
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Almost Rerere: Learning to resolve conflicts in
distributed projects

Sergio Luis Herrera Gonzalez and Piero Fraternali
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da

Vinci 32, Milan, 20133, Italy.

Abstract—The concurrent development of applications requires reconciling conflicting code updates by different developers. Recent
research on the nature of merge conflicts in open source projects shows that a significant fraction of merge conflicts have limited size
(one or two lines of code) and are resolved with simple strategies that use code present in the merged versions. Thus the opportunity
arises of supporting the resolution of merge conflicts automatically by learning the way in which developers fix them. In this paper we
propose a framework for automating the resolution of merge conflicts which learns from the resolutions made by developers and
encodes such knowledge into conflict resolution rules applicable to conflicts not seen before. The proposed approach is text-based,
does not depend on the programming languages of the merged files and exploits a well-known and general language (search and
replacement regular expressions) to encode the conflict resolution rules. Evaluation results on 14,872 conflicts from 25 projects show
that the system can synthesize a resolution for ≈ 49% of the conflicts occurred during the merge process (≈ 89% if one considers
conflicts that have at least one similar conflict in the data set) and can reproduce exactly the same solution that human developers
have applied in ≈ 55% of the cases (≈ 62% for single line conflicts).

Index Terms—Automatic Conflict Resolution, GIT, Code integration.

✦

1 INTRODUCTION

THE development of large and complex software applica-
tions requires the distribution of programming among

multiple developers. When the same code base is changed
by different actors, inconsistencies may arise between the
concurrent changes. This occurrence is called conflict [1].
To support distributed development, Version Control Sys-
tems (VCS) [2] offer functions to share code, track changes,
and identify conflicts caused by the merge of concurrent
versions. When conflicts are signalled by the VCS, the de-
veloper has the responsibility of resolving them manually,
which makes code integration a time-consuming task [3].
Conflict resolution is also repetitive because similar or iden-
tical conflicts appear at every iteration. A study of software
projects [4] found that repetitiveness of small changes can
be very high (up to 70%) and may lead to addressing many
similar conflicts during integration again and again.

A recent investigation of a large number (2.731) of open
source projects permitted an accurate characterization of
conflicts [5]. One of the findings is that over half of the
conflicting chunks of code are limited in size (5 lines or
less) and the median size of conflicting chunks across all
the reviewed projects is 2.0 and 2.5 LOCs for the two merged
versions. The analysis also reveals that frequently (in 87% of
the cases) the conflict is resolved by exploiting code that is
already present in one of the two merged versions or in both.
This is confirmed also by a subsequent empirical study of
the distributed development of the Microsoft Edge software,
which reports that conflicts occur in the majority of merges
(80.4%), small conflicting chunks (1 or 2 LOCs) represent
almost 1/3 of the total and the manual resolutions tend to
follow repetitive patterns [6]. These findings suggests the

Manuscript received April 19, 2005; revised August 26, 2015.

possibility of applying data-driven methods to learn the
way in which human developers resolve merge conflicts by
combining existing code segments.

In this paper we develop a method to let a VCS learn
how to resolve new conflicts based on similar conflicts
addressed previously. The key idea is to exploit the conflict
resolutions implemented by human developers in the past
to create rules applicable to future similar conflicts. When
the first conflict is resolved manually, the conflicting chunk
and the manual resolution are processed to derive a Conflict
Resolution Rule (CRR). Then the first Conflict Cluster (CC) is
created and the rule is associated with it. A CC contains a
set of conflicts with similar structure that can be solved in
the same way. When another conflict arrives, it is compared
to the existing clusters. If its similarity to the conflicts of one
or more clusters exceeds a threshold then the CRR of the
most similar cluster is used to solve it. Otherwise, the user
is asked to provide a resolution and a new cluster is created.
In both cases the conflict with the committed solution is
added to the (new or matched) cluster and CRR generation
is executed to derive the rule associated with the cluster.

The paper addresses the following research questions:

• To what extent can the conflicts created by concurrent
submissions be resolved automatically exploiting the
knowledge embedded in previously resolved con-
flicts?

• How similar are the automatically generated and the
manually provided conflict resolutions?

• What is the impact of the size of the conflict on the
viability of automatic resolution?

• What is the impact of the complexity of the conflict,
of the involved language constructs and of the strat-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

egy of manual resolution on the similarity between
the manual and the automatic resolutions?

• Which reasons hinder the creation of a CRR able to
produce a resolution equivalent to the one manually
created by the user?

• Can the automatic resolutions that are dissimilar
from the manual ones support the developer and
shorten the resolution time?

The contribution of the paper can be summarized as
follows:

• We introduce the problem of automating the reso-
lution of similar conflicts in concurrent application
development and define the learning framework
needed to handle it. The same task has been tack-
led independently in the recent work [6], with the
differences explained in the related work section.

• We apply a single pass online clustering algorithm [7]
with the Jaro-Winkler string similarity measure [8] to
assign incoming conflicts to Conflict Clusters. A CC
includes conflicts that may be resolved by the same
rule.

• We introduce the idea of using Conflict Resolution
Rules (CRRs) in the form of regular search and replace-
ment expressions to encode the knowledge of how
to fix a conflict. To synthesize the CRRs we adapt
the approach of [9] and [10], which exploits genetic
programming to build a search and replace regular
expression from a set of examples specified as pairs
of strings. Our method uses as examples the before-
state and the after-state of the conflicts and produces a
CRR that is the best fitted search and replace expres-
sion that maps the before states of all the conflicts in
the CC into the respective after states.

• We illustrate a reference implementation, called Al-
most Rerere, which extends the functionality of the
popular Git VCS 1. Almost Rerere builds on top of
the Git Rerere plug-in, which resolves automatically
conflicts identical to already seen instances and helps
developers pre-check partial revisions before inte-
grating a complete revision into the master branch.
Almost Rerere can resolve conflicts similar to those
observed in past iterations and can be used through-
out the development process to support the semi-
automatic resolution of previously unseen conflicts.
It learns more and more precise CRRs as the applica-
tion development progresses.

• We evaluate the approach with 25 open source
projects in four languages. We extract 52,430 conflict
chunks from such projects and use 14,872 small size
conflicts (up to 6 LOCs) to derive the CRRs. Using the
manual resolutions provided by the developers as
ground truth, we assess the accuracy of the system.
The evaluation results show that the system can
synthesize a resolution for ≈ 49% of the conflicts
produced during the merge process (≈ 89% if one
considers conflicts that have at least one similar
conflict in the data set) and can reproduce exactly the
same solution that human developers have applied

1. https://git-scm.com/

in ≈ 55% of the cases (≈ 62% for single line con-
flicts). We illustrate the learning process with some
exemplary cases and discuss the limitations we have
observed.

The rest of the paper is organized as follows. Section 2
introduces the preliminary concepts and defines the data-
driven approach to the synthesis of conflict resolution rules
from conflict instances. Section 3 presents the data set used
for the evaluation and responds to the essential research
questions of the paper. Section 4 describes the system ar-
chitecture for the implementation of Almost Rerere. Section
5 discusses the threats to validity, with a focus on the lim-
itations that hinder the learning of conflict resolution rules
and the extension to other scenarios. Section 6 surveys the
related work about the identification of code similarities, the
generation of text and code from examples and the study of
merge conflicts in distributed projects. It also compares our
approach to the few recent research works that aim at the
automatic synthesis of conflict resolutions and of bug fixes.
Finally, Section 7 provides the conclusions and highlights
the envisioned future work.

2 CONCEPTS AND APPROACH

The following definitions capture the essential concepts of
concurrent development and conflict resolution.

• Code-base: a repository of the artifacts that compose
the application.

• Revision: a version of an artefact of the code base.
• Update: a change affecting a revision, consisting of

the insertion, modification or deletion of one or more
lines of code.

• Conflict: the result of merging two revisions that
contain inconsistent updates to the same code. A con-
flict may comprise multiple chunks corresponding to
different portions of the code updated inconsistently
by two developers.

• Conflict Chunk: a region of code affected by con-
flicting updates. The conflict chunk contains the two
colliding versions (conventionally named version1
and version2) belonging to the two merged revisions.
In this paper no semantics is attributed to the version
index so that the choice of version1 and version2 from
a conflict chunk can be considered random.

• Conflict Resolution: the set of lines to be inserted
into the revision in replacement of the conflict chunk.

• Conflict Resolution Strategy: the process adopted
by the developer to produce the conflict resolution,
chosen among five options [5]. The Version 1 and
the Version 2 strategies use the code coming from
the respective revision; the Concatenation strategy
concatenates both versions in either order; the Combi-
nation strategy combines lines of code from both ver-
sions without modification; the New Code or Manual
strategy exploits new code possibly mixed with code
of the colliding versions; the None strategy re-installs
the pre-submission version.

• Conflict Complexity: a difficulty index determined
by the proportion of straightforward chunks, resolved
using the Version 1, Version 2, Concatenation, or None

https://git-scm.com/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

strategy, and complex chunks, resolved with the Com-
bination or Manual strategy [5].

• Conflict Cluster: a set of conflicts with the same
pattern. A pattern is a search expression that matches
the conflicts of the cluster.

• Conflict Resolution Rule: a search and replacement
expression that matches a conflict with a given pat-
tern and produces a conflict resolution.

Our approach exploits the knowledge embedded in
<version_x, resolution> pairs to synthesize a CRR that, when
applied to conflicts similar to those used to create it, pro-
duces a resolution close to the intention of the developer.
To strike a balance between CRR specificity and generality,
conflicts are grouped into clusters based on a similarity
metrics and CRRs are synthesised from all the examples
in the cluster. To let the system learn from the manual
fixes provided by the developer, the CRR associated with
a cluster is recomputed when a new conflict is added to it.

Table 1 illustrates a complete example of the conflict
resolution process. A sequence of four conflicts is handled.
The first conflict (C1) has no antecedents and thus the
resolution committed by the user is exploited to initialize the
cluster structure and to build the first CRR. The synthesized
rule (CRR1.1) has quite a rigid pattern: it replaces whatever
comes after ",t" up to the end of the string delimited by
");" with the fixed string ", true);". The second con-
flict C2 is found to have high similarity to the cluster (score
= 0.9399) and thus CRR1.1 is used to create the resolution.
The fix produced by CRR1.1 is proposed to the developer
who accepts and commits it (indeed the automatic fix is
identical to the ground truth resolution found in the project
repository). C2 with its resolution is added to the cluster
and the CRR is regenerated. The resulting CRR1.2 now has
a slightly more general pattern: it searches for the substring
"rue" followed by a comma and a word starting with ’t’
and replaces it with the characters of the matched word
after the ’t’. Note that in the regex the matched substring
to be used as a replacement is denoted by a so-called
matching group, which is a sub-expression enclosed within
parentheses (..). In practice, the CRR has learnt to find
two comma-separated occurrences of "true" and to replace
them with only one occurrence. When conflict C3 arrives, it
is found similar to the cluster (score = 0.9471). Thus CRR1.2
is applied to it and an automatic fix is computed. CRR1.2
does not match any portion of the input and thus the conflict
version matching the cluster is proposed as the resolution
to the developer. This time the automatic fix is not correct
and thus the developer rejects it and commits a different
one. The committed fix is used as the correct after state and
the conflict C3 with its resolution is added to the cluster,
which triggers the re-computation of the CRR. Thanks to
the new knowledge acquired from the manual fix of C3
now CRR1.3 has a more general structure. It searches for
a first capturing group formed by a sequence of characters
and for a second capturing group containing the characters
");", the two being separated by a comma, a space and
a sequence of characters. It replaces the matched substring
with only the content of the capturing groups: in practice,
the rule has learnt to delete the last parameter, whatever its
name is. Finally, conflict C4 arrives. Again it is found similar

to the cluster (score = 0.9573). The rule CRR1.3 is applied to
compute the automatic resolution (i.e., by deleting the last
parameter). The automatic fix is submitted to the developer,
who accepts and commits it (again, we can see that the
automatic solution is identical to the GT fix in the project
repository). The conflict and the committed resolution are
added to the cluster, which triggers the re-creation of the
CRR. The new rule, CRR1.4, is identical to the previous one
CRR1.3, which means that the algorithm has produced a
reusable rule. Obviously, the future addition of other similar
conflicts to the cluster may lead to a revision of the CRR so
as to adapt it to the new examples.

Note that during conflict-to-cluster matching and cluster
creation and extension we always employ one of the two
colliding versions, namely V1. However, since the assign-
ment of an index to a version is arbitrary, the choice is
random. The same version used for matching is exploited
for creating the automatic resolution and for extending the
cluster.

Algorithm 1 formalizes the process of CRR synthesis as
an online loop that takes in input one conflict chunk at a
time and produces in output a conflict resolution, either
manually provided by the developer or synthesized by
the system. The algorithm relies on two main procedures:
findSimilarCluster, which compares an incoming conflict to
those seen in the past to identify the cluster of most similar
conflicts; and synthesizeRule, which produces a CRR from
the set of conflicts in the cluster.

Algorithm 1: Resolution algorithm

Input: ci the next conflict;
vi a randomly chosen version from ci;
Output: sci the solution of conflict ci;
State: CC: current set of clusters (initially empty);
Loop

cl = findSimilarCluster(CC, < vi, null >);
if cl == null then

/* no similar conflict(s) seen in the past,
create new cluster */

/* developer provides manual resolution */
sci = askUser(< ci, null >);
newc= createCluster(< vi, sci >);
newRule= synthesizeRule(newc);
associateRuleToCluster(newc, newRule);
CC.addCluster(newc);

else
/* cluster with similar conflict(s) exists, use its
CRR and extend the most similar cluster */

existingRule = cl.getRule();
ŝci = applyRule(vi, existingRule);
/* developer may accept or ignore the
proposed automatic resolution */
sci = askUser(< ci, ŝci >);
cl = findSimilarCluster(CC, < vi, sci >);
addConflictToCluster(cl, < vi, sci >);
updatedRule = synthesizeRule(cl);
associateRuleToCluster(cl, updatedRule);

end
output (sci);

EndLoop

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

▶ Conflict C1 arrives.
V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true, true);
V2 final Type promote = AnalyzerCaster.promoteNumeric(definition, left.actual, right.actual, true);

No cluster exists, so no resolution can be computed and the fix committed by the developer (Man res) is used.
Man res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true);

A new conflict cluster CC1 is created from the conflict and its resolution and a CRR is synthesised for it.
Conflict cluster CC1 CRR1.1 := regex: ",\st(.*)\);" replacement: ", true);"

V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true);

The CRR1.1 rule searches for a sequence of characters, starting with a comma followed by a space, by the letter t and by any subsequent
character until a closing parenthesis and a semicolon, and replaces it with the literal string ’, true);’

▶ Conflict C2 arrives.
V1 final Type promote = AnalyzerCaster.promoteNumeric(child.actual , true, true);

V2 final Type promote = AnalyzerCaster.promoteNumeric(definition, child.actual, true);

V1 in conflict C2 is similar to the conflicts of cluster C1 (similarity = 0.9399) and thus CRR1 is applied to solve it.
The regex matches the substring highlighted in yellow and replaces it with ", true);", which yields the following automatic resolution (Aut res).
Aut res final Type promote = AnalyzerCaster.promoteNumeric(child.actual , true);

The automatic resolution is accepted and committed by the developer. This coincides with the ground truth fix found in the repository (GT res).
GT res final Type promote = AnalyzerCaster.promoteNumeric(child.actual, true);

Conflict C2 is added with its resolution to cluster C1 and the CRR is regenerated.
Conflict cluster CC1 CRR1.2 := regex: "rue, t(\w++)" replacement: "$1"

V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true);
V1 final Type promote = AnalyzerCaster.promoteNumeric(child.actual, true, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(child.actual, true);

The CRR1.2 rule searches for an occurrence of the substring rue followed by a comma and a word starting with the character t and replaces it
with the characters of the matched word after the t. If two comma separated occurrences of true are found, one is deleted.

▶ Conflict C3 arrives.
V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, false, true);
V2 final Type promote = AnalyzerCaster.promoteNumeric(definition, left.actual, false);

V1 of C3 is similar to CC1 (similarity = 0.9471) and thus CRR1.2 is applied to solve it
Auto res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, false, true);

This time the automatic resolution is wrong, because CRR1.2 does not match any part of the conflict and thus outputs it as is. As a consequence
the automatic resolution is discarded by the developer who commits the correct fix.
GT res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, false);

Conflict C3 with the developer’s fix is added to CC1 and the CRR is regenerated.
Conflict cluster CC1 CRR1.3 := regex: "(\w++),\s\w++(\);)" replacement: "$1$2"

V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true);
V1 final Type promote = AnalyzerCaster.promoteNumeric(child.actual, true, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(child.actual, true);
V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, false, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, false);

CRR1.3 searches for a first capturing group formed by any sequence of characters, followed by a comma a space and another characters sequence
and then for a second capturing group containing the closing character sequence ");".
It replaces the searched substring with only the content of the capturing groups: in practice, the rule has learnt to delete the last parameter.

▶ Conflict C4 arrives.
V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, false, true);

V2 final Type promote = AnalyzerCaster.promoteNumeric(definition, left.actual, right.actual, false);

V1 in conflict C4 is similar to the conflicts of cluster C1 (similarity = 0.9573) and thus CRR1.3 is applied to solve it.
The regex matches the substring highlighted in yellow and replaces it with the green one, which yields the following automatic resolution
Auto res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, false);

The automatic resolution is accepted and committed by the developer (it coincides with the GT resolution in the repository).
GT res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, false);

Conflict C4 is added to cluster C1 and the CRR is regenerated.
Conflict cluster CC1 CRR1.4 := regex: "(\w++),\s\w++(\);) " replacement: "$1$2"

V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, true);
V1 final Type promote = AnalyzerCaster.promoteNumeric(child.actual, true, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(child.actual, true);
V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, false, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, false);
V1 final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, false, true);
Res final Type promote = AnalyzerCaster.promoteNumeric(left.actual, right.actual, false);

The CRR1.4 is the same as CRR1.3, i.e., C4 has not improved the knowledge in the cluster.

Table 1: A complete example of the conflict resolution process. In the automatically resolved conflicts C2 and C4, the
yellow text shows the matching region and the green one shows the replacement in the resolution.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

2.1 Similarity metrics
In a text-based approach the similarity between code chunks
can be computed with a string similarity measure. Such a
function impacts the formation of the CCs and thus must
be chosen with care. The strings to be compared comprise
both non-semantic differences (spacing, comments, etc.) and
semantic ones (changes in variable names or literals, in
the signature or in the body of functions, in directives
etc.). The syntax varies based on the programming lan-
guage. Several string similarity metrics were evaluated. To
this end, a test data set was created by extracting 150
strings from the conflicts of open source repositories and
by manually grouping them by similarity. The strings in-
cluded samples of Java, JavaScript and HTML code. The
evaluation consisted in extracting one random element at
a time from the data set and assigning it to the group
with the maximum average similarity under each distance
function. An assignment is considered positive if the sample
is mapped to the group manually associated to it, negative
otherwise. The performance of each distance function is
assessed with the standard metrics of precision, recall and F1
score. The evaluation compared 10 different algorithms from
3 different string similarity approaches: edit distance based
(Hamming, Levenshtein, Damerau-Levenshtein, Jaro and
Jaro-Winkler), token based (Cosine, Jaccard and Sorensen-
Dice) and sequence based (Longest Common Subsequence
and Longest Common Substring).

Fig. 1: Evaluation of the string similarity algorithms on the
test data set of code samples

Figure 1 reports the precision, recall and F1 score val-
ues computed for each distance function. The Jaro-Winkler
similarity algorithm has the best performance and was
selected for the implementation of the clustering algorithm.
A parameter search in the 0-1 interval with step 0.1 was
conducted to set the value of the boost parameter of the
Jaro-Winkler distance [11]. Figure 1 reports only the perfor-
mance of the Jaro-Winkler distance with the best parameter
value (0.7). The intuition behind the superiority of the
Jaro-Winkler metrics is that it gives more importance to
differences near the start of the string than to those near
the end. It is common in many programming languages
that the beginning of a line of code comprises significant
reserved words, e.g., type declarations (int, double, String),
access declarations (public, private, protected), flow control
specifications (if, while, switch), etc. that determine the se-
mantics of the segment and are likely to remain unchanged.

The end of a code line, on the other hand, is occupied by
variables and operations declared by the developer, which
are semantically weaker and more likely to vary.

2.2 Conflict clustering
In Algorithm 1 the assignment of conflicts to clusters is
managed by the function findSimilarCluster, which takes in
input one of the two colliding versions of the conflict and
returns a matching cluster or null. The function takes as an
optional input parameter the resolution. If this is omitted
it computes the similarity between the input version and
the conflict versions of the cluster. Otherwise it computes
the similarity between the conflict version and its resolution
and all the version+resolution pairs of the cluster. The
similarity between version+resolution pairs is the average
of the version similarity and of the resolution similarity.
The similarity to the multiple elements of a cluster is the
average distance to the individual members. The min and
max functions were also tested and the average function
was retained as the one yielding the best performances.

Function findSimilarCluster is used to implement an on-
line one pass clustering algorithm [7] that creates the clus-
tering structure by processing one item at a time with no
memory of the preceding assignments. When a conflict is re-
ceived, the cluster with highest similarity score is searched:

• If the score of the most similar cluster is below a
threshold, a null value is returned, which causes a
new cluster to be generated and the conflict to be
assigned to it.

• Otherwise, the most similar cluster is returned.

The value of the threshold for cluster creation is set to 0.80.
This value was determined by repeating the string-to-group
assignment test used for selecting the similarity function
with the Jaro-Winkler function and threshold values ranging
from .1 to 1. The a posteriori validation of both the similarity
metrics and of the threshold value proved that the choices
made yield the best accuracy of the automatically generated
resolutions.

Note that function findSimilarCluster is invoked also
when the committed fix (automatically or manually created)
becomes known, so as to find the cluster most similar to the
version+resolution pair and assign the current conflict to it.

2.3 CRR generation
As shown in Algorithm 1, the generation of the CRR of a
cluster is triggered by the commit of a conflict resolution,
represented by the function askUser. The resolution can be
either the one proposed by Almost Rerere and accepted
by the developer or the one programmed manually by the
developer, if no cluster of similar conflicts is found or the
automatic fix suggested by the system does not meet the
developer’s expectation.

After the addition of a conflict to a cluster, procedure
synthesizeRule creates a new CRR or an improved version
of an existing CRR from the content of the cluster. The
synthesis of CRRs exploits the general-purpose string search
and replacement algorithm of [10], which takes as input the
pairs describing the original string and the desired modified
string and outputs a search pattern and a replacement

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

expression. The former is a regular expression (regex) that
describes both the portions of the string to be replaced
and those to be reused; the latter describes how to build
the modified string. The method of [10] employs a Genetic
Programming algorithm inspired by concepts of biological
evolution such as reproduction, mutation, recombination,
and selection. The best regular expression is chosen based
on a fitness function. The set of examples is divided in
three subsets: training, testing and validation. The training
examples are used to generate an initial population of 16
candidate expressions for each training sample. The vali-
dation set is used to measure the fitness of the candidates
in the initial population. The candidate expressions are
applied to the test samples and the precision and recall
with respect to the ground truth are computed, as well
as the expression complexity. Next, the best candidates are
selected and recombined in the next iteration of the process.
Finally, the test set is used to evaluate the best candidate
expression. When the number of available samples is small,
the algorithm is sensitive to the order in which the samples
are split into the training and the validation sets. To mitigate
this problem, the samples are randomly assigned to the
training, testing and validation sets and the algorithm is
executed multiple times. If the generated CCR is the same
across the executions, which indicates that the algorithm
has converged, it is saved. Otherwise, all solutions are
kept, and the CCR is composed as the disjunction of the
computed expressions. In the experiments, two rounds of
executions ensured the best trade-off between performance
and accuracy of the synthesised CRR.

The method of [10] has been adapted to take as input a
conflict cluster, to dynamically partition the input samples
into the training, validation and testing sets, and to output
a CRR for each cluster. For the generation of the CRR, the
parameters of the genetic algorithm were tuned as follows:
the number of evolution cycles was set to 30 and the number
of execution threads was set to 22.

3 EVALUATION

The quantitative evaluation of the CRR synthesis focuses on
the following aspects:

• The percentage of the merge conflicts that can be
resolved automatically (Question 1).

• The identity of the automatically generated resolu-
tions to those manually provided by the developer,
i.e., the accuracy of the automatic resolutions. Accu-
racy is defined as [number of identical resolutions]
/ [number of computed resolutions] (Question 2).

• The impact of the size of the conflict on the accuracy
of the automatically generated resolutions (Question
3).

• The impact of the strategy of manual resolution (V1,
V2, CC, NC) and of the language constructs on the
automatic resolutions (Question 4).

• The similarity of the non-identical resolutions to
those manually provided by the developer (Question
5).

2. Detailed information about the algorithm parameters can be found
in the GitHub documentation of the original project https://github.
com/MaLeLabTs/RegexGenerator.

3.1 Evaluation process
The evaluation workflow is organized as follows:

1) The conflict data set is created by reproducing
the commits in the Git repositories of the chosen
projects, with the technique of [5]. For each conflict,
the conflict chunk and the manual resolution are
extracted. The manual resolution is used as ground
truth to assess the identity or similarity of the auto-
matic and manual resolutions. Only conflicts chunks
up to 6 LOCs are retained.

2) For each project, the first conflict is extracted. The
conflict and its manual resolution are exploited to
initialize the clustering procedure of Algorithm 1.
This yields the first CC and its associated CCR.
The conflict is counted as a failure because no au-
tomatic resolution can be computed for it and its
metadata (size, complexity, manual resolution strat-
egy) are recorded for evaluation purposes. For Java
projects the programming constructs are extracted
and recorded too.

3) Then the successive conflicts are processed accord-
ing to Algorithm 1. If the conflict can be resolved
automatically by a CRR the distance between the
automatic and the manual resolution is recorded for
evaluation. If the conflict cannot be resolved (i.e.,
it is assigned to a new cluster), it is counted as
a failure. The conflict metadata are saved in both
cases.

3.2 Data set
The data set used to evaluate the synthesis of automatic
resolutions consists of conflict chunks extracted from the
submission logs of distributed projects hosted in public
repositories. The first 5 projects were selected from the man-
ual analysis of [5] and other 13 Java projects were taken from
their automatic analysis data set. We chose the projects with
the highest number of conflicting merges and discarded
projects that were no longer available due to migration to
other repositories, etc. Seven additional non-Java projects in
JavaScript, PHP, and Phyton were selected by mining the
most popular and trending projects in Github3, the Linux
foundation4, the open JS foundation5 and LibHunt6. We
took those with the highest number of conflicting merges.
Note that one cannot know in advance how many conflicts
a project will produce when replaying the merge logs. It
often happens that very large projects are logged in the
repository in such a way that the replay produces few or
even no conflicts (e.g., due to the use of re-basing before
committing). The selection procedure exploited a try and
discard approach whereby we downloaded each project in
turn, replayed its commit history and retained it only if more
than 100 conflicts were found. For demonstrating language
independence the non-Java conflicts account for 28.85% of
the total number of conflicts.

Table 2 reports the essential statistics. In total the data set
contains 25 projects from which we identified 9,537 failed

3. https://github.com/trending
4. https://www.linuxfoundation.org/
5. https://openjsf.org/
6. https://www.libhunt.com/

https://github.com/MaLeLabTs/RegexGenerator
https://github.com/MaLeLabTs/RegexGenerator
https://github.com/trending
https://www.linuxfoundation.org/
https://openjsf.org/
https://www.libhunt.com/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

merges and mined 52,340 conflict chunks. Based on the
observation of [5] and [6] that a large fraction of conflicts
have small size, from the total number of conflict chunks
we extracted 14,872 samples of up to 6 LOCs (up to 3 LOCs
per version). This filter yielded the conflict chunks used to
evaluate our approach.

Project Commits Merges Devs
Failed

Merges
Conflict
Chunks

Java
Mct 1062 221 14 17 57
Twitter4J 2340 316 123 59 139
Lombok 3098 249 98 47 157
Voldemort 4959 546 59 68 724
Antlr4 8493 1881 233 388 2973
Android
Arabic
Reader

12586 4267 29 701 1556

Atlas 13631 2959 39 537 2216
Wro4j 4567 1485 34 395 2571
Eucalyptus 26760 6893 42 602 3892
Fred 32308 1375 30 258 1824
Nuxeo 118211 8302 30 526 2292
Universal
Media
Server

9945 1397 30 357 2096

Zanta
Server

13102 2823 17 370 1560

Zk 28461 4001 30 660 4923
Keycloak 14940 4650 337 101 983
Elastic
Search

117701 5137 356 564 3329

Realm-
java

10418 3406 99 684 2239

Grails-
core

21204 3042 224 509 1515

PHP
Drupal 51707 299 30 143 332
Joomla 52910 7138 30 928 8600

JavaScript
Pdf.js 14553 5627 30 146 384
Spectrum 14280 4547 94 361 1126
Webpack 14979 4343 715 312 3938

Python
Sentry 41148 2407 403 255 1048
Hyperspy 14075 3318 59 549 1956
Total 647438 80629 3185 9537 52430

Table 2: The projects used in the evaluation and the data set
statistics

Table 3 shows the incidence of single (SL) and multi-
line (ML) conflicts in the data set. SL conflicts consist of
2 LOCs, one for each version. ML conflicts contain up to
6 LOCs, divided into the two versions. The proportion of
small size (≤ 6 LOCs) conflicts with respect to the total is ≈
30%, which confirms the importance of small size conflicts
already reported by [5] and [6].

3.3 Automatically solved conflicts (Question 1)

Table 3 shows the absolute number and the percentage of
conflicts for which an automatic resolution is synthesized.
Overall an automatic resolution is computed for 48,81% of
the conflicts, with the minimum value for the Mct project
(13.33%), which features a small percentage of conflicts with
less than 6 LOCs, and the maximum value for the Drupal
project (95.38%). The size of the conflict chunk affects the
ability to compute an automatic resolution: 58,85% of the

SL conflicts admit an automatic resolution vs 40,96% of
the ML conflicts. This result is affected by the presence of
singleton conflicts (SC), i.e., conflicts having a structure that
appears only once in the merge history of the project. SCs
are always allocated to a singleton cluster because no other
conflict with a sufficiently similar content is found. Thus
the system cannot learn a resolution for this class. If the
singleton conflicts are ignored, the percentage of automatic
resolutions for SL and ML conflicts jumps to 88,66% for the
conflicts that have at least one similar conflict in the data set.

Project Conflicts Solved conflicts

Total SL ML Total SL ML
Mct 15 5 10 2 (13.33%) 0 (0.00%) 2 (20.00%)
Twitter4J 41 22 19 8 (19.51%) 6 (27.27%) 2 (10.53%)
Lombok 89 37 52 32 (35.96%) 11 (29.73%) 21 (40.38%)
Voldemort 312 168 144 180 (57.69%) 124 (73.81%) 56 (38.89%)
Antlr4 925 311 614 465 (50.27%) 186 (59.81%) 279 (45.44%)
Android Arabic Reader 421 179 242 160 (38.00%) 70 (39.11%) 90 (37.19%)
Atlas 1025 473 552 438 (42.73%) 234 (49.47%) 204 (36.96%)
Wro4j 1072 276 796 695 (64.83%) 184 (66.67%) 511 (64.20%)
Eucalyptus 667 266 401 294 (44.08%) 121 (45.49%) 173 (43.14%)
Fred 848 330 518 370 (43.63%) 150 (45.45%) 220 (42.47%)
Nuxeo 372 138 234 116 (31.18%) 57 (41.30%) 59 (25.21%)
Universal Media Server 477 208 269 161 (33.75%) 92 (44.23%) 69 (25.65%)
Zanta Server 408 156 252 112 (27.45%) 48 (30.77%) 64 (22.40%)
Zk 906 655 251 624 (68.87%) 549 (83.82%) 75 (29.88%)
Keycloak 144 53 91 66 (45.83%) 27 (50.94%) 39 (42.86%)
Elastic Search 1927 850 1077 1110 (57.60%) 595 (70.00%) 515 (47.82%)
Realm-java 625 272 353 265 (42.40%) 151 (55.51%) 114 (32.29%)
Grails-core 307 201 106 177 (57.65%) 140 (69.65%) 37 (34.91%)
Drupal 65 64 1 62 (95.38%) 62 (96.88%) 0 (0.00%)
Joomla 2220 1104 1116 1312 (59.10%) 755 (68.39%) 557 (49.91%)
Pdf.js 115 39 76 21 (18.26%) 12 (30.77%) 9 (11.84%)
Spectrum 343 124 219 84 (24.49%) 35 (28.23%) 49 (22.37%)
Webpack 452 181 271 147 (32.52%) 73 (40.33%) 74 (27.31%)
Sentry 269 100 169 83 (30.86%) 38 (38.00%) 45 (26.63%)
Hyperspy 827 317 510 275 (33.25%) 122 (38.49%) 153 (30.00%)

Total 14872 6529 8343 7259 (48.81%) 3842 (58.85%) 3417 (40.96%)

Table 3: Incidence of single line (SL) and multi-line (ML)
conflicts and number and percentage of conflicts for which
an automatic resolution is synthesized

3.4 Accuracy (Question 2 and 3)
Table 4 shows the accuracy of the automatic resolution,
defined as (number of identical resolutions) / (number
of computed resolutions). Overall the automatic synthesis
reaches an accuracy of 54,86%, which means that in more
than half of the cases when the system computes an auto-
matic resolution this is identical to the one provided by the
developer. As expected, the system has more difficulty in
resolving larger conflicts: accuracy is 62.29% for single line
conflicts and drops to 46.50% for multi-line conflicts.

Note that Algorithm 1 is non-deterministic. When a
conflict arrives one of the versions is picked at random
to search for a similar cluster. However, when a manually
resolved conflict is added to a cluster, both the before-
state with the matched version (say V1) and the after-
state with the developer’s resolution become known to the
system. The after-state implicitly contains information also
about the unseen colliding version (say V2). The resolution
provided by the developer may contain code not present
in the before-state (V1), either taken from the other version
(V2) or added anew in the resolution. This knowledge is
exploited to produce CRRs mimicking the human fix. To
assess the impact of non-determinism on accuracy, we have
contrasted four alternative configurations of Algorithm 1: 1)
the approach in which only one of the two colliding versions
(say V1) is chosen randomly, used to build a pair (before-
state, after-state) and added to the cluster for deriving the
CRR. 2) An approach in which both colliding versions (V1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Project SL ML
MCT 0 (0.00%) 2 (100.00%)

Twitter4J 5 (83.33%) 1 (50.00%)
Lombok 10 (90.91%) 9 (42.86%)

Voldemort 90 (72.58%) 31 (55.36%)
Antlr4 96 (51.61%) 121 (43.37%)

Android Arabic Reader 30 (42.86%) 44 (48.89%)
Atlas 116 (49.57%) 66 (32.35%)
Wro4j 69 (37.50%) 171 (33.46%)

Eucalyptus 67 (55.37%) 49 (28.32%)
Fred 93 (62.00%) 134 (60.91%)

Nuxeo 21 (36.84%) 28 (47.46%)
Universal Media Server 54 (58.70%) 33 (47.83%)

Zanata-server 17 (35.42%) 23 (35.94%)
Zk 484 (88.16%) 52 (69.33%)

Keycloak 16 (59.26%) 17 (43.59%)
Elastic Search 263 (44.20%) 185 (35.92%)

Realm-java 59 (39.07%) 55 (48.25%)
Grails-core 131 (93.57%) 26 (70.27%)

Drupal 42 (67.74%) 0 (0.00%)
Joomla 550 (72.85%) 372 (66.79%)
Pdf.js 10 (83.33%) 8 (88.89%)

Spectrum 17 (48.57%) 22 (44.90%)
Webpack 55 (75.34%) 51 (68.92%)

Sentry 24 (63.16%) 22 (48.89%)
Hyperspy 74 (60.66%) 67 (43.79%)

Total 2393 1589
Accuracy 62.29% 46.50%

Table 4: Conflicts for which the automatic resolution is
identical to the manual one. Accuracy is defined as (number
of identical resolutions) / (number of computed resolutions)

and V2) are used to add a pair (V1, after-state) and (V2,
after-state) to the cluster before regenerating the CRR. 3) An
approach in which the two versions are concatenated and
a single pair (V1+V2, after-state) is added to the cluster. 4)
An approach in which only one version is used, but not
picked at random. The chosen version is the one that has
the highest similarity to a cluster. Option 2, 3 and 4 did not
yield an accuracy improvement but augmented the noise,
i.e., the number of conflicts fixed in a way dissimilar from
the developer’s resolution.

3.5 Resolution Strategy (Question 4)
The complexity of the conflicts, as defined by the resolution
strategy applied by the developer [5], is another factor
that may affect the synthesis of automatic resolutions. The
intuition is that if the manual resolution adopts a simple
strategy that selects or concatenates code already present in
the submitted versions (strategy V1, V2, CC) learning this
type of resolution strategy should be easier. Table 5 shows
the number and percentage of solved/identically solved
conflicts and the accuracy of resolution for the strategies
V1, V2, CC, and NC. The V1 and V2 strategies represent
the largest class both in terms of their contribution to the
automatic resolutions (63,29%) and in terms of the accuracy
of the automatic fix (71,68%), followed by the NC strategy
(contribution 31,02%, accuracy 29,48%). The most problem-
atic strategy to capture is CC (contribution 5,69%, accuracy
6,05%). The relative difficulty of capturing the strategies is
reflected not only in the capacity of producing the automatic
fix but also in the ability of creating a fix equal to the manual
one. As shown in Table 5 accuracy is maximal for V1/V2
and minimal for CC. Note that the counter-intuitive result

that the “simple” strategy CC yields worse results than the
NC one is explained by the fact that the CC resolutions are
the least represented in the data set and thus Almost Rerere
does not learn their patterns well.

Tot. Solved Ident. Solved
%

Solved
contr. Acc.

SL conflicts
V1|V2 4748 2829 2104 73.63% 87.92% 74.37%

CC 398 248 11 6.46% 0.46% 4.44%
NC 1383 765 278 19.91% 11.62% 36.34%

6529 3842 2393
ML conflicts

V1|V2 4460 1765 1189 51.65% 74.83% 67.37%
CC 394 165 14 4.83% 0.88% 8.48%
NC 3489 1487 386 43.52% 24.29% 25.96%

8343 3417 1589
SL + ML conflicts

V1|V2 9208 4594 3293 63.29% 82.70% 71.68%
CC 792 413 25 5.69% 0.63% 6.05%
NC 4872 2252 664 31.02% 16.67% 29.48%

14872 7259 3982

Table 5: Resolved and identically resolved conflicts by strat-
egy. CC = code concatenation; NC = code combination or
new code.

The detailed breakdown of the data regarding the strat-
egy analysis per project can be found in the Appendix: Table
14 reports the split for single line conflicts and Table 15 for
multi-line conflicts.

3.6 Language constructs (Question 4)

Table 6 shows the number and the percentage of the solved
conflicts and of the identically solved conflicts for the main
language constructs. The statistics are computed with the
software of [5] and apply only to the Java projects. The
analysis confirms the findings of [6] which underlines the
relevance of the directive section of the program for the
synthesis of conflict resolutions based on repetitive patterns.
In that work, the generation of resolutions is limited to
the include and macro directives of C++ which account for
12.34% of all the conflicts and can be managed accurately
by means of program synthesis. In our work the synthesis
of resolutions is applied to all classes of constructs and
the conflicts involving the Java import clause account for
20,38% of the automatically resolved conflicts and for 9,84%
of the identically resolved conflicts with 24,43% accuracy.
The category of statements in which our approach shows
the best results is method invocation, which accounts for
23,82% of the resolved conflicts and for 27,70% of identically
resolved conflicts, with 52,47% accuracy.

3.7 Similarity (Question 5)

The last question is whether an automatic resolution can
be useful even if not identical to that provided by the
manual developer. The rationale is that a sufficiently similar
resolution can be semantically equivalent to the manual one
or at least usable as a hint for speeding up the creation
of the manual resolution. To verify the utility of auto-
matic solutions, we classify them according to the Jaro-
Winkler similarity with the manual ones. Three intervals
are considered: High (1 - 0.9) for the which synthesized

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Constructs Resolved
Identically

resolved
Method invocation 1698 (23.82%) 891 (24.70%)

Import 1453 (20.38%) 355 (9.84%)
Attribute 890 (12.49%) 603 (16.71%)
Variable 688 (9.65%) 352 (9.76%)

Method signature 650 (9.12%) 401 (11.11%)

Table 6: Resolved and identically resolved conflicts by Java
construct. Only constructs accounting for more that 5% of
the automatically resolved cases are shown. The percentage
refers to the fraction of the resolved or identically resolved
conflicts in which the construct appears.

resolution is equal or almost identical to the original one;
Mid (0.89 - 0.80) for which the synthesized resolution is
close to the original one with only small variations; finally
Low for those with similarity less than 0.79, for which the
synthesized resolution is rather different from the original
one. The intervals were selected by a systematic review of
the resolutions. The generated resolutions were compared
to the developer’s resolution. If the generated resolution
was different from the developer’s one, it was classified as
follows: with high similarity if the code produced the same
result, with minor variants, e.g., in the amount of white
space or in the comments; with mid similarity if the code
was syntactically correct but produced a different result,
e.g., due to different code annotations, constant values or
variable initializers; with low similarity otherwise. From such
a classification the cutoff values emerged.

Table 7 reports the results of the similarity analysis.
The percentage of high similarity resolved conflicts

raises to 66,68% from the value of the accuracy 54,86%,
which considers only identical resolved conflicts.

SL conflicts
High (1-0.9) Mid (0.89-0.79) Low (≤ 0.79)

2860 (74.44%) 408 (10.62%) 574 (14.94%)
ML conflicts

High (1-0.9) Mid (0.89-0.79) Low (≤ 0.79)
1981(57.97%) 657 (19.23%) 779 (22.80%)

SL & ML conflicts
High (1-0.9) Mid (0.89-0.79) Low (≤ 0.79)

4841 (66.69%) 1065 (14.67%) 1353 (18.64%)

Table 7: Automatic resolution similarity to the manual reso-
lution

The detailed breakdown of the similarity analysis per
project can be found in the Appendix: Table 16 reports the
split for single line conflicts and Table 17 for multi-line
conflicts.

An example of a high similarity (0.91) automatic resolu-
tion equivalent to the manual one is the following case from
the Antlr4 project:

DFAState D; // manual
DFAState D = null; // automatic

The automatic resolution inserts the null initializer for
the variable, following a pattern learned from similar exam-
ples in the conflict cluster.

3.8 Examples

In this section we illustrate a few cases of CRR synthesis
and application. For space reasons clusters are abbreviated
to include only some of their conflicts. To facilitate the in-
terpretation of the CRR, in Tables 8-11 the matching groups
in the regex are color-coded and the same colors are used
to highlight the portion of the input matched by the regex
and the part of the output updated by the replacement
expression.

The simplest rule is the one that mimics the decision of
the developer to copy the code of one of the two versions.
For example, the cluster of Table 8 is built during the merge
process of the Voldemort project.

The CRR associated with it is simply \d?+, which is a
dummy rule that does not match with the input and simply
returns it as the output.

Another typical CRR scheme is the one that determines
the insertion or the replacement of a token picked from
one of the two versions into the resolution. For example,
Table 9 shows a conflict cluster built during the merge
process of the Antl4 project. The CRR associated with such
a cluster contains the selection regular expression Toke\w,
which matches the occurrence of the word Token. Then the
replacement expression Input replaces the match with the
string Input. The CRR maps the input:

1 System.out.println("reportContextSensitivity
decision="

2 +dfa.decision+":"
3 +acceptState.s0.configset+ ", input="
4 +parser.getTokenStream().getText(interval));

into the output:

1 System.out.println("reportContextSensitivity
decision="

2 +dfa.decision+":"
3 +acceptState.s0.configset+ ", input="
4 +parser.getInputStream().getText(interval));

Such an output is the same as the one created by the
developer by combining the two colliding versions with
strategy NC.

When the resolution requires modifying the code in
multiple places, the learned rule comprises more than one
capturing group and determines multiple matches. Table 10
shows a conflict cluster example.

The CRR associated with the cluster comprises two
capturing groups, enclosed in parentheses, which match
different parts of the input. The replacement expression
adds the type parameter section in front of the matched sub-
strings. This CRR transforms the input:

1 public void reportContextSensitivity(
2 @NotNull Parser recognizer,
3 @NotNull DFA dfa, int startIndex, int

stopIndex,
4 @NotNull SimulatorState acceptState)

into the output:

1 public <T extends Symbol> void
reportContextSensitivity(

2 @NotNull Parser<T> recognizer,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

CRR regex: "\d?+" Replacement: ""
V1 result = new voldemort.client.protocol.pb.VAdminProto.DeletePartitionEntriesRequest();
Res result = new voldemort.client.protocol.pb.VAdminProto.DeletePartitionEntriesRequest();
V1 result = new voldemort.client.protocol.pb.VAdminProto.DeletePartitionEntriesResponse();
Res result = new voldemort.client.protocol.pb.VAdminProto.DeletePartitionEntriesResponse();
V1 result = new voldemort.client.protocol.pb.VAdminProto.AsyncOperationStatusRequest();
Res result = new voldemort.client.protocol.pb.VAdminProto.AsyncOperationStatusRequest();
V1 result = new voldemort.client.protocol.pb.VAdminProto.AsyncOperationStatusResponse();
Res result = new voldemort.client.protocol.pb.VAdminProto.AsyncOperationStatusResponse();

Table 8: Example of a cluster that generates a dummy rule which matches nothing and returns the input string without
modifications.

CRR regex: "Toke\w" Replacement: "Input"
V1 System.out.println ("reportAttemptingFullContext decision="+dfa.decision+":"+

initialState.s0.configset+ ", input="+ parser.getTokenStream().getText(interval));
Res System.out.println ("reportAttemptingFullContext decision="+dfa.decision+":"+

initialState.s0.configset+ ", input="+ parser.getInputStream().getText(interval));
V1 System.out.println ("reportContextSensitivity decision="+dfa.decision+":"+

acceptState.s0.configset+ ", input="+ parser.get Token Stream().getText(interval));
Res System.out.println ("reportContextSensitivity decision="+dfa.decision+":"+

acceptState.s0.configset+ ", input="+ parser.get Input Stream().getText(interval));

Table 9: Example of a cluster with a CRR that requires the replacement of a token. The matching part of the input and the
replacement in the output are represented in red.

CRR regex: "(\w++\s\w++\(@\w++\s\w++)(\s\w++,\s@\w++\s\w++\s\w++,\s\w++\s\w++,\s\w++\s\w++,\s@\w++\s\w++)"
Replacement: "<T extends Symbol> $1<T>$2"
V1 public void parseAttributeDef(@Nullable Parser recognizer, @NotNull DFA dfa, int startIndex,

int stopIndex, @NotNull SimulatorState<T> acceptState)
Res public <T extends Symbol> void parseAttributeDef(@Nullable Parser<T> recognizer, @NotNull DFA dfa,

int startIndex, int stopIndex, @NotNull SimulatorState<T> acceptState)
V1 public void reportContextSensitivity(@NotNull Parser recognizer, @NotNull DFA dfa, int startIndex,

int stopIndex, @NotNull SimulatorState<T> acceptState)
Res public <T extends Symbol> void reportContextSensitivity(@NotNull Parser<T> recognizer, @NotNull DFA dfa,

int startIndex, int stopIndex, @NotNull SimulatorState<T> acceptState)

V1 public void reportContextSensitivity(@NotNull Parser recognizer, @NotNull DFA dfa, int startIndex,

int stopIndex, @NotNull SimulatorState acceptState)

Res public <T extends Symbol> void reportContextSensitivity(@NotNull Parser <T> recognizer, @NotNull DFA dfa,

int startIndex, int stopIndex, @NotNull SimulatorState acceptState)

Table 10: Example of a cluster with a CRR that requires multiple matching regions. The two matching groups and the
respective matched input parts and output replacements are represented in different colors.

3 @NotNull DFA dfa, int startIndex, int
stopIndex,

4 @NotNull SimulatorState acceptState)

The synthesised resolution exactly reproduces the fix in
which the developer manually modified the code of the two
input versions using the NC strategy.

As a final example, we show a case in which the CRR
combines multiple matches and the exchange of position
of substrings within the input. Table 11 shows the conflict
cluster. The regex of the CRR contains three capturing
groups. It matches three sub-strings and swaps them. When
applied to the input:

1 "s0-'else'->:s1=>1\n" + "s0-'}'->:s2=>2\n";

it produces the output:

1 "s0-'}'->:s2=>2\n" + "s0-'else'->:s1=>1\n";

The output corresponds to the manual resolution that the
developer has created using the NC strategy.

4 IMPLEMENTATION

The approach to conflict resolution described in this paper
is implemented in a tool called Almost Rerere, which extends
Git Rerere (REuse REcorded REsolution)7, a plug-in of the
popular Git VCS.

Git Rerere is conceived to resolve conflicts that have
already been handled in previous code integration steps.
When a new conflict occurs the tool automatically records it
in a pre-image file and once the conflict has been resolved
manually by the developer it stores the conflict resolution
in a post-image file. When exactly the same conflict occurs
again the recorded solution is applied to the conflict auto-
matically. Git Rerere only automates the resolution of multi-
ple identical conflicts and cannot handle similar pre-images
to apply a recorded solution to a non-identical conflict. Al-
most Rerere aims at resolving automatically not only conflicts
that are identical to previously seen instances, but also those
that are similar to instances solved in the past. It identifies
conflicts similar to each other, groups them into clusters
based on a distance metrics, and associates each cluster

7. https://git-scm.com/docs/git-rerere

https://git-scm.com/docs/git-rerere

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

CRR regex: "(\w++’\->:\w\d=>\d)(\\\w"\s\+\s"\w\d\-’)(}’\->:\w\d=>\d)"
Replacement: "$3$2$1"
V1 "c0-’else’->:s1=>1\n" + "c0-’}’->:s4=>1\n";
Res "c0-’}’->:s4=>1\n" + "c0-’else’->:s1=>1\n";
V1 "s1-’else’->:s3=>1\n" + "s1-’}’->:s2=>2\n";
Res "s1-’}’->:s2=>2\n" + "s1-’else’->:s3=>1\n";

V1 "s0-’ else’->:s1=>1 \n" + "s0-’ }’->:s2=>2 \n";

Res "s0-’ }’->:s2=>2 \n" + "s0-’ else’->:s1=>1 \n";

Table 11: Example of a cluster with a CRR that requires multiple matches and the exchange of position of the matched
substrings. The three matching groups and the respective matched input parts and output replacements are represented in
different colors.

with a search and replacement expression synthesized from
the manual conflict resolutions of the cluster, applicable for
solving future conflicts matching the cluster membership
criterion. Figure 2 shows the architecture of Almost Rerere,
which comprises four main components: the Submission
Manager, the Cluster Manager, the CRR Generator, and the
Conflict Resolver.

Fig. 2: Almost Rerere architecture

The Submission Manager extends Git Rerere and orches-
trates the processing of a merge or commit command issued
by the developer. The Cluster Manager implements the on-
line hierarchical clustering algorithm that assigns an input
conflict to an existing or new cluster. The CRR Generator
exploits the method for the generation of a search and
replacement expressions proposed in [10] and is triggered
every time a conflict is added to a cluster. Finally, the
Conflict Resolver is called when a new conflict occurs. It
searches for the cluster with the highest similarity index
to the conflict, extracts the CRR, applies it, and returns the
result as the possible solution to the conflict.

Almost Rerere can be used in two phases of the code
integration process, represented by the git merge and the
git commit commands. When git merge is executed, Git will
try to execute an automatic merge between the local and
the remote repositories. If conflicts arise, the automatic
merge fails, and the conflicts are identified. Almost Rerere
is invoked, resolves the conflicts by applying the CRRs
generated in previous integration cycles, and proposes a
solution to the developer. The git commit can be executed
after all the existing conflicts have been resolved. In this
case Almost Rerere collects the conflict resolutions that the
user pushed to the repository, calls the Cluster Manager to
add the new conflicts, and invokes the CRR generator to

update the CRR of the modified clusters. These operations
are repeated at every code integration cycle. The former is
executed in real-time to return the solution to the developer,
while the latter is run in background.

5 THREATS TO VALIDITY AND REPRODUCIBILITY

5.1 Construction validity
The experiments exploited the conflict extraction software
employed in [5] and later in [6] to mine conflicts from
GitHub projects. The tool identifies merges with the help
of the Git command that lists the commits with more than
one parent. Then, the merge process can be replayed and
the failed merges can be identified to extract the conflict
chunks and the related statistics and manual resolutions.
This choice minimizes the occurrence of construction er-
rors and enables the replication of the data set creation
procedure. As noted in [12], the resolutions extracted from
project merge logs may contain faulty code. For the sake of
our study the presence of incorrect code does not hamper
the evaluation, which focuses on learning to reproduce the
human resolutions. However, in a real scenario one should
be aware that the quality of the manual resolutions used to
train the system directly impacts the quality of the automatic
resolution proposals.

5.2 Internal validity
5.2.1 Text-based approach
The proposed approach is text-based and thus independent
of the programming language. It exploits only the minimum
amount of knowledge: the code of the colliding versions
and that of the developer’s resolution. It does not require
the definition of conflict patterns nor the knowledge of the
types of errors to process. It can be applied to projects using
any programming and markup language, even when they
are mixed in the same artefact.

However, the purely text-based approach overlooks sig-
nificant semantics. Table 12 illustrates a simple example
from the Voldemort project: for a cluster of multiple con-
flicts the table shows the V1 and V2 versions, the manual
resolution of the developer (Man) and the automatic resolu-
tion of Almost Rerere (Aut). Even though the manual and
automatic resolutions are structurally similar, the former
contains a decision that depends on background knowledge
not available to Almost Rerere: the choice of adding 1 to the
integer value of the argument.

A simple solution to scenarios such as this one is to
edit the CRR associated to the CC. The use of a general

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

V1 getDescriptor().getMessageTypes().get(44);
V2 getDescriptor().getMessageTypes().get(45);
Man getDescriptor().getMessageTypes().get(46);
Aut getDescriptor().getMessageTypes().get(45);

V1 getDescriptor().getMessageTypes().get(45);
V2 getDescriptor().getMessageTypes().get(46);
Man getDescriptor().getMessageTypes().get(47);
Aut getDescriptor().getMessageTypes().get(46);

V1 getDescriptor().getMessageTypes().get(49);
V2 getDescriptor().getMessageTypes().get(50);
Man getDescriptor().getMessageTypes().get(51);
Aut getDescriptor().getMessageTypes().get(45);

Table 12: A conflict resolution in which the developer ap-
plied a decision that depends on background knowledge

purpose and well known language such as that of the search
and replacement regular expressions facilitates the inclusion
of specific semantics in the automatically synthesized rules
without the need of learning a domain specific language.

5.2.2 Learning method

Unlike other methods such as [6], [13], [14] our approach
does not distinguish a training and an inference phase.
Almost Rerere applies an online learning method whereby
the CRRs are built, updated and applied greedily upon
arrival of the conflicts. As visible from the example of Table
1, this causes a problem of cold start, whereby a conflict
is not resolvable because there are no previous similar
examples, and a problem similar to underfitting, whereby the
available CRRs have been built from an insufficient number
of examples and thus do not apply to unseen conflicts well.
Table 13 shows another example. The cluster C1 contains
two conflicts, which the developer has solved in a consistent
manner by fusing the colliding versions.

Almost Rerere derives a CRR that simply searches for
the string “null, ” and removes it. Such a rule generates
correct resolutions for several similar conflicts. But when
a conflict with a similar yet slightly different structure
enters the cluster, the result becomes inaccurate, as shown
in Table 13. The automatic resolution omits one parameter
of the method call. This happens because the CRR matches
two regions of the string and removes both of them. The
resulting resolution is similar to the developer’s one (over
0.9), but semantically incorrect. When provided with more
and diverse samples, the algorithm might try to incorporate
in the search rule a pattern of what can be found before
and after the matching area, making it less likely to create
unwanted matches.

Due to the described online learning approach the evalu-
ation of Almost Rerere described in Section 3 is conservative
and provides a lower bound for the attainable accuracy, be-
cause in the early processing phases few repetitive conflicts
are seen and thus many resolutions are rejected. Adopting
a separated training step would improve the number of
correctly resolved conflicts. The conflict clusters could be
bootstrapped with the conflicts occurred in the initial phases
of the project development. In this step, the developer
would solve conflicts manually and no CRR would be ap-
plied. After the bootstrapping phase, the CRRs learned from
a more significant amount of examples could be employed.
This approach is similar e.g., to the one described in [6],

in which the authors train their system with the conflicts
collected in the first 8 weeks of development and then test
it on the conflicts occurred in the next 4 weeks. Another
complementary approach to mitigate the greedy behavior
of Algorithm 1 is to allow cluster merging and splitting.
This can be done by monitoring a quality metrics on
the cluster structure (intra-cluster heterogeneity and inter-
cluster similarity) so as to split a cluster when it exceeds
an internal heterogeneity threshold and merge two or more
clusters when they reach a sufficient similarity value. The
determination of the optimal split and merge points could
be formulated as a reinforcement learning problem. Both
training and cluster reorganization are part of our future
work described in Section 7.

5.3 External validity
The results obtained in the application of Almost Rerere on
the 25 projects in the data set should not be extended blindly
to other distributed development scenarios. 18 projects out
of 25 involve the Java language and even if the accuracy of
seven non-Java projects is in line with that of Java projects,
an influence of the programming language(s) on accuracy
cannot be excluded. Another factor to consider is that CRRs
are learned in the context of a specific project and their
generalization to different projects is probably difficult and
surely deserves further investigation.

5.4 Reproducibility
The code of Almost Rerere and the data set used to produce
the analysis tables reported in the paper are available at the
following address:
https://github.com/herrera-sergio/AlmostRERERE
Almost Rerere will be published as an open source plug-in
of the Git system.

6 RELATED WORK

In this section we survey the research fields relevant to our
work: the identification of code similarities and the classifi-
cation of code samples according to a distance measure, the
generation of mapping rules from examples of the input and
of the desired output, the characterization of merge conflicts
in distributed projects, the tools for supporting the merge
process, and the data-driven methods for merge conflicts
resolution.

6.1 Code similarity and clustering
Code similarity has been studied for software analysis, eval-
uation of refactoring issues, clone and plagiarism detection.
Textual approaches use plain string matching for distance
computation. Available metrics include Jaccard Coefficient
[15], Levenshtein Distance [16], Longest Common Subse-
quence (LCS) [17], Jaro [18] and Jaro-Winkler [8], Needle-
man Wunsch [19] and Smith Waterman [20]. Ducasse et al.
[21] used string-based Dynamic Pattern Matching (DPM)
to detect code clones. Marcus & Maletic [22] applied latent
semantic indexing (LSI) for finding similar code segments.
Lexical approaches transform the code into sequences of to-
kens and compare the resulting vectors based on the du-
plicate sub-sequences. Lexical approaches are less sensitive

https://github.com/herrera-sergio/AlmostRERERE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Cluster C1 CRR regex: "nul++, " replacement: ""
V1 generateConstructor(typeNode, level, null, onConstructor, name);
Res generateConstructor(typeNode, level, onConstructor, name);
V1 generateConstructor(typeNode, this.level, null, onConstructor, name);
Res generateConstructor(typeNode, this.level, onConstructor, name);
▶ A new conflict arrives
V1 generateConstructor(typeNode, null, null, onConstructor, name);
V2 generateConstructor(typeNode, level, onConstructor);

When the CRR is applied to V1 it produces the following resolution
Aut. res generateConstructor(typeNode, onConstructor, name);

The automatic resolution is not accepted by the developer who commits a different one
Man res generateConstructor(typeNode, null, onConstructor, name);

Table 13: Example of conflicts generating a simple CRR and the incorrect resolution generated by Almost Rerere

to formatting and variable renaming. Example of lexical
tools include CCFinder [23], DUP [24] and CP-Miner [25].
Syntactic approaches parse the code into an Abstract Syntax
Tree (AST). ASTs are analysed with tree matching and
comparison metrics. Syntactic approaches abstract variable
names, literals and other code elements as tree nodes, al-
lowing better detection of similarities when element names
and values change. Several implementations exist. Koschke
et al. [26] represent sub-trees as serialized token sequences
to avoid the complexity of comparing sub-trees. Jiang et
al. [27] encode sub-trees as feature vectors in an Euclidean
space and apply locality-sensitive hashing to group similar
vectors. Mayrand et al. [28] propose a distance measure
calculated from names, layouts, expression and control flow
structures. Kontogiannis et al. [29] use dynamic program-
ming to compare begin-end blocks at statement level using
the minimum edit distance. Davey et al. [30] train neural
networks to find similar blocks of code based on automati-
cally extracted features.

In this paper we need to determine code similarity
in an online manner, by computing the distance between
an incoming conflict and the code chunks of previously
resolved conflicts. We use the textual approach for reasons
of efficiency and apply the Jaro-Winkler distance metrics,
which gave the best results experimentally.

6.2 Rule generation from examples
The problem of synthesizing string to string transformations
from a set of input/output examples is NP-Complete [31].
Some tools have been developed to solve specific issues
related to code editing with a Programming By Example ap-
proach. LAPIS [32] supports several semi-automatic string
manipulations. One can either specify an initial search and
replace expression for the system to improve or provide
positive and negative examples of strings for inferring sim-
ilar textual fragments. LASE [33] uses a syntactic approach
to create a context-aware edit script from examples and
exploits such script to identify edit locations and transform
the code. The approach was later extended with RASE [34],
an automatic refactoring tool for clone removal. It extracts
common code by analysing systematic edits, creates new
types and methods as needed, parameterizes differences
in types and methods, and inserts return objects and exit
labels based on the control and data flow. A more general
approach is proposed in [9] and [10] in which genetic
programming and cooperative co-evolution are used for
synthesizing search and replacement patterns from exam-

ples of inputs and outputs. The search pattern is a regular
expression that defines the portions of the string to be
replaced and the portions to be reused by the replacement
pattern. Programming by Example is exploited in [6] to
create merge conflict resolution rules. We review this work
in detail in Section 6.4.

In this paper we adapt the method of [9] and [10] to the
case of CRR generation, by using the conflict as input and
the resolution as output.

6.3 Conflict analysis
In recent years merge conflicts have been studied to un-
derstand the causes of their occurrence and find ways to
prevent and resolve them. Dias et al. [35] investigate the
factors that affect merge conflicts in 125 GitHub projects
that adopt the MVC pattern. The probability of conflicts
is found to increase with the lack of modularity and the
size of the contribution (number of developers, of files
and of changed lines) and with the time elapsed from the
creation of a branch to its integration. Ghiotto et al. [5]
manually reviewed five open source projects with great
detail and then automated the analysis and extended it
to 2.731 projects, with the objective of characterizing the
merge conflicts and the developer’s resolution strategies.
They classified the merge conflicts along a number of di-
mensions: 1) the number of conflicting files per merge and
the number of conflicting code chunks. 2) The involved
language constructs, such as method declarations, variable
declaration, if statements, etc. 3) The developer’s resolution
strategy chosen among five cases (described in Section 2).
4) The difficulty of the conflict, based on the resolution
strategy adopted. The findings that motivate our work are
that merge conflicts are frequent (25.328 failed merges and
175.805 conflicting chunks in 2.731 projects), have mostly a
small size (median size is 2 or 2.5 LOCs), involve only a few
constructs and are most frequently resolved by reusing code
that exists in one of the two merged versions (in 87% of the
cases). In [6] the authors analyse the merge history of the Mi-
crosoft Edge browser and find results that confirm the obser-
vations of [5]: ≈ 28% of the conflicts involve 1 or 2 lines and
many resolutions follow the same pattern. An alternative
view on the conflict management process is provided in [36]
which reports the findings of an empirical study conducted
through interviews and questionnaires with developers.
The study highlights that conflict management follows a
cycle of development, awareness, planning, resolution and
evaluation. It reveals a rather limited propensity to proac-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

tively monitor merge conflicts during development and a
tendency to defer resolution, which impacts the workflow of
the entire team. A reported difficulty that motivates deferral
is the complexity of understanding the collisions between
versions, which motivates the utility of tools capable of
learning how collisions have been resolved in the past and
of supporting developers in their resolution planning task.
The planning phase is the focus of the work in [37], which
applies supervised machine learning algorithms to predict
the difficulty level of a conflict from the statistical data about
the merge conflicts collected from 128 Java projects. The best
classifier, based on bagging, achieves 79% precision at 79%
recall and exploits 10 attributes to characterize the conflicts.
Knowing the complexity of a conflict can help developers
plan the resolution time and build the team responsible of
addressing the conflict.

Our work is motivated by the findings of [5] and [6] and
confirms the relevance of small size merge conflicts with a
repetitive resolution pattern.

6.4 Merge support and conflict prevention tools

Conflict analysis and visualization tools assist the de-
veloper in the merging process to reduce the number of
conflicts to be resolved manually [38].

Unstructured tools apply textual approaches to identify
the change-set and help developers merge branches. Most
tools use 3-way merge based on the Diff3 algorithm [39].
This technique is used by the git merge command8 and
incorporated in several IDEs. Unstructured approaches are
fast and language independent, but they can not handle all
types of conflicts, such as those that emerge from refactoring
[12]. Structured approaches exploit the syntax and semantics
of the artifacts. They represent the versions as trees or
graphs and merge them using tree matching algorithms and
language information. JDime [40] is a tree matching merging
tool that proved able to decrease by 40% the number of
conflicts w.r.t. to unstructured merge techniques and to
reduce the number of lines in the conflicts. The approach
of [41] exploits version space algebra. When a conflict is
detected that cannot be solved by the structured merger, the
algorithm creates a space representation of all the possible
resolutions and ranks them based on the probability of its
elements to appear in the solution. This technique resolved
95% of the conflicts in the test data set but assumes that
the resolution is a combination of the versions and cannot
scale to complex conflicts which make the solution space
intractable. Semi-structured approaches combine structured
and unstructured techniques; they partially analyse the
syntactic structure and semantics of the artifacts and apply
textual methods to the parts not addressable by the semantic
analysis. The FSTMERGE [42] tool transforms the source
files into program structure trees in which the internal nodes
represent program elements (classes and methods) and the
leaves represent the content of the methods as plain text.
Structured merge is applied to the nodes and unstructured
merge to the leaves. In the evaluation [43] this approach
reduced the number of conflicts w.r.t. unstructured merge

8. https://git-scm.com/docs/git-merge

by 34% and the number of conflict lines by 28%. Caval-
canti et al. [44] proposed jFSTMERGE for mitigating false
positives (conflicts that can be solved simply by ordering
the lines) and false negatives (code that can be merged but
produces an invalid program) by means of a handler process
associated with each type of conflict that applies textual
analyses and compiler functions. This improvement reduces
the number of conflicts w.r.t. the original implementation by
36%. IntelliMerge [12] focuses its graph-based approach on
the detection of conflicts caused by code refactoring; first the
three input artefacts are transformed into a graph represen-
tation; then the best matching for vertices is searched and
the unmatched vertices are classified by type context and
body similarity to identify refactoring problems and obtain
the best match. Next a new graph is created by combining
the matched vertices and identifying the possibly remaining
conflicts. Finally the resulting graphs is transformed into
text. The evaluation showed a reduction in the number of
conflicts by 58.9% w.r.t. unstructured tools and 11.84% w.r.t.
jFSTMerge. An alternative approach is to prevent merge
conflicts by enabling the semi-synchronous collaboration of
concurrent developers. The pioneering work [45] illustrates
a collaboration model in which developers working asyn-
chronously on a shared code base are alerted of potential
conflicts before merge time and can activate synchronous
collaboration sessions to anticipate the collision and reduce
the insurgence of conflicts. The work in [46] takes a different
approach to conflict mitigation. Early alerts about conflicts
are not exploited to trigger synchronous reconciliation ses-
sions but are exploited together with project dependency
information to derive task constraints so that distributed
developers can organize their work according to a conflict-
free schedule.

Our approach has a different yet correlated goal: rather
than reducing the occurrence, frequency and size of con-
flicts, Almost Rerere aims at learning the way in which
developers resolve them.
6.5 Conflict resolution synthesis
Recently the problem of learning how to solve merge con-
flicts from the code provided by the developers has been
formulated and addressed independently in [6] and in [47].
In [6], Pan et al. propose a program synthesis approach for
learning the resolution of conflicts located in the include
and macro sections of C++ programs. The method requires
a Domain Specific Language (DSL) to express the patterns to
search in the conflict chunks and the transformation opera-
tions for generating the resolution (copy, concat and move);
then a set of input-output examples are given as input to the
PROSE9 inductive synthesizer which exploits a top-down
approach that learns efficient inverse functions for the DSL
operators and generates the transformation program map-
ping each input conflict into the corresponding resolution.
The input examples are derived from the Microsoft Edge
repository. The evaluation reported that the synthesized
program could resolve 11.44% of the conflicts. The accuracy
for the specific class of conflicts addressed is 93.2% and
the approach performs better with 1-2 lines conflicts. The
approach of [6] and our method are complementary: the
former uses language patterns and a program synthesis

9. https://github.com/Microsoft/prose

https://git-scm.com/docs/git-merge
https://github.com/Microsoft/prose

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

technique, whereas our work is language independent and
uses regex synthesis. A hybrid perspective between conflict
identification and resolution is explored in the data driven
DEEPMERGE tool [47], which applies a Deep Learning ap-
proach to identify and solve spurious conflicts, i.e., conflicts
that can be resolved by line reordering and concatenation.
The novelty consists of encoding the conflicts into an edit-
aware matrix and use such representation to train a Deep
Learning model that predicts which lines of the input shall
appear in the output. The evaluation exploits a data set
of JavaScript programs to assess the effectiveness of Deep-
Merge in identifying conflicts requiring manual resolution.
In this task the authors report a precision of 78% and a
recall of 73%. The approach can also be used to predict a
conflict resolution, limited to the case in which the output
lines are a combination of the input lines, possibly with one
inserted token. In this specific case, the prediction scores
72% precision at 34% recall.

6.6 Automatic bug fixing

A closely related problem is that of learning how to
correct bugs based on the history of previous error fixes. Au-
tomatic conflict resolution is more comprehensive because
the colliding updates can represent either a bug fix or a
more general update, e.g., the change of an imported library.
The Getafix system [14] features an approach for produc-
ing human-like bug fixes by learning from a repository of
previous error corrections. Getafix and Almost Rerere share
the same goal of learning useful code updates from past
examples but differ in several aspects: 1) Getafix exploits
as input a buggy piece of code, the fix and the information
of the error type. Almost Rerere exploits as input the two
colliding pieces of code and the manual resolution. The
collision may be due to a bug fix or to a more general code
update. 2) Both Getafix and Almost Rerere give as output
the modification to apply to the code to address the problem
(bug fix or conflict reconciliation). 3) Getafix represents the
code by means of an Abstract Syntax Trees (AST), Almost
Rerere as plain text. 4) Getafix represents the modification
as a sequence of AST edit steps, Almost Rerere as a search
and replacement regular expression. 5) Getafix distinguishes
a learning phase and an inference phase. Almost Rerere
uses a continuous online learning approach without a pre-
training phase. 6) Getafix generalizes concrete cases into pat-
terns by means of anti-unification. Almost Rerere exploits
genetic programming to produce CRRs applicable to similar
conflicts. 7) Getafix uses hierarchical clustering to compute
multiple generalizations at different abstraction levels from
the same type of bug. Almost Rerere uses (non-hierarchical)
one-pass online clustering to group similar conflicts. The
cluster can be seen as the counterpart of a Getafix pattern,
but the Almost Rerere cluster is learned solely from data,
and thus multiple non related clusters could be produced
for the same type of bug. 8) Getafix has multiple rules for
the same type of bug and thus can create and rank multiple
resolutions. Almost Rerere assigns a conflict to the most
similar cluster and thus computes the top-1 recommenda-
tion. To provide the top-k resolutions Almost Rerere could
apply the CRRs of the most similar k clusters. 9) Getafix

validates the proposal w.r.t. to the input error type via static
analysis. Almost Rerere does not know the error type and
performs no validation. 10) Getafix achieves 30% accuracy
over 6 categories of bugs in 1,268 samples. Almost Rerere
achieves 54,86% accuracy over a not a priori fixed set of
error types from 14,872 conflicts. The authors of [13] apply
Neural Machine Translation (NMT) to map buggy code
into corrected code. Their work has points in common and
significant differences with respect to Almost Rerere: 1) both
systems take as input pairs of code snippets <before state,
after-state>. 2) [13] represents the inputs as a sequence of
AST tokens with recurring identifiers and literals abstracted
as idioms, whereas Almost Rerere learns directly from the
code. 3) [13] distinguishes a training and an inference phase,
whereas Almost Rerere applies continuous learning. 4) [13]
computes the fixes with a black-box neural encoder-decoder
architecture, whereas Almost Rerere adopts a white box
approach in which the mapping of the before state into
the after state is computed by regex, which are human-
readable and even customizable by developers if needed.
5) [13] uses beam search in the neural architecture to output
multiple fixes, whereas Almost Rerere computes only the
top-1 reconciliation. 6) When looking at the top-1 and top-
5 fixes the accuracy of [13] ranges from 9,22% to 27% on
small snippets, whereas Almost Rerere has a top-1 accuracy
of 62.29% on SL conflicts and of 46.50% on ML conflicts.
6.7 Contribution

In this work we have addressed the problem of reconciling
merge conflicts by exploiting the knowledge embedded
in past developers’ decisions. The proposed technique is
purely data-driven and employs a learning process that
generates conflict resolution rules from examples of conflict
chunks and of manual solutions. It does not require the a
priori identification of patterns as in [6] but encodes the
repetitive nature of conflicts into conflict clusters built using
a similarity measure. It does not impose restrictions on the
type of resolution that can be actuated by the rules, as in [6]
and [47], and on the program constructs that may cause the
conflict, as in [6]. It is text-based and language independent
and can apply to artifacts that mix different syntax, such
as scripted HTML templates. It can be applied in a purely
online mode, as demonstrated in the evaluation, by letting
the system build clusters as the conflicts arrive. Or it can be
employed in a partially offline mode, similar to the training
phase of [6] and [47], by allowing a bootstrap step in which
the system silently observes the manual resolutions and
builds an initial more representative set of conflict clusters.

In our previous work [48] we applied a preliminary
version of Almost Rerere to the conflicts extracted from
an initial data set of 5 Java projects and reported a first
qualitative evaluation of the potential of the data-driven
synthesis of conflict resolution rules. In this work we extend
[48] as follows

• We have improved the similarity search, by compar-
ing also the after state (resolution) of a conflict with
those present in the clusters, and fine-tuned the boost
factor of the Jaro-Winkler distance via parameter
search.

• We have significantly expanded the evaluation (25
instead of 6 projects, in 4 languages instead of 1)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

and reported the overall accuracy (percentage of
identically resolved conflicts).

• We have assessed the impact of such dimensions
as the conflict size, the resolution strategy and the
language constructs on the percentage of resolved
conflicts and on the accuracy.

• We have provided a complete example of how the
conflict resolution process works.

• We have exposed the role of the domain knowledge
and of the learning method in the conflict resolution
process and discussed the threats to validity of our
work in depth.

• We have published the code and the conflict data set
at the base of our work, for fostering reproducibility
and the comparison of other methods to our text-
based approach.

7 CONCLUSIONS AND FUTURE WORK

The paper describes an approach for the automatic reso-
lution of merge conflicts during code integration. The ap-
proach is based on the synthesis of a search and replacement
expression from previously resolved similar conflicts. The
approach has been evaluated on 14.872 small size (up to 6
LOCs) conflict chunks extracted from 25 projects (18 Java, 3
JavaScript, 2 PHP, 2 Python). The results show that the sys-
tem can handle ≈ 49% of the conflicts produced during the
merge process (≈ 88% if one considers conflicts that have at
least one similar conflict in the data set) and can reproduce
exactly the same solution of the human developers in ≈ 55%
of the cases (≈ 62% for single line conflicts). A preliminary
analysis of non-identical resolutions suggests that accuracy
may underestimate the utility of the synthesized resolutions,
because there are cases in which the automatic resolution
is equivalent to the manual one, albeit text-wise different.
The proposed approach is implemented in an open source
Git utility, called Almost Rerere, which extends the Git Rerere
functionality.

Future work will focus on the following directions:

• Assessing the impact on accuracy of a hybrid exe-
cution strategy that mitigates the purely online ap-
proach used in the illustrated evaluation. The present
version of the CRR generation algorithm assigns
conflicts to the currently most similar cluster and
never reconsiders such an allocation. This may lead
to the progressive loss of internal coherence of some
clusters, which in turn may affect the accuracy of
the generated CRRs. We plan to experiment two
distinct approaches. On one side, we will evaluate
the benefit of an initial training step during which
the system receives conflicts in a batch and builds an
initial set of clusters without attempting to resolve
conflicts. In this way, the early conflicts, which have
no antecedents and thus determine a loss of accuracy,
will not penalize the system but will be exploited
to create a robust set of examples. On the other
side, we will assess the benefits of monitoring the
evolution of intra-cluster heterogeneity and inter-
cluster similarity to make decisions about splitting or
merging clusters. This approach will be formalized as

a reinforcement learning problem so as to identify an
optimal strategy for updating the cluster structure.

• The investigation of the portability of CRRs across
projects. The main question is whether there exist
resolution patterns that apply beyond the boundaries
of a single project and how to recognize them and
transfer knowledge from one project to another.

• The enrichment of the CRR language with a small set
of general purpose features (e.g., integer arithmetic),
which could help the developer edit the generated
CRR and extend its applicability.

• A large scale evaluation of the approach on a massive
amount of projects and conflicts and the publication
of the CRRs that proved most valuable within spe-
cific projects and across projects.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

REFERENCES

[1] C. R. De Souza, D. Redmiles, and P. Dourish, “Breaking the
code, moving between private and public work in collaborative
software development,” in Proceedings of the 2003 International
ACM SIGGROUP conference on Supporting group work. ACM, 2003,
pp. 105–114.

[2] W. F. Tichy, “Rcs—a system for version control,” Software: Practice
and Experience, vol. 15, no. 7, pp. 637–654, 1985.

[3] H. Le Nguyen and C.-L. Ignat, “An analysis of merge conflicts and
resolutions in git-based open source projects,” Computer Supported
Cooperative Work (CSCW), vol. 27, no. 3-6, pp. 741–765, 2018.

[4] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and
H. Rajan, “A study of repetitiveness of code changes in software
evolution,” in Proceedings of the 28th IEEE/ACM International Con-
ference on Automated Software Engineering, ser. ASE’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 180–190.

[5] G. Ghiotto, L. Murta, M. Barros, and A. Van Der Hoek, “On
the nature of merge conflicts: a study of 2,731 open source java
projects hosted by github,” IEEE Transactions on Software Engineer-
ing, vol. 46, no. 8, pp. 892–915, 2018.

[6] R. Pan, V. Le, N. Nagappan, S. Gulwani, S. Lahiri, and M. Kauf-
man, “Can program synthesis be used to learn merge conflict
resolutions? an empirical analysis,” in 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 785–796.

[7] C. C. Aggarwal and K. Subbian, “Event detection in social
streams,” in Proceedings of the Twelfth SIAM International Conference
on Data Mining, Anaheim, California, USA, April 26-28, 2012.
SIAM / Omnipress, 2012, pp. 624–635. [Online]. Available:
https://doi.org/10.1137/1.9781611972825.54

[8] W. E. Winkler, “String comparator metrics and enhanced decision
rules in the fellegi-sunter model of record linkage.” Proceedings of
the Section on Survey Research Methods, 1990.

[9] A. Bartoli, A. D. Lorenzo, E. Medvet, and F. Tarlao, “Inference
of regular expressions for text extraction from examples,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 5, pp.
1217–1230, May 2016.

[10] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Automatic
search-and-replace from examples with coevolutionary genetic
programming,” IEEE transactions on cybernetics, 2019.

[11] K. Dreßler and A.-C. N. Ngomo, “Time-efficient execution of
bounded jaro-winkler distances,” in OM, 2014.

[12] B. Shen, W. Zhang, H. Zhao, G. Liang, Z. Jin, and Q. Wang,
“Intellimerge: A refactoring-aware software merging technique,”
Proceedings of the ACM on Programming Languages, vol. 3, no.
OOPSLA, pp. 1–28, 2019.

[13] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing
patches in the wild via neural machine translation,” ACM Trans.
Softw. Eng. Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019. [Online].
Available: https://doi.org/10.1145/3340544

[14] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix:
learning to fix bugs automatically,” Proc. ACM Program. Lang.,
vol. 3, no. OOPSLA, pp. 159:1–159:27, 2019. [Online]. Available:
https://doi.org/10.1145/3360585

[15] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms
for approximate string searches,” in 2008 IEEE 24th International
Conference on Data Engineering. IEEE, 2008, pp. 257–266.

[16] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8,
1966, pp. 707–710.

[17] N. Nakatsu, Y. Kambayashi, and S. Yajima, “A longest common
subsequence algorithm suitable for similar text strings,” Acta
Informatica, vol. 18, no. 2, pp. 171–179, 1982.

[18] M. A. Jaro, “Advances in record-linkage methodology as applied
to matching the 1985 census of Tampa, Florida,” Journal of the
American Statistical Association, vol. 84, no. 406, pp. 414–420, 1989.

[19] S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” Journal of molecular biology, vol. 48, no. 3, pp. 443–453,
1970.

[20] T. F. Smith, M. S. Waterman et al., “Identification of common
molecular subsequences,” Journal of molecular biology, vol. 147,
no. 1, pp. 195–197, 1981.

[21] S. Ducasse, M. Rieger, and S. Demeyer, “A language inde-
pendent approach for detecting duplicated code,” in Proceed-
ings IEEE International Conference on Software Maintenance-1999

(ICSM’99).’Software Maintenance for Business Change’(Cat. No.
99CB36360). IEEE, 1999, pp. 109–118.

[22] A. Marcus and J. I. Maletic, “Identification of high-level concept
clones in source code,” in Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001). IEEE,
2001, pp. 107–114.

[23] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source
code,” IEEE Transactions on Software Engineering, vol. 28, no. 7, pp.
654–670, 2002.

[24] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in Proceedings of 2nd Working Conference on
Reverse Engineering. IEEE, 1995, pp. 86–95.

[25] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-
paste and related bugs in large-scale software code,” IEEE Trans-
actions on software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[26] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using
abstract syntax suffix trees,” in 2006 13th Working Conference on
Reverse Engineering. IEEE, 2006, pp. 253–262.

[27] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in Proceedings
of the 29th international conference on Software Engineering. IEEE
Computer Society, 2007, pp. 96–105.

[28] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the au-
tomatic detection of function clones in a software system using
metrics.” in icsm, vol. 96, 1996, p. 244.

[29] K. A. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M. Bern-
stein, “Pattern matching for clone and concept detection,” Auto-
mated Software Engineering, vol. 3, no. 1-2, pp. 77–108, 1996.

[30] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley, “The
development of a software clone detector,” International Journal
of Applied Software Technology, 1995.

[31] J. Hamza and V. Kunčak, “Minimal synthesis of string to string
functions from examples,” in International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation. Springer, 2019,
pp. 48–69.

[32] R. C. Miller and B. A. Myers, “Lapis: Smart editing with text
structure,” in CHI Extended Abstracts, 2002, pp. 496–497.

[33] N. Meng, M. Kim, and K. S. McKinley, “Lase: locating and ap-
plying systematic edits by learning from examples,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 502–511.

[34] N. Meng, L. Hua, M. Kim, and K. S. McKinley, “Does automated
refactoring obviate systematic editing?” in Proceedings of the 37th
International Conference on Software Engineering-Volume 1. IEEE
Press, 2015, pp. 392–402.

[35] K. Dias, P. Borba, and M. Barreto, “Understanding predictive
factors for merge conflicts,” Information and Software Technology,
vol. 121, p. 106256, 2020.

[36] N. Nelson, C. Brindescu, S. McKee, A. Sarma, and D. Dig, “The
life-cycle of merge conflicts: processes, barriers, and strategies,”
Empir. Softw. Eng., vol. 24, no. 5, pp. 2863–2906, 2019. [Online].
Available: https://doi.org/10.1007/s10664-018-9674-x

[37] C. Brindescu, I. Ahmed, R. Leano, and A. Sarma, “Planning
for untangling: predicting the difficulty of merge conflicts,” in
ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel and
D. Bae, Eds. ACM, 2020, pp. 801–811. [Online]. Available:
https://doi.org/10.1145/3377811.3380344

[38] K. N. A. Adam and N. Károly, “Merging problems in modern
version control systems,” Multidiszciplináris Tudományok, vol. 10,
no. 3, pp. 365–376, 2020.

[39] S. Khanna, K. Kunal, and B. C. Pierce, “A formal investigation
of diff3,” in International Conference on Foundations of Software
Technology and Theoretical Computer Science. Springer, 2007, pp.
485–496.

[40] O. Leßenich, S. Apel, and C. Lengauer, “Balancing precision and
performance in structured merge,” Automated Software Engineering,
vol. 22, no. 3, pp. 367–397, 2015.

[41] F. Zhu and F. He, “Conflict resolution for structured merge via
version space algebra,” Proceedings of the ACM on Programming
Languages, vol. 2, no. OOPSLA, pp. 1–25, 2018.

[42] S. Apel, J. Liebig, C. Lengauer, C. Kästner, and W. R. Cook,
“Semistructured merge in revision control systems.” in VaMoS,
2010, pp. 13–19.

[43] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner,
“Semistructured merge: rethinking merge in revision control sys-

https://doi.org/10.1137/1.9781611972825.54
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3360585
https://doi.org/10.1007/s10664-018-9674-x
https://doi.org/10.1145/3377811.3380344

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

tems,” in Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering, 2011,
pp. 190–200.

[44] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving
semistructured merge,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, pp. 1–27, 2017.

[45] P. Dewan and R. Hegde, “Semi-synchronous conflict detection
and resolution in asynchronous software development,” in
Proceedings of the Tenth European Conference on Computer Supported
Cooperative Work, 24-28 September 2007, Limerick, Ireland, R. Harper
and C. Gutwin, Eds. Springer, 2007, pp. 159–178. [Online].
Available: https://doi.org/10.1007/978-1-84800-031-5_9

[46] B. K. Kasi and A. Sarma, “Cassandra: proactive conflict
minimization through optimized task scheduling,” in 35th
International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, D. Notkin, B. H. C. Cheng,
and K. Pohl, Eds. IEEE Computer Society, 2013, pp. 732–741.
[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606619

[47] E. Dinella, T. Mytkowicz, A. Svyatkovskiy, C. Bird, M. Naik, and
S. K. Lahiri, “Deepmerge: Learning to merge programs,” arXiv
preprint arXiv:2105.07569, 2021.

[48] P. Fraternali, S. L. H. Gonzalez, and M. M. Tariq, “Almost
rerere: An approach for automating conflict resolution from
similar resolved conflicts,” in Web Engineering - 20th International
Conference, ICWE 2020, Helsinki, Finland, June 9-12, 2020,
Proceedings, ser. Lecture Notes in Computer Science, M. Bieliková,
T. Mikkonen, and C. Pautasso, Eds., vol. 12128. Springer,
2020, pp. 228–243. [Online]. Available: https://doi.org/10.1007/
978-3-030-50578-3_16

Piero Fraternali Full professor of Web Tech-
nologies at Politecnico di Milano. Author of
more than 300 papers in international peer
reviewed conferences and journals, and a
number of books. His main research inter-
ests concern methodologies and tools for
WEB/mobile application development, socio-
technical system design, gamification and seri-
ous games. He is co-author of OMG’s IFML stan-
dard (http://www.omg.org/spec/IFML/) and co-
founder of WebRatio (http://www.webratio.com),

a start-up focused on the commercialization of a tool suite for the Model-
Driven Development of Web/mobile cloud-powered applications.

Sergio Luis Herrera Gonzalez PhD and re-
search assistant in the Web data and society
group at Politecnico di Milano. He is working
in the development of novel methodologies and
code generation tools for the semi/automatic de-
velopment of web and mobile applications with
a special focus on user/centric applications with
gamified functions.

https://doi.org/10.1007/978-1-84800-031-5_9
https://doi.org/10.1109/ICSE.2013.6606619
https://doi.org/10.1007/978-3-030-50578-3_16
https://doi.org/10.1007/978-3-030-50578-3_16
http://www.omg.org/spec/IFML/
http://www.webratio.com

	Introduction
	Concepts and approach
	Similarity metrics
	Conflict clustering
	CRR generation

	Evaluation
	Evaluation process
	Data set
	Automatically solved conflicts (Question 1)
	Accuracy (Question 2 and 3)
	Resolution Strategy (Question 4)
	Language constructs (Question 4)
	Similarity (Question 5)
	Examples

	Implementation
	Threats to validity and reproducibility
	Construction validity
	Internal validity
	Text-based approach
	Learning method

	External validity
	Reproducibility

	Related Work
	Code similarity and clustering
	Rule generation from examples
	Conflict analysis
	Merge support and conflict prevention tools
	Conflict resolution synthesis
	Automatic bug fixing
	Contribution

	Conclusions and future work
	References
	Biographies
	Piero Fraternali
	Sergio Luis Herrera Gonzalez

