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Abstract

Emotions are an effective communication mode during human-human and human-robot interac-
tions. However, while humans can easily understand other people’s emotions, and they are able to
show emotions with natural facial expressions, robot-simulated emotions still represent an open chal-
lenge also due to a lack of naturalness and variety of possible expressions. In this direction, we
present a two-tier Generative Adversarial Networks (GAN) architecture that generates facial expres-
sions starting from categorical emotions (e.g. joy, sadness, etc.) to obtain a variety of synthesised
expressions for each emotion. The proposed approach combines the key features of Conditional Gen-
erative Adversarial Networks (CGAN) and GANimation, overcoming their limits by allowing fine
modelling of facial expressions, and generating a wide range of expressions for each class (i.e., dis-
crete emotion). The architecture is composed of two modules for generating a synthetic Action
Units (AU, i.e., a coding mechanism representing facial muscles and their activation) vector con-
ditioned on a given emotion, and for applying an AU vector to a given image. The overall model
is capable of modifying an image of a human face by modelling the facial expression to show
a specific discrete emotion. Qualitative and quantitative measurements have been performed to
evaluate the ability of the network to generate a variety of expressions that are consistent with
the conditioned emotion. Moreover, we also collected people’s responses about the quality and
the legibility of the produced expressions by showing them applied to images and a social robot.

Keywords: Generative Adversarial Networks, Conditional Emotion Expression, Action Units, Affective
Computing, Social Robots

1 Introduction

Recent studies agree that robots designed to inter-
act with adults and children according to social
conventions tend to form stronger bonds with
humans, in terms of trust, acceptance of collab-
orative tasks, and, generically, the success of the
interaction [39, 42]. To facilitate such social inter-
action, robots should be able to execute efficiently

physical and cognitive tasks (collaboratively or
individually) and to look and behave as realis-
tic, communicative, and effective [17]. A partic-
ularly important feature for facilitating Human-
Robot Interactions (HRI) is the robot’s ability
to recognise, understand and reproduce human
emotions. Emotion recognition and synthesis play
a fundamental role in the effective communi-
cation between people and personal or service
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Fig. 1: Furhat robot by Furhat Robotics

robots [19]. Emotion modelling and computational
approach for simulating affective behaviour in
robots have been extensively investigated in the
literature [8]. Still, many of these approaches rely
on rule-based strategies to associate emotions with
specific behavioural characteristics, such as kines-
thetic, body posture and gestures, which make
the behaviour of the robot predetermined given a
specific emotion.

Moreover, the creation of realistic social
robots, when they present a high level of anthropo-
morphism, still incurs the negative consequences
of the uncanny valley [52]. While it is very com-
mon to have social robots with bodies that resem-
ble human bodies (i.e., torso, arms, legs, stylised
heads such as Softbank Robotics Pepper robot),
the latest technologies allow robots to have repli-
cated human faces with realistic features. An
example of a robot with a human-like face is the
Furhat robot whose facial features are projected
in a plastic face-shaped case (see Figure 1). Such
a robot’s morphology presents the big challenge
of generating the robot’s natural affective facial
expressions [16]. The generation of different and
realistic facial expressions that can be appropriate
and responsive to the contextualised human-robot
interaction can be particularly problematic, espe-
cially while researchers are trying to enable robots
to represent a wide and diverse population, such
as gender, ethnicity, and age.

To tackle this issue, the use of artificial intel-
ligence algorithms designed for the generation of
realistic high-resolution images without encoun-
tering overfitting of the data, such as the Gen-
erative Adversarial Networks (GANs) [20] is a

viable approach. GANs have been used in a huge
variety of tasks, specifically for generating high-
quality images with different gender and age, such
as StyleGAN [25] and ESRGAN [53]. Genera-
tive Adversarial Networks have also shown great
results for facial expression synthesis based on
high-level attributes such as categorical emotions.

GANSs aim is to generate realistic images from
those of the training set. Given a training set, this
technique learns to generate new data with the
same statistics as the training set instead of simply
reproducing it. This makes GANs an interesting
approach to generating emotional expressions that
vary from time to time. Indeed, we obtained very
promising results for generating facial movements
for expressing emotions from a human speech in
our previous study [5]. These approaches, how-
ever, are very difficult to train [20], and they can
generate a discrete number of expressions using
the content and granularity of the dataset [35].
Moreover, the most relevant approaches based on
GAN:Ss for directly generating faces introduce high
computational costs, or just transfer an emotion
across faces of different images [22].

To address these problems, we present a novel
two-level GAN conditioning model that allows
the generation of facial expressions based on
discrete emotions (e.g., sadness, surprise, happi-
ness) to have a high variety of different synthetic
facial expressions for each emotion. The proposed
approach allows encoding categorical emotions
on a face decoupling the generation of low-level
emotions from the generation of the whole face.

Our model is the result of the combination of
a modified GANimation model [35] with a condi-
tional GAN based on Action Units (AU). In detail,
we realised a Conditional GAN (CGAN), called
AU Generator, which takes in input a discrete
emotion and generates a great variability of facial
expressions to express such emotion. The ability to
model various expressions for each emotion makes
our architecture a useful tool for data augmen-
tation by providing a solution to the problem of
class imbalance of emotion-labelled human faces’
dataset. In this work, we, therefore, refer to our
architecture with the abbreviation AUGM (i.e.,
augmented) to highlight such capability. Once the
AUs, conditioned on a discrete emotion, are gen-
erated, these can be applied to a robot face, like
Furhat’s one, or the GANimation can be used to
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apply them to a face for synthesising facial expres-
sions in new images. In particular, we decide to
modify the GANimation to hide the generation of
AU vectors taking as input the discrete emotions
as high-level attributes.

The replicability of the results presented in this
study was guaranteed using three public datasets.
We used the Facial Expression Research Group 2D
Database (FERG DB) [2] composed of 2D images
of stylised characters with annotated facial expres-
sions, the AffectNet DB [31] that is the largest
database of facial expressions, valence, and arousal
with a million labelled images, and the CelebFaces
Attributes Dataset (CelebA DB) [27] containing
more than 200K celebrity images with 40 face
attribute annotations.

The objective evaluation of a GAN’s perfor-
mance remains an open problem, and for this
reason, we proposed several measures, using both
automatic and human evaluations, to test the
model’s accuracy. The variety of images generated
with the method presented in this work is used to
enable a social robot to express various and more
complex facial emotions. In particular, we used the
synthesised AUs to easily and quickly generate a
new set of emotion captures to be projected as
facial features of the Furhat robot (also known as
gestures)!, and we conducted a preliminary inves-
tigation to compare people’s ability to recognise
the generated emotions as expressed by a human
face and the robot. We aim as our next step to
further investigate the effects of affective robotics
in long-term human-robot interactions.

2 Related Works

In this section, we provide an overview of socio-
affective modes used by robots to facilitate com-
munication and interaction with humans, with
a particular focus on the state-of-art techniques
used for generating affective facial expressions,
such as the models based on Generative Adversar-
ial Networks (GANS).

!The Generation 2 version of the Furhat robots allows trans-
forming the recordings of a face using a toolkit into a robot’s
gesture. More info at https://docs.furhat.io/gesture_capture_
tool/

2.1 Robot’s Affective Competence
for Social HRI

Emotional intelligence allows robots to create
intuitive and natural interactions by granting
them the ability to understand and use emotions
for enhancing communication [47]. Humans are
able to communicate several emotions by visibly
varying their facial expressions, body and head
movements, gestures and voice tone and pitch [44].
Therefore, affective computing has been applied
in HRI by considering the same social signals.
In the context of human-robot interaction, the
first difficulty in generating robots’ emotions is
connected to the definition and formalisation of
the emotions. Several models for describing emo-
tions exist, and they are mainly varying between
the categorical and dimensional models. Categor-
ical models consist of discrete emotions associ-
ated with labels (e.g., sadness, happiness), while
dimensional models consist of continuous values
describing the emotions’ features (e.g., arousal
and valence). Spezialetti et al. [47] highlighted
that there is not a clear agreement on which of
these two models allows a better representation
of human emotions. However, it is more difficult
to identify emotions’ features (i.e., dimensional
model) compared to single emotion (i.e., cate-
gorical model). Moreover, most of the datasets
available in the literature, which are essential tools
for the recognition and generation of emotions,
contain discrete emotions.

Several approaches [32, 40, 41, 45, 51] have
been proposed in the literature, including clas-
sical machine learning or deep learning, that
allow robots to communicate affective expres-
sion through body and head (e.g., open or close
pose), gestures and movements (e.g., slow or fast).
However, in artificial agents, a fundamental role
is played by the possibility of expressing emo-
tion through facial expressions [24]. According
to a recent survey [38], there has been a grad-
ual increase in research studies that aimed to
recognise and reproduce emotions through facial
expressions. For example, Xie and Hu [54] used
a Deep-based Convolutional Neural Network for
the recognition of facial expressions. Faria et al.
[16] presented a dynamic probabilistic classifica-
tion framework trained on the dataset Karolinska
Directed Emotional Faces (KDEF) [28] for the
recognition of facial emotions. Other works for the
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recognition of facial emotions used Support Vector
Machine (SVM) [7], Deep Belief Network (DBN)
[49], or Random Forests (RF) [55]. However, while
few algorithms achieved good or high (up to 90%)
accuracy also for the recognition of facial emo-
tions in real-time and on dynamic input during
HRI, the generation of facial emotions has been
carried either hand-coded [4] or using Reinforce-
ment Learning (RL) [11], GAN and GAN-based
[12, 26] architectures.

2.2 GAN-based Architectures

The advance of Generative Adversarial Networks
(GAN) obtained incredible results for tasks such
as facial expression synthesis. In [48], Tang et al.
presented EC-GAN, a conditional network that
reproduces a given emotion by concatenating an
emotional attribute to the vector representation
of the image at the convolution layer level of
the generator. The conditional attribute is rep-
resented in a categorical way. Another key point
of this architecture is the use of a face mask loss
that forces the generator to focus only on the
image’s region where the human face lies, pre-
serving the background. Song et al. [46] proposed
a GAN-based method, called Geometry-Guided
Generative Adversarial Network (G2-GAN), that
uses fiducial points for synthesising facial expres-
sions. Geng et al. [18] combined the 3D Morphable
Model (3DMM) and deep generative techniques
generating a set of each expression for each real
human face. However, these studies are limited
to single frames or 2D representations. Moreover,
these architectures present several limitations,
such as instability of the training. Indeed, these
approaches can generate a discrete number of
expressions using the content and granularity of
the dataset [35]. The most relevant approaches
based on GANSs for directly generating faces intro-
duce high computational costs, or just transfer
a defined emotional expression across faces of
different images [22].

The most successful architectures in facial
expression synthesis tasks that extend GAN’s
limitations are conditional generative adversar-
ial networks (CGAN) [30], such as Star-GAN
[10] and GANimation [35]. Star-GAN conditions
GAN’s generation process to a given attribute.
The authors denoted the term attribute as a
meaningful feature inherent in an image of a

human face such as hair colour, gender, age or
facial expression. A key feature of Star-GAN is
a multi-domain image-to-image translation in a
unified GAN. In other words, a single model
can be trained on multiple datasets with differ-
ent labels, learning to transfer feature attributes
among themselves. Star-GAN uses a mask vector
to achieve this result: an additional vector is added
to the vector label. This vector is used to enable
or disable dynamically the labels depending on
the dataset the model is training on. Despite the
performance in terms of photo-realism, Star-GAN
can operate with discrete emotions but cannot
ensure high variability in synthesised expressions
by being able to change only a part of the face.

On the contrary, the approach using GANi-
mation builds a GAN architecture that uses a
conditioning scheme based on continuous facial
movements represented by Action Units (AU).
Given an emotional expression, encoded in terms
of AUs, GANimation is able to efficiently synthe-
sise the AUs on the input image. This architecture
eliminates the problem of model collapse (since
the class to which the generated data belong
depends on the AU conditioning). Other bene-
fits derived from the usage of numerical values to
describe an expression (i.e., the AU) and from the
use of a mechanism to focus the Generator only
on the image’s region involved in expression syn-
thesis. Other regions such as hair, ears, glasses
etc. are not modified by the net. For this purpose,
GANimation uses an attention mask mechanism.

The objective of our work is to exploit the
key point of this architecture and improve it by
adding discrete conditioning with the automatic
generation of AUs.

3 Approach

In this work, we distinguish expression and emo-
tions, where an expression is meant to be the
result of one or more motions or positions of facial
muscles, while emotions are treated as a discretisa-
tion of facial expressions in the primary emotions
(surprise, fear, happiness, anger etc.) [13]. The pri-
mary emotions taken into account in this work are
based on Ekman’s six basic emotion [13]. How-
ever, we introduced a “neutral” emotion instead
of “disgust” due to the unavailability of sufficient
data labelled with this emotion in the considered
datasets. Hence, the discrete emotions considered
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Fig. 2: The GAN architecture proposed in this work. The AU generator module architecture generates
AU vectors that include the characteristics of an expression of the desired emotion (i.e., activation and
facial muscle intensity) by taking as input a discrete emotion. The generated AU can be either directly
applied on the robot’s face or the GANimation module can be used to generate the facial expression by
applying the characteristics expressed by the AU vectors on an image.

are: anger, neutral, fear, happiness, sadness, and
surprise.

Facial expressions can be encoded by trans-
lating an expression into a set of values called
Action Units (AU) using Facial Action Coding
System (FACS) [14, 15]. The AUs are numerical
vectors describing the fundamental facial muscles
for each facial expression, whereas values greater
than or equal to zero define respectively a con-
traction or a relaxation of one or more muscles of
a specific face region. Since the determination of
these values is not open to interpretation, they can
be used for any higher-order decision-making pro-
cess including basic emotions’ classification. The
underlying idea of our architecture is that vari-
ations of AUs correspond to the same emotion,
and, therefore, the facial expressions’ variability of
emotion is linked to the generation of the different
AUs describing such emotion.

Here, we proposed a two-module GAN archi-
tecture (see Figure 2), called AUGM. Its first
module (AU Generator) is responsible for gener-
ating a facial emotion (in terms of AUs) starting
from a discrete emotion (i.e., happiness, sadness,
surprise, etc.), and the second module is a GAN-
imation architecture to synthesise such emotion
on a given input face. The first module is a Con-
ditional Generative Adversarial Network (CGAN)
used to generate AU vectors - which encode a
face expression - for each class of emotions. The
GANimation module creates a modified image
that shows an expression by an AU vector and an
image.

Hence, the input of the two-layer GAN archi-
tecture will be a given face and a discrete emotion

resulting in applying this emotion to the face with
a high variability due to the generation of differ-
ent AUs corresponding to the discrete emotion. In
our experimentation, the network takes in input
images of size 128x128.

3.1 AU Generator Module

We used a CGAN for generating distinct AU vec-
tors representing a certain class (i.e., Discrete
Emotion). The conditional GAN learns a mapping
between a latent space (noise) and the dataset
data, and it guarantees the uniqueness of the
vectors by the conditioning label representing a
discrete emotion and a random noise vector, which
is different at each execution.

The CGAN is composed of a Discriminator
model and a Generator model, where the gener-
ator is used to synthesise fake data to resemble
real data, and the discriminator is used to dis-
tinguish real and fake data. Both networks are
deep networks composed of Fully Connected layers

(FC).

3.1.1 Features Space

The network operates on vectors each one com-
posed of 17 AUs. Such vectors have been retrieved
from human face images labelled with emotions by
using the OpenFace library. In detail, the informa-
tion, including facial landmark, features, and AU
detection, are retrieved using the OpenFace mod-
ule called FaceLandmarkImg?. FaceLandmarkImg

20penFace module https://github.com/TadasBaltrusaitis/
OpenFace
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outputs a score of confidence indicating how con-
fident is the tracker in the current landmark
detection estimate. Hence, a filter is applied to use
only AU vectors of samples where the confidence
score is higher than a certain fixed value (0.9).
Moreover, OpenFace generates 18 AUs for each
expression, after an initial empirical evaluation of
results, but we noted that AU9 was responsible
for many artefacts on the final image generations,
so AU9 will not be considered. The values of AU
activations are in the range (0,..,5). The AU vector
is embedded with the label of the emotions shown
in the samples. The classes are composed of the
six main basic emotions [13]: [neutral, happy, sad,
surprise, fear, and anger]. The network uses the
index of this array to determine the classes (e.g.,
0 is neutral, 1 happy etc.).

3.1.2 AU Generator

The generator uses the noise vector z and the label
y to synthesise the fake example G(z,y) = (z*|y)
(z* given the label y). The goal is then to generate
a fake example that is as close as possible to a real
example belonging to the y label.

The generator is composed of six fully con-
nected layers. It takes a noise vector embedded
with a label vector as input, and each hidden layer
has a number of neurons that is double the layer
that precedes it. The output layer is composed
of 17 neurons, one for each AU, and it returns
a synthetic AU vector. The activation function
of the input layer and the hidden layers is a 0.2
Leaky ReLU, while the output layer is the classi-
cal ReLU, to force the values of output to be not
negative. A Batch-Normalisation with momentum
a = 0.8 is applied to the input and each hidden
layer. The momentum reduces the noise in the
gradient update term, which helps a faster conver-
gence towards the optimal (or near-optimal) value.
The Batch-Normalisation can reduce the coupling
of the layers’ parameters, thereby stabilising the
input of the layer, and consequently increasing the
speed of convergence. It might be difficult to track
the mean () and variance (0%) of a batch dur-
ing normalisation, and it is needed to update the
batch mean and variance with an exponentially
weighted “moving average”. In particular, dur-
ing the training process, the moving-mean (0, )
and moving variance (o,0,) are calculated with
Equations 1.

Tmov = QTmev + (1 - a)ﬂ-B

2 2 (1)

Omov = Q0 0y + (1 —a)op

The generator learns the mapping between a
vector z + y, where z is the noise vector and y
the label vector, and the vector AU. The network
generates an AU vector that belongs to the class
indicated by y. The models for the Generator net-
works used for implementing our CGAN are shown
in Table 1.

Table 1: Generator’s model of the AU Generator.

Layer Input — Out- | Layer Information
put Shape
Input dimygtent + | FC - Leaky ReLU (0.2) +
layer Nemotions — | Batch-Norm(momentum
128 =0.8)

Hidden | 128 — 256 FC - Leaky ReLU (0.2) +

layer Batch-Norm(momentum
= 0.8)

Hidden | 256 — 512 FC - Leaky ReLU (0.2) +

layer Batch-Norm(momentum
=0.8)

Hidden | 512 — 1024 FC - Leaky ReLU (0.2) +

layer Batch-Norm(momentum
=0.8)

Hidden | 1024 — 2048 | FC - Leaky ReLU (0.2) +

layer Batch-Norm(momentum
=0.8)

Hidden | 2048 — 4096 | FC - Leaky ReLU (0.2) +

layer Batch-Norm(momentum
= 0.8)

Output | 4096 — nay FC + ReLU

layer

3.1.3 AU Discriminator

The input of the Discriminator is composed of the
AU and the label vectors (z,y) from real examples
and fake examples along with the label (z*|y,y)
produced by the Generator. The goal of the Dis-
criminator is to learn to reject all fake examples
and all examples that do not match the given
label and to accept all pairs of real examples that
match. Therefore, the discriminator takes an AU z
vector and a y label in input and returns the like-
lihood that the input is a real, matching pair. The
activation function of every layer, except the out-
put layer, is a 0.2-Leaky ReLU. The hidden layers
use a 0.4-dropout. The a-Leaky ReLU is an acti-
vation function derived from the ReLU function.
The a-Leaky ReLU is defined in Equation 2.
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z, ifz>0
ax, otherwise

a Leaky ReLU = { (2)

The Leaky ReLU function has been preferred
to the classic ReLU function because it is not rare
for the ReLLU function to suffer from the “Dying
ReLU” phenomenon in a deep neural network.
A dead neuron is a neuron with a ReLU activa-
tion function that has been set to 0 and never
changed its value. Such neurons are considered
useless because they do not give any contribu-
tion during the training phase. Contrarily, Leaky
ReLu has a small slope (a) for negative values,
instead of zero, and it produces faster training.
The p-dropout is used to choose a random set
of neurons that are ignored during the training
process. At each training iteration, every node is
dropped out with a probability p or kept with a
probability of 1 — p, forcing neurons within the
same layer to take on more or less the responsibil-
ity for the inputs in a probabilistic way. In a fully
connected layer, the neurons typically develop
a co-dependence between them during training.
This co-dependence, which is an essential part of
the training process, should not prevent individual
neurons from “relying” completely on each other,
which can lead to overfitting the training dataset.
The model for the Discriminator network used for
implementing our CGAN is shown in Table 2.

Table 2: Discriminator model of the AU Genera-
tor.

Layer Input — Out- | Layer Information
put Shape
Input nAy + [ FC- Leaky ReLU (0.2)
layer TNlemotions —
512
Hidden | 512 — 512 FC - Leaky ReLU (0.2)
layer + dropout (0.4)
Hidden | 512 — 512 FC - Leaky ReLU (0.2)
layer + dropout (0.4)
Hidden | 512 — 512 FC - Leaky ReLU (0.2)
layer + dropout (0.4)
Hidden | 512 — 512 FC - Leaky ReLU (0.2)
layer + dropout (0.4)
Hidden | 512 — 512 FC - Leaky ReLU (0.2)
layer + dropout(0.4)
Output | 512 —» 1 FC
layer

3.1.4 Training Process

The training process of our CGAN network has
been organised in two steps, one for the Discrimi-
nator model and one for the Generator model.

The Generator’s training step takes in input
a batch of noise vectors and a batch of random
labels, and then the discriminator is asked to
predict the generator loss on the generator’s out-
put, which will be back-propagated to tune the
generator’s weights.

The Discriminator training step predicts a first
time on a batch of samples coming from the
dataset and a second one on a batch of synthetic
samples. The losses of the two outputs are calcu-
lated and summed to constitute a final loss that
is back-propagated to update the Discriminator
weights. The loss function of the net is set to
mean squared error according to Xudong Mao et
al. [29]. This approach is based on the observa-
tion that the usage of binary cross-entropy does
not guarantee the generation of samples that look
real. This could happen because the binary cross-
entropy leads to very small or vanishing gradients,
and the model uses fake samples on the correct
side of the decision boundary even if they are still
far from the real data. The Discriminator uses the
loss to minimise the “sum squared error” between
predicted and expected values for real and fake
samples. In contrast, the Generator minimises the
“sum squared” difference between predicted and
expected values for generated images. The Dis-
criminator and Generator use the equations shown
in Equation 3.

Discriminator : min(D(z) — 1) + (D(G(2)))?
Generator : min(D(G(z)) — 1)?
(3)

In this approach, the Discriminator predicts
the class labels of 0 and 1 for fake and real images
respectively, minimising the least-squares, called
mean squared error. The mean square error is
calculated according to Equation 4

MSELoss : Z(ypred — Ytrue)® (4)

where ypreq is the predicted class (Fake/Real)
and Y¢rqe is the ground truth.
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The loss is used during the conditioning by
maintaining the class labels 1 for real samples that
belong to the conditioning class in the input and
0 for fake samples or samples that do not belong
to the conditioning class. This allows the model to
learn how to generate samples that are both real-
istic and belong to the input class by using the
conditioning class (i.e., emotion).

We then use the Adam optimiser to com-
pute an efficient stochastic optimisation that only
requires the first and second moments of the
gradients with a small memory requirement.

3.2 GANimation Module

One of the key features of GANimation is to focus
only on specific regions or characteristics (such for
example colour) of an image that are related to
the synthesis of the expression leaving the others
unaltered. This is done by the use of a so-called
attention mask within the generator. Hence, the
GANimation applies an attention and an activa-
tion mask on the image and the AU vector received
in input from AU Generator Module. The final
image produced is the result of the overlapping of
the two masks.

The GANimation module is also composed of a
Discriminator and a Generator model. The Gener-
ator model is composed of thirteen layers. The first
three levels of down-sampling are implemented
through convolution layers to extract features
from the image. The next 5 levels are resid-
ual blocks, also convolutional, that transport the
information from the previous layers to the next
layers. This process allows a more stable training
process by limiting the problem of gradient vanish-
ing and consequently propagating larger gradients
to the initial layers. Therefore, the use of bot-
tleneck layers allows an alternative path for the
gradient through back-propagation. The next 4
layers are up-sampling and they perform decon-
volutions to reconstruct the final image. These 4
layers are composed of the first two layers in cas-
cade and the last 2 layers in parallel. The last two
layers are the output layers. The first of these two
layers (Up-sampling « with the mask) returns
the colour mask, that describes the face modified
according to the AU vector. The second output
layer (Up-sampling — att mask) returns the atten-
tion mask, i.e., the filter that describes the areas

of the initial image to be modified with the colour
mask.

The Discriminator model is composed of eight
layers. The first layers, an input layer and 5 hidden
layers are convolutional. The hidden layers are fol-
lowed by two parallel output layers. The first final
layer (Output Layer (AU reg)) performs a regres-
sion estimating the AU of the input image. The
second final layer (Output Layer (Classification))
performs the task of the critic, returning a truth-
fulness score to the initial image, according to the
PatchGAN procedure. The procedure consists of
dividing the image is 64 patches and predicting
the probability that each patch is real or fake. The
final score is, then, obtained by calculating the
mean of every patch’s probability.

We used a Wasserstein distance (WGAN-GP)
with gradient penalty and instance normalisation
as GAN loss function for both the generator and
discriminator [3]. The use of WGAN-GP allows
a more performing instance normalisation than
batch normalisation due to the use of the gradient
penalty, which must be independently imposed on
different samples.

4 Datasets

We used three different datasets for testing our
neural network which were selected according to
the following characteristics: 1) they need to con-
tain images of human faces; 2) they need to be
annotated according to the discrete emotions of
the human faces that have been used to train
the network to synthesise data conditioned on the
discrete emotion; and 3) they need to contain
information about the AU values of the faces in
the images. The three datasets selected are:

FERG DB

Aneja et al. created FERG B [2], a database com-
posed of six stylised characters labelled by facial
expressions (see Figure 3a). The stylised charac-
ters are 3 males and 3 females (Ray, Malcolm,
Jules, Bonnie, Mery and Aia). The characters were
modelled in 3D using the graphical software called
MAYA and rendered in 2D to produce the final
image. The images for each character are grouped
according to seven main emotions: Anger, Disgust,
Fear, Happiness, Neutral, Sadness and Surprise.
The animator created the key poses for each emo-
tion, and labelled them, to populate the database.
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On average, the authors created 150 key poses (15-
20 per emotion) for each character, and then they
interpolated them for creating a generalised fea-
ture space among the characters. The final images
produced are 55767 images (8000 per character).

AffectNet DB

AffectNet [31] contains about 1M of facial images
collected from the Internet by querying three
major search engines using 1250 emotion-related
keywords in six different languages (see Figure
3b). About half of the images retrieved are man-
ually annotated based on seven discrete facial
expressions (categorical model) and the intensity
of valence and excitement (dimensional model).
The rest of the images are annotated automati-
cally using the trained ResNet neural network on
all samples of the training set with manual anno-
tation with an average accuracy of 65%. AffectNet
is by far the largest database of facial expressions,
valence and excitement, available for automatic
recognition of facial expressions in two different
emotion patterns. As for the discrete emotions
(categorical model), the images are annotated
according to eleven categories of emotions as fol-
lows: 0: Neutral, 1: Happiness, 2: Sadness, 3: Sur-
prise, 4: Fear, 5: Disgust, 6: Anger, 7: Contempt,
8: None, 9: Uncertain, 10: Faceless. In particular,
the category None (‘None of the eight emotions’)
cannot be assigned by the annotators to any of
the other basic emotions. However, valence and
arousal values can be assigned to these images.
The faceless category is used to label images with-
out a human face or with not clearly recognisable
faces (e.g., distorted faces). The images annotated
with Uncertain are those for which the annotators
were unsure which emotions to assign.

CelebA DB

CelebFaces Attributes Dataset (CelebA) [27] is
a large-scale face attributes dataset with more
than 200K celebrity images, each with 40 attribute
annotations (see Figure 3c). The images in this
dataset cover large pose variations and back-
ground clutter. CelebA includes 10177 identities,
202599 face images, 5 landmark locations, and
40 binary attributes annotations per image. The
dataset can be employed as the training and test
sets for the following computer vision tasks: face

attribute recognition, face detection, landmark
localisation, and face editing and synthesis.

5 Experimental Results

The test plan of the GAN’s performances was
carried out by first evaluating the AU Generator
results, and then by evaluating the quality of the
final images. A sample of synthesised emotions
generated by our architecture, which evaluation is
discussed in this section, is shown in Figure 4.
In particular, the test plan has been divided
into the following steps:
1. AU Generator Module test:
e We used the GAN-test approach to anal-
yse the convergence of GAN training.
Every n steps of training, a pre-trained
AU-Emotion Classifier is launched on a
batch of AU-generated vectors to test the
accuracy of the GAN conditioning;
® The average and standard deviation of
the AU values of the original and gener-
ated data are calculated for testing the
diversity and realism of the generated
data. The values of both generated and
original data are compared to inspect the
ability of the GAN to replicate the key
features of the original dataset.
2. AUGM test:
® Test the quality of the overall images pro-
duced using Frechet Inception Distance
(FID);
e Test the quality of the conditioning using
a pre-trained emotion classifier;
e Test the quality of both images and
conditioning with a web-based interview.
e Test the recognition of the produced
emotion expression once applied on the
Furhat face with a web-based interview.

5.1 AU Generator Module Test

In this section, we discuss the metrics used for
evaluating the performance of the AU Generator
module. For this phase of testing, we extracted
the information from the datasets related to the
activation and intensity of facial muscles (AUs)
and the emotion labels. The tests were performed
using PyTorch on CUDA with an nVidia GeForce
GTX 1080Ti. All the tested models were trained
for 10000 epochs.
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Fig. 3: Samples of the datasets (a) FERG, (b) AffectNet and (c) CelebA used for this work.

5.1.1 Conditioning Test

We tested the convergence by training a classifier
that predicts the emotions for a certain AU vec-
tor. The classifier is interrogated on a batch of
synthetic AU vectors every 50 training epochs. We
calculated the accuracy of the classifier after each
interrogation and compared the accuracy of the
classifier on the original test set and the accuracy
of the classifier on the fake test set.

The multi-class accuracy used to evaluate the
model is defined as follows: the classifier in ques-
tion returns, for each class, the probability that
the input data belongs to that class. To compute
the accuracy, which is the ratio between the num-
ber of well-classified samples and the total number
of elements of the test set, an element is defined
to be well-classified when the out probability to
be in the right class is above 50%.

The datasets were randomly divided into the
training set, validation set and test set according

Original

Happiness

Surprise

Sadness

Fig. 4: Samples of images showing Happiness,
Surprise and Sadness emotions generated by the
proposed GAN-based architecture.

to the 80-10-10 schema. That is, 80% of the data
will be used as the Training set, and the remain-
ing 20% divided equally between the validation set
and the test set.

The structure of the network is composed of
two hidden layers one input layer and one output
layer (see Table 3). The activation function for
the input layer and the hidden layers are Leaky
ReLU. The output layer, instead, uses a softmax
activation function. The hidden layers also use a
0.4 dropout. The loss function used to train the
net is the categorical cross-entropy.

Table 3: AU Generator’s Discriminator model.

Layer Input — Out- | Layer Information
put Shape

Input nay — 512 FC - Leaky ReLU (0.2)

layer

Hidden | 512 — 512 FC - Leaky ReLU (0.2)

layer + dropout (0.4)

Hidden | 512 — 512 FC - Leaky ReL.U (0.2)

layer + dropout(0.4)

Output | 512 —» 1 FC + softmax

layer

The classifier was initially trained on the
AffectNet dataset obtaining an accuracy value of
87.7% on the test set. The AU Generator was then
tested using the prediction of the trained classi-
fier, but the results were not in line with what
was desired. We observed little stability during the
training, with an upper bound of 59% of accuracy,

3Picture’s source:
CelebA.html

http://mmlab.ie.cuhk.edu.hk/projects/
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which indicates that training with this dataset has
a serious conditioning problem. We believe that
this is due to the heterogeneity of the dataset and
the images’ quality. This needs to be considered
for the next phase because it might introduce an
error in the determination of AU vectors by the
Openface module and make the association with
the AU-label vector inconsistent.

We believe that it is preferable to train the
model on a dataset whose images are clearly
marked with emotions. The main reason lies in
the fact that the AU Generator module’s work
is abstracted from the image itself and focuses
solely on the encoding of the emotion represented
in terms of AU vectors. For this reason, we tested
the model on the FERG dataset, which contains
only 6 subjects, it has a multitude of expressions
for each emotion for each character. Moreover,
the dataset is formed by avatars modelled in 3D
and reported in 2D, and, therefore, given the car-
toon nature of the subjects, marked with evident
expressions. We trained the classifier on the FERG
dataset obtaining an accuracy of 95.7%, which
is higher than the accuracy of the classifier in
the AffectNet dataset (87.7%) and resulting in a
stronger and clearer AU vector-Emotion relation-
ship. We observed that the model trained with the
FERG dataset learned much faster than the model
trained with AffectNet to generate data belong-
ing to the desired class. Moreover, results showed
that the level of accuracy is identical to that of
the classifier on the original test set.

5.1.2 Realism and Variability Test

We then tested both the realism and the variabil-
ity of the data produced. We calculated the means
of the values both of the original dataset and a
batch of 6000 generated vectors (1000 per emo-
tion) for each emotion and AU. We calculated, in
the same way, the standard deviations for each
emotion and AU of both the original dataset and
the batch of fake vectors. These metrics should not
be confused with a simple evaluation of how much
the network is replicating the dataset, because the
network cannot simply do this job by its very
nature. Here, we use the average values to estimate
the goodness of the network in capturing features
of the original dataset without reproducing it. For
example, the network’s learning ability is that a
certain emotion is more likely to have a certain AU

activity and intensity. Hence, differences between
the averages and the standard deviations gave us
a general metric of how much the network cap-
tured such key features of the original dataset and
learned to generalise.

We also compared the differences in the aver-
age and standard deviation of the model trained
on the FERG and AffectNet datasets. In Figure
5, we can observe that the model trained on the
FERG dataset is generally better than the one
trained on AffectNet, and that the network is able
to learn better both to capture the key features
of the original dataset (by observing the average)
and to replicate its distribution in terms of data
variability (by observing the standard deviation
values). These are in line with the results on con-
ditioning showing that a dataset with cartoon-like
images, with respect to a wider and more realistic
one, makes it easier for the network to learn AUSs’
values distributions for every single emotion.

We also ran a one-way ANOVA test to inspect
the differences between the fake dataset and
the original dataset (i.e., if they have the same
stochastic distribution). The ANOVA is carried
out for each basic emotion and AU, consider-
ing the average AU-scores for each emotion. The
results are shown in Table 4. We did not observe
any outliers, as assessed by the boxplot, and the
data were normally distributed. The two met-
rics presented are F and p, where F represents
the ratio between the “between” variance and the
“among” variance, and p represents the probabil-
ity of the null hypothesis is true. The result of the
test suggests that there is insufficient evidence to
reject the null hypothesis in the case of the FERG
dataset, and then any observed difference in the
model is likely due to statistical chance. The same
does not hold for the AffectNet dataset where the
null hypothesis can be rejected (with the exception
of Happiness and Fear) and the observed difference
is likely due to a difference in the generated model
w.r.t. the original dataset. Indeed, the results are
in line with our previous test validating that the
model produced better accuracy on FERG than
AffectNet datasets.

5.2 AUGM Module Test

We evaluated the GANimation module using three
tests. We first used the Frechet Inception Distance
to evaluate the ability of the models to work in
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Fig. 5: Comparison of the differences of means of the AUs’ values between original dataset and fake
samples (figure on the left); standard deviation between original dataset and fake samples (figure on the

right).

Table 4: ANOVA statistical F and p values of
the differences between the FERG and AffectNet
datasets with the original dataset.

\ | FERG dataset [[ AffectNet dataset |

Emotion F P F P
Happiness | 7.47 0.16 37.53 0.10
Anger 13.48 0.22 248.58 0.03
Sadness 8.30 0.22 176.12 0.01
Surprise | 41.51 0.17 24.12 0.01
Fear 16.51 0.14 18.34 0.13
Neutral 6.50 0.18 12.02 0.11

synergy and produce photo-realistic results. This
distance assesses both the quality of the data in
terms of photo-realism and the diversity of the
generated data. Therefore, indirectly, it represents
a further test of the number of expressions that
the AUGM is able to synthesise. The second phase
involves the creation of an image-based emotion
classifier to evaluate the conditioning of the net-
work, this time, unlike the test on the AUGM, in
terms of final produced images.

We tested the model by training GANimation
on two separate datasets, CelebA and AffectNet,
both for 100 epochs, and we compared the results.
We also compared the application of a vector com-
posed of the available AUs (i.e., 17) and vectors
composed of subsets (i.e., 7 and 12) of these to
evaluate how much the total number of active AUs
affects the final quality of the photo and the abil-
ity of the network to express the desired emotion.
The subset of AUs used in the tests has been cho-
sen empirically by selecting the subset leading to
better (e.g., lower) score values. The tests were
performed using PyTorch on CUDA with a nVidia

GeForce GTX 1080Ti, and the training process of
the AUGM takes 3-4 days for 100 epochs. Finally,
we conducted a user study to evaluate our model
in terms of recognition of emotion.

5.2.1 FID Scores

The FID score is a metric that evaluates the ability
of a GAN to produce realistic and various samples.
We used a sample of 13000 images from the orig-
inal dataset and 7000 generated images since it is
necessary to provide the classifier that will com-
pute the distance with no less than 10000 samples
to obtain meaningful results [23]. The tests were
executed by training the model on CelebA and
AffectNet separately and evaluating the trained
model using samples from both datasets. Lower
values for FID correspond to more similar real and
generated samples as measured by the distance
between their activation distributions, where 0 is
ideally the best score, and +oc is the worst score.

We compared the values obtained with the pro-
posed architecture to ones obtained from some
general generative tasks, because similar archi-
tectures, such as GANimation or StarGAN, used
humans to conduct a realism test [1]. Tables 5
and 6 show the FID values of our GANimation
module trained on AffectNet, CelebA, and those
produced from different models. The results of our
module are lower than the other models, but the
task here was not strictly generative. We do not
intend, however, to directly compare the values,
but to give an idea of the goodness of the values
of this test. The results also show that train-
ing with the AffectNet dataset gives better FID
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results than training with the CelebA dataset. In
particular, we can observe that the images modi-
fied by taking into account a lower number of AU
(and thus muscles’ activation) are less prone to
distortion (7 AUs). However, this also leads to a
misinterpretation of the expression represented.

Table 5: Comparison of the FID values produced
from similar GANimation models. Lower values
for FID indicate more similar real and generated
samples.

[ Approach [ FID |
Gated PixelCNN [33] | 65.9
DCGAN [36] 37.1
Coulomb GAN [50] 27.3
TTUR [23] 24.8
MoLM [37] 18.9

Table 6: FID values produced from the GANi-
mation module trained on AffectNet and CelebA
datasets. Lower values for FID indicate more
similar real and generated samples.

GANimation module trained on AffectNet
[ Datasets [ 7 AUs [ 12 AUs | 17 AUs |

CelebA 8.70 10.12 11.03
AffectNet | 10.33 10.98 11.27

GANimation module trained on CelebA
[ Datasets [ 7 AUs [ 12 AUs | 17 AU |

Celeb A 13.24 14.43 15.57
AffectNet | 18.87 19.87 20.04

We can also notice the AffectNet-trained
model achieved better results when the test images
come from CelebA than AffectNet. We believe
that CelebA can count on sharper images with
generally better visual quality than AffectNet.
AffectNet has many more images with different
facial poses and more expressions. This makes the
models trained on AffectNet better than those
trained on CelebA in terms of resulting visual
quality. Whereas the best results are therefore
achieved with the combination “trained on Affect-
Net - Images from CelebA” because the model has
benefited from the training on AffectNet and the
test images are high-quality CelebA images. An
example of the differences between AffectNet and
CelebA training is shown in Figure 6.

iy 15
o) oy

Fig. 6: Difference between AffectNet and CelebA
training. The same AU vector corresponding to
the Surprise emotion is applied to the same image.
The image on the left is produced by the model
trained on AffectNet, and the image on the right
is generated by the model trained on CelebA. The
image on the left is more defined and less blurred
than the other, and thus the target expression is
more clearly recognisable.

5.3 Emotion Classification Test

As a second case, we decided to test the accuracy
of our model by evaluating the conditioned gen-
eration of AUs, once applied to a final image, in
terms of automatic emotion recognition. To do so,
we chose to train a classifier, which takes an image
that represents a human face as input and predicts
the relative expressed emotion. The classifier used
was a ResNet architecture [21] a deep network
composed of 152 layers and residual blocks, and
we trained it on a subset of the AffectNet dataset.
In particular, we selected images for which Land-
markImg of OpenFace provided a confidence score
in landmark detection estimation greater than 0.9,
with a balance within the classes, and in a num-
ber comparable with the generated fake dataset.
We implemented the classifier using Keras, leaning
on the Tensorflow back-end, and using categorical
accuracy as an evaluation metric. We obtained an
accuracy of 70.01%, which is very common to the
results of other classifiers in the state-of-the-art
[31].

The dataset was divided following the scheme
80-10-10. Due to the unbalancing of the data,
every set was balanced to have an equal distribu-
tion over the classes on the training set, validation
set and test set. Then, we tested the model trained
on CelebA and AffectNet DBs with 7, 12 and 17
AUs. The desired accuracy of the results on a
fake test set should be close to the accuracy on
a real data test set (70.01%). Therefore, we did
not aim to reach an accuracy of 100%, but the
accuracy closest to the network accuracy on the
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original test set. The tests are further divided into
two other methods: random batch method and
selected batch method. These two methods differ
only in the methodology of data selection. In the
first case, a random batch of images is taken from
the selected dataset. In the second case, we man-
ually selected the images with a higher definition
and clarity. We added the following constraints to
the image sets to ensure consistency in terms of
comparison between results on the original and
fake test sets:
® The number of images of the fake test
sets, both in the random batch method and
selected batch method, must be equal to the
number of the original test set.
® The emotions must be assigned to the images
following the distribution of classes of the
original test set.

The accuracy results of the training of the clas-
sifier on the resulting images are shown in Table 7.
Similarly to the FID test, the training on the
AffectNet dataset produced more accurate results
than the training on CelebA dataset, and in gen-
eral, the best results are given by the use of images
selected by CelebA with the model trained on
AffectNet. The difference between the images of
the two datasets is very small because the manu-
ally selected images were clear and not very noisy.
It is to be noticed that the differences between 7,
12 and 17 AUs are reversed compared to the pre-
vious test on FIDs. The emotions were markedly
more visible, and therefore the classifier was able
to predict the correct classes with higher accuracy.

5.3.1 Interview Test

Finally, we asked human participants to evaluate
our model since the wisual examination of sam-
ples by human raters is one of the common and
most intuitive ways to evaluate GANs [1, p.30].
We firstly asked participants to assign an emotion
to each image, and then, to rate the accuracy, in
terms of authenticity, of each image using a scale
from 1 (image clearly artefact) to 5 (image indis-
tinguishable from an original). Each participant
labelled and rated 30 randomly selected images
which were modified by our network. The images
have been modified using synthesised vectors with
12 AU, as an intermediate method between 7 AU
and 17 AU.

neutral  happiness

sadness

fear

surprise

anger

sadness fear

happiness neutral surprise anger

Fig. 7: The confusion matrix of the classification.
Darker colours represent higher accuracy.

The test was conducted online without the
direct supervision of the experimenter, therefore
we decided to use a poll of 30 images to prevent
the participants from losing their concentration or
interest during the test. We recruited 50 partici-
pants, aged between 18 and 60 years old.

The performance of the classification is shown
in Figure 7 using a confusion matrix. The Figure
shows that the images labelled as Happiness, Neu-
tral, Surprise and Sadness were classified with
higher accuracy by the participants, the Fear
emotion was classified with lesser accuracy, while
images labelled as Anger emotions were misclassi-
fied more frequently. In particular, Anger labelled
images were often confused as Neutral, and in
fewer cases as Sadness. Images labelled as Fear
have often been classified as Surprise. We believe
that the misclassification of these two emotions is
because Fear and Surprise present relevant simi-
larities in the way they are expressed ([6, 9]), and
images modified with 12 AU might not be clear
enough to be recognised.

Participants also rated the images labelled as
showing Happiness (mean value 3.39), Neutral
(mean value 3.92) and Sadness (mean value 3.43)
emotions as with higher authenticity compared to
those labelled with Fear (mean value 2.07), Sur-
prise (mean value 3.06), and Anger (mean value
2.84) emotions. This result indicates that the gen-
eration of images showing the emotional state of
Fear produces results with a certain level of distor-
tion. We believe that this is due to the difficulty
of generating clear images of faces with wide-open
mouths or wide eyes.
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Table 7: Accuracy of the classifier trained on AffectNet and CelebA datasets using random and manually
selected batches. The values in the table represent the accuracy and relative loss of the classifier on the

specific dataset according to the two methods.

AffectNet dataset

Images from TAU 12AU 17AU

AffecteNet random batch | 52.52% (3.62) | 54.39% (3.22) | 57.62% (3.30)
AffectNet selected batch | 54.92% (3.54) | 61.44% (3.11) | 68.92% (2.89)
CelebA random batch 58.97% (3.28) | 60.01% (3.05) | 61.50% (3.01)
CelebA selected batch 61.02% (3.59) | 67.93% (2.89) | 69.02% (2.78)

CelebA dataset

AffectNet random batch | 48.74% (4.22) | 52.23% (4.02) | 55.91% (3.82)
AffectNet selected batch | 51.92% (3.88) | 57.66% (3.81) | 63.03% (3.01)
CelebA random batch 55.03% (4.02) | 58.27% (3.22) | 59.63% (3.34)
CelebA selected batch 60.15% (3.22) | 63.03% (3.17) | 64.63% (3.03)

5.3.2 Action Unit Test on the Robot

The generated AUs have been used to modify the
facial features of a Furhat robot. The robot comes
with a set of libraries that allows the manipulation
of the robot’s characteristics, called gestures. We
found a reasonable correspondence between the 17
Action Units and the facial parameters provided
by Furhat Robotics*. Figure 8 shows examples of
facial emotions based on the AUs generated by our
approach on the robot.

To investigate people’s perception of the gener-
ated emotions, we asked 40 participants to classify
each emotion as expressed by a robot and one of
the people in Figure 4 (i.e., the human emotions
are the same as shown in the Figure 4). The sam-
ple of participants consisted of 19 males and 21
females, aged between 18 and 69 (avg. 35.27, std.
13.11). Each of them classified the perceived dis-
crete emotions expressed by the robot and human
in 50 images, selecting them between the following
set [as multiple choice]: Happiness, Surprise, Fear,
Anger and Sadness. We also asked participants to
select their confidence level for the selection of the
showed emotion using a 5-point semantic scale [1
= not at all, and 5 = very much].

The performance of the emotion association as
perceived by the participants is shown in Figure 9.
The Figure shows that the images labelled as
Anger, Sadness and Fear were correctly classified
with higher accuracy. Participants, even if they

4We used a combination of ARKitParams blendshapes and
CharParams facial offsets to animate the synthesised expres-
sions to the robot’s face https://docs.furhat.io/facecore

correctly recognised Surprise, were more unde-
cided, and classified Surprise also as Fear. These
two emotions are, however, notably difficult to
distinguish due to perceptual-attentional limita-
tion, and the context in which they are used [43].
Finally, participants were not able to identify the
Happiness emotion of the robot, mistaking it for
Surprise.

We believe this has been caused by the impos-
sibility of finding a direct correspondent Furhat’s
gesture for all AUs (i.e., lip corner puller), and,
as a consequence, we chose the closest available
gesture. This produced slightly different expres-
sions compared to the ones generated directly for
human faces.

We also observed a strong positive correlation
between the emotions chosen by the participants
and the agent used (i.e., robot or human) with
an increase in the Happiness emotion when it was
expressed by a human (p < 0.001r = 0.1271),
a decrease in the Sadness and Anger emotions
when it was expressed by the robot (respectively,
p = 0.014r = —0.055, and p < 0.001r = —0.140).
We did not find any statistically significant rela-
tionship between the type of agent that expressed
the emotion and the Surprise and Fear emotions.
Indeed, they were both similarly recognised by the
participants.

6 Conclusions

This work presents a two-layer architecture capa-
ble of modifying the expression of a human face
from images by taking into account the need
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Fig. 8: Examples of the facial expressions for Sadness
AUs generated by our approach on the robot Furhat.

happiness surprise

Robot's generated emotions
sadness fear

anger
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happiness fear sadness anger
Emotions chosed by the participants

surprise

Fig. 9: The confusion matrix of the participants’
ranking of the robot’s expressions. Darker colours
represent higher accuracy.

to provide a relationship between expression and
emotion. To obtain a certain variety of expressions
for each discrete emotion, we proposed an archi-
tecture consisting of two modules, called the AU
Generator Module and the GANimation module.
In literature, the presence of an architecture like
GANimation allows the fine modelling of expres-
sions based on the contribution of studies on the
FACS based on Action Units. The original GAN-
imation architecture does not deal with discrete

(top row) and Happiness (lower row) based on the

emotions, although it allows transferring the emo-
tion described by a set of Action Units to a specific
image providing a considerable variety of expres-
sions. Therefore, an AU Generator module has
been developed to generate a set of Action Units
that describe a facial expression according to the
desired emotion.

The use of the presented module combined
with the GANimation architecture allowed us to
exploit the characteristics of this architecture with
a model of discrete emotions. In particular, the AU
Generator module has been developed as a con-
ditional Generative Adversarial Network that can
generate different vectors of AU for each discrete
emotion and describe different expressions. CGAN
architecture allowed to generate data with a high
rate of variability and is always consistent with
the class on which the generation is conditioned.

We conducted several tests to prove the good-
ness of the proposed approach, starting with the
AU Generator Module trained on AffectNet and
FERG DB datasets. These tests showed the good-
ness of the model to generate realistic data with
a satisfactory variety, when compared to the orig-
inal dataset, especially with the FERG dataset.
The model’s ability to condition the generated
AU vectors to the emotion expressed by the facial
expressions they encode was also tested. Finally,
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the model has been tested in its entirety, including
the GANimation module, evaluating the result in
terms of final synthetic images. These tests were
performed by training the model on CelebA and
AffectNet datasets to assess whether the results
obtained in the evaluation of the previous mod-
ule are reflected in the quality of the final images.
These tests highlighted the goodness of the model,
in terms of photo-realism, evaluated through the
use of the FID metrics and conditioning. These
tests also showed that the GANimation module
benefited from the greater variety and number of
elements in the AffectNet dataset compared to the
CelebA dataset.

The proposed model achieved satisfactory
results, but the quality of the synthetic data and
a possible extension to include different emotional
models represent a desirable future development.
In this work, we used low-resolution images (typi-
cally 128x128), due to hardware limitations which
could not provide high computational power, but
the datasets consisting of high-resolution images
generate images with clearer and more evident
expressions. Moreover, the variability and natu-
ralness obtained by the combination of the two
different GANs could be compared with the gen-
eration of facial emotion as an end-to-end process.
Finally, the model could also be extended by
including the representation of dimensional emo-
tion models to introduce the valence and arousal,
or the intensity dimensions [34]. A preliminary
test to collect people’s perceptions of the gener-
ated emotions has been conducted using a Furhat
robot. We were not able to directly use the exact
corresponding gesture for each AU used, however,
participants were able to correctly classify most of
the emotions expressed by the robot. These results
also outlined the importance of some stimuli, such
as the lip corner puller or stretcher, as a very dis-
tinctive feature between the expressions, and of
the context used to clearly differentiate between
known-mistaken emotions (such as surprise and
fear.
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