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Abstract

The structure and function of the root microbial community is shaped by plant root activity,
enriching specific microbial taxa and functions from the surrounding soil as the plant root
grows. Knowledge of bacterial  rhizosphere competence traits are important for predictive
microbiome modeling and the development of viable bioinoculants for sustainable agriculture
solutions.  In  this  work we compared growth rate potential,  a  complex  trait  that  recently
became  predictable  from  bacterial  genome  sequences,  to  functional  traits  encoded  by
proteins.  We analyzed 84 paired rhizosphere- and soil-derived 16S rRNA metabarcoding
datasets from 18 different plants and soil types, performed differential abundance analyses
and estimated growth rates for each bacterial genus. This analysis revealed that bacteria
with a high growth rate potential consistently dominated the rhizosphere. Next, we analyzed
the genome sequences of 3270 bacterial isolates and 6707 MAGs from 1121 plant- and
soil-associated  metagenomes,  confirming this  trend in  different  bacterial  phyla.  We next
investigated which functional traits were enriched in the rhizosphere, expanding the catalog
of rhizosphere-associated traits with hundreds of new functions. When we compared the
importance of different functional categories to the predicted growth rate potential using a
machine  learning  model,  we  found  that  growth  rate  potential  was  the  main  feature  for
differentiating rhizosphere and soil bacteria, revealing the broad importance of this factor for
explaining the rhizosphere effect. Together, we contribute new understanding of the bacterial
traits needed for rhizosphere competence. As this trait may be inferred from (meta-) genome
data,  our  work  has  implications  for  understanding  bacterial  community  assembly  in  the
rhizosphere, where many uncultivated bacteria reside.

Introduction

Soils represent the most complex and diverse microbiomes in the world. A notable extension
of these is the rhizosphere, comprising the soil region near plant roots, which are influenced
by root exudates and rhizodeposition [1]. The rhizosphere microbiome has been studied with
the aim of harnessing plant-microbe interactions and improving sustainable agriculture [1].
Rhizosphere microbiomes assemble by recruiting a subset of the microbiota present in the
soil surrounding plant roots, also known as the bulk soil, and these recruited microbes may
pose beneficial,  neutral,  or detrimental  effects on the host  plants [1,  2].  The changes in
microbial community composition that take place from the soil towards the root have been
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dubbed the rhizosphere effect [3]. It involves a decrease in species richness imposed by
stronger  selection  on microbes  towards  the  roots  into  sequential  regions  known as  the
rhizosphere, rhizoplane, and endosphere [4]. The strength of the rhizosphere effect varies
extensively between different studies [4,5-9,10]. While methodological differences between
these studies,  including rhizosphere and microbiome isolation cannot  be ruled out,  there
may also be physiological factors that influence the extent of this effect [3]. Among other
factors, the rhizosphere effect may be influenced by the host plant species [11], the stage of
the plant life cycle [12], or the location on the root [13].

Understanding the biological signatures that allow a microbe to colonize and thrive in the
rhizosphere has been a complex and intricate endeavor, and it remains an open question
which key factors drive rhizosphere community  assembly [3].  Approaches to understand
rhizosphere  competence  have  frequently  included  analyzing  compositional  or  functional
changes between root-associated bacteria and soils, revealing that some functions or taxa
are  enriched  in  different  rhizosphere  microbiomes  [14-18].  Others  have  identified  core
microbes that are consistently present in the rhizosphere across different plant hosts and
conditions [2, 19]. Still, the variation in, and diversity of rhizosphere microbiomes described
in different studies makes it difficult to make general statements on the bacterial traits that
are common determinants of rhizosphere competence in different plants. 

Besides  descriptions  of  the  changes  in  taxonomic  or  functional  composition  of  the
rhizosphere microbiome, alternative genomic signatures for the rhizosphere effect are not
frequently explored. One relevant ecological aspect to describe microbial lifestyle is growth
rate potential. There have been indications that shifts in the soil microbial composition in
response to carbon availability can to some extent be predicted in terms of copiotrophs,
microorganisms adapted to high nutrient conditions with faster growth rates, and oligotrophs,
microorganisms adapted to low nutrient conditions with slow but more efficient growth [20].
Similarly, copiotrophs are enriched in soils with higher presence of labile organic substrates
(i.e.,  glycine,  sucrose),  while  oligotrophs  are  enriched  in  soils  containing  recalcitrant
chemicals (i.e., cellulose, lignin, or tannin–protein) [21]. Finally, an increase in the relative
abundance of copiotrophic bacteria in soils has been associated with elevated nitrogen and
phosphorus agricultural inputs [22]. Together, these observations indicate that compounds
secreted by plant roots could contribute to the selection of copiotrophs in the rhizosphere,
thus playing a role in establishing the rhizosphere effect.

Recently, estimations of maximal growth rate, further referred to as growth rate potential,
have  become  possible  from  genomic  data,  without  the  need  of  culturing  [23].  These
predictions are based on a model that computes signals including the codon usage bias in a
genome, codon usage pattern consistency in highly  expressed genes,  and genome-wide
codon  pair  bias.  The  model  provides  an  estimation  of  a  minimum  doubling  time  of  an
organism and allows for the classification of a bacteria into copiotroph or oligotroph [23].
Being applicable to bacteria, archaea, as well as eukaryotic microbes, growth rate potential
has been explored recently using this model-based approach in different biomes, such as in
oligotrophic  marine  systems  or  the  nutrient-rich  human  gut  [24].  In  a  recent  work  this
approach was also used in whole communities of marine samples [25], where the authors
found a decreasing community-wide average growth rate potential  correlated with depth,
probably owed to a decrease in nutrient availability.  This suggests that nutrient gradients
may affect the growth rates in different biomes, the rhizosphere being one natural habitat
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where to test this hypothesis. Here, we investigated whether microbial growth rate potential
is a predictor of rhizosphere enrichment. We analyzed 460 rhizosphere and 232 bulk soil
16S rDNA metabarcoding samples comprising 84 paired rhizosphere and bulk-soil datasets
from 18 different plant genotypes, a set of previously analyzed isolated genomes from plants
and soils [14],  and MAGs (metagenome-assembled genomes) from 501 rhizosphere and
620 soil full metagenomes from diverse studies to analyze how growth rate potential may
contribute to the rhizosphere effect.

Methods

All R scripts and Jupyter Notebooks for analysis, plotting and tables used in this analysis are
available  on  GitHub
(https://github.com/JoseLopezArcondo/rhizosphere_microbial_growthRates).  All
visualizations were done using ggplot2 [26], ggpubr [27], and edited using InkSkape [28].

Matching rhizosphere and bulk soil datasets in 16S rDNA metabarcoding datasets

We selected metabarcoding projects from the MGnify database [29] based on i) having both
rhizosphere and associated bulk soil samples available, and ii) having sufficient sequencing
depth, i.e., with more than 10000 reads per sample (Supplementary Table 1).  Biom files
corresponding  to  SSU  rRNA  OTU  counts  and  their  taxonomic  assignments  were
downloaded. We prepared abundance matrices at the genus rank containing per sample the
sum of amplicon sequence variant (ASV) counts of all ASVs per given genus, and DESeq2
[30] analysis was performed to identify genera enriched in the rhizosphere or in bulk soil
(adjusted p-values < 0.05, Benjamini-Hochberg FDR method). 

Minimal doubling time predictions

To estimate growth rate potential of bacterial genera, we used the estimated growth rates
from the gRodon online (EGGO) database. Based on the genera identified above, we first
collected the predicted minimum doubling time (PMDT) of all genomes belonging to these
genera from the EGGO database [23], and then calculated the median PMDT (mPMDT) per
genus.  The PMDT of  metagenome-assembled genomes (MAGs,  see details  below)  and
isolated genomes was estimated using the gRodon R package version 1.0.0 [23]. To this
end, ribosomal protein-coding genes were obtained by searching “rps”, ”rpm”, ”rpl” terms in
the “Preferred_names'' column of the eggNog annotation file (see details below). Ribosomal
protein-coding genes were assumed to be highly expressed [31] and therefore used as a
reference gene set for gRodon analysis. As parameters, we used ‘partial’  mode, and ‘vs’
training  set.  Genera,  isolated  genomes,  and  MAGs  were  considered  as  copiotrophs  or
oligotrophs using a cutoff  of  PMDT < 5hs and PMDT  ≥ 5hs,  respectively,  according to
Weissman et al. [23].

Functional and phylogenetic annotation of metagenome-assembled genomes (MAGs)

We  retrieved  MAGs  of  medium  and  high  quality  (MQ-HQ)  from  rhizosphere  and  soil
metagenomes from the Integrated Microbial Genomes and Microbiomes (IMG/M) database
[32]. These MAGs were generated by the IMG/M pipeline  [32], using Metabat v2:2.15 [33]
and checkM v1.1.3  [34], and were classified as medium quality (MQ) or high quality  (HQ)
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according  to  the  Genomic  Standards  Consortium  criteria  [35],  i.e.,  genomes  with
completeness estimates of ≥ 50% and less than 10% contamination. To obtain the
contigs  that constituted each MAG, we downloaded  the assembled metagenomic contigs
along with extensive functional annotations. Using mapping files from IMG/M connecting the
contig  IDs to  MAGs we isolated sequences and annotations for each individual  MAG.  We
then used individual MAG annotations consisting of Clusters of Orthologous Groups (COGs),
KEGG Orthology (KO) and Protein Families (Pfam) to create binary matrices, consisting of
the presence or absence of a specific function in each MAG.  For gRodon predictions on
MAGs and isolated genomes, nucleotide and protein sequences for genes were predicted
using  Prodigal  version  2.6.3  [36]  and  functions  were  annotated  using  eggNog  mapper
version 2.1.3 [37]. 

To interpret the evolutionary relationships of the recovered MAGs in the context of known
strains,  we  generated  a  maximum-likelihood  phylogenetic  tree  based  on  concatenated
GTDB marker genes, using GTDB-Tk version 1.3.0 and GTDB database release 95 ([38],
gtdbtk identify, align and infer commands).

Phylogeny-aware functional enrichment analyses

To identify functions associated with rhizosphere or soil  bacteria,  MAGs were labeled as
belonging  to  rhizosphere  or  soil,  and  we  constructed  a  vector  of  binary  target  labels,
corresponding to rhizosphere (1) and soil (0), based on the type of metagenomic sample
where  it  was  recovered  from  (see  Supplementary  Table  2).  Functional  binary  matrices
including the presence or absence of each functional category were used as independent
variables and, together with the bacterial phylogenetic tree, were used as input in phylogeny-
aware  functional  enrichment  analyses  using  Phylogenetic  Generalized  Linear  Models
(PhyloGLMs) [39] from the phylolm R package v. 2.6.2. Similar models were generated to
identify enriched functional groups in MAGs labeled as copiotroph or oligotroph, based on
their PMDT. For PhyloGLM analyzes we labeled copiotrophs (PMDT < 5hs) and oligotrophs
(PMDT  ≥ 5hs),  see  Supplementary  Table  3.  We  corrected  p-values  (p-adjust)  with
Benjamini-Hochberg FDR and used p-adjust values < 0.05 to consider significantly enriched
functions.

Machine learning models

Based on COG, Pfam and KO functional matrices for MAGs, we constructed binary feature
matrices  (presence/absence  of  each  functional  ortholog)  with  the  additional  feature
copiotroph (1) - oligotroph (0) based on PMDT < 5hs and PMDT ≥ 5hs, respectively. Also,
we constructed a vector of binary target labels, corresponding to rhizosphere (1) and soil (0),
depending on whether most of the MAGs from the genus were obtained from rhizosphere or
bulk  soil  metagenomes,  respectively.  We  formulated  Random  Forest  (RF)  models  and
Gradient Boosting Classifier (GBC) models to classify whether a MAG was associated with
rhizosphere or soil. The final datasets consisted of 6707 MAGs (3692 from rhizosphere and
3015 from soils) with 8680, 4841, and 9132 features for KO, COG, and Pfam-based binary
matrices,  respectively.  With  the  goal  of  identifying  which  functional  features  were  most
important for rhizosphere competence, we trained and evaluated machine learning models
with  the  scikit-learn  Python  package  (https://scikit-learn.org/).  We  used  5-fold  cross
validation  to  verify  the  models,  and  tested  different  parameter  settings  for  RF  models,
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including number of trees in the forests (n_estimators), maximum number of features in each
node (max_features),  maximum depth of trees (max_depth),  maximum leaf  nodes in the
trees  (max_leaf_nodes),  minimum  number  of  samples  to  create  a  leaf  node
(min_samples_leaf), minimum number of samples to generate a split (min_samples_split),
and for GBC models we evaluated different settings of n_estimators, max_depth, and the
learning  rate  of  subsequent  trees  (learning_rate)  parameters.  Finally,  Gini  feature
importances, which are a measure of the relative accumulation of the impurity decrease for
each  feature  in  the  model,  were  obtained,  and  the  main  features  were  analyzed  with
STRING version 11.5 [40].

Results

Rhizosphere bacteria have shorter predicted doubling times than soil bacteria

To  investigate  whether  growth  rate  potential  predictions  correlate  with  rhizosphere
enrichment,  we  re-analyzed  previously  published  metacommunities,  comprising  plant
rhizospheres and their associated bulk soils. These include microbiomes associated to 18
different plant genotypes and conditions such as:  Arabidopsis thaliana ecotypes and sister
species  [9],  A.  thaliana  Col-0  ecotype  under  light-dark  cycles  [41],  wild  and  modern
accessions  of  Phaseolus  vulgaris  (common  bean)  [42],  Zea  mays  grown  in  soils  with
different  crop  rotation  systems  [43],  Sorghum  bicolor under  drought  stress  and  control
conditions, at different timepoints in their lifecycle [44],  and  A. thaliana  Col-0 sampled at
different  stages  along  a  bulk  soil-to-rhizosphere  gradient  [45].  First,  we  obtained
metacommunity data at the amplicon sequence variant  (ASV)-level from diverse sources
(see  Materials  and  Methods),  and  then  grouped  ASVs  at  the  genus  level.  Next,  we
performed  differential  abundance  analysis,  identifying  which  genera  were  significantly
enriched in rhizospheres and bulk soils (p-adjust < 0.05, log-2 fold change (L2FC) > 1 for
soil-enriched genera, L2FC < -1 for rhizosphere-enriched genera). We then mapped each
genus  to  the  EGGO  database  containing  the  predicted  growth  rates  from  hundreds  of
thousands publicly available genome sequences, and assessed the growth rate potential by
using the median predicted minimal doubling time (mPMDT) of genomes belonging to these
genera. This allowed us to compare the mPMDT of rhizosphere-enriched to soil-enriched
genera (see Materials and Methods), which revealed that rhizosphere-enriched genera have
on average faster growth rates (lower mPMDT) than soil-enriched genera (Figure 1 a-b),
consistently across different experimental conditions. 

First  this  general  trend  was  observed  in  different  species  of  the  same  plant  genus
(Arabidopsis),  in  modern  and  wild  accessions  of  a  same  species  (P.  vulgaris),  and  in
different  plant  hosts  (A.  thaliana, P.  vulgaris, S.  bicolor  and Z.  mays)  (Supplementary
Figures 1-3), showing that although plant hosts induce specific compositional shifts in the
rhizosphere microbiomes [11], faster growth rates to colonize rhizosphere seems to be a
common  factor.  Second,  although  the  host's  circadian  rhythm  induces  changes  in  the
rhizosphere microbiome and the soil organic matter composition [41], it does not affect the
rhizosphere-enrichment  of  copiotrophs  (Supplementary  Figure  2).  Third,  different  soil
conditions, such as crop rotations and drought stress do not modify this general trend either,
as shown here in Z. mays and S. bicolor ([43, 44], Supplementary Figures 1,3). Finally, in a
study where a gradient from bulk soil to the rhizoplane was experimentally dissected and

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.24.517860doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.24.517860
http://creativecommons.org/licenses/by/4.0/


analyzed  separately  [45],  we observed that  copiotrophs increased gradually  as  samples
were taken closer to the root (Supplementary Figure 4). Thus, we observed that the trend for
fast-growing bacteria to colonize the rhizosphere was consistent  and independent  of the
plant species or ecotype, soil type or experimental condition. 
When we observed exceptions to this trend, i.e., copiotroph bacteria that were enriched in
soils,  these were mostly  among Firmicutes  (Supplementary  Figures  1-3).  Firmicutes  are
copiotrophs and are among the fastest growers in the bacterial  tree [23], thus it  may be
harder to prove this trend in the narrower mPMDT distributions present in this particular
phylum.
When analyzing the correlations between the L2FC enrichment scores and the mPMDT by
the  four  most  abundant  phyla  in  our  16s  rDNA  data  (Actinobacteria,  Bacteroidetes,
Firmicutes  and Proteobacteria),  we found a  significant  correlation  between  mPMDT and
rhizosphere enrichment in  Proteobacteria in  all  projects  (Supplementary Table  1).  When
merging all samples from different projects, enrichment of the copiotrophs was significant for
Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria and Verrucomicrobia, but not in
Firmicutes (Supplementary Figure 5). Thus, 16s rDNA data shows that copiotroph genera
are preferentially enriched in rhizospheres compared to bulk soils in members of these main
bacterial phyla. 

Bacterial genomes confirm copiotrophs are predominant in the rhizosphere

To further analyze changes in growth rate potential distributions using genome sequences of
isolated bacteria,  we estimated PMDTs in genomes from cultured bacteria isolated from
plant, non-plant, root/rhizosphere and soil biomes reported in Levy et al. [14], including 3,270
genomes classified into taxonomic groups Actinobacteria groups 1 and 2 as defined by the
authors, Alphaproteobacteria, Bacillales, Bacteroidetes, Burkholderiales, Pseudomonas and
Xanthomonadaceae [14],  by means of gRodon, which analyzes codon usage patterns in
genes of  each bacterial  genome [23].  In  Alphaproteobacteria  and Bacteroidetes  groups,
bacteria isolated from rhizoplane and endophytic compartments (root associated, RA) have
lower PMDT than those isolated from soils (Supplementary Figure 6). A similar observation
extended  to  Actinobacteria_2,  Alphaproteobacteria,  Bacillales  and  Bacteroidetes,  when
comparing  bacterial  genomes  isolated  from  plant  niches,  including  rhizospheres  (plant
associated, PA) and from non-plant environments (NPA, which includes both soils and other
environments  like  marine  or  clinical).  Thus,  although  isolation  protocols  select  for
copiotrophs [23], we still  observed an enrichment in copiotrophs in cultured isolates from
plant environments when compared to those obtained from soil. 

To avoid any possible biases associated with bacterial cultivation, we extended our genomic
analyses  to  metagenome-assembled  genomes  (MAGs).  We  downloaded  501  whole-
metagenome rhizospheric samples from different plants and 620 whole-metagenome soil
samples from different biomes. We then recovered 3679 high-quality and medium-quality
(HQ/MQ) bacterial MAGs from rhizospheres and 2784 HQ/MQ bacterial MAGs from soils
(Materials and Methods, Supplementary Table 2).  MAGs included members of the phyla
Actinobacteriota (1453), Proteobacteria (including 1063 MAGs from Gammaproteobacteria,
and  869  MAGs  from  Alphaproteobacteria),  Acidobacteriota  (850),  Bacteroidetes  (440),
Patescibacteria  (322),  Verrucomicrobiota  (248),  Gemmatimonadota  (200),  Myxococcota
(187), Planctomycetota (133), and Chloroflexota (127), Nitrospirota (76), Eisenbacteria (56),
Methylomirabilota (51), Desulfobacterota (47), Desulfobacterota_B (45), and Firmicutes (36),
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among others (Supplementary Table 2). PMDT could be predicted for 6355 of these MAGs,
of which 2629 were copiotrophs,  3726 were oligotrophs,  while  3652 were obtained from
rhizosphere samples,  and 2703 were obtained from soils.  A chi-squared test shows that
PMDT and the isolation niche are significantly associated (Pearson's Chi-squared, p-value <
2.2e-16, Supplementary Table 3). For a MAG, being copiotroph is significantly associated
with colonizing the rhizosphere (PhyloGLM, estimate: 1.47, p-value: 2e-16; Figure 2).

The analysis of MAGs allowed us to compare predicted growth rates of unculturable bacteria
across a wide range of taxonomic groups (Supplementary Table 3). As shown in Weissman
et al. [23], collections of isolates fail  to capture the most slowly growing members of the
communities, when compared to MAGs or single-amplified genomes (SAGs) from the same
environments. Despite being obtained from diverse metagenomes and belonging to different
plants  and  soils,  our  predictions  of  PMDT,  as  shown  in  Figure  3,  revealed  that  MAGs
obtained  from  rhizosphere  metagenomes  have  significantly  lower  PMDT  than  MAGs
obtained from soils across all  major taxonomic groups except Firmicutes, which have an
extremely low and narrow PMDT distribution. 

MAGs provide a catalog of functions associated with rhizosphere colonization and
copiotroph / oligotroph lifestyles

To  analyze  which  functions  are  significantly  enriched  when  comparing  MAGs  from
rhizospheres  or  soils  and  with  copiotrophic  or  oligotrophic  lifestyles,  we  employed  a
phylogenetic-aware approach (PhyloGLM) to compare genome functional  content (KEGG
orthology, KO). Figure 4A reveals that in Actinobacteria, Alphaproteobacteria, Bacteroidota,
and Gammaproteobacteria, most functional categories were enriched in copiotrophs, while in
Acidobacteria, most functional categories were enriched in oligotrophs. This highlights the
differences in functional categories present in the genomes of copiotrophs and oligotrophs in
these taxa. We then compared the genome size between the groups (estimated as gene
counts per genome, Figure 4B) and found significantly larger genomes in copiotrophs from
Actinobacteria,  Bacteroidetes,  and  Gammaproteobacteria,  and  in  oligotrophs  in
Acidobacteria,  while  no  difference  in  genome  sizes  was  found  in  Alphaproteobacteria,
consistent with the enrichment of different functions in copiotrophs and in oligotrophs (Figure
4A). Interestingly, despite this difference in genome content, oligotrophs showed consistent
enrichment in metabolism of terpenoids and polyketides,  and metabolism of other amino
acids,  which include functions that  are potentially  relevant  to the oligotrophic  lifestyle.  A
similar  pattern  of  genome content  variation  can  be  observed  when  comparing  enriched
processes in rhizosphere or soils in Acidobacteria and Gammaproteobacteria, although no
significant differences in genome content were found in Bacteroidetes and Actinobacteria,
and smaller MAGs were found in Alphaproteobacteria in rhizospheres, compared to those
from  soils.  These  patterns  were  also  consistent  with  the  enrichment  of  the  different
metabolisms in MAGs from rhizospheres  or  soils.  Investigating  why these differences in
genome size exist in each taxonomic group and which functions are frequently missing in the
smaller genomes could improve our understanding of copiotrophic and oligotrophic lifestyles.

When testing the enrichment of individual KO, COG and Pfam functions, we observed that
many enriched functions overlap between rhizosphere-enriched bacteria and copiotrophs,
and between soil-enriched bacteria and oligotrophs (Figure 4C, Supplementary Figures 7-
10,  Supplementary  Table  4).  A  higher  number  of  significantly  enriched  functions  were
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obtained  in  most  represented  taxa  (Supplementary  Table  4),  especially  in
Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, and Actinobacteria.

Growth rate potential is the main predictor of rhizosphere enrichment

To  assess  which  functional  features  were  important  for  copiotrophs  or  oligotrophs,  we
trained Random Forest (RF) and Gradient Boosting Classifier (GBC) models to predict the
rhizosphere- or soil-association of a MAG based on a binary matrix including the presence or
absence of KOs, COGs and Pfams, as well as its status as a copiotroph or oligotroph. We
used  Grid  Search  with  Stratified  Cross-Validation  to  evaluate  how  changing  different
parameters affected the RF and GBC models. We observed that increasing the number of
trees (n_estimators) above 60 did not significantly increase the F1-score with neither COG,
nor  KO,  nor  Pfam  matrices  (Supplementary  Figure  11).  Also,  changing  the  maximum
number of features assessed at each node (max_features), or other pre-pruning parameters
(see methods) did not result in a significant improvement of the RF models (Supplementary
Figure 11). Thus, for the final model we set the number of trees to 300 and used default
values  for  the  remaining  parameters,  obtaining  overall  5-fold  cross-validated  accuracy
scores of 92.3%, 91.6%, and 91.7%, precision scores of 92.1%, 91.2%, and 91.4%, recall
scores of 94.1%, 93.8%, and 93.8%, and F1-scores of 93.1%, 92.5%, and 92.6% for KO,
COG, and Pfam based models, respectively. Moreover, we also trained GBC models and
tuned parameters varying the number of trees (n_estimators, Supplementary Figure 12) with
a grid combining different learning rates and maximum depth of trees (Supplementary Figure
13).  We  found  optimal  parameters  at  learning_rate=0.27,  max_depth=14,  and
n_estimators=100  (Supplementary  Table  5).  With  these  parameters  we  obtained  overall
accuracy of  93.1%, 93.2%, and 92.8%, precision of 93.0%, 93.2%, and 92.6%, recall  of
94.6%, 94.5%, and 94.4%, and F1-score of 93.8%, 93.8%, and 93.5% for KO, COG and
Pfam based models, respectively.

With these classifiers in hand, we analyzed which features were important for classification
of MAGs into the rhizosphere or soil  categories. All  6 models (i.e.  RF and GBC models
based on KO, COG and Pfam binary matrices) identified the oligotroph/copiotroph status of
a  MAG  as  the  most  important  feature,  suggesting  that  a  high  growth  rate  potential  is
important  for  successful  colonization  of  the  rhizosphere  (Supplementary  Figure  14-15).
Growth rate is a complex microbial trait, estimated here from codon usage patterns. It may
be associated with some of the functional features that are also used as predictors in the
models. However, our results clearly show that this trait is more important than any other
individual function, highlighting the high predictive potential of this complex microbial trait
that is readily inferred from the genome sequence.

Rhizosphere and soil-associated functional traits

Besides growth rate potential, the machine learning models trained above also allowed us to
rank the functional features by their importance to classify rhizosphere or soil bacteria. To
further investigate this, we used the COG-based RF most important functions and filtered the
ones that  were also significant  in  at  least  one taxon in  either  soil  or  rhizosphere in  the
PhyloGLM analysis (Supplementary Table 6). We then searched for functional connections
between the most important COGs in the STRING database [40]. Figure 5 shows that many
of  the  COGs  that  were  important  for  predicting  rhizosphere-  or  soil-association  have
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functional connections. One of the main clusters of rhizosphere-associated COGs contains
functions involved with flagella. Flagellar motility has been reported as an important trait for
rhizosphere colonization in other studies [47,48]. We observed that in PhyloGLM results,
flagellar proteins were associated to rhizosphere and copiotrophs in Alphaproteobacteria,
Acidobacteria,  and  Gammaproteobacteria,  to  copiotrophs  in  Actinobacteria,  and  never
associated to soil or oligotroph, confirming the importance of active motility in rhizosphere
colonization in the different taxa (Supplementary Table 4). Linked to this cluster we found an
inter-membrane  structural  component  of  the  type  VI  protein  secretion  system  (T6SS,
COG3521),  which  has  been  associated  with  modulating  the  microbial  interactions  and
promoting rhizosphere competence of plant-beneficial bacteria [49, 50]. When we searched
for the other COGs which compose the T6SS, we found that, when significantly enriched, in
all  cases they were associated either with rhizosphere or  with copiotrophs,  especially  in
Gammaproteobacteria  (Supplementary  Table  4).  Second,  we  found  a  secreted  acid
phosphatase (COG2503), which may be involved in an adaptive response to low-phosphate
stress  in  the  rhizosphere  [51].  Another  connected  cluster  of  COGs consists  of  proteins
related to sugar catabolism, such as beta-galactosidase (COG3250, COG2731), alpha-L-
fucosidase  (COG3669),  alpha-L-arabinofuranosidase  (COG3534),  beta-xylosidase
(COG3507), a Na+/melibiose symporter or related transporter (COG2211), a DNA-binding
transcriptional regulator of sugar metabolism of DeoR/GlpR family (COG1349), a mannose
or  cellobiose  epimerase  (COG2942),  and  a  fructose/tagatose  bisphosphate  aldolase
(COG0191), whose functions are implicated in mucilage polysaccharide degradation [52]. In
a  recent  study  in  which  the  adaptation  to  plant  colonization  was  tested  in  Bacillus
thuringiensis, the authors found that metabolic pathways related to plant polysaccharides
were upregulated in the adapted strain, including metabolism of various carbohydrates, such
as  cellobiose,  pyruvate,  and  galactose  [53].  Carbohydrate  transport  and  metabolism
functions are also overrepresented in copiotrophs [23]. Notably, the top five most important
features  in  the  RF  model  include  a  predicted  sulfurtransferase  (COG1054),  an
uncharacterized  Zn-ribbon-containing  protein  (COG2824),  an  uncharacterized  FAD-
dependent  dehydrogenase  (COG2509),  a  tRNA  A37  threonylcarbamoyladenosine
dehydratase  (COG1179),  and  an  uncharacterized  membrane  protein  RarD  (COG2962).
Interestingly, COG1054 and COG1179 represent two tRNA modifying enzymes, which we
speculate  may  improve translation  capacity  in  copiotrophs  in  the  context  of  competitive
growth [54, 55].

A  similar  analysis  for  soil-associated  COGs  (Figure  5B)  revealed  a  central  cluster  that
included  functions  related  to  fatty  acid  metabolism,  including  an  Enoyl-CoA
hydratase/carnitine  racemase  (COG1024),  a  carnitine  CoA-transferase  (COG1804),  an
acetyl-CoA  acetyltransferase  (COG0183),  a  methylmalonyl-CoA  mutase  (COG1884),  an
acetyl-CoA  carboxylase  (COG4799),  a  flavin  reductase  (COG0543),  an  Acyl-CoA
thioesterase (COG2050),  cytochrome P450 (COG2124),  and a poly-beta-hydroxybutyrate
synthase (COG3243). Here, the five most important features in the RF model included a
FMN-dependent  dehydrogenase  (COG1304),  an  uncharacterized  conserved  protein
(COG3552),  a  predicted  Ser/Thr  protein  kinase  (COG2112),  a  N-methylhydantoinase  A
(COG0145), and an uncharacterized protein (COG5552), which are not strongly associated
to this central cluster.

The  KEGG  orthologs  (KOs)  comprise  an  alternative  functional  ontology  that  we  also
analyzed. KO-based RF models (Supplementary Table 7) revealed that many of the most
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important features in rhizosphere bacteria are associated to the “Transporters'',  “Bacterial
motility  proteins'',  and  “Flagellar  assembly”  pathways,  while  “Benzoate  degradation”,
“Aminobenzoate  degradation”,  and  “Glyoxylate  and  dicarboxylate  metabolism”  are
associated to soil  bacteria.  One of  the top five  features associated with  soil  bacteria  is
aerobic  carbon-monoxide  dehydrogenase (K03518),  an enzyme involved  in  metabolizing
atmospheric carbon monoxide molecules in biomes with carbon limitation, such as soil [56].
Benzoate  degradation  is  frequently  reported in  soil  bacteria  [57],  where these abundant
aromatic compounds probably are a major carbon source. The glyoxylate cycle may allow
soil bacteria to cope with sugar scarcity, as has been shown in another carbon-depleted
environment, the marine system [58]. Overall, we hypothesize that rhizosphere-associated
bacteria might  profit  from nutrients coming from root  exudates,  using expensive flagellar
motility  and  a  huge  diversity  of  transporters  and  enzymes  to  reach,  internalize,  and
catabolize these compounds, allowing them to reach faster growth rates. In contrast, soil
bacteria  might  use  a  more  costly  and  slow  metabolism  involving  benzoate,  fatty  acid
degradation,  and  the  glyoxylate  pathway  to  biosynthesize  sugars  and  other  carbon
compounds in the context of nutrient limitation in the soil.

When we compared our results with previous work by Levy et al. [14] analyzing bacterial
traits  for  root  colonization,  we  found  more  functions  significantly  associated  either  with
rhizosphere or with soil bacteria in our analysis, probably because we included a larger set
of genomes including both culturable and unculturable bacteria, but also spanning a broader
taxonomic range.  Approximately  66% of  Levy's  significant  COGs overlapped with COGs
associated  with  rhizosphere  and  soil  in  our  analysis  (Supplementary  Figure  16).  Our
STRING analysis further revealed that the COGs identified herein were functionally similar,
suggesting  that  our  analysis  both  complements  and  expands  on  the  previous  study  by
identifying hundreds of new COGs involved in rhizosphere competence.

Discussion

Understanding rhizosphere microbiomes is critical for microbiome-based crop improvement
strategies aimed at crop productivity, plant stress resistance, and soil health. In this work we
analyzed  rhizosphere  and  soil  data  from  16S  rDNA  metabarcoding  studies,  and  from
isolated  complete  genomes  and  metagenome-assembled  genomes  (MAGs),  and
demonstrated that bacteria enriched in the rhizosphere have higher growth rate potential
(lower predicted minimum doubling times, PMDT) than those in soils. This observation holds
true  in  eleven  of  the  most  abundant  phyla  -  with  the  only  exception  of  Firmicutes  -
independently of host plant genotype, stress condition, soil type, light cycle, or life stage of
the host plant. Thus, growth rate potential is a general and important determinant of bacterial
rhizosphere  competence.  Using  machine  learning  models  that  classify  MAGs  as  being
associated  with  rhizospheres  or  soils,  we  could  obtain  models  with  high  classification
accuracy,  and  revealed  that  the  most  important  feature  for  classification  is  the  minimal
doubling  time.  Other  important  features included several  different  functions known to be
associated with rhizosphere colonization or copiotrophic lifestyle such as flagella, sugar and
polysaccharide degradation, and transporters, but also a range of novel protein functions
that may be further explored in studies of rhizosphere competence of specific bacteria. Most
of  the  important  features  associated  with  soil  bacteria  included  functions  related  to
degradation of aromatic compounds, and the glyoxylate cycle, which may be important to
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overcome the nutrient limitation in bulk soil. The fact that growth rate potential is the most
important determinant explaining rhizosphere microbiome presence is consistent  with the
notion that the nutritional  gradients generated by plant root exudates provide a selective
environment for a subset of copiotrophic bacteria from the vast microbial diversity present in
soils. Importantly, PMDT can be predicted from the genome sequence, and may thus form a
readily accessible feature to predict the rhizosphere competence of bacterial groups that is
valid  across  different  plants.  Moving forward,  determining  how much of  the  growth rate
potential is actually realized in specific cases will  require careful experimental tracking of
individual  players  in  specific  plant-microbe  systems.  As  we  have  shown  here,  bacterial
growth rate potential  is  one of the most  important physiological  factors determining their
rhizosphere competence and a general feature of rhizosphere-enriched bacteria. 
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Figure 1. Median predicted minimum doubling times (mPMDT) of bacteria enriched in rhizospheres are lower
than those in associated bulk soils. DESeq2 log2 fold-change was used to categorize bacteria as being enriched
in the rhizosphere (L2FC < -1) or soil  (L2FC > 1). Soil-enriched bacteria tend to have a higher mPMDT.  A.
Density distribution of bacteria enriched in the rhizosphere or soil.  B. A positive correlation exists between soil
enrichment and mPMDT, i.e. the rhizosphere contains faster growers than the bulk soil. 
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Figure 2. MAGs taxonomy, niche, and growth rate status. A. Unrooted maximum-likelihood phylogenetic tree
inferred  from  multiple  sequence  alignments  of  GTDB  bacterial  marker  genes  from  MAGs.  The  tree  was
generated with GTDB-Tk and displayed using iTol [46]. B. MAGs are classified according to their isolation biome
and growth rate status (copiotroph or oligotroph) for each of the main GTDB taxa. 

Figure  3: PMDT in  MAGs from  rhizosphere  and  soil  metagenomes.  Distributions  of  predicted  minimal
doubling times in MAGs from rhizosphere and soils were compared with Mann-Whitney test (ns: p > 0.05,  *: p <=
0.05,  **: p <= 0.01,  ***: p <= 0.001, ****: p <= 0.0001).
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Figure  4. A.  Enrichment  of  KEGG  functional  categories  in  MAGs  from  5  most  representative  taxa.
Differences in KO categories between rhizosphere and soil MAGs (left), and between copiotroph and oligotroph
MAGs (right). Heatmaps indicate the level of enrichment based on the PhyloGLM test (p-adjusted values <0.05,
Benjamini-Hochberg FDR method). B. Gene Counts in MAGs from rhizosphere or soil (left) and copiotroph
or oligotroph (right). Number of MAGs in each category is indicated, distributions of predicted minimal doubling
times in MAGs from rhizosphere and soils were compared with Mann-Whitney test (ns: p > 0.05,  *: p <= 0.05,  **:
p <= 0.01,  ***: p <= 0.001, ****: p <= 0.0001).  C. Euler plots with significantly enriched KO functions in
MAGs. Plots show the number of enriched functions in the rhizosphere (green) or soil (brown), and copiotroph
(red) or oligotroph (blue). Many more enriched functions were shared between rhizosphere-copiotroph and soil-
oligotroph than between rhizosphere-oligotroph and soil-copiotroph. 
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Figure 5.  A STRING search of the COGs that were most important for predicting rhizosphere- or soil-
association in the RF models, and were enriched in the rhizosphere (A) or in soil (B) according to the
PhyloGLM analysis. COGs significantly  associated to  rhizosphere or to soil  were selected from PhyloGLM
models, then sorted decreasingly by feature importance in the RF models, and Top 100 most important COGs
were selected. Finally, COGs that were associated to both rhizosphere and soil in different taxa in the PhyloGLM
models  were  removed,  resulting  in  79  COGs  uniquely  associated  with  the  rhizosphere  and  79  uniquely
associated with soil. Edge weights represent the level of evidence for functional interaction according to STRING.
Some relevant  functions are colored according to legend.  Top five most important COG features in the RF
associated with rhizosphere, or soil according to PhyloGLM are shown.
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