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Microbes to support plant health: understanding 
bioinoculant success in complex conditions
Sanne WM Poppeliers*, Juan J Sánchez-Gil* and  
Ronnie de Jonge

A promising, sustainable way to enhance plant health and 
productivity is by leveraging beneficial microbes. Beneficial 
microbes are natural soil residents with proven benefits for 
plant performance and health. When applied in agriculture to 
improve crop yield and performance, these microbes are 
commonly referred to as bioinoculants. Yet, despite their 
promising properties, bioinoculant efficacy can vary 
dramatically in the field, hampering their applicability. Invasion 
of the rhizosphere microbiome is a critical determinant for 
bioinoculant success. Invasion is a complex phenomenon that 
is shaped by interactions with the local, resident microbiome 
and the host plant. Here, we explore all of these dimensions by 
cross-cutting ecological theory and molecular biology of 
microbial invasion in the rhizosphere. We refer to the famous 
Chinese philosopher and strategist Sun Tzu, who believed that 
solutions for problems require deep understanding of the 
problems themselves, to review the major biotic factors 
determining bioinoculant effectiveness.
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Introduction: ponder and deliberate before 
you make a move
Past and present anthropogenic disturbances are di-
minishing soil quality worldwide and decreasing crop 
yields through an intense demand for food production. 

At the same time, there is a joint effort to develop sus-
tainable agricultural techniques that can maintain or 
enhance productivity while reducing synthetic chemical 
inputs. One of the most promising methods to enhance 
plant health is by leveraging the benefits of the vast 
diversity of microbes that form the plant microbiome. 
Many pivotal features in plant fitness are dependent on 
the ensembled microbiome, such as nutrient homo-
eostasis [1], resilience to drought and salt stress [2,3] or 
natural protection against phytopathogens [4••,5]. 
Therefore, the scientific literature brims with examples 
of beneficial microbes and the responsible traits that can 
support plant health. These biological inoculants, or 
bioinoculants for short, are composed of single or mul-
tiple microbial species that are applied to soil and are 
the most common form of plant microbiota-engineering 
efforts.

The benefit associated with bioinoculants is commonly 
provided through their colonisation of the host plant 
roots, and most often, bioinoculant density in the rhi-
zosphere environment greatly determines the eventual 
efficacy [6,7•]. Whether the bioinoculant manages to 
engraft — that is, successfully invade a microbial com-
munity — depends on the composition and interactions 
with and within the locally adapted resident microbiota 
[8•,9], edaphic factors [10], host genotype [11••], root 
architecture and tissue-specific expression [12,13], in-
vader density and timing of invasion events [14] and the 
inherent ability of the bioinoculant to circumvent these 
barriers and establish itself in the microbiome [15]
(Figure 1). All of this commonly makes the design of 
bioinoculants strongly dependent on trial-and-error as-
says, and ultimately the most promising bioinoculants in 
the lab show variable efficacy in real-world agricultural 
conditions [16].

Some studies have already shown that global responses 
in the microbiome can be explained as an ensemble of 
the local interactions [17,18]. Therefore, optimising 
plant health through the design and application of 
beneficial microbes in agricultural conditions requires a 
deep mechanistic comprehension of all relevant inter-
actions that take place during engraftment into the re-
sident microbiome. In this review, by intertwining 
ecological theory with molecular research, we root for 
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understanding of the following questions: (1) how is 
efficacy determined by interactions with other microbes, 
(2) how can we benefit from positive interactions with 
residential microbes to promote engraftment, (3) can we 
leverage bioinoculant-induced modifications on the 
community regardless of invasion outcome and (4) how 
does the interaction with the host determine effective-
ness. We address these questions using Sun Tzu’s phi-
losophy from The Art of War to highlight the strategic 
nature behind optimisation of bioinoculant invasion and 
success.

Know thyself, know thy enemy: bioinoculant 
physiology and local interactions determine 
efficacy
Microbial traits such as growth rate, carbon utilisation, 
production of antibiotic compounds or the ability to form 
biofilms, are considered relevant for bioinoculant suc-
cess. The expression of these traits, however, depends 
on the physiological state of the microbe. In the case of 
the Pseudomonas genus, a vastly divergent clade that 
comprises many potential bioinoculants [19], most of the 
secondary metabolites that are relevant for their 

Figure 1  
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Processes and mechanisms influencing bioinoculant engraftment into the rhizosphere microbiome. (a) The activity of a bioinoculant depends on its 
physiological state and on interactions with other microbes. Top: relevant traits are only expressed in specific states and not in others. Middle: some 
traits are only expressed in interaction with specific microbes. Bottom: the interaction-triggered expression of traits is commonly of competitive 
nature, and is dependent on microbial relatedness. (b) Positive interactions with the residential microbiome can be used to favour invasion of an 
inoculated microbe. Top: a competitor is already present on the root, but without facilitator (or co-inoculated helper) invasion cannot occur. Middle: 
invasion can happen because a facilitator is present that benefits the invader directly. Bottom: the facilitator antagonises the competitor, leaving space 
for the invader to engraft. (c) Regardless of invasion success, the invader can induce effects on the resident microbiome that lead to positive results for 
plant health. Top: on the root, some beneficial residential microbes (blue) are restricted by the presence of competitors (red). Middle: invasion by a 
bioinoculant can benefit the lowly abundant microbes directly or kill the competitors. Bottom: the promoted residential can promote plant fitness 
regardless of what happens to the bioinoculant in future stages. (d) The plant host can control its microbiome through its immune system and by 
exuding different metabolites. The way the bioinoculant communicates with or is adapted to the host matters in predicting its success during invasion. 
Top: the plant host controls its microbiome through immune system activity, such as production of ROS, which benefit some microbes (green) but kill 
others (red). Middle: in other regions, different exudation profiles create different niches that select for different microbial communities. Bottom: the 
joint action of all processes, together with root architecture and soil properties, creates specific microhabitats for microbes.  

2 Environmental Microbiology 

www.sciencedirect.com Current Opinion in Microbiology 2023, 73:102286



beneficial activity are produced during the biofilm state 
[20]. At the same time, the production of these meta-
bolites can be dramatically altered by other surrounding 
microbes, affecting bioinoculant efficacy. For example, 
production of the antimicrobials pyoluteorin and 2,4- 
diacetylphloroglucinol (DAPG) is crucial for the bio-
control activity of Pseudomonas protegens, and production 
of pyoluteorin can be enhanced upon sensing of a se-
creted metabolite from a related pseudomonad. In turn, 
antibiosis of pyoluteorin towards this related pseudo-
monad results in the release of intracellular compounds 
that inhibit production of DAPG in P. protegens [21•]. In 
Bacillus velezensis, sensing pseudomonads’ siderophores 
enhances the production of secondary metabolites, in-
creasing its survival and triggering a broad antimicrobial 
activity [22••,23]. Microbe–microbe interactions fre-
quently enhance production of antimicrobial compounds 
across diverse environments, including the plant phyl-
losphere [24]. Conversely, the very same study shows 
that isolates from the soil produced antimicrobials con-
stitutively, probably as a result of adaptation to an en-
vironment with much higher microbial density. In a 
previous study, however, 42% of isolates from soil ex-
hibit antimicrobial activity only when in interaction with 
other specific isolates [25]. These findings are in line 
with studies showing that most of microbial biosynthetic 
gene clusters (BGC) remain silent until their expression 
is induced by an external stimulus, commonly anti-
microbial compounds [26].

Generally, direct competition is more frequent among 
closely related organisms and commonly leads to strain 
exclusion [27]. For instance, commensal pseudomonads 
were able to protect host plants against a closely related 
Pseudomonas pathogen via hitherto unknown mechanism 
[7•,28•], and closely related P. protegens strains can in-
hibit each other via the release of tailocins, bactericidal 
protein complexes [29]. In contrast, closely related 
strains of Bacillus subtilis can essentially merge swarms 
and co-colonise surfaces, while kin discrimination leads 
to exclusion of distantly strains from swarms [30], a 
phenomenon also observed during biofilm develop-
ment [31].

On the contrary, some microorganisms engraft in a fully 
independent manner, almost no matter what the re-
sident community looks like. Such organisms carry the 
potential to be more broadly applicable in agriculture 
due to their reduced dependency on local conditions. 
Only few examples are described of such potentially 
superior bioinoculants, and one of them is Pseudomonas 
putida strain IsoF. This strain is able to aggressively in-
vade biofilms, thanks to a horizontally acquired type-IVB 
secretion system that confers a broad contact-dependent 
toxicity ensuring P. putida engraftment into the rhizo-
sphere community and enabling robust biocontrol ac-
tivity [15].

The wise warrior avoids the battle: positive 
interactions with residential microbes to 
promote engraftment
Interactions between bioinoculants and other micro-
organisms do not necessarily have to be competitive, 
instead, they can also be of a facilitative nature. Specific 
members of the host microbiome can help the bioino-
culant invade, both through direct and indirect me-
chanisms. Additionally, there are ample examples where 
bioinoculants that are co-inoculated with certain ‘helper’ 
strains are better able to establish and persist in a new 
environment, and consequently enhance plant perfor-
mance. In bacilli, plant growth-promoting effects are 
dependent on biofilm formation in the rhizosphere, and 
this process is influenced by interactions with other 
microbes. For example, co-inoculation with helper 
strains that were not necessarily rhizosphere-competent 
themselves increased B. subtilis adherence on Arabidopsis 
thaliana roots [32]. In the cucumber rhizosphere, dual- 
species inoculation of B. velezensis and Pseudomonas 
stutzeri promoted plant growth more efficiently than in-
dividual species, and both inoculants reached higher 
abundances when co-inoculated in comparison with 
singular application. Intriguingly, such synergism was 
only evident under static nutrient-rich conditions, im-
plying that spatial structure and nutrient availability are 
key to their collaborative nature [33•]. In general, com-
pared with single-strain inoculation, consortia often have 
a larger effect on the resident microbial community 
[34,35], and possibly therefore better stimulate plant 
growth [36] and protect plants against different 
stresses [37].

Understanding the mechanisms of pathogen invasion 
can help elucidate bioinoculant success or failure, since 
similar ecological principles apply. Many microorganisms 
might act as helpers of pathogens in the rhizosphere. 
Although the molecular mechanisms behind pathogen 
invasion remain elusive, the compatibility of side-
rophores [38••] and tolerance to antimicrobials [24,39]
produced by the resident community seem to play im-
portant roles. Facilitative interactions promote invasion 
of the pathogen Ralstonia solanacearum in vitro and in 
vivo due to loss of pathogen inhibition [40]. Mathema-
tical modelling of experimentally validated, pairwise 
interactions predicts that inhibition of pathogen helper 
strains can reduce pathogen density in the rhizosphere 
more than direct targeting [41]. In general, more and 
more evidence confirms that the interactions between 
co-occurring species, as opposed to the presence or ab-
sence of a given species and its functional traits, are the 
most important determinant of disease suppression 
[40,42,43].

Interactions between members of a community and an 
invader can transition from antagonistic to facilitative or 
vice-versa, when let to co-evolve. It has been recently 
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reported that facilitation by a resident community en-
ables invader survival and growth in a toxic medium 
where without these facilitative interactions the invader 
would not survive. However, the community became 
resistant to invasion after it co-evolved, possibly caused 
by increased growth of community members inhibiting 
invader survival [44]. A transition from antagonism to 
coexistence was also observed in two well-known plant- 
beneficial microbes: Pseudomonas chlororaphis and Ba-
cillus amyloliquefaciens. Mutual antagonism is conferred 
by the production of secondary metabolites with anti-
microbial activity. Coevolution, however, drove the 
emergence of spontaneous mutants in both species that 
provide resistance against the competitor molecules by 
modifying the respective targets. Although the muta-
tions came at the cost of pleiotropic effects, they fa-
cilitated the coexistence between both organisms that 
apparently outweigh these effects [45]. Together, both 
studies provide valuable insight into the adaptive me-
chanisms underlying simple and more complex micro-
bial interactions that need to be considered when 
designing future bioinoculants.

All warfare is based on deception: leveraging 
invasion-induced effects on the resident 
community
Invasion by a bioinoculant has the ability to alter mi-
crobial communities, and these alterations may be le-
veraged to influence plant health, regardless of the 
outcome for the bioinoculant. The magnitude of this 
effect depends on the overlap between the ecological 
niche, in particular resource use, of the bioinoculant and 
that of the resident taxa. The presence of such overlap 
could affect competitive activities within the community 
and consequently alter its composition. For instance, 
transient invasion by bacilli induced changes in bacterial 
diversity in soil that persisted for long periods of time, 
regardless of invader persistence. Invasion primarily af-
fected copiotrophs — fast-growing organisms found in 
nutrient-rich environments — during the early phases of 
community assembly that likely shared a niche with the 
invader, and as a result oligotrophs — slow-growing or-
ganisms found in nutrient-sparse environ-
ments — appear to have benefitted at later stages of 
community assembly [46]. Escherichia coli caused a si-
milar effect in soil that persisted after its disappearance. 
Notably, changes in community composition following 
invasion correlate with community resource use [47]. A 
comparable shift in community composition occurred 
after the introduction of B. subtilis into a soil-derived 
synthetic community. As a result, the closest relatives in 
the community were repressed [48]. These examples 
corroborate the idea that bioinoculants can affect the 
microbiome in a way that is dependent on bioinoculant 
and community functionality, but the question remains 
if such effects result in an alternative stable state, or if 

the community will convert back to its initial state with 
corresponding consequences for plant health. Alter-
native states, supported by changes in the abundance 
and/or presence of keystone microbial species or func-
tionalities, could be responsible for the observed 
changes in plant health and the resistance against inva-
sion by selected pathogens [49]. Nevertheless, the le-
gacy of invasion might facilitate future invasion attempts 
and recurrent inoculations, and might be one of the 
determinants of successful bioinoculant application 
(Box 1). Therefore, we conclude that it is important to 
track the effect of bioinoculant application over ex-
tended periods of time and the possible alternative 
states it might induce to know whether invasion causes 
long-lasting functional changes in the microbial com-
munity.

Indirect effects on resident communities can be used to 
tap into a ‘new’ resource of plant-beneficial microbes 
that are rare in soil and/or the rhizosphere under current 
conditions, via the addition of bioinoculants that do not 
necessarily need to be beneficial for the plant directly 
themselves. Introduction of consortia of plant-beneficial 
Pseudomonas strains in the tomato rhizosphere increased 
the frequency of rare taxa in the resident community, 
possibly through direct competition for resources with 
more abundant taxa. Notably, rather than invader con-
sortia-specific beneficial traits, changes in community 
composition best explained the observed beneficial ef-
fects on plant growth, but how these changes resulted in 
improved plant growth remains to be answered. The 
effect was larger with more diverse inocula, suggesting 
synergistic effects between certain strains [35]. Similarly, 
introduction of the beneficial microbe B. amyloliquefa-
ciens into the tomato rhizosphere resulted in increased 
suppressiveness towards R. solanacearum, irrespective of 
inoculant abundance, possibly due to an enrichment of 
microbes carrying antimicrobial BGCs in the invaded 
communities [39].

In addition to invasion-induced effects on the resident 
microbial community, bioinoculants can also perma-
nently alter host physiology, even after the bioinoculant 
is eliminated from the community. For example, bioi-
noculant-induced differential DNA methylation in po-
keweed roots resulted in growth promotion, while 
functional-level variation in the rhizosphere microbiome 
induced by the inoculum was only detected at an early 
phase of microbial community assembly [50•].

Knowing the battlefield ensures victory: 
invasion depends on interaction with the host
Bioinoculants ultimately need to interact with a host 
plant, which imposes a genotype-dependent selection 
that determines microbial assembly [65,66]. Host-driven 
selection eventually enables emergence of compatibility 
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and cooperation with its microbiome [67], and this 
translates into microbial host preference [11••]. There-
fore, compatibility and interaction with the host plant 
are of high relevance in designing future effective bioi-
noculants.

Evolutionary studies show examples of how to optimise 
bioinoculant compatibility with the target host. In 
pseudomonads and bacilli in mono-association with 
Arabidopsis, cooperative and mutualistic microbial traits 
emerge rapidly [68,69]. Evolved isolates showed im-
proved root colonisation ability, in part driven by mu-
tations in master regulators of bacterial behaviour, such 
as the GacA/S two-component system that induced 
major physiological changes [69–71]. Also another, 
master regulatory system in Pseudomonas, the ColR/S 
two-component system, has been linked to host adap-
tation at the strain level [72], and is at the same time 
required for protection against other pathogenic pseu-
domonads [7•]. This host-driven evolution suggests that 
master regulatory systems are key targets for optimising 
bioinoculant compatibility and should be exploited in 
the future.

An important determinant of compatibility is the inter-
action with the host immune system. In some beneficial 
microbes such as B. velezensis, host-derived reactive 
oxygen species (ROS) are required to stimulate bacterial 
secretion of auxin, which subsequently induces lateral 
root formation and protects against fungal pathogens 
[73]. In contrast, ROS production is known to widely 
restrict colonisation in the rhizosphere [74], and conse-
quently, many successful root-colonising organisms, 
especially Actinobacteria and Gammaproteobacteria, 
have developed strategies to circumvent this by sup-
pressing immune responses either locally or systemically 
[75,76,77].

Besides host immune activity, root exudate exploitation 
is the main driver of microbial compatibility. For in-
stance, exuded inositol from Arabidopsis and tomato 
roots enhances chemotaxis and biofilm production of 
Priestia megaterium (formerly Bacillus megaterium) on their 
respective roots, resulting in growth promotion [78]. In 
B. subtilis and in pseudomonads, sucrose exudation en-
hances colonisation, which leads to enhanced protection 
against the phytopathogens Fusarium and Botrytis [79].

Box 1 Timing in rhizosphere invasions.  

The rhizosphere microbiome and the functionalities it provides change with plant developmental stage. High biodiversity, as often seen in more 
mature rhizospheres, is often seen as a buffer to invasion [51–53]. Biodiversity can influence resistance to invasion through niche restriction/ 
occupancy — that is, no available space for invader — [42,54], direct or indirect competition — for example, toxicity, activation of host im-
munity and niche displacement — phenotypic differentiation in space and time [46]. For example, in rice, Enterobacter asburiae was only able to 
promote rice shoot dry weight in the least diverse rich clay soils, likely because there were fewer keystone species in the most diluted microcosms 
that acted as generalist competitors of the bioinoculant [10].

On young roots, pioneering opportunistic bacterial species occur that invest little in the production of toxic secondary metabolites, while at later 
stages, bacteria with various life strategies can coexist [55], facilitated by niche differentiation [56]. Stochasticity of microbiome assembly, mainly 
during the initial stages, leads to differential local configurations, which in turn leads to variability in the density of pathogen-suppressive members. 
This variability, although imperceptible at the global community scale, translates into differential antagonist densities and therefore an increase in 
community invasibility. This was sufficient to explain invasion and disease onset by R. solanacearum [4••,57,58]. However, assembled com-
munities from mature rhizospheres could prevent its invasion due to increased functional diversity, toxicity and niche restriction [42].

The order of arrival of (invading) strains affects community assembly and determines the final microbial community composition. In A. thaliana and 
Lotus japonicus, strains that arrived later in the resident communities reached lower proportions in the output communities, which could be due to 
niche pre-emption where early-arriving strains reduce the number of resources available. Nevertheless, strains that invaded communities on the 
host that they were isolated from were better able than strains from a different host plant, negating these priority effects. This effect was host- 
specific, that is, strains were better able to invade communities on the host from which they were isolated, thereby overcoming these priority 
effects [11••] (see also Knowing the battlefield ensures victory: invasion depends on interaction with the host). A similar effect was observed in vitro 
where early invaders were more successful than those trying to engraft in co-evolved communities at a later timepoint [44]. In the maize rhizo-
sphere, the correlation between AMF colonisation and soil biodiversity was time-dependent, suggesting that once plants get established in the 
soil, positive interactions between AMF and the resident microbiota might not be as important anymore for AMF colonisation ability [59]. Another 
example comes from the tomato phyllosphere. Pseudomonads belonging to the fluorescens clade might pre-empt as much niche space as 
possible on tomato leaves in an early stage of community assembly, and benefit from this later on even at the expense of a decreased maximal 
growth rate [60]. In this case, competitiveness was optimised by shorter lag phases and lower growth rates, suggesting that prompter growth and 
dispersal are more determinant for bioinoculant efficacy than overall growth rate. However, recent estimations of growth rate across rhizosphere 
microbiome datasets show that the rhizosphere is dominated by genera with a high growth rate potential [61]. Together, these studies suggest a 
calibrated balance between the time of exit from the lag phase and growth rate potential in order to succeed in complex communities, and they 
nuance the classical dichotomy of ‘slow and stable’ (K-strategist or oligotroph) versus ‘fast and fluctuating’ (r-strategist or copiotroph) life histories.

While inoculation of different plant-beneficial strains or combinations thereof in soil resulted in only temporary changes in resident bacterial 
families, repeated inoculations permanently altered community succession in a strain-specific manner. Yet, beneficial effects of repeated in-
oculation on nutrient availability in the soil did decrease over time [34]. Repeated inoculations might thus be a solution for countering bioinoculant 
abundance decline and priority effects, although the efficacy of these measures can be time-dependent.

For a recent detailed account on the ecological mechanisms of invasion and the legacy on indigenous soil microbial communities in an agricultural 
context, we refer to [62,63], and for relevant insights for bioinoculant application from macroecology please see [64].
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Furthermore, immune activity and exudation profiles are 
not homogeneous throughout the root system. The di-
verse set of exuded metabolites accumulates in different 
regions of the root [80], and the strength and scope of 
immune responses are cell-layer- and cell-type-specific 
and dependent on local damage [81–84]. Moreover, ex-
periments on the colonisation of Firmicutes and Pro-
teobacteria isolates in leaves with different morphology 
showed that the spatial organisation of the colonised 
surface alone plays a key role in determining the success 
of an inoculant [85]. The combination of these three 
factors creates specific microhabitats on the root where 
the bioinoculant will eventually interact with its host 
[12,86]. For example, epidermal trichoblasts mediate the 
beneficial interaction with Pseudomonas simiae WCS417 
through exudation of coumarins [13], and many organ-
isms colonise preferentially the root tip and elongation 
zone [87•].

These studies underline the importance of the bioino-
culant-host compatibility, but also the relevance of the 
precisely invaded microhabitat for anticipating the local 
determinants for compatibility and eventual bioinocu-
lant engraftment.

In the midst of chaos, there is also 
opportunity: towards the bioinoculants of  
the future
In the previous sections, we discussed relevant sources 
of variability underlying bioinoculant engraftment and 
success. The current state of the topic would be 
probably defined by Sun Tzu as: ‘one may know how to 
conquer without being able to do it’. Yet, although we are 
technically able to apply bioinoculants in soil, con-
quering the complexity of microbial invasions requires 
more knowledge about the physiology of beneficial 
microbes in soil and the local-scale interactions that 
govern the microbiome [18]. For example, microbial 
biosynthetic capacities remain largely underexplored 
[88], and the role of known metabolites in microbial 
physiology is still being discovered, even in well-stu-
died microbes [79,89•]. Motility in soil, for example, is 
another crucial trait for a soil bioinoculant, and is only 
now being characterised. In B. subtilis, Engelhardt and 
co-authors described recently a collective form of 
chemotactic motility in soil. When a community of 
B. subtilis cells sense the presence of a root in the 
vicinity, the cells move like flocks through the soil 
particles and arrange dynamically around the root tips 
[87•]. This finding suggests that we need dedicated 
experiments to understand these mechanisms in cur-
rent and future bioinoculants, as well as their re-
levance for successful colonisation.

Knowing the genetic and physiological characteristics 
from the bioinoculant and resident microbes allows for 

the prediction of genome-scale interactions, which in 
turn, allows for the engineering of the community in the 
long run. Recent advances, including single-cell se-
quencing techniques such as Microbe-seq [90] and Live- 
seq [91], could give more detailed information on the 
physiology of rhizosphere microbes, especially as im-
provements in sequencing and in sequence analysis 
software allow better reconstruction of genomes from 
complex metagenomes [92] and more thorough retrieval 
of information from existing ones [93]. The interactions 
with the host and other microbes can benefit from 
new techniques in spatial metatranscriptomics [94], 
together with the dissection of microbial transcriptional 
activity at single-cell resolution [95•], and new combi-
nations with expansion microscopy and sequencing [96]. 
Other studies opt for overcoming the variability in 
efficacy with bold innovations such as the use of 
encapsulated microbes that allow engineering of co-
operative interactions [97].

However, sometimes, even ‘failed’ bioinoculants might 
have beneficial effects and simply remain unseen in 
many experiments. A plant growth-promoting Bacillus 
isolate that can promote A. thaliana growth in vitro did 
not have any effect on shoot biomass in artificial soil, but 
its application increased the total number of siliques 
[98]. This suggests that productivity-based parameters 
should be regarded in experimental conditions when 
evaluating bioinoculant effects.

For Sun Tzu, a deep knowledge of oneself and of the 
opponent was equivalent to avoiding war. Commonly, 
efforts in understanding and applying microbes as bioi-
noculants come from apparently opposite perspectives, 
ranging from studying specific genes in specific contexts 
that are difficult to generalise, to broad-scale ecological 
dynamics and concepts that have difficulties in ex-
plaining particular cases. However, relatively few studies 
integrate both worlds while trying to understand inva-
sions as an ecological and mechanistic complex phe-
nomenon. Ensuring bioinoculant benefits on plant 
fitness, either directly or indirectly, demands working in 
harmony with ecological principles and the molecular 
mechanisms that depend on, and give rise to, those 
principles. In this sense, future efforts should focus on 
defining the precise microhabitats where the bioinocu-
lant can provide its most benefits, and study how its 
invasion depends on its own physiology under the con-
ditions therein, and how interactions with the local 
community and the host determine its engraftment and 
its effects in the field.
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