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Abstract Routing and spectrum assignment strategies exploiting Reinforcement Learning are 

investigated for multi-band optical networks. Generalized Signal to Noise Ratio accounting for 

Stimulated Raman Scattering is estimated driving modulation format selection. Simulations show that 

RL may reduce the blocking probability by one order of magnitude. ©2022 The Author(s)

Introduction 

Given the growth of Internet traffic, backbone 

and metro networks are reaching the saturation 

of the capacity [1]. The research community is 

investigating the exploitation of bands beyond C 

and L (e.g., S and E); thus, the migration toward 

multi-band (MB) optical networks is considered 

a valid approach to increase network capacity 

[2]. In parallel, Machine Learning (ML) is gaining 

a momentum, e.g., for network optimization 

purposes, failure prediction and classification. 

Indeed, over the past years, the usage of ML 

techniques in optical networks has been 

investigated for various applications, such as 

Quality of Transmission (QoT) estimation for 

unestablished lightpaths [3], failure detection 

and identification [4] and for network monitoring 

[5], which show the potential of the different ML 

models to take part in current and future optical 

network's control and management planes. 

One of the most prominent ML tools is the 

Reinforcement Learning (RL) technique, which 

has approved its ability to solve, with accuracy, 

complex problems in different fields [6]. In 

optical networks, RL has been used to address 

the optimization's complexity issues of resource 

provisioning [7], to exploit the possibility of self-

driving network deployment [8], and for the 

network services restoration in case of failure or 

disaster [9]. In addition, the reason behind 

considering RL as an attractive and very 

competitive solution is that it does not require a 

training dataset. This ML technique represents a 

relevant advantage because acquiring accurate 

data from the network may often be complex. 

Furthermore, RL still needs to be deeply 

investigated in the context of MB optical 

networks. 

In this paper, we will consider the scenario of a 

MB optical network where L-C-S-E bands are 

active. Then, we investigate several Routing and 

Spectrum Assignment (RSA) strategies 

exploiting RL. Given a connection request, a 

path is computed based on the RL model. Then, 

a band is selected. The bands are prioritized as 

follows: C-band first, then L-band, following S-

band and finally the E-band. The modulation 

format selection is performed based on the 

generalized signal-to-noise ratio (GSNR), which 

is computed with the open GNPy tool [10][11], 

accounting for the Stimulated Raman Scattering 

effect. Then, a portion of the spectrum – within 

an adequately selected band (e.g., S) – is 

assigned. The strategies are compared through 

simulations. Results show that RL may reduce 

blocking probability by one order of magnitude. 

Routing and Spectrum Assignment  

The proposed provisioning approach for MB 

optical networks is illustrated in Fig. 1. The 

available spectrum per each band is assumed to 

be the one in [2]. GSNR – computed per 

wavelength – is the considered figure of merit 

for QoT estimation. According to the flow chart 

in Fig. 1, the following RSA strategies exploiting 

RL are proposed for MB optical networks. 

• RL-based routing and Highest GSNR 

spectrum assignment (RL-

HighestGSNR): Path computation is 

performed with RL, which explores network 

topology without any prior knowledge or 

Fig. 1: RSA flow chart 
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training data set. Moreover, RL does not 

require holding a pre-computed set of routes 

(e.g., k-shortest paths). RL assigns scores 

(proportionally to the inverse of the length) 

to each link. The score of a path, as shown 

in Fig. 2, is given by the sum of each link's 

score. The path with the highest score is 

selected (Path Computation step in Fig. 1). 

Then, a band is chosen (Band Selection 

step in Fig. 1). Regarding modulation format 

selection, we assume fixed symbol rate, 

thus a lower-order modulation format may 

require more channels to satisfy the 

requested bit rate. As an example, 

assuming polarization multiplexing 16 

quadrature amplitude modulation (PM-

16QAM) and polarization multiplexing 

quadrature phase shift keying (PM-QPSK), 

the latter halves the bit rate, consequently, 

one channel is required if PM-16QAM is 

supported or two channels are required if 

PM-QPSK is supported. After band 

selection, the strategy proceeds as follows 

to identify the modulation format. Within the 

chosen band (e.g., C), the channel W with 

the highest GSNR is considered. Based on 

the GSNR value, the most-spectral efficient 

supported modulation format is selected 

(Modulation Format Selection step in Fig. 1 

– e.g., PM-16QAM). Finally, the spectrum is 

allocated: e.g., one channel on W if PM-

16QAM is supported, or W and an adjacent 

channel if PM-QPSK only is supported. 

Once RSA for a given request is concluded, 

the score related to the links of the 

computed path is reduced by a penalty P in 

order to discourage the selection of those 

links, thus, to distribute the traffic over 

different links.   

• RL-based routing and Lowest GSNR 

spectrum assignment (RL-LowestGSNR): 

Differently from RL-HighestGSNR, within the 

selected band (e.g., C), the channel w with 

the lowest GSNR supporting the most 

spectral efficient modulation format (e.g., 

PM-16QAM) is considered. Then, spectrum 

is allocated accordingly. 

• RL-based routing and first fit spectrum 

assignment (RL-FF): Differently from RL-

HighestGSNR and RL-LowestGSNR, 

spectrum assignment is done with first fit 

(FF). 

If no path over all the assumed bands satisfies 

spectrum continuity constraint, the request is 

blocked.  

Fig. 2: RL-based strategy steps 

RL 

Fig. 3: Blocking probability Vs Network loads for the different RSA strategies. 



Results 

The different RL-based RSA strategies are 

analyzed through simulations in terms of 

blocking probability. Japanese network topology 

[12] of 14 nodes and 44 links is adopted. Traffic 

follows a Poisson distribution with rate . 

Connection holding time is exponentially 

distributed with an average of 1/=1 hour.  

Traffic load (/) is varied with 1/. 400-Gb/s 

requests are assumed. PM-16QAM and PM-

QPSK are considered. Requests are switched to 

75 GHz when PM-16QAM is supported; 

otherwise, a single request is provisioned with 

2×200Gb/s PM-QPSK channels in 150 GHz. 

GSNR is computed per wavelength with GNPy 

[10], and the adopted thresholds are the 

following: 24 dB for PM-16QAM and 16 dB for 

PM-QPSK, assuming a symbol rate of 64 

GBaud. P to reduce scores is equivalent to an 

increase of 10 km in each link's length of the 

selected path. RL-based RSA is compared with 

benchmark strategies based on k-shortest 

paths: K-SP-HighestGSNR, K-SP-LowestGSNR, 

and K-SP-FF. With the three benchmark 

strategies, a set of k-shortest paths is first 

computed; among them, preference is given to 

the shortest route; in case of tie, the path 

maximizing the number of channels satisfying 

the continuity constraint over the path is 

selected. Regarding spectrum assignment for 

the benchmark strategies, similarly to RL-based 

strategies, K-SP-HighestGSNR is based on the 

channel with the highest GSNR, K-SP-

LowestGSNR is based on the channel with the 

lowest GSNR (supporting the most spectral 

efficient modulation format), K-SP-FF is based 

on FF. Fig. 3 shows the blocking probability at 

varying the network load for the different RSA 

strategies. RL can strongly reduce blocking 

probability: e.g., for a load of 180 Erlang by one 

order of magnitude with respect to k-shortest. 

This is due to the fact that RL dynamically 

updates its view of the overall network thanks to 

the dynamic update of scores. 

Regarding spectrum assignment, independently 

on the path computation strategy, LowestGSNR 

achieves the lowest blocking probability. Indeed, 

LowestGSNR tends to use spectrum with lower 

GSNR (still attempting to use the most efficient 

modulation format), thus leaving channels with 

high GSNR more frequently free. In this way, 

requests over more critical routes (e.g., the 

longer ones) may find an available spectrum 

with acceptable GSNR. Consequently, blocking 

is reduced. FF presents intermediate 

performance, while HighestGSNR experiences 

higher blocking since it may create spectrum 

fragmentation and may consume high-GSNR 

channels more quickly, resulting in a worsening 

performance in terms of blocking probability. 

Fig. 4 and Fig. 5 show, for a load of 250 Erlang, 

the average number of channels at 200 Gb/s 

and 400 G/s deployed in the network, as well as 

the blocked requests for K-SP-based routing 

and RL-based routing, respectively. As 

expected, HighestGSNR reduces the use of PM-

QPSK (so the number of 200Gb/s channels). 

LowestGSNR increases the number of PM-

QPSK channels (200Gb/s). Indeed, achieving 

the lowest blocking, it is able to provision 

requests that may be blocked with the other 

approaches. Such requests typically traverse 

long routes; thus, lower-order PM-QPSK is 

used.  

Conclusions 

In this work, we proposed several RSA 

strategies assisted by Reinforcement Learning 

(RL) that may strongly reduce blocking 

probability (e.g., one order of magnitude). 

Simulations also show that – regarding 

spectrum assignment – spectrum assignment 

based on the lowest GSNR may further reduce 

blocking probability. 
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Fig. 4:  Number of channels (K-SP-based routing) 

Fig. 5:  Number of channels (RL-based routing) 
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