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Abstract: We present a systematic investigation of the resonant radiation emitted by localized
soliton-like wave-packets supported by second-harmonic generation in the cascading regime. We
emphasize a general mechanism which allows for the resonant radiation to grow without the need
for higher-order dispersion, primarily driven by the second-harmonic component, while radiation
is also shed around the fundamental-frequency component through parametric down-conversion
processes. The ubiquity of such a mechanism is revealed with reference to different localized
waves such as bright solitons (both fundamental and second-order), Akhmediev breathers, and
dark solitons. A simple phase matching condition is put forward to account for the frequencies
radiated around such solitons, which agrees well with numerical simulations performed against
changes of material parameters (say, phase mismatch, dispersion ratio). The results provide
explicit understanding of the mechanism of soliton radiation in quadratic nonlinear media.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical resonant radiation (RR), also referred to as Cherenkov radiation [1], was first observed in
numerical simulations performed in the vicinity of zero-dispersion wavelength of optical fibers
[2]. Shortly afterward, its experimental observation was reported in the context of single-mode
optical fibers [3], demonstrating that fiber solitons, supported by the interplay between anomalous
group-velocity dispersion (GVD) and focusing Kerr nonlinearity, can resonantly transfer energy
towards linear dispersive waves with shifted frequency. It turns out that a crucial ingredient
for such an energy transfer is the presence of higher-order dispersion which allows for the
resonant phase matching between the soliton and the radiated linear waves, thus constituting a
remarkable example of the RR effects of dispersive perturbations of solitons [4,5]. Nowadays, the
mechanisms of primary RR in cubic Kerr-like media and its interaction with solitons are pretty
well understood, and form the basis of many applications that exploit the properties of tunability
via dispersion tailoring and/or RR-induced spectral broadening devoted to spectroscopy [6–8],
supercontinuum generation [9–14], and spectral shaping of frequency combs in microresonators
[15–17] or four-wave mixing combs in fibers [18,19], as well as the generation of far detuned
spectral lines [20], to name a few.

On the other hand, it is also well known that quadratic nonlinearities support solitary
wave formation, with second-harmonic generation (SHG) being the most common example
demonstrating solitons (see review in [21]). Indeed, extensive research has been conducted on
pulse compression and localization in quadratic media in the form of two-color soliton-like pulses
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[22–26]. In the cascading (i.e., large absolute mismatch) regime, pulses can be trapped in either
the anomalous or normal GVD regime by adjusting the sign of nonlinearity. The fact that the
emission of RR can be driven by quadratic solitons has been theoretically predicted [27–29],
and experimentally demonstrated in bulk BBO crystals [30–32] or in periodically poled lithium
niobate [33], by injecting pulses in the normal GVD regime for a defocusing effective nonlinearity.
To date, the proposed interpretation of such results relies on considering the new generated RR
frequencies as being produced through the phase-matching favoured by higher-order dispersion
(eventually at all-order ones), in close analogy to the case of cubic nonlinearity.

However, RR emitted through cascaded SHG does not necessarily need the effective contribution
from higher-order dispersion. Indeed, as we have recently shown in [34] for the example of
a quadratic Peregrine soliton (PS), RR can be emitted efficiently also when GVD remains the
dominant term, i.e., not in the vicinity of a zero GVD wavelength. This feature is not expected
to stem from the specific properties of the PS (indeed, in cubic media, PSs are found to radiate
only when higher-order dispersion is effective [35]), but rather from the intrinsic characteristic of
the multi-component quadratic cascaded interaction. In fact, under appropriate conditions, the
weaker second-harmonic (SH) component of the soliton can resonate with linear waves producing
primary new RR frequency lines, which in turn lead to RR around the fundamental frequency
(FF) via frequency conversion (FC, specifically down-conversion) processes [34].

The aim of this article is to show that this mechanism is rather universal, occurring, in the
cascading regime, for a wide class of quadratic solitary waves sustained by χ(2) : χ(2) cascading.
To this end, we consider both wavepackets with zero background, namely fundamental solitons
and higher-order solitons normally exploited to achieve temporal compression, as well as the
Akhmediev breathers (ABs) [36–39] and dark solitons with non-zero background. In particular,
ABs are important in the framework of modulation instability, being able to describe the growth
and decay cycle of unstable modulation frequencies, with the PS representing the limit of such
behavior for vanishing modulation frequency. Our goal is to show that all of such solitons radiate
even without any contribution from higher-order dispersion. As we will show, the resulting RR
frequencies are predictable with good accuracy in terms of simple phase-matching formulas,
which we validate by performing extensive numerical simulations for a wide range of relevant
parameters, mainly the ones defining the phase mismatch and GVD ratio.

The subsequent sections are organized as follows. In Sec. 2, we recall the pertinent models
for SHG and their cascading limit, along with the phase-matching argument. The specific cases
of the RR emitted by fundamental and second-order solitons are discussed in Secs. 3 and 4,
respectively. Section 5 is devoted to the discussion of the radiating AB. In Sec. 6, we briefly
mention the case of radiating dark solitons. Finally, our findings are summarized in Sec. 7.

2. Theoretical model and radiative phase matching

Pulse propagation describing the interaction between the FF and the SH pulses in quadratic
dispersive media is governed by the following two dimensionless coupled equations [21]:

iu1ξ −
β1
2

u1ττ + u2u∗1e−iδkξ = 0,

iu2ξ + ivu2τ −
β2
2

u2ττ + u2
1eiδkξ = 0,

(1)

where u1,2(ξ, τ) = χzdA1,2 are the normalized envelopes of the FF and the generated SH
components in a reference frame comoving with the FF group velocity v1. The subscripts ξ and
τ stand for the derivatives with respect to propagation distance ξ = z/zd in units of the dispersion
length zd = t20/β

′′

1 and the delayed time τ = (t − z/v1)/t0 in units of input pulse duration t0. The
parameter β1 = β

′′

1/|β
′′

1 | = ±1 stands for the GVD sign at FF, and β2 = β
′′

2/β
′′

1 is the dispersion
ratio of the SH GVD β′′2 = d2k/dω2 |2ω0 to the FF one β′′1 = d2k/dω2 |ω0 , for specific propagation
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constant k(ω). v is the group-velocity mismatch of the SH wave measured in the FF group
velocity frame, and δk = ∆kzd = (2k1 − k2)zd is the normalized wavenumber (or phase) mismatch,
where k1,2 = k|ω0,2ω0 . Here χ = ω0d(2)(c3ϵ0n2

ω0n2ω0 )
1/2, ϵ0 is the permittivity of free space, c is

the light speed in vacuum, nω0,2ω0 are refractive indexes of quadratic medium evaluated at FF
and SH, d(2) is the effective nonlinear element (m/V), and |A1,2 |

2 measures the intensity of FF
and SH waves (W/m2). We emphasize that Eqs. (1) can also describe the propagation of spatial
beams confined in one transverse dimension, with τ being the normalized transverse spatial
coordinate and v the birefringent walk-off [21].

Considering the strong phase-mismatched SHG (i.e., in the cascading limit |δk| ≫ 1), the χ(2)
nonlinearity of FF in Eqs. (1) can be approximately described by an effective χ(3) nonlinearity,
which can be obtained by using the SH asymptotic expansion u2 =

∑︁∞
n=0 u(n)2 /δkn and the method

of repeated substitution. What is relevant here is the integrable nonlinear Schrödinger (NLS)
equation, which can be easily obtained at first-order approximation [21,40,41],

iρξ −
β1
2
ρττ + κ |ρ|

2ρ = 0, (2)

where κ = 1/δk is the effective Kerr nonlinear coefficient, and the envelope ρ(ξ, τ) allows to
calculate the fields (at first order in the expansion) as

u1(ξ, τ) = ρ(ξ, τ), u2(ξ, τ) =
ρ2(ξ, τ)
δk

eiδkξ . (3)

In cascaded SHG, the existence of nonlinear localized waves ruled by Eq. (2), or by the Chen-
Lee-Liu equation obtained at second order [42–44], has been demonstrated, either numerically or
experimentally, which includes but not limited to shape-invariant and compressing solitons, shock
waves, ABs, and PSs [21–26,37–45]. Generally speaking, such localized waves are sustained
by the interplay between GVD and Kerr-like nonlinearities, due to the repeated conversion and
back-conversion occurring at large mismatch. However, the mechanisms of resonance with linear
waves can make these nonlinear waves radiate spontaneously. In the following sections, we
deepen the analysis of such mechanism by looking into the relevant cases of the fundamental
bright soliton, the second-order bright soliton, the AB, as well as the dark soliton.

Dispersive waves are linear waves that can form in any dispersive medium under different
mechanisms (e.g., using an input that presents a small deviation from a nonlinear localized wave).
Generally, for their amplitude remains small, such dispersive waves are apt to be dispersed away
upon propagation. Conversely, when they turn out to be phase-matched to a nonlinear localized
wave that acts as a pump, they can resonantly grow and then stabilize. In nonlinear optics, the
RR can be considered as being phase-matched along the propagating direction ξ. We start by
assuming a generic nonlinear pump wave of FF and SH components, respectively:

ujnl(ξ, τ) = ρj(ξ, τ) exp(ikjnlξ), j = 1, 2, (4)

where k1nl(k2nl) is the nonlinear wavenumber shift of the FF (SH) wave component at carrier
pulsation ω0 (2ω0), and ρ1,2(ξ, τ) are ξ-dependent envelopes that can account for the internal
dynamics of the unperturbed nonlinear (solitary) waves. We consider their resonance with linear
dispersive waves defined by

ujlin(ξ, τ) = exp(ikjlinξ − iωjτp), j = 1, 2, (5)

where k1lin(k2lin) is the linear wavenumber of the dispersive wave emitted around FF (SH), and
τp = τ − vpξ is a retarded time in the framework traveling with the walking velocity vp of the
nonlinear wave. In this framework, linear dispersive waves can extract energy at the expense of
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the nonlinear wave when the following phase-matching relations are fulfilled:

k1lin = k1nl, k2lin = k2nl. (6)

By substituting the linear waves into Eqs. (1) and dropping nonlinear terms, we obtain the
explicit dependence of the wavenumbers kjlin, j = 1, 2 on frequency detunings ωj, which when
inserted back into Eqs. (6) yield the explicit phase-matching relations:

1
2
β1ω

2
1 − vpω1 = k1nl, (7a)

1
2
β2ω

2
2 − (vp − v)ω2 = k2nl. (7b)

Solutions ω1 = ω1RR and ω2 = ω2RR of Eqs. (7) give the possible normalized detunings of the
phase-matched RR around FF and SH, respectively. In the next sections, we exploit Eqs. (7) to
predict the RR emitted by different types of soliton-like nonlinear waves. For sake of simplicity,
here we restrict our consideration to the case of group-velocity matching (v = 0) and stationary
solitary waves (vp = 0), although as explicitly shown in [34], the present consideration can be
extended to the regime of walk-off where the solitons will be of the walking type.

3. Fundamental bright solitons

In cascaded SHG, bright solitons ruled by Eq. (2) are allowed to exist in either the normal
(β1 = 1) or the anomalous (β1 = −1) GVD regime at FF, under the soliton constraint β1δk<0.
Here we are concerned with the latter case (β1 = −1, δk>0; the extension to the former case is
straightforward), and analyse the RR mechanism for the fundamental soliton solution of Eq. (2),
which reads, without loss of generality, as

ρsol(ξ, τ) =
√

2sech(ατ) exp(iκξ), (8)

where we take κ ≡ 1/δk and α ≡
√

2κ.
We recall the well-known fact that the temporal envelope of such soliton has constant modulus

and flat phase, whereas, with distance, the amplitude is constant and only the phase accumulates
linearly due to a constant nonlinear wavenumber k1nl = κ ≡ 1/δk. In order to easily compare
with the more complicated cases of the following sections, we illustrate these features in Fig. 1.
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1

1.5
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Fig. 1. Fundamental soliton: (a) envelope amplitude |ρsol(0, τ)| (solid blue) and phase
ϕ(0, τ)/π (solid black) temporal profiles; (b) spatial longitudinal profile of phase ϕ(ξ, 0)/π
(solid black), peak amplitude |ρsol(ξ, 0)| (solid blue), and wavenumber k1nl (solid orange).
Here β1 = −1, δk = 5.
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The RR from the components at FF and SH of the fundamental soliton can be well anticipated
for linear waves with frequency detuning given by real solutions ωj = ωjRR, j = 1, 2 of Eqs. (7),
which, in this case, are cast in explicit form as

β1
2
ω2

1RR = κ, (9a)

β2
2
ω2

2RR = δk + 2κ, (9b)

where the terms on the right-hand side stand for the wavenumber of the solitary waves allowed, as
is evident from Eqs. (3). Owing to the essential constraint for the soliton existence β1κ<0, Eq. (9a)
has no real solutions which expresses the well-known fact that solitons cannot be in resonance
with linear waves unless higher-order dispersion plays a relevant role, i.e. when operating around
a vanishing GVD wavelength. However, a resonance can still occur through the weaker SH
component of the soliton. Indeed Eq. (9b) can have solutionsω±

2RR = ±
√︁
(2δk + 4κ)/β2, provided

that the GVD at SH has opposite sign of GVD at FF, i.e., β1β2<0.
We have numerically verified the emission of this type of RR by integrating numerically the

SHG model Eqs. (1) using a pseudo-spectral method (known also as split-step Fourier technique),
and initial values u1(0, τ) = ρsol(0, τ) and u2(0, τ) = ρ2sol(0, τ)/δk according to Eqs. (3). A
typical example is shown in Fig. 2 for δk = 5 and equal moduli of GVD at FF and SH (i.e.,
β2 = 1). As shown in Fig. 2(a), the FF component propagates nearly unperturbed with most
of the energy confined in the localized pulse, whereas the SH component undergoes, since the
early stage of propagation, weak breathing (temporal compression and oscillation of the peak)
while symmetrically emitting RR from both the leading and the trailing edges [see Fig. 2(b)].
The spectral evolutions of FF and SH waves in logarithmic scale are presented in Figs. 2(c) and
2(d) with the spectral output profiles at ξ = 10 displayed in the upper panels. The new radiated
frequencies are produced around ω±

2RR = ±3.28, which are fully consistent with the prediction
from Eq. (9b), reported as dashed lines in Figs. 2(c) and 2(d) and marked by bullets in the output
spectral cuts. We also illustrate in Fig. 3 the evolutions of the generated SH component, filtered
around ω±

2RR. It is seen that the RR shed from the SH component fills a temporal fan which is
delimited by the soliton (zero velocity) and a maximal velocity that can be estimated from the
linear approximation v±RR ≈ β2ω

±
2RR (dashed oblique lines in Fig. 3).

Despite the absence of direct phase matching of the FF component, RR can also grow around
FF through non-degenerate FC processes of the down-conversion type, which can be conveniently
expressed by returning to real-world detunings ∆1,2 = t−1

0 ω1,2. Indeed, the RR detuned (from
SH) by ∆2 = ∆

±
2RR corresponds to photons at physical pulsations 2ω0 + ∆

±
2RR, which undergo a

three-photon difference FC process 2ω0 + ∆
±
2RR − ω0 = ω0 + ∆

±
1FC. The conservation of energy

implies equal detunings from FF and SH, i.e., ∆±1FC = ∆
±
2RR. In terms of normalized units, this

means to have sidebands around the FF at ω±
1FC = ω

±
2RR = ±3.28, which are highlighted by the

dashed lines in Figs. 2(c) and relative bullets in the output spectral profiles. The intensity of the
RR around the FF, however, is such that it can be hardly seen in the temporal domain.

We have conducted extensive simulations to assess the dependence of the RR excitation on the
mismatch parameter δk and the GVD ratio parameter β2 that affect SHG. We compare in Fig. 4(a)
the predicted RR frequency (solid curves) with the data extracted from the simulation (dots)
versus δk at different values of the normal GVD of the SH component. The RR frequencies are
reported in a range of mismatch δk sufficiently small for the RR to be detectable. Indeed the RR
becomes too far detuned from the central frequency to be detected when the mismatch becomes
too large. For instance, for β2 = 0.5, the range of δk ≥ 15 does not lead to significant RR, while
for the larger GVD ratio, e.g., β2 = 5, the RR frequency can be excited even at larger mismatch,
as a result of being closer to the pump frequency. Our predictions agree well with the numerical
simulations in the full range. In Fig. 4(b) we illustrate the dependence of the RR efficiency on δk
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Fig. 2. Fundamental soliton: numerical spatiotemporal dynamics of the (a) FF and (b) SH
components and their corresponding spectra (c) and (d). In (c) and (d) the dashed lines
labelled by ω±2RR = ω

±
1FC = ±3.28 stand for the RR frequencies from Eq. (9b) and the top

cuts display the output (ξ = 10) spectral profiles of FF and SH waves, with bullets indicating
the predicted frequencies. Here β1 = −1, β2 = 1, and δk = 5.
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Fig. 3. Normalized spatiotemporal SH dynamics (case of Fig. 2(b)), after filtering around
resonant frequencies (a) ω−2RR = −3.28 and (b) ω+2RR = 3.28.
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and β2 at SH, defined as the ratio (in log units) of spectral intensities between the output RR and
the input pump, i.e., 10 log10 |ũ2(ω

±
2RR, ξ)|2/|ũ2(0, 0)|2, where ũ2 denotes the Fourier transform

of u2. We display such efficiency at ξ = 10 where it saturates, no longer showing relevant growth
for longer distances. Essentially, as shown, such efficiency drops for large mismatches because
the cascading nonlinearity becomes weaker (its strength scales like 1/δk), as well as for smaller
GVD ratios β2, because the RR frequencies increase (which scale with |β2 |

−1/2) and hence
become less efficiently seeded due to the exponential decay of the soliton spectral tails.
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Fig. 4. (a) Theoretical results from Eq. (9b) (solid lines) and numerical simulations (dots)
of RR frequencies ω2RR versus the mismatch δk, for different β2. (b) RR efficiency at ω2RR
calculated numerically at ξ = 10 versus δk. Here β1 = −1.

4. Second-order bright solitons

The second-order soliton solution of Eq. (2), known also as the N = 2 breather with zero
background, can be expressed in our units as [46]

ρsol(ξ, τ) =
4
√

2[cosh(3ατ) + 3e8iκξ cosh(ατ)]
cosh(4ατ) + 4 cosh(2ατ) + 3 cos(8κξ)

eiκξ , (10)

whose initial form at ξ = 0 is given by

ρsol(0, τ) = 2
√

2sech(ατ), (11)

i.e., simply twice the initial input of fundamental soliton. According to Eqs. (3), the corresponding
quadratic FF and SH waves are u1(ξ, τ) = ρsol(ξ, τ), u2(ξ, τ) = ρsol(ξ, τ)2 exp(iδkξ)/δk.

The second-order soliton defined by Eq. (10) possesses the characteristic longitudinally periodic
structure common to the Nth-order soliton breathers, which oscillates along the propagation
direction with spatial period π/4κ (in our units). The peak amplitude 4

√
2 is reached at

ξm = (2m + 1)π/8κ, with m being an integer number. This dynamics can be well appreciated
within Fig. 5, which reports the first two cycles of the periodic evolution according to the
analytical solution (10), for κ = 1/24. In particular, Figs. 5(a) and 5(b) show the typical cycles
of temporal compression and corresponding spectral broadening, respectively. At the point of
maximal compression (or maximal spectral broadening), the temporal profile shows a peak and
two neighbouring zeros, across which the phase shows a jump of π, as shown in Fig. 5(c). We
remark that this feature is similar to a PS, though, in the present case, the solution vanishes
instead of returning to a finite background at τ = ±∞.

A major important difference with the fundamental soliton is that, in this case, besides the
constant nonlinear phase shift κξ, the soliton exhibits a local (in ξ) contribution to the nonlinear
phase, say ϕloc(ξ, 0), which arises from the ξ-dependent complex envelope [see fraction in
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Fig. 5. Second-order soliton: (a) dynamics of the analytical spatiotemporal envelope of
Eq. (10) and (b) the corresponding spectrum; (c) temporal amplitude profile |ρsol(π/8κ, τ)|
(solid blue) and phase ϕ(π/8κ, τ)/π (solid black) at the point of maximum compression
ξ = π/8κ; (d) longitudinal phase profile ϕ(ξ, 0)/π (solid black), peak amplitude |ρsol(ξ, 0)|
(solid blue), and overall nonlinear wavenumber k1nl (solid orange). Here δk = 24, β1 = −1.

Eq. (10)]. The spatial evolution of such phase ϕloc(ξ, 0), which reads explicitly as

ϕloc(ξ, 0) = tan−1
[︃

3 sin(8κξ)
1 + 3 cos(8κξ)

]︃
, (12)

is displayed in Fig. 5(d). The spatial derivative of such phase represents a local contribution, say
kloc, to the overall nonlinear wavenumber of the soliton [35]:

kloc =
∂ϕloc
∂ξ

|︁|︁
(ξ ,0) =

12κ(3 + cos(8κξ))
5 + 3 cos(8κξ)

, (13)

which, as shown in Fig. 5(d), peaks at the maximum compression points.
As a result, when dealing with a stationary second-order soliton, the phase-matching conditions

must be generalized to account for such a local contribution to the nonlinear shift, yielding

β1
2
ω2

1RR = κ + kloc, (14a)

β2
2
ω2

2RR = δk + 2κ + 2kloc. (14b)

Only the second of these equations, Eq. (14b), has real solutions and therefore predicts the
occurrence of equally up- and down-shifted RR with detuning ω±

2RR = ±
√︁
(2δk + 4κ + 4kloc)/β2.

As pointed out above, no real solutions can arise from Eq. (14a).
In order to illustrate the impact of the full SHG dynamics on the second-order soliton, we

have simulated the pulse propagation by the initial condition u1(0, τ) = ρsol(0, τ), u2(0, τ) =



Research Article Vol. 31, No. 5 / 27 Feb 2023 / Optics Express 8315

ρ2sol(0, τ)/δk in the full SHG model. The typical evolutions of FF and SH waves are displayed in
Fig. 6 for δk = 24, β1 = −1, β2 = 1, exhibiting significant RR from the SH pump component at
each maximum compression point [see Fig. 6(b)]. It is shown that RR of opposite detunings travel
away from the SH pump pulse in opposite directions, with estimated RR velocity v±RR = β2ω

±
2RR.

Conversely, no direct RR is visible in the temporal evolution of the FF component in Fig. 6(a).
Figures 6(c) and 6(d) illustrate the corresponding spectral evolutions in the (ω, ξ) plane. The
spectrum in Fig. 6(d) confirms the generation of symmetric RR lines with detuning ω±

2RR = ±7.08
from the SH. It is clear that the initial emission of dispersive radiation occurs primarily when the
soliton spectrum broadens considerably to overlap with the resonant frequency. Remarkably, the
spectrum in Fig. 6(c) suggests that (weaker) RR around the FF with detuning ω±

1FC = ω
±
2RR may

take place as well, despite the absence of direct phase-matching in Eq. (14a). This is ascribed to
the down-conversion process already discussed in Sec. 3 for the fundamental soliton. Note also
that Fig. 6(d) shows an additional, much weaker, pair of RR sidebands, which, however, cannot
be explained in terms of the simple phase-matching argument given in this paper.
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Fig. 6. Numerical spatiotemporal envelope dynamics of the (a) FF and (b) SH components
and their corresponding spectra (c) and (d); in (c),(d) the dashed lines labelled byω±2RR,ω±1FC
stand for the RR frequencies predicted via Eq. (14b), the top cuts display the output spectral
profiles of FF and SH waves at ξ = 40, with bullets indicating the predicted frequencies.
The red box around ξ ≃ 35 identifies the portion of the spectrum zoomed in the inset of
Figs. 7(a),(b). Here δk = 24, β1 = −1, β2 = 1.

Noteworthily, when zooming in on the spectra around ω+2RR and ω+1FC (or around symmetric
negative frequencies), at sufficiently large distances [i.e., ξ ≈ 35, see red box in Figs. 6(c) and
6(d)], the RR appears to cover an extended bandwidth within which the RR possesses a fine
comb-like structure, as shown in Figs. 7(a) and 7(b). This can be understood by considering
that, in the presence of any longitudinal periodicity, the phase-matching becomes affected by
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quasi-momentum terms q2π/Λ, where Λ is the characteristic period and q = 0,±1,±2, . . . ∈ Z
(i.e., harmonic order associated with the periodicity). This concept holds true regardless of the
fact that the periodicity is built-in in the structure (e.g., quasi-phase-matching [47], dispersion
oscillating fibers [48]; we refer the readers to the detailed calculation in [49]) or intrinsic to
the nonlinear evolution of the pump wave [50], as in the present case. By taking into account
the quasi-momentum contribution associated with soliton period Λ = π/4κ, Eq. (14b) can be
transformed into

β2
2
ω2

2RR = δk + 2κ + 2kloc + q8κ, q = 0,±1,±2, . . . . (15)

Such relation could predict with good accuracy the polychromatic comb structures of the RR
shown in Figs. 7(a) and 7(b), which are obtained from the spectra centering around ω+1FC and
ω+2RR in Figs. 6(c) and 6(d) at ξ = 40, respectively. Indeed, in Fig. 7 the colored vertical lines,
which correspond to different q values in Eq. (15), give a good approximation of the observed
peaks of the comb structure obtained numerically, despite that the latter are obtained after only
two soliton periods. In particular, the above formula gives a sufficiently precise estimate of the
average (as the spectral peaks are not strictly equi-spaced) spacing ∆ω2RR = 0.47 observed from
the numerics at both FF and SH. We note that such fine structure can be reminiscent of that
observed in Kerr media [50]. However, while the latter shows up in the regime of sufficiently
small but finite third-order dispersion, in the current quadratic case, no such dispersion is needed,
thanks to the contribution of the GVD at SH. We also remark that the same filtering applied to all
distances ξ, as shown in Fig. 8, allows us to observe the fact that the RR tends to separate from
the soliton with its own velocity v±RR ≈ β2ω

±
2RR (see black dashed line in Fig. 8).
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Fig. 7. Output (a) FF and (b) SH spectral profiles at ξ = 40. The insets show the zoomed
FF and SH spectra in the red boxes in Fig. 6 centered around ξ = 35 and ω+1FC = 7.08
and ω+2RR = 7.08, respectively. The colored vertical lines represent the theoretical RR
frequencies evaluated from Eq. (15) with variable integer q.

Finally, we conclude this section by plotting the dependence of the RR central frequency (of
the comb structure) on the mismatch δk, for different values of the GVD ratio β2 (see Fig. 9). It is
exhibited that the theoretical predictions of Eq. (14b) (solid lines) agree well with the numerical
simulations (dots). We point out that the kloc term in Eq. (14b) turns out to be nearly negligible
in all cases, except for small values of the mismatch δk.
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Fig. 8. Numerical normalized SH component extracted from Fig. 6, filtered around RR
frequencies (a) ω−2RR = −7.08 and (b) ω+2RR = 7.08, respectively.
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Fig. 9. RR frequencies ω2RR = ω
±
2RR versus mismatch δk for different β2. The solid lines

and dots indicate the theoretical predictions from Eq. (14b) and the numerical simulations,
respectively. Here β1 = −1.

5. Akhmediev breathers

The aim of the current section is to show that the mechanism of dispersive wave generation
discussed so far for coherent excitations with smooth temporal profiles (solitons with zero
background in the previous sections and Peregrine breathers on finite background in [34]) is
valid also for time-periodic breathers known as ABs [36–38]. The importance of ABs relies on
the fact that they generalize the Peregrine breathers, and in practical experiments on modulation
instability with finite modulation frequency, they discriminate qualitatively different recurrent
evolutions in the nonlinear stage of modulation instability [39,48]. We start from the AB solution
of Eq. (2) that is valid under the condition β1δk<0 [36,51],

ρAB(ξ, τ) = ρ0

[︄
(1 − 4a) cosh(ξn) +

√
2a cos(τn) + ib sinh(ξn)

√
2a cos(τn) − cosh(ξn)

]︄
, (16)

where ρ0 = eiκξ , and ξn = bκξ and τn = Ω
√
κτ are suitable renormalization of space and time

which depend on the nonlinear coefficient κ in Eq. (2), with Ω being the modulation frequency.
The ABs are parameterized by the parameter a = (1 − Ω2/4)/2, 0 ≤ a ≤ 1/2, which fixes

the modulation frequency Ω in the unstable region and the corresponding growth rate (gain)
given by b =

√︁
8a(1 − 2a). The corresponding FF u1 and SH u2 envelopes of the quadratic ABs

are obtained from Eqs. (3), with ρ(ξ, τ) = ρAB(ξ, τ) from Eq. (16). In the following we show
representative examples obtained for Ω = 0.3 (a = 0.488, b = 0.296), though similar results
are obtained in the range of unstable frequencies 0 ≤ Ω ≤ 2. Figure 10 displays the typical
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evolution of an AB according to Eq. (16), for β1 = −1 and δk = 5. As shown in Fig. 10(a), the
AB exhibits a single cycle of growth and decay of peaks separated in time by 2π/Ω over the unit
background. At the apex (ξ = 0) where the amplitude reach nearly three times the background
and the field exhibits characteristic phase jumps of π [see Fig. 10(c)], the AB shows its maximum
spectral broadening [see Fig. 10(b)], which serves as a seeding mechanism in the presence of
phase-matching for the RR frequencies.
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Fig. 10. (a) Spatiotemporal evolution of the AB; (b) the corresponding spectral evolution;
(c) temporal profiles of the amplitude |ρAB(0, τ)| (solid blue) and phase ϕ(0, τ)/π (solid
black) at the point of maximum compression ξ = 0; (d) longitudinal profiles of phase
ϕ(ξ, 0)/π (solid black) and amplitude ρAB(ξ, 0) (solid blue), and overall wavenumber k1nl
(solid orange). Here β1 = −1, δk = 5, Ω = 0.3.

The phase-matching is ruled by Eqs. (14) already developed for the two-soliton case, where
kloc is a local contribution to the nonlinear wavenumber, which, for the AB, reads explicitly as

kloc(ξ, 0) =
∂ϕloc
∂ξ

|︁|︁|︁
(ξ ,0)
=

κb2(
√

2a cosh(ξn) + 1 − 4a)
b2 sinh(ξn) + [(1 − 4a) cosh(ξn) +

√
2a]2

. (17)

Here ϕloc(ξ, 0) is the longitudinal phase profile of the AB envelope extracted from Eq. (16):

ϕloc(ξ, 0) = tan−1

[︄
b sinh ξn

(1 − 4a) cosh(ξn) +
√

2a

]︄
. (18)

As a result, the overall wavenumber κ + kloc reported by the orange solid line in Fig. 10(d),
shows a bump around the maximum compression point, where the phase exhibits a steep variation.

In order to assess the role of the RR for the AB in quadratic media, we have numerically
integrated Eqs. (1), starting from a weakly modulated background which corresponds to the
AB solution (16), i.e., u1(ξ0, τ) = ρAB(ξ0, τ) and u2(ξ0, τ) = ρ2AB(ξ0, τ) exp(iδkξ0)/δk, with
ξ0 = −20. We report in Fig. 11 the features of the propagating quadratic AB. As shown in
Figs. 11(a) and 11(b), the quadratic AB still exhibits the characteristic growth and decay cycle,
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though the focus point is spatially delayed (i.e., the compression point is shifted forward from
ξ = 0) due to the relatively small value of mismatch δk = 5, which causes a small deviation
from the exact solution compared with the NLS equation. More importantly, the SH component
clearly exhibits a new feature, namely the emission of RR at the compression point. This is
also evident from the spectral evolutions shown in Figs. 11(c) and 11(d). The strong spectral
broadening associated with the temporal compression seeds the RR emitted at frequency detuning
ω±

2RR = ±3.29 around the SH, as shown in Fig. 11(d). Such frequencies are then down-converted
to generate the weaker RR around the FF with detuning ω±

1FC = ω
±
2RR, as displayed in Fig. 11(c).

The RR frequencies remain constant during the evolution, and agree well with the predictions
from Eq. (14b), as shown by the dashed lines in Figs. 11(c) and 11(d) and by the bullets in the
output spectral cuts indicated in the top panels.
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Fig. 11. Spatiotemporal envelope dynamics of the (a) FF and (b) SH components and their
corresponding spectra (c) and (d). The top panels in (c) and (d) show the spectral profiles of
FF and SH waves at output ξ = 20, wherein the bullets indicate the RR frequencies predicted
through Eq. (14b). Here β1 = −1, β2 = 1, δk = 5, and Ω = 0.3 (a = 0.488, b = 0.296).

Noteworthily, in Fig. 11(b), the RRs at the two opposite detunings travel in opposite directions.
Therefore, due to the temporal periodic nature of the AB, the RR shed from the adjacent peaks
undergoes coherent superposition that locally enhances the intensity of the RR at the crossing
points. We point out, however, that the RR around both the FF and the SH does not exchange
energy after the elastic collisions, as shown in Fig. 12, which corresponds to the temporal
evolution of the frequency components filtered around ω+1FC = ω

+
2RR = +3.29 (a similar result

holds when filtering around the image frequencies ω−
1FC = ω

−
2RR = −3.29).

The RR clearly appears as shoulders in the discrete (i.e., comb-like) spectrum at any distance
beyond the AB focus point. Figure 13 compares the spectra at FF and SH for two different
distances ξ = 5 and ξ = 10. The spectra exhibit the comb structure with characteristic separation
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Fig. 12. Spatiotemporal evolution at (a) FF and (b) SH corresponding to Fig. 11, after
filtering around the predicted RR frequency ω+1FC = ω

+
2RR = +3.29.

ωp = Ω
√
κ fixed by the modulation frequency Ω and the SHG mismatch parameter (see insets

therein), and are fully overlapped at the two chosen distances ξ = 5, 10.
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Fig. 13. Spectral profiles of the (a) FF and (b) SH components at ξ = 5 and ξ = 10,
under the same parameters as in Fig. 11. The insets show zoomed pictures around central
frequencies and the parameter ωp = Ω

√
κ defines the spacing of comb lines.

Finally, we summarize in Fig. 14 the dependence of the RR frequency on the SHG mismatch
δk and GVD ratio β2, which are obtained from multiple numerical simulations. As shown, also
in this case, the simple phase-matching argument that leads to the theoretical predictions in
Eq. (14b) still agrees well with the data extracted from numerical simulations.
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Fig. 14. Resonant frequencies ω2RR = ω
±
2RR versus normalized mismatch δk at different β2,

with theoretical prediction from Eq. (14b) (solid lines) compared with numerical simulations
(dots). Here β1 = −1, Ω = 0.3.
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6. Fundamental dark solitons

The RR mechanism investigated here is also valid for dark solitons supported by cascaded SHG.
Here, we consider the example of a black stationary soliton, with an invariant envelope at FF,

ρdark(ξ, τ) = tanh(
√
κτ) exp(iκξ), (19)

which exists, assuming again δk>0, for β1 = 1 (normal GVD), with nonlinear shift κ = 1/δk. The
emission of RR around the SH component u2(ξ, τ) = [ρ2dark(ξ, τ)/δk] exp(iδkξ) is still governed
by Eq. (9b), which now requires β2>0, i.e., the same GVD sign at FF and SH (opposite to
the condition β1β2<0 for bright solitons). As shown in Fig. 15, as an example for β2 = 3 and
δk = 5, the RR primary peaks at ω±

2RR ≃ ±1.9 and the down-converted peaks around the FF at
ω±

1FC = ω
±
2RR, are still accurately captured by the estimate from Eq. (9b), reported as vertical

dashed lines in Figs. 15(c) and 15(d). Noteworthily, the RR is also evident in the temporal domain,
especially at SH [see Fig. 15(b)], and now manifests itself as a spatiotemporal pattern formed by
the interference of the longitudinal oscillation of the plane-wave background caused by periodic
SHG conversion and back-conversion, while the radiation still travels away from the soliton central
core. Similar to the case of bright solitons discussed in Fig. 4, the strength (or efficiency) of the
RR is found (data not shown) to decrease with the larger mismatches (which would yield weaker
nonlinearities) and the smaller β2 (which results in too large RR frequencies to be efficiently
seeded). Moreover, the higher-order dark solitons generated from input ρdark(0, τ) = N tanh(

√
κτ),

with N integer, radiate less efficiently than their bright counterparts, since they exhibit temporal
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Fig. 15. Radiating black soliton: numerical spatiotemporal dynamics of (a) FF and (b) SH,
and their corresponding spectra (c) and (d) with output profiles in the upper insets. Dashed
lines in (c) and (d) as well as bullets in the upper insets stand for ω±2RR = ω

±
1FC calculated

from Eq. (9b). Here β1 = 1, β2 = 3, and δk = 5.
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splitting [52] rather than the periodic compression and spectral broadening discussed in Sec. 4.
Finally we point out that, for dark solitons, though, in principle, primary RR around the FF can
arise also from Eq. (9a), the resulting frequencies are too small (embedded in the core spectrum
of the soliton) to show any appreciable growth.

7. Conclusions

In summary, we have investigated the generation of optical RR in the cascading SHG process,
through numerical simulation of the full coupled propagation equations. Our results considerably
extend the understanding of the RR radiated by different quadratic solitary waves, including
but not limited to the fundamental solitons, the second-order solitons, the ABs, and the dark
solitons. What emerges is a common mechanism where RR is shed around the less intense SH
component and then down-converted to take place around the FF via frequency mixing processes.
The radiated frequency can be predicted by means of a simple universal phase-matching formula
which we have validated in a wide region of the material parameters. These studies provide a
novel perspective on solitary wave propagation in quadratic media and may pave the wave for
generating new controllable frequency combs of interest in experiments.
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