can be
predicted in terms of mean absolute percentage error (MAPE), which is the average
percentage of the error at unobserved points relative to the high-fidelity data.

MAPE = 1

Nc

Nc∑
j=1

∣∣∣ f (
x j

) − f̂
(
x j

)∣∣∣
f
(
x j

) × 100(%) (17)

where Nc is the number of the checkpoints, f
(
x j

)
and f̂

(
x j

)
are the high-fidelity

output and the predicted result at the j th checkpoint x j , respectively.
Figure 7 shows the mean MAPE of the 3 objective functions with different DOE

sizes and different types of scaling functions. The DOE size has a relevant impact on
the estimation accuracy. As expected, the fitted model has a higher degree of accuracy
when the DOE size is larger. Furthermore, different types of scaling functions also
affect the objective functions differently. In terms of discomfort, both additive andmul-
tiplicative scaling functions perform similarly. For the road holding, the multiplicative
performs better. The surrogate model with additive scaling function performs better
for working space. As a result, we use the additive scaling function for discomfort as
well as for working space, and the multiplicative scaling function for road holding. 25
is selected as the DOE size for all the objective functions.

In addition, Fig. 8 illustrates the effect of the polynomial order on the prediction
accuracy of the surrogate models with the optimal DOE size that is 25 and scaling
functions mentioned previously. The result shows that all objective functions have
a higher accuracy when the polynomial order is higher. Therefore, 2 is used as the
polynomial order. Table 2 summarizes the parameters of EKR approach used in the
remainder of the paper.
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Fig. 7 Mean MAPE with different DOE size and different type of scaling function
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Table 2 Parameters selection for EKR method

DOE size Scaling function Polynomial order

Discomfort 25 Additive 2

Road holding 25 Multiplicative 2

Working space 25 Additive 2

4.2 Effectiveness and efficiency analysis

A numerical comparison is carried out to demonstrate the effectiveness and efficiency
of the proposed method. In order to demonstrate the benefit of the multi-fidelity
surrogate-based method, a single-fidelity method named kernel regression method
(Wand and Jones 1994), which only considers the high-fidelity model, is used to solve
the suspension problem with ANC method.

Besides, a decomposition optimization algorithm with EKR method, proposed by
Lin et al. (2021), is adopted to optimize the suspension. The decomposition with
EKR method is used to solve the multi-objective optimization problem by applying a
scalarization procedure i.e. we optimize the discomfort and constraint the road holding
and the working space. Expected improvement (EI) criterion (Jones et al. 1998) of
discomfort is applied as objective function. The EI is defined as
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Table 3 The algorithms used for the comparisons

High-fidelity model Low-fidelity model Local approximation

ANC-EKR
√ √ √

ANC-KR
√ × √

DEC-EKR
√ √ √

LOW-NON × √ ×

EI(x) =
(
fmin − f̂ (x)

)
Φ

(
fmin − f̂ (x)

s(x)

)
+ s(x)φ

(
fmin − f̂ (x)

s(x)

)
(18)

where fmin is the best observation currently; f̂ (x) is the predicted value at a new
design x; s(x) is the standard deviation of the prediction at x; Φ(x) is the Gaussian
cumulative distribution function and φ(x) is the probability density function. The
algorithm is stopped when EI is less than a positive number (Jones 2001), which is
0.5 in this study. Otherwise, the surrogate model is updated with the new solution at
this iteration. 121 uniform sampling points in the feasible region of the Road holding
and Working space have been used as constraints for the optimization problem. The
optimization can be defined as follows

min
x

: EI(x), x ∈ R
n

s. t. : f̂ RH (x) ≤ yiRH

f̂W S(x) ≤ yiW S

xl ≤ x ≤ xu

(19)

where f̂ RH (x) and f̂W S(x) are the prediction of road holding and working space,
respectively. yiRH and yiW S are the values of road holding and working space at the
i-th sampling point in the feasible region of the road holding and working space
respectively.

Another method that is commonly used for multi-fidelity optimization problems is
to perform the optimization firstly on the low-fidelity model and then substitute the
result to the high fidelity model (Peherstorfer et al. 2018). The Pareto frontier of the
low-fidelity model has been obtained by using NSGA-II optimization algorithm.

Notation XXX-YYY is used: XXX represents the optimization algorithm used,
(ANC represents the approximation normal constraint method, DEC represents the
decomposition optimizationmethod, LOW represents the approach based on the direct
optimization of the low-fidelity model), YYY indicates the surrogate method used
(EKR is the extended kernel regression method, KR is the kernel regression method,
and NON means no surrogate method is used). Table 3 shows the algorithms used for
this comparison. Except for LOW-NON optimizationmethod, for all other algorithms,
a DOE size of 25 has been considered, and 50 experiments have been completed.
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Fig. 9 Comparison of pareto frontiers obtained by different algorithms

For the ANC-EKR and the ANC-KR, the Pareto solutions are obtained by random
sampling on the utopia hyperplane, so the solutions obtained in each experiment are at
different positions on the Pareto front. Figure 9 shows the Pareto fronts obtained by the
ANC-EKR and other methods in one of the 50 experiments. As we can see, the Pareto
frontier obtained by the ANC-EKR is identical with the ANC-KR and the DEC-EKR.
This is not the case for the LOW-NON method that is dominated by other methods.
Moreover, as shown in Fig. 9c, the response of the high-fidelity model for the Pareto
solutions obtained by using the low-fidelity model is significantly different from the
actual Pareto solutions obtained directly from high-fidelity model. The introduction
of nonlinearity increases the difference between the two models and decreases their
correlation. Thus, the method of substituting the optimal solution of the low-fidelity
model into the high-fidelity model is not applicable to this problem.

In addition, efficiency is an important criterion to measure the quality of an algo-
rithm on the basis of its effectiveness. The computational effort can be defined as
the sum of the number of model evaluations multiplied by weights, which can be set
according to the duration of each model evaluation, as defined

Computational effort = Wh × Nh + Wl × Nl + Ws × Ns (20)
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Table 4 Average evaluation time
and weight of high-fidelity,
low-fidelity, and surrogate
models

Model Average evaluation time Weight

Multi-body 12.986s 1.516e+05

Analytical 8.566e−5s 1

EKR 0.0074s 86.456

Table 5 Algorithm performance: mean values from 50 experiments

ANC-EKR ANC-KR DEC-EKR

Pareto size 55.18 ± 1.23 57.94 ± 1.09 85.76 ± 2.59

Multi-body model simulations 87.1 ± 1.5 114.1 ± 2.5 230.5 ± 6.9

Analytical model evaluations 8687.1 ± 205.3 – 115,464.0 ± 16,425.5

EKR model evaluations 14,535.7 ± 344.0 19,703.8 ± 517.1 166,818.1 ± 23,683.0

Efficiency 1.58 ± 0.02 1.97 ± 0.04 2.71 ± 0.09

where W represents the weight, N represents the number of simulations. Subscripts
h, l, and s represent high-fidelity, low-fidelity, and surrogate models respectively.

For high-fidelity, low-fidelity, and surrogate models, 25 simulations of each model
are executed, and the average evaluation time is calculated, and weights are defined
as the ratio of the average time of each model to the low-fidelity model (shown in
Table 4).

The efficiency can be described as the ratio of computational effort to Pareto set
size (Gobbi et al. 2014). However, the average evaluation time of the high-fidelity
model is far greater than others, so the efficiency can be roughly defined as the ratio
of the number of the required high-fidelity simulations Nh and the Pareto set size, as
shown

Efficiency = Computational effort

Pareto set size
⇒ Nh

Pareto set size
(21)

The Pareto size obtained, the evaluations times of the analytical and surrogate
model, the number of simulations of the multi-body model (high-fidelity model),
and efficiency are recorded, as shown in Table 5. In terms of the comparison of the
optimization algorithm, the result shows that DEC-EKR method requires more sim-
ulations than both ANC-EKR and ANC-KR. Therefore, it can be concluded that the
ANC algorithm is more efficient than the DEC algorithm for the suspension optimiza-
tion problem. Using surrogate models, the EKR algorithm requires less simulation
times of the high-fidelity model than the KR algorithm, by comparing ANC-EKR
with ANC-KR.

Figure 10a, b show the box plots of the efficiency and the fitting error between
surrogatemodel and high-fidelitymodel. Similarly, theANC-EKR is themost efficient
algorithm for this problem. Besides, it is noteworthy that the EKRmethod can provide
much more accurate prediction at the Pareto frontier than the KR method.
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Fig. 10 Comparison of algorithm performance (boxplots with 50 experiments)

In summary, by comparing different optimization algorithms and surrogate algo-
rithms, the proposed algorithm ANC-EKR shows good effectiveness and efficiency
for the suspension optimization problem.

4.3 Application to other vehicles

The effectiveness and efficiency of the proposed method for a small car suspension
optimization problem has been presented in the previous section. In order to determine
the generality of the proposed method, the same test is performed on three other
different types of vehicles (bus, truck, and off-road vehicle). The parameters for these
systems are taken from the literature (Abdelkareem et al. 2018). Typically, the ride
frequency (i.e. undamped natural frequency of the suspension) is between 1 and 2
Hz, and the relative damping ratio is between 0.2 and 1. The definition of the ride
frequency and the damping ratio are shown as follows

nr = 1

2π
√
k2m2

ψ = c2
2
√
k2m2

(22)

where nr and ψ are ride frequency and damping ratio respectively, k2 is the spring
stiffness (N/m), c2 is the damping coefficient (Ns/m), and m2 is the sprung mass (kg).
Based on the above, the design variable boundaries for the suspension are set. The
used parameters are reported in Table 6.

Similarly, for each type of vehicle, the optimization experiment is performed 50
times, the Pareto set size obtained, the number of executions of high-fidelity, low-
fidelity, and surrogate models, and efficiency are recorded, shown in Table 7. Figure 11
shows the efficiency distribution of the ANC-EKR algorithm applied to different vehi-
cles.

The result shows that the bus experiment is less efficient. As can be seen from
the Table 6, compared with other vehicles, the bus has a significantly greater sprung
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Table 6 Parameters of different types of vehicles

Unit Small car Bus Truck Off-road vehicle

Unprung mass (m1) kg 31 150 500 120

Sprung mass (m2) kg 229 3250 4500 950

Tire stiffness (k1) N/mm 120 1000 1500 350

Spring stiffness (k2) N/mm [6, 50] [130, 510] [180, 710] [35, 150]

Damping coefficient (c2) Ns/mm [0.5, 40] [8, 80] [10, 115] [2, 25]

Table 7 ANC-EKR algorithm performance on different vehicles: mean values from 50 experiments

Small car Bus Truck Off-road vehicle

Pareto size 55.18 ± 1.23 56.46 ± 0.80 57.68 ± 0.46 55.36 ± 0.43

Multi-body model simulations 87.1 ± 1.5 100.9 ± 1.0 85.0 ± 0 85.0 ± 0

Analytical model evaluations 8687.1 ± 205.3 13,462.2 ± 188.0 11,851.8 ± 61.8 10,375.2 ± 57.2

EKR model evaluations 14,535.7 ± 344.0 22,574.3 ± 316.1 19,877.4 ± 103.8 17,429.0 ± 97.9

Efficiency 1.58 ± 0.02 1.79 ± 0.03 1.47 ± 0.01 1.54 ± 0.01

Fig. 11 ANC-EKR efficiency of
4 types vehicles (boxplots with
50 experiments)
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mass relative to the unsprung mass. The introduction of non-linearity may cause a
significant difference in response between the low and high-fidelitymodels, or perhaps
the parameters of the EKR method currently employed are not the optimal choice
for the bus model, thus requiring more data (i.e., more simulations) to satisfy the
termination conditions related to the fitting error. Moreover, the number of samples in
the utopia hyperplane also affects efficiency. A fixed number of samples is taken into
account in this optimization framework. During the iterative process, when the error
condition is satisfied and only a few Pareto solutions are missing, an excessively large
number of samples in the upcoming iteration will inevitably degrade the efficiency of
the algorithm. However, a too small number of samples will conversely result in an
increase in the number of iterations (i.e., an increase in the generation of surrogate
models as well as in the number of optimizations with surrogate models).

In any case, for all four different types of vehicles, the mean efficiency values
are less than 2, which means that on average less than two high-fidelity simulations
are required to obtain a Pareto point. Therefore, it can be concluded that the ANC-

123



H. Xue et al.

EKR method shows good robustness and efficiency in the road vehicle suspension
optimization problem.

5 Conclusion

In the presented study, an efficient multi-fidelity surrogate-based optimization method
based on the approximate normal constraint method (ANC) and extended kernel
regression (EKR) is proposed and tested on a road vehicle suspension optimization
problem. A linear quarter car model and a multi-body model which considers the
nonlinear dampering and the shock absorber friction are used to create surrogate mod-
els for discomfort, road holding, and working space. A full factorial design based
on sensitivity analysis is used to select the suitable parameter for the EKR method.
A comparison is conducted to verify the accuracy and efficiency of the ANC-EKR
method. The result shows that less simulations of high-fidelity model are required by
the ANC-EKRmethod with respect to other algorithms in the road vehicle suspension
optimization problem. Furthermore, the proposed method also shows good robustness
and efficiency in the optimization of suspension problems for other types of vehicles.
Although in this work, the high-fidelity model is not the most detailed and there are
some other nonlinear components that affect the suspension system behaviour, this
method presents the possibility to improve efficiency while guaranteeing an adequate
level of accuracy.

Futureworkwill devote to consideringmore complexity in the high-fidelitymodels.
In this work, only shock absorber friction and nonlinear damper behaviour are consid-
ered in the high-fidelity model. In order to have a better description of the vibrations
received by the human body, the high-fidelity model could be enhanced by including
more degrees of freedom for the full vehicle model that could provide not only the
vertical vibration but the vibration on other axes as well, more complex tire models,
bushings, flexible bodies, and other excitations other than the road (e.g. powertrain),
etc. In addition, a strategy of varying the number of samples in the utopia hyperplane
based on the results of the current iteration can be introduced to further enhance the
efficiency of this optimization framework.
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