
CCO
Commun. Comb. Optim.

c© 2023 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 8, No. 1 (2023), pp. 207-241

DOI: 10.22049/CCO.2022.27346.1241

Research Article

Signed bicyclic graphs with minimal index

Maurizio Brunetti∗, Adriana Ciampella†

Dipartmento di Matematica e Applicazioni, University ‘Federico II’, Naples, Italy
∗maurizio.brunetti@unina.it
†adriana.ciampella@unina.it

Received: 24 July 2021; Accepted: 6 January 2022

Published Online: 10 January 2022

Abstract: The index λ1(Γ) of a signed graph Γ = (G, σ) is just the largest eigenvalue

of its adjacency matrix. For any n > 4 we identify the signed graphs achieving the
minimum index in the class of signed bicyclic graphs with n vertices. Apart from the

n = 4 case, such graphs are obtained by considering a starlike tree with four branches of
suitable length (i.e. four distinct paths joined at their end vertex u) with two additional

negative independent edges pairwise joining the four vertices adjacent to u. As a by-

product, all signed bicyclic graphs containing a theta-graph and whose index is less
than 2 are detected.
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1. Introduction

A signed graph Γ = (G, σ) is a pair (G, σ), where G = (VG, EG) is a simple graph and

σ : EG −→ {+1,−1} is the sign function (or the signature) defined on the edge set of

G. The unsigned graph G is called the underlying graph of Γ. The order and the size

of Γ are the order and the size of its underlying graph. The sign of a cycle C in Γ

is given by sign(C) =
∏
e∈C σ(e). If all edges in Γ are positive, then Γ is denoted by

(G,+). A cycle is called positive (resp., negative) if sign(C) is 1 (resp., −1). A signed

graph is balanced if no negative cycles exist; otherwise it is unbalanced. The negation

−Γ is obtained by reversing the sign of every edge of Γ.

Most of the concepts defined for unsigned graphs are directly extended to signed

graphs. For example, a signed graph is said to be k-cyclic if the underlying graph
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208 Signed bicyclic graphs with minimal index

is k-cyclic. This means that G is connected and |EG| = |VG| + k − 1. We use the

adjectives unicyclic and bicyclic as synonyms of 1-cyclic and 2-cyclic respectively.

The adjacency matrix AΓ of Γ = (G, σ) is obtained from the standard adjacency

matrix AG by replacing 1 by −1 whenever the corresponding edge is negative. By the

spectrum of Γ, we mean the spectrum of AΓ. Since AΓ is symmetric, its eigenvalues

λ1(Γ) > λ2(Γ) > · · · > λn(Γ) are real. Moreover, since the trace of AΓ is equal to

zero, we have λ1(Γ)λn(Γ) 6 0, with equality if and only if Γ is empty (without edges).

The index of Γ is simply the largest eigenvalue λ1(Γ), whereas the spectral radius is

the largest absolute value of its eigenvalues.

The ‘spectral’ sub-branch of extremal graph theory essentially consists in identifying

those objects which are extremal with respect to a fixed spectral parameter within

a given class of graphs. In the last few years, some extremal problems have been

solved in the context of signed graphs. For instance, in [17] Koledin and Stanić

studied connected signed graphs of fixed order, size and number of negative edges

that maximize the index. In the wake of that paper, signed graphs maximizing the

index in suitable subsets of complete signed graphs have been studied in [2, 13]. Let

Un (resp., Bn) denote the class of unbalanced unicyclic (resp., bicyclic) signed graphs

of order n. Akbari et al. [1] determined signed graphs with extremal index in the class

Un. Some of the same authors studied in [19] signed graphs achieving the maximum

index among all graphs in Un of fixed girth. The first five largest indices among

graphs in Bn with n > 36 are detected by He et al. [14]. Signed graphs in Un and Bn

with extremal spectral radius were identified in [4]. Extremal graphs in Un and Bn

with respect to the least Laplacian eigenvalue were studied in [7] and [3], respectively.

The first author and Stanić detected in [10] the signed graphs achieving the extremal

spectral radii and the extremal indices in the set Un of all unbalanced connected signed

graphs with n > 3 vertices. Finally, the procedure in [10] to determine unbalanced

graphs with largest index has been improved in [9], where it has been employed to

find out the first few signed graphs ordered by the index in the class of connected

signed graphs, or connected unbalanced signed graphs, or complete signed graphs.

This paper is devoted to prove that the signed graphs achieving the minimal index in

Bn for n > 5 are precisely those obtained by taking a starlike tree with four branches

of suitable length, such graphs are obtained by considering four distinct paths joined

at their end vertex u with two additional negative independent edges pairwise joining

the four vertices adjacent to u (see Fig. 1). The length of each branch depends on

the congruence class of n modulo 4 (see Theorem 2.1).

As made precise in Corollary 3.5, it follows that the same graphs also minimize the

index in the class of all bicyclic graphs of given order.

The remainder of the paper is structured as follows. The main result, Theorem 2.1,

is contained in Section 2 with some directions that help to guide one along the inter-

mediate steps of the theorem’s proof. Apart from fixing notation and terminology,

Section 3 contains some basic tools of spectral graph theory and some bounds for the

index of the possible index-minimizers. Results in Section 4 are all part of the proof

of Theorem 2.1. For its completion, we employ a signless Laplacian variant of the cel-

ebrated Jacobs-Trevisan algorithm, originally defined to locate adjacency eigenvalues
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Figure 1. The signed graph Γ(a1, a2, a3, a4). Here and in the forthcoming fig-
ures, negative edges are depicted by dashed lines.

This is Fig. 1

Figure 1. The signed graph Γa1,a2,a3,a4 . Here and in the forthcoming figures, negative edges are depicted
by dashed lines.

of trees. In fact, as made clear in Section 3, the indices of the signed graphs which

seemingly are candidates to be index-minimizers (essentially, the graphs Γa1,a2,a3,a4
and Γpa1,a2,a3,a4 respectively depicted in Fig. 1 and Fig. 4), are related with the alge-

braic connectivity, i.e. the second smallest (signless) Laplacian eigenvalue, of several

H-shape trees. Since the arguments to perform the algorithm are quite technical, they

are postponed to Section 5.

2. Description of the main result

We now state the main result of this paper. The notion of switching equivalence is

recalled in Section 3. For the definition of the signed graph Γa1,a2,a3,a4 , see Fig. 1.

Clearly, the order of Γa1,a2,a3,a4 is 5 +
∑4
i=1 ai. In particular, for r > 0, the signed

graph

Φr,2 := Γr,r−1,r−1,r−1 (1)

has 4r + 2 vertices.

Theorem 2.1. Let Γ̃n be a signed graph achieving the minimum index in the set Bn of
signed bicyclic graphs. Then:

i) Γ̃4 is a diamond with two unbalanced triangles;
ii) Γ̃n with n > 4 is a switching equivalent to the signed graph

Φ{n} =



Φ1,2 := Γ1,0,0,0 for n = 6

Φ̃r,2 := Γr,r,r−1,r−2 for n = 4r + 2 and r > 2,

Φr,3 := Γr,r,r−1,r−1 for n = 4r + 3 and r > 1,

Φr,4 := Γr,r,r,r−1 for n = 4r + 4 and r > 1,

Φr,5 := Γr,r,r,r for n = 4r + 5 and r > 0.

(2)

The proof of Theorem 2.1 is long and requires many intermediate steps. In fact, it

will only be completed in Section 5. Because of its intricacy, we give here a plan for

the proof, describing how it is executed.
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The case n = 4 is easy; therefore, we assume n ≥ 5. Let Pk denote the (unsigned)

path of order k. A first key result is given by the inequalities

λ1(Φ{n}) < λ1(Pνn+2) = 2 cos
π

νn + 3
< 2, where νn :=

⌊n
2

⌋
(see Proposition 3.9),

having two important consequences:

1. the diameter of Γ̃n cannot exceed νn (see Corollary 3.10);

2. the signed graph Γ̃n lies in the subset B∗n of bicyclic signed graphs of order n

whose index is less than 2.

As better explained in Section 4, we regard B∗n as the union of the three disjoint

subsets dn, in and thn. Signed graphs in dn contain a dumbbell (two disjoint cycles

joined by a non-trivial path); those in in contain an ∞-graph (two cycles with just

one vertex in common); those in thn contain a theta-graph (the union of three edge-

disjoint paths of length > 2 between two vertices).

We shall prove that λ1(Φ{n}) < λ1(Θ) for each Θ ∈ thn (see Theorem 4.7). Since

Φ{n} belongs to in, it follows that Γ̃n must be searched in dn t in. The detection of

index-minimizers in dn t in is performed in Section 4.1.

After noticing that all elements in dn t in have girth 3 and circumference s 6 5, by

separately analyzing the cases s = 5, s = 4 and s = 3 (which are Case 1, 2 and

3 respectively in Section 4.1), we discover that a signed graph in
⊔
n≥5(dn t in) is

switching equivalent to one of the items listed below:

1. a graph of type Γpa1,a2,a3,a4 (see Fig. 4);

2. one of the graphs Γi (1 6 i 6 16) depicted in Fig. 5;

3. a graph of type Λph,k;` (see Fig. 6);

4. a graph of type Xp
a1,a2,a3,a4 (see Fig. 7).

It turns out that index-minimizers are of type 1. In fact,

• a direct analysis is sufficient to show that no graph of type 2 is an index-

minimizer (the several λ1(Γi)
′s are listed in the Appendix);

• the only graphs of type 3 whose diameter is sufficiently small to be index-

minimizers are Λ1
0,0;0 of order 6, Λ1

1,1;0 of order 8, and Λ1
2,2;0 of order 10,

but one easily checks that λ1(Φ{6}) < λ1(Λ1
0,0;0), λ1(Φ{8}) < λ1(Λ1

1,1;0), and

λ1(Φ{10}) < λ1(Λ1
2,2;0);

• no graphs of type 4 are index-minimizers by Proposition 4.5.

The proof ends by considering the only graphs of type 1 of order n whose di-

ameter does not exceed νn. If n is odd, there is just Φ{n}, and there is

nothing else to prove. If n = 4r + 2 (resp., n = 4r + 4) index-minimizers

are in the set G4r+2 = {Φ̃r,2,Φr,2,Γ2
r−1,r−1,r−1,r−1,Γ

2
r,r,r−2,r−2} (resp., G4r+4 =

{Φr,4,Γr+1,r,r−1,r−1,Γ
2
r,r,r−1,r−1}).
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Finally, in order to establish that only Φ̃r,2 (resp. Φr,4) minimizes the index in

G4r+2 (resp., G4r+4) we compare the algebraic connectivities of some H-shaped graphs

related to graphs in G4r+2 ∪ G4r+4 according to the formula (12). This comparison is

performed in Section 5 by using the algorithm presented in Figure 12.

3. Basic tools and preliminaries

Let Γ = (G, σ) be a signed graph. As usual, we denote by φA(G,λ) = det(λIn −AG)

and φA(Γ, λ) = det(λIn − AΓ) the characteristic polynomial of AG and AΓ, respec-

tively. In Section 4, we shall also consider the characteristic polynomial φQ(G,λ) of

the signless Laplacian matrix QG = DG +AG, where DG is the vertex degree matrix

of G.

The first result we mention is very well-known and involves the spectrum of the

(unsigned) path Pn with n vertices.

Proposition 3.1. [12, p. 73] The characteristic polynomial φ(Pn, λ) is equal to Un(λ/2),
where Un(x) is the n-th Chebyshev polynomial of the second kind defined through the
following identity

Un(cosω) sinω = sin((n+ 1)ω).

Therefore, the eigenvalues of APn are

λk(Pn) = 2 cos
kπ

n+ 1
for 1 6 k 6 n.

For a signed graph Γ = (G, σ) and a function θ : VG −→ {+1,−1}, we can build a new

signed graph Γθ = (G, σθ), where σθ(e) = θ(vi)σ(e)θ(vj) for each edge e = vivj ∈ EG.

The signed graphs Γ and Γθ are said to be switching equivalent ; they share the same

spectrum and the same set of positive cycles. In fact, AΓθ = D−1AΓD, where D is the

diagonal matrix diag (θ(v1), θ(v2), . . . , θ(vn)). It can also be proved [21, Proposition

3.2] that two signed graphs sharing the same underlying graph are switching equivalent

if and only if the set of balanced cycle is the same. This implies that Γ is balanced

if and only if Γ is switching equivalent to (G,+). In particular, any signed forest

(F, σ) is balanced, the matrices A(F,σ) and AF are similar and we denote their shared

eigenvalues by λ1(F ) > · · · > λ|VF |(F ).

For the same reason, all balanced (resp., unbalanced) cycles of fixed order are spec-

trally indistinguishable. With a slight abuse of notation we denote by Cbn (resp., Cun)

any balanced (resp., unbalanced) cycle of order n > 3.

We say that Λ = (H, τ) is an induced subgraph of Γ = (G, σ), and write Λ ⊆ Γ, if

H is an induced subgraph of G and τ = σ|H . Furthermore, we write Λ ⊂ Γ and say

that Γ properly contains Λ if Λ ⊆ Γ and H 6= G.

Let Γ − v denote the signed graph obtained from Γ by deleting the vertex v. The

following result is known as the Interlacing Theorem for Signed Graphs, which is

a consequence of the Cauchy Interlacing Theorem holding, in its general form, for

principal submatrices of any Hermitian matrix (see [12, Theorem 0.10]).
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Theorem 3.2. Let Γ = (G, σ) be a signed graph of order n > 2, and let v be one of its
vertices. The eigenvalues of AΓ and those of AΓ−v interlace as follows:

λ1(Γ) > λ1(Γ− v) > λ2(Γ) > λ2(Γ− v) > · · · > λn−1(Γ− v) > λn(Γ).

By using Theorem 3.2 the suitable number of times, we get the following corollary.

Corollary 3.3. If Λ ⊆ Γ and Λ′ is switching equivalent to Λ, then λ1(Λ′) = λ1(Λ) 6
λ1(Γ).

The two parts of the following result respectively come from [1, Theorem 2.5] and [20,

Lemma 2.1].

Theorem 3.4. The index of a signed graph Γ = (G, σ) never exceeds λ1(G,+). Moreover,
if Γ is connected, then λ1(Γ) = λ1(G,+) if and only if Γ is balanced.

Theorem 3.4 has the following immediate consequence.

Corollary 3.5. Let n ≥ 4. A signed graph Γ̃n minimizes the index among the signed
bicyclic graphs of order n if and only if it is unbalanced and minimizes the index in Bn.

The next theorem encapsulates a Schwenk-like formula which will be repeatedly used

along the paper.

Theorem 3.6. [6, Theorem 3.1] Let Γ be a signed graph and u be an arbitrary vertex of
Γ. Then the following holds:

φ(Γ, λ) = λφ(Γ− u, λ)−
∑
u∼v

φ(Γ− u− v, λ)− 2
∑
C∈Cu

sign(C) · φ(Γ \ V (C), λ), (3)

where u ∼ v means that u and v are adjacent and Cu is the set of cycles passing through u.

We now prove some bounds for the index of the graphs defined in (1) and (2).

Lemma 3.7. For t ∈ {1, 2}, the following inequalities hold:

2 cos
π

2r + t+ 2
< λ1(Φr,2t) 6 λ1(Φr,2t+1), (4)

and

2 cos
π

2r + 3
< λ1(Φ̃r,2) 6 λ1(Φr,3). (5)
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Figure 2. The signed graph U−
a1,a2,a3 and the T-shape graph Tl1,l2,l3

This is Fig. 2Figure 2. The signed graph U−a1,a2,a3
and the T-shape graph Tl1,l2,l3

Proof. Since Φr,2t ⊆ Φr,2t+1 and Φ̃r,2 ⊆ Φr,3, the second inequalities of both (4)

and (5) come from interlacing. Let now u2 be the vertex of Φr,2t as in Fig. 1. The

signed graph Φr,2t − u2 has two connected components. One is Pr+t−2. The other

one is the signed unicyclic graph U−r+1,r+t−2,r−1 (see Fig. 2), whose index is strictly

larger than λ1(P2r+t+1) (see [1, Theorem 3.4]). Thus, by interlacing,

2 cos
π

2r + t+ 2
< λ1(U−r+1,r+t−2,r−1) 6 λ1(Φr,2t) 6 λ1(Φr,2t+1).

The argument to prove the first inequality of (5) is analogous.

Lemma 3.8. For t ∈ {1, 2}, λ2(Φr,2t+1) = λ1(P2r+2) = 2 cos(π/(2r + 3)).

Proof. Let v the only vertex of Φr,2t+1 of degree 4. We first deal with the case t = 2

which is easier. Since Φr,5 − v = 2P2r+2, by Proposition 3.1 and Theorem 3.2 we

arrive at

2 cos
π

2r + 3
= λ1(2P2r+2) > λ2(Φr,5) > λ2(2P2r+2) = 2 cos

π

2r + 3
,

proving the statement for t = 2.

Let now t = 1. Note that Φr,3 − v = P2r+2 t P2r. Therefore, by interlacing and (4),

λ1(Φr,3) > λ1(P2r+2) > λ2(Φr,3). The proof will be over once we show that λ1(P2r+2)

is an eigenvalue of Φr,3.

If we use the Schwenk-like formula of Theorem 3.6 starting from the central vertex v

of Φr,3, we obtain

φ(Φr,3;λ) = φ(2r + 2)
(
λφ(2r)− 2φ(r)φ(r − 1) + 2φ(r − 1)2

)
+

− 2φ(2r)φ(r) (φ(r + 1)− φ(r)) , (6)

where we set φ(k) = φ(Pk;λ). From (6) it is immediately seen that

φ(Φr,3;λ1(P2r+2)) = 0⇐⇒ φ (Pr+1;λ1(P2r+2)) = φ (Pr;λ1(P2r+2)) .
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The latter equality actually holds and comes from Proposition 3.1. In fact,

λ1(P2r+2) = 2 cosα for α = π
2r+3 , and

φ (Pr+1; 2 cosα) =
sin((r + 2)α)

sinα
=

sin((r + 1)α)

sinα
= φ (Pr; 2 cosα) ,

since sin((r + 2)α) = sin(π − (r + 1)α) = sin((r + 1)α).

Proposition 3.9. The indices of the signed graphs Φr,ε and Φ̃r,2 in (2) and (1) satisfy
the following inequalities:

2 cos
π

2r + 3
< λ1(Φ) < 2 cos

π

2r + 4
for Φ ∈ {Φ̃r,2,Φr,2,Φr,3}, (7)

and

2 cos
π

2r + 4
< λ1(Φr,ε) < 2 cos

π

2r + 5
for ε ∈ {4, 5}. (8)

Proof. The lower bounds of (7) and (8) immediately come from Lemma 3.7.

To prove the upper bounds, let β = π/(2r + 4) and γ = π/(2r + 5).

With the aid of Proposition 3.1, (6) and the software Wolfram|Alpha, the evaluation

of φ(Φr,3, λ) at λ1(P2r+3) = 2 cosβ gives

φ (Φr,3; 2 cosβ) =
32

sin3 β
· sin7 β

2
· cos

β

2
· (2 cosβ + 1)

2
(9)

which is clearly a positive number. Since, by Lemma 3.8, λ2(Φr,3) < 2 cosβ, the

positivity of (9) and interlacing imply max{λ1(Φ̃r,2), λ1(Φr,2)} 6 λ1(Φr,3) < 2 cosβ.

Thus, (7) is proved.

The argument to prove the upper bound of (8) is similar. If we use the Schwenk-like

formula (3) obtained by considering the central vertex v of φ(Φr,5;λ) we arrive at

φ(Φr,5;λ) = φ(2r + 2) (λφ(2r + 2) + 4φ(r)(φ(r)− φ(r + 1))) , (10)

where, once again, we set φ(k) := φ(Pk;λ).

With the aid of Proposition 3.1, (10) and the software Wolfram|Alpha, the evaluation

of φ(Φr,5, λ) at λ1(P2r+4) = 2 cos γ gives

φ (Φr,5; 2 cos γ) = 64 sin6 γ

2
cos2 γ

2
> 0,

proving, together with Lemma 3.8, that the largest root of φ(Φr,5, λ) – and a fortiori

of φ(Φr,4, λ) – is smaller than 2 cos γ. Hence, the upper bound of (8) follows.

Table 1 in the Appendix involves the candidates to minimize the index in the several

Bn’s for 5 6 n 6 9. As many entries of Table 2, the values for the index from the

second column of Table 1 on are approximated. Obviously, they are consistent with

the bounds (7) and (8).
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1 2 k

Wk (k ⩾ 1) T2,2,2 T1,3,3 T1,2,5

F1 F2 F3 F4
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Figure 3. Some forbidden subgraphs.

This is Fig. 3

Figure 3. Some forbidden graphs

Corollary 3.10. The diameter of a signed graph minimizing the index in Bn does not
exceed νn := bn

2
c.

Proof. Let Γ̃n be a signed graph minimizing the index in Bn. If diam Γ̃n = k − 1,

then Γ̃n contains a signed path of order k and, by Corollary 3.3, 2 cos π
k+1 = λ1(Pk) ≤

λ1(Γ̃n). The statement now follows by looking at the upper bounds of (7) and (8).

The importance of Corollary 3.10 is transitory. In fact, νn is the diameter of the several

Φr,ε’s and Φ̃r,2’s . Therefore, Theorem 2.1, whose proof requires Corollary 3.10, will

ensure that the diameter of index-minimizers in Bn is precisely equal to νn.

Throughout the rest of the paper we say that a signed graph Λ is forbidden if and only

if λ1(Λ) > 2. The reason for this naming is readily explained. Let Γ̃n be a signed graph

minimizing the index in Bn for n > 4. From Proposition 3.9 and the fact that there

are signed diamonds of order 4 whose index is less than 2, we immediately deduce that

λ1(Γ̃n) < 2. Therefore, Corollary 3.3 implies that every forbidden signed graph cannot

be contained in Γ̃n. In particular, since λ1(Cbn) = 2, all graphs containing an induced

balanced cycle are forbidden. Fig. 3 depicts a certain number of minimal forbidden

signed graphs: in fact, their index is 2 and all their proper induced subgraphs have

index in the interval [0, 2). Graphs on the top row of Fig. 3, together with the cycles

Cn, are known as Smith graphs.

We end this section by giving a rationale for the comparisons of algebraic connec-

tivities performed in Section 5. Let G be an (unsigned) connected graph G with n

vertices. We denote by L(G) its line graph, and by 0 6 µ1(G) 6 µ2(G) 6 · · · 6 µn(G)

the eigenvalues of QG. When G is a tree, the signless Laplacian eigenvalues are also
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the eigenvalues of LG = DG − AG. Therefore, for every tree T , µ1(T ) = 0 and

µ2(T ) 6= 0 is known as the algebraic connectivity of T .

1 2 p w3

w4w2

w1

a2

a3

a4

a1

Γpa1,a2,a3,a4

2 q1

l1

l2

l3

l4

Hq
l1,l2,l3,l4

Figure 4. The signed graph Γpa1,a2,a3,a4 and the H-shape tree Hq
l1,l2,l3,l4

Figure 4. The signed graph Γpa1,a2,a3,a4
and the H-shape tree Hql1,l2,l3,l4

Proposition 3.11. The following equalities hold:

µ2(Tl1,l2,l3) = 2− λ1(U−l1−1,l2−1,l3−1), (11)

and

µ2(Hq
l1,l2,l3,l4

) = 2− λ1(Γq−1
l1−1,l2−1,l3−1,l4−1), (12)

where Tl1,l2,l3 is the T-shape graph depicted in Fig. 2, whereas Γpa1,a2,a3,a4 and the H-shape
tree Hq

l1,l2,l3,l4
are depicted in Fig. 4.

Proof. It is immediately seen that L(Tl1,l2,l3) and L(Hq
l1,l2,l3,l4

) are the underlying

graphs of U := U−l1−1,l2−1,l3−1 and Γ = Γq−1
l1−1,l2−1,l3−1,l4−1 respectively.

The signed graphs −U and −Γ are both balanced; therefore, they are spectral undis-

tinguishable from their underlying graphs. Moreover, if n is the order of both U and

Γ, then λ1(U) = λn(−U) and λ1(Γ) = λn(−Γ).

The equalities (11) and (12) now come from the well-known identity φA(L(T ), λ) =

(λ+ 2)−1φQ(T, λ+ 2) holding for every tree T (see, for instance [11, Eq. 2]).

4. Chasing index-minimizers

The diamond, i.e. the graph made by two triangles sharing an edge, is the only

bicyclic graph of order 4. By a direct calculation, the index of any diamond with

two unbalanced triangles is (
√

17 − 1)/2 < 2. Other types of diamonds contain at
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least one induced balanced triangle; hence, they are forbidden. This proves Part i) of

Theorem 2.1.

From now on we assume n > 5. Note that there exists a unique pair (r, ε) ∈ N0 ×
{2, 3, 4, 5} such that n = 4r + ε. The proof consists in showing that if the signed

bicyclic graph Γ belongs to Bn and it is not switching equivalent to Φ{n} defined in

(2), then λ1(Γ) > λ1(Φ{n}). By Proposition 3.9, we can take into consideration only

graphs in the set B∗n of bicyclic signed graphs of order n whose index is less than 2.

As already observed in Section 3, a signed graph in B∗n does not contain any balanced

cycle.

We recall that the base of a bicyclic graph Γ = (G, σ), denoted by Γ̂ = (Ĝ, σ|Ĝ), is

the (unique) minimal bicyclic signed subgraph of Γ.

It is easy to verify that Γ̂ is the unique bicyclic subgraph of Γ without pendant vertices

(i.e. vertices of degree is 1), and Γ can be obtained from Γ̂ by attaching signed trees

to some vertices of Γ̂.

The underlying graph Ĝ of Γ̂ can be either a dumbbell, an∞-graph, or a theta-graph.

In other words, B∗n = dn t in t thn, where

dn := {Γ ∈ B∗n | Ĝ is a dumbbell}, in := {Γ ∈ B∗n | Ĝ is an ∞-graph},

and

thn := {Γ = (G, σ) ∈ B∗n | Ĝ is a theta-graph}.

The cases Γ ∈ dn t in and Γ ∈ thn will be dealt in two separate subsections.

4.1. Index-minimizers in dn t in

Graphs in dn t in just contain two cycles, which are both unbalanced.

Let Cur and Cus (with r 6 s) be the two signed cycles contained in a signed graph

Γ ∈ d4r+ε t i4r+ε. Once we set

D(Γ) = min{d(v, w) | v ∈ Cur , w ∈ Cus },

it is clear that a graph Γ ∈ dn t in belongs to in if and only if D(Γ) = 0.

Lemma 4.1. Let Γ = (G, σ) ∈ dn t in. The two cycles of Γ have order r = 3 and s 6 5.

Proof. Assume by contradiction that r > 4. In this case G would contain a double

snake Wk (see Fig. 3) for a suitable k > 1, yet, double snakes are all forbidden.

Therefore, r = 3. Now, s 6 5, otherwise Γ would contain an induced subgraph

switching equivalent to either T2,2,2 or the graph F1 of Fig. 3; yet, T2,2,2 and F1 are

both forbidden.
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Γ1 Γ3Γ2 Γ4

Γ5 Γ6 Γ7 Γ8

Γ9 Γ10 Γ12Γ11

Γ13 Γ14 Γ15 Γ16

Figure 5. Some graphs in i6, i7, i8, d7 and d8.

Figure 5. Some graphs in i6, i7, i8, d7 and d8

Our investigation on graphs in dn t in will proceed from the biggest possible circum-

ference (which is 5, by Lemma 4.1) to the smallest one (which is 3).

Case 1. s = 5.

Let Cu3 and Cu5 be the two unbalanced cycles of a signed graph Γ = (G, σ) in dn t in.

Note that D(Γ) 6 1, otherwise Γ would contain a graph switching equivalent to one

of the following forbidden graphs in Fig. 3: the graph F2 if D(Γ) = 2; the graph F3 if

D(Γ) = 3; T1,2,5 if D(Γ) > 3.

A direct analysis shows that Γ is switching equivalent to one of the graphs Γi (1 6
i 6 4) depicted in Fig. 3. In fact, by adding to them an additional pendant vertex

in every possible way, if the resulting signed graphs is not in {Γ2,Γ3,Γ4}, then it is

forbidden.

Case 2. s = 4.

Let Cu3 and Cu4 be the two unbalanced cycles of a signed graph Γ = (G, σ) in dn t in,

and let v ∈ Cu3 and w ∈ Cu4 be the vertices such that d(v, w) = D(Γ). Clearly, v and

w are the ending vertices of the (possibly trivial) path in Γ̂ connecting the two cycles.

We denote by w′ and w′′ the vertices in Cu4 adjacent to w, and by dG(u) the degree

of a vertex u in G.

Subcase 2.1. dG(w′)dG(w′′) > 4.

As above, D(Γ) 6 1, otherwise Γ would contain a graph switching equivalent to one

of the following forbidden graphs in Fig. 2: the graph F4 if D(Γ) = 2; the graph

F3 if D(Γ) = 3; T1,2,5 if D(Γ) > 3. The non-forbidden signed graphs are switching

equivalent to the graphs Γi (5 6 i 6 8) depicted in Fig. 5.

Subcase 2.2. dG(w′)dG(w′′) = 4.
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Figure 6. The signed graph Λph,k,`
Figure 6. The signed graph Λph,k;`

Since the double snakes Wk’s and F5 are forbidden, the graph Γ is switching equivalent

to a signed graph of type Λph,k;`, where p = D(Γ) + 1, 0 6 h 6 k, ` > 0, with pendant

vertices u1,u2 and u3 (see Fig. 6). Since we are looking for possible index-minimizers,

by Corollary 3.10 neither of the three distances d(u1, u2), d(u1, u3) and d(u2, u3)

should exceed νn = bn2 c. This leads to the following algebraic constraints:

h+ k ≤ νn − 1, h+ p+ ` ≤ νn − 2, and k + p+ ` ≤ νn − 2, (13)

where ` = n− h− k − p− 5.

For even integers n = 2q, Conditions (13) are equivalent to

3 6 q 6 5, q − 3 6 h 6 k, h+ k < q. (14)

If instead n = 2q + 1, Conditions (13) are only satisfied for n = 7, h = 1 and k = 1,

but in this case ` would be negative.

There are only three graphs of type Λph,k;` satisfying (14). Namely: Λ1
0,0;0 of order 6,

Λ1
1,1;0 of order 8, and Λ1

2,2;0 of order 10.

Case 3. s = 3.

Let Γ be a graph in dn t in containing two unbalanced triangles, and let PΓ be the

path connecting the two triangles in the base Γ̂. Clearly, the order of PΓ is D(Γ) + 1.

Subcase 3.1. There are some vertices in V (Γ) \ V (Γ̂) adjacent to PΓ.

Since the graphs T1,3,3, F6, F7, and F8 in Fig. 3 are forbidden, we have D(Γ) 6 2. The

non-forbidden signed graphs are switching equivalent to the graphs Γi (9 6 i 6 15)

depicted in Fig. 5 (note that the graph F9 in Fig. 3 is forbidden).

Subcase 3.2. There are no vertices in V (Γ) \ V (Γ̂) adjacent to PΓ. Since the

double snakes Wk’s, together with T1,2,5, T1,3,3 and the graphs F10, F11 and F12 in

Fig. 3 are forbidden, apart from graph Γ16 of Fig. 5, signed graphs of this type in

dn t in are switching equivalent to an element in the set S ′n ∪ S ′′n , where

S ′n = {Γpa1,a2,a3,a4 ∈ dn t in | p > 1, a1 > a2 > 0, and a1 > a3 > a4 > 0}
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Figure 7. The signed graph Xp
b1,b2,b3,b4

Figure 7. The signed graph Xpb1,b2,b3,b4

and

S ′′n = {Xp
b1,b2,b3,b4

∈ dn t in | p > 1, b1 > 0, b2 > 0 and b3 > b4 > 0}.

Elements in S ′n and in S ′′n are respectively depicted in Figg. 4 and 7. Clearly,

Γ1
a1,a2,a3,a4 is precisely the graph Γa1,a2,a3,a4 of Fig. 1. We first seek for index-

minimizers in S ′n. Note that every positive integer n can be uniquely written in

the form

n = 2νn + ω, where νn =
⌊n

2

⌋
and ω =

1

2
(1 + (−1)n) .

Clearly, ω ∈ {0, 1} depends on the parity of n.

Lemma 4.2. If the diameter of Γpa1,a2,a3,a4 ∈ S
′
n does not exceed νn, then

a1 + a3 = νn − p− 1 and a2 + a4 = νn + ω − 3 with 1 6 p 6 2− ω. (15)

Proof. Since d(w1, w3) 6 νn and n = 2νn + ω =
∑4
i=1 ai + p+ 4, we can write

d(w1, w3) = a1 + a3 + p+ 1 = νn − k and a2 + a4 = νn + ω + k − 3 (16)

for some k > 0. With Equations (16) at hand, the inequality a1 +a3 > a2 +a4 implies

2k+ω 6 2−p 6 1, which is only possible for k = 0. Hence, p 6 2−ω, and Equations

(16) specialize to (15).

By Corollary 3.10 and Lemma 4.2, we immediately realize that if Γpa1,a2,a3,a4 minimizes

the index in S ′2νn+ω, then (ω, p) ∈ {(0, 1), (0, 2), (1, 1)}.
Subcase 3.2.1. (ω, p) = (0, 1).

Equations (15) now read

a1 + a3 = νn − 2 = (a2 + a4) + 1, (17)
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implying that a1 > (νn − 2)/2 and a2 > (νn − 3)/2. These two inequalities, together

with νn > d(w1, w2) = a1 + a2 + 1, give

νn − 2 6 a1 + a2 6 νn − 1.

By plugging a1 > a2 and a3 > a4 into (17) one at a time, we also obtain ai+1 6 ai 6
ai+1 + 1. for i ∈ {1, 3}. With these constraints at hand, it is now straightforward to

check that Φr,2 (for r > 1) and Φ̃r,2 (for r > 1) are the only possible index-minimizers

in S′4r+2 ∩ i4r+2. On the other hand, Φr,4 and Γr+1,r,r−1,r−1 are the only possible

index-minimizers in S′4r+4 ∩ i4r+4.

Subcase 3.2.2. (ω, p) = (0, 2).

Equations (15) become a1 + a3 = νn − 3 = a2 + a4 which, together with a1 > a2

and a3 > a4 gives a1 = a2 and a3 = a4. From d(w1, w2) = 2a1 + 1 6 νn and

a1 = νn − a3 − 3 we arrive at

νn − 5

2
6 a3 = a4 6 a1 = a2 6

νn − 1

2
. (18)

It is straightforward to check that the only signed graphs in S ′4r+2 ∩ d4r+2 satisfying

(18) are Γ2
r,r,r−2,r−2 and Γ2

r−1,r−1,r−1,r−1. In S ′4r+4 ∩ d4r+4, instead, constraints (18)

are only satisfied by Γ2
r,r,r−1,r−1 .

Subcase 3.2.3. (ω, p) = (1, 1).

The argument is similar to the previous subcase. Equations (15) become a1 + a3 =

νn−2 = a2 +a4 which, together with a1 > a2 and a3 > a4 gives a1 = a2 and a3 = a4.

From d(w1, w2) = 2a1 + 1 6 νn and a1 = νn − a3 − 2 we arrive at

νn − 3

2
6 a3 = a4 6 a1 = a2 6

νn − 1

2
. (19)

For n = 4r + 3, the sum a1 + a3 = νn − 2 is odd; therefore, a1 6= a3. Moreover,

(νn − 3)/2 = r − 1 and (νn − 1)/2 = r. The only signed graph in S ′4r+3 satisfying

(19) is Φr,3 = Γr,r,r−1,r−1. For n = 4r + 5, instead, (νn − 2)/2 = r, whereas the

numbers (νn − 3)/2 and (νn − 1)/2 are not integers. Hence, the only integral 4-tuple

(a1, a2, a3, a4) satisfying (19) is (r, r, r, r). In other words, the only index-minimizer

in S ′4r+5 is Φr,5.

Proposition 4.3. For each n > 5 the set S ′n contains just one signed graph minimizing
the index. Such graph is Φ{n} defined in (2).

Proof. Subcase 3.2.3 analyzed above makes the statement trivial when n is odd. Let

n be an even integer larger than 4. For n = 6, a direct check shows that λ1(Φ1,2) <

λ1(Γ2
0,0,0,0). For n > 8 we use Proposition 3.11 and the several comparison of algebraic
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connectivities performed in Section 5. More precisely, for n = 4r + 2 and r > 1,

Propositions 5.6-5.8 will ensure that Φ̃r,2 has the smallest index in the set

{Φ̃r,2,Φr,2,Γ2
r−1,r−1,r−1,r−1,Γ

2
r,r,r−2,r−2}.

Similarly, for n = 4r + 4 and r > 1, Propositions 5.9 and 5.10 will suffice to prove

that Φr,4 minimizes the index in the set

{Φr,4,Γr+1,r,r−1,r−1,Γ
2
r,r,r−1,r−1}.

The next step consists in showing that no graph in S ′′n minimizes the index in dnt in.

Note that S ′′n is nonempty for n > 7. Let Γ be a signed graph. For every eigenvalue

λ of AΓ, we denote by yv the component of the λ-eigenvector y correspondent to a

fixed vertex v ∈ V (Γ).

Lemma 4.4. Let w be a pendant vertex of the index-minimizer Γ̃′n in S ′n for n > 7, and
let x be a λ1(Γ̃′n)-eigenvector. Then, xw is nonzero.

Proof. Let v, λ and x be a vertex of a signed graph Γ, an eigenvalue of AΓ and a

λ-eigenvector respectively. It is well known that if xv = 0, then λ is also an eigenvalue

of AΓ−v (see, for instance, [16]). From the eigenvalue equations, we also see that if

Γ is in S ′n and w is a pendant vertex such that xw = 0, then λ is also an eigenvalue

of the graph obtained by cutting the vertices of the path connecting w to the base.

This fact will be repeatedly used along all the cases. For terminology, we shall always

refer to Fig. 1.

Case 1. n = 4r + 2 (r > 2).

For 1 6 i 6 4, the graphs Φ̃r,2(i)’s obtained by removing from Φ̃r,2 = Γr,r,r−1,r−2 the

path connecting wi to ui are all induced subgraph of U−r,r,r, whose index is λ1(P2r+2)

(see [1, Theorem 3.4] ). Yet, by interlacing and [1, Theorem 3.4]

λ1(Φ̃r,2) > λ1(Φ̃r,2 − w1) = λ1(U−r+1,r−1,r−2) > λ1(P2r+2).

Hence, λ1(Φ̃r,2) > λ1(Φ̃r,2(i)) and xwi 6= 0 for 1 6 i 6 4.

Case 2. n = 4r + 3 (r > 1).

Let λ be the index of Φr,3 = Γr,r,r−1,r−1, and let x be a λ-eigenvector. By symmetry,

xw1
= xw2

, xu1
= xu2

and xu3
= xu4

. Suppose that xw1
= 0. The eigenvalue

equations show that xw2
= xu1

= xu2
= xv = 0 and xu3

= −xu4
. This should

be possible only if all components of x were null, and this cannot occur. The cases

xwi = 0 for i > 1 are treated similarly.

Case 3. n = 4r + 4 (r > 1).

For 1 6 i 6 4, let Φr,4(i) be the graph obtained by removing from Φr,4 = Γr,r,r,r−1

the path connecting wi to ui. The graphs Φr,4(i) for i < 4 are all induced subgraph
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of U−r,r,r, whose index is λ1(P2r+2) (see [1, Theorem 3.4]), whereas Φr,4(4) = U−r+1,r,r.

Yet, by Proposition 3.9, λ1(Φr,4) > λ1(P2r+2). This implies that λ1(Φr,4) >

λ1(Φr,4(i)) for i < 4; therefore xwi 6= 0 for i < 4. Now, suppose by contradic-

tion that xw4 = 0. This would imply λ1(Φr,4) = λ1(U−r+1,r,r) which, by (11) and (12),

is equivalent to µ2(H2
r+1,r+1,r+1,r) = µ2(Tr+2,r+1,r+1) against Corollary 5.5.

Case 4. n = 4r + 5 (r > 1).

Let λ be the index of Φr,5 = Γr,r,r,r, and let x be a λ-eigenvector. By symmetry, if

xwj = 0 for some j ∈ {1, 2, 3, 4} then xwi = 0 for all i ∈ {1, 2, 3, 4}. Through the

eigenvalue equation we shall infer that all components of x were null, and this is not

possible. Hence, the statement is proved.

Proposition 4.5. Let n > 7. For each signed graph Γ′′ in S ′′n there exists a graph Γ̃′ in
S ′n such that λ1(Γ̃′) < λ1(Γ′′).

Proof. Let Γ′′ := Xp
b1,b2,b3,b4

a graph in S ′′n . We consider the graph Γ′ = Γpb+1,b2,b3,b4

in S ′n obtained by replacing the positive edge uv with the positive edge uw1 (see

Fig. 7). We set λ = λ1(Γ′) and consider a λ-eigenvector x of AΓ′ with xu > 0. From

the eigenvalue equations we deduce

xw1
= λxu; and xv =

(
λ− 1

λ

)
xw1

.

By definition, either Φ1,2 or the graph U−2,1,0 defined in [1] are induced subgraph of

Γ′. Therefore, by interlacing, λ > (
√

5 + 1)/2. This implies that xv 6 xw1 . By [1,

Lemma 2.8] it follows that λ1(Γ′) 6 λ1(Γ′′), where the inequality is surely strict if xu
is nonzero. Now, if Γ′ is an index-minimizer in S ′n, then the statement comes from

Lemma 4.4. Otherwise, there exists a Γ̃′n in S ′n such that λ1(Γ̃′n) < λ1(Γ′) 6 λ1(Γ′′),

as claimed.

Proposition 4.6. For each n > 5, every index-minimizer in the set dn t in is switching
equivalent to Φ{n}.

Proof. The case analysis performed in this subsection detected all potential index-

minimizers. Let ni be the order of the signed graph Γi in Fig. 5. Note that ni 6
8. From Table 2 in the Appendix we learn that λ1(Φ{ni}) < λ1(Γi) for 1 6 i 6
16, λ1(Φ{6}) < min{λ1(Λ1

0,0;0, λ1(Γ2
0,0,0,0)} and λ1(Φ{8}) < λ1(Λ1

1,1;0). Moreover,

λ1(Φ{10}) < λ1(Λ1
2,2;0) = 1.93295. The statement now comes from Propositions 4.3

and 4.5.

4.2. A closer look to thn

The entire subsection can be regarded as a proof of the following result.
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Theorem 4.7. The inequality λ1(Φ{n}) < λ1(Θ) holds for each n > 5 and for each
Θ ∈ thn.

It is immediately seen that Theorem 4.7 and Proposition 4.6, together with the intro-

ductory remarks at the beginning of Section 4, prove Theorem 2.1. Even when not

explicitly stated, we always assume n > 5.

Lemma 4.8. Every Θ ∈ thn has two unbalanced cycles sharing precisely one edge.

Proof. Suppose that the base Λ̂ of a signed graph Λ of order n is a theta-graph. If

Λ̂ does not contain two unbalanced cycles sharing precisely one edge, then Λ̂ (and Λ

as well) contains as induced subgraph at least one balanced cycle. Thus, λ1(Λ) > 2;

hence, Λ 6∈ thn.

For 3 6 r 6 s, let Θ(Cr, Cs) denote the set of signed graphs whose base has two

unbalanced cycles of order r and s sharing precisely one edge, and let th =
⋃
n>4 thn.

We could rephrase Lemma 4.8 by saying that th ⊂
⋃

36r6s Θ(Cr, Cs).

Lemma 4.9. If th ∩ Θ(Cr, Cs) is nonempty, then r 6 4. Moreover, if th ∩ Θ(C4, Cs) is
nonempty, then s 6 6.

Proof. Let 5 6 r 6 s. The underlying graph of every Θ ∈ Θ(Cr, Cs) contains the

double snake W1 (see Fig. 3) which is forbidden. For s > 7, a graph Θ ∈ Θ(C4, Cs)

contains a subgraph switching equivalent to the forbidden graph F13 in Fig. 10.

Up to switching equivalence, there are just eight signed graphs in th ∩⋃
46r6s66 Θ(Cr, Cs). Referring to the notation of Fig. 8, we find

Θi ∈


Θ(C4, C6) if i = 1;

Θ(C4, C5) if 2 6 i 6 4;

Θ(C4, C4) if 5 6 i 6 8.

In fact, every signed graph obtained by adding an additional pendant vertex to an

item in T(1) = {Θi | 1 6 i 6 8}, if not in T(1), has either T1,3,3, T2,2,2, a double

snake, or a forbidden graph in {Fi | 13 6 i 6 16} (see Fig. 10) among their induced

subgraphs.

We now take into account the signed graphs in th containing triangles.

Lemma 4.10. For each s > 3, p > q > 0 and p 6= 0, let Zs;p be the signed graph in Fig. 9,
and let ∆p,q and ∆′p,q be the graphs in Fig. 11. Then,

(i) φA(Zs;p, 2) = 4;

(ii) φA(∆p,q, 2) = 4;

(iii) φA(∆′p,q, 2) = 4− pq.
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Figure 8. Some good Theta-graph

Figure 8. Some graphs in thn for 6 6 n 6 8.
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Cus

p
Zs;p

v
Cus

p
Z ′
s;p

Figure 9. The signed graphs Zs;p and Z ′
s;p

Figure 9. The signed graphs Zs;p and Z′s;p.
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Proof. Let Θ be a signed graph of type Zs;p, ∆p,q, or ∆′p,q, and let w denote the

vertex depicted in Figg. 9 and 11. The Schwenk decomposition (3) with respect to

the vertex w (see Fig. 9) gives:

φ(Zs;p) = λφ(Cus )φ(Pp−1)− 2φ(Ps−1)φ(Pp−1)

− φ(Pp−2)φ(Cus ) + 2φ(Pp−1)φ(Ps−2)− 2φ(Pp−1), (20)

φ(∆p,q) = φ(Pp) (λφ(T1,1,q)− 2φ(Pq+2)

−φ(Pq)(λ
2 − 4λ+ 2)

)
− φ(Pp−1)φ(T1,1,q), (21)

and

φ(∆′p,q) = λφ(Pp+q+3)− φ(Pp) (φ(Pq+2)− 2φ(Pq+1) + 2φ(Pq))

− φ(Pq)(φ(Pp+2)− 2φ(Pp+1))− φ(Pp+1)φ(Pq+1), (22)

where φ(Γ) stands for φA(Γ, λ), T1,1,0 := P3 and the pair (φ(P0), φ(P−1)) must be read

as (1, 0). By plugging in 20-22 φA(Cus , 2) = φ(T1,1,q, 2) = 4 and φA(Ph, 2) = h + 1,

we easily arrive at the three equations in the statement.

Proposition 4.11. For each s > 3, p > q > 0 and p 6= 0, the graphs Zs;p and ∆p,q belong
to th, whereas the only graphs of type ∆′p,q in th are ∆′p,0, ∆′1,1 and ∆′2,1.

Proof. Let Θ be a signed graph of type Zs;p, ∆p,q or ∆′p,q, and let w denote the

vertex depicted in Figg. 9 and 11. We observe that in all cases λ1(Θ−w) < 2. Since,

by interlacing, λ2(Θ) < 2, the condition λ1(Θ) < 2 is equivalent to φA(Θ, 2) > 0. The

statement now follows from Lemma 4.10.

It is worthwhile to notice that ∆′(p,0) = Z3;p.

Proposition 4.12. For every s > 3 and p > 1, the index of the signed graphs Z′s;p in
Fig. 9 is 2.

Proof. Let v be the vertex of Z ′s;p as in Fig. 9. We set Zs;0 := Cus . By interlacing

and Proposition 4.11, λ2(Z ′s;p) ≤ λ1(Zs;p−1) < 2. The statement will be proved once

we show that φA(Z ′s;p, 2) = 0. The Schwenk decomposition (3) with respect to the

vertex v (see Fig. 9) gives:

φ(Z ′s;p) =

{
φ(Zs;p−1)(λ3 − 2λ)− λ2φ(Zs;p−2) if p > 2,

φ(Cus )(λ3 − 2λ)− 2λ2 (φ(Ps−1)− φ(Ps−2) + 2) if p = 1,
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Figure 10. Further forbidden subgraphs.

Figure 10. Further forbidden graphs.

where we have adopted the same convention as in the proof of Lemma 4.10 to de-

note characteristic polynomials. Recalling from Lemma 4.10 that φA(Zs;p−1, 2) =

φA(Cus , 2) = 4 for all p > 1, and knowing that φ(Ph, 2) = h + 1, we see that 2 is

indeed a root of the polynomial φ(Z ′s;p).

For s > 3, we now describe the set Us := Θ(C3, Cs) ∩ th.

Lemma 4.13. For s > 7, every Θ ∈ Us is switching equivalent to Zs;p for some p > 1.

Proof. Let s > 7. If there exists a Θ ∈ Us which is not switching equivalent to any

Zs;p, then it contains a subgraph switching equivalent to either a graph of type Z ′s;q
or a forbidden graph in the set {T1,3,3, F6, F18, F19}. Hence, λ1(Θ) > 2.
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Figure 11. The signed graphs ∆p,q and ∆′p,q.

Up to switching equivalence, it turns out that

(i) U6 = {Θi | 9 6 i 6 11} ∪ {Z6;p | p > 1} (see Figg. 8 and 9);

(ii) U5 = {Θi | 12 6 i 6 14} ∪ {Z5;p | p > 1};

(iii) U4 = {Θi | 15 6 i 6 33} ∪ {Z4;p | p > 1};

(iv) U3 = {Θi | 34 6 i 6 39} ∪ {Z3;p | p > 1} ∪ {∆p,q | p > q > 0} ∪ {∆′1,1,∆′2,1}.

In fact, up to switching equivalence, every signed graph obtained by adding an addi-

tional pendant vertex to an item in T(2) = {Θi | 9 6 i 6 33}, if not in T(2), contains

a double snake, a graph of type Z ′s;q, or a forbidden graph in {T2,2,2, F1, F6, F13, Fi |
19 6 i 6 35} (see Figg. 3 and 10). Similarly, every signed graph obtained by

adding an additional pendant vertex to an item in T(3) = {Θi | 9 6 i 6 35}, if

not in T(3), contains a double snake, a graph of type Z ′3;q, or a forbidden graph in

{Fi,∆′p,q | 36 6 i 6 42, pq = 4}.
The next proposition is the last result we need to prove Theorem 4.7.

Proposition 4.14. Let n be the order of Θ ∈ {∆′1,1,∆′2,0, Zs;p,∆p,q | p > q > 0, p 6= 0}.
If diam Θ 6 νn = bn/2c, then

(i) Θ ∈ {Z4;1,∆1,0} for n = 5;

(ii) Θ ∈ {Z5;1, Z4;2,∆1,1,∆2,0} for n = 6;

(iii) Θ ∈ {Zn−1;1, Zn−2;2} for even n > 6;

(iv) Θ ∈ {Zn−1;1} for odd n > 5.

Proof. We immediately see that ∆′1,1 and ∆′2,0 have order 6 and diameter 4 > ν6 = 3.

Now, let Zs;p be a signed graph of order n = 4r + ε with 2 6 ε 6 5. It is not hard to

check that

diamZs;p = p+
⌈s

2

⌉
− 1 =

{
p+ k − 1 for even s = 2k

p+ k for odd s = 2k + 1.
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By studying separately the four cases

1) s even and ε ∈ {2, 3}, 2) s even and ε ∈ {4, 5},
3) s odd and ε ∈ {2, 3}, 4) s odd and ε ∈ {4, 5},

we discover that the conditions

s+ p = n = 4r + ε and p+
⌈s

2

⌉
− 1 6

⌊n
2

⌋
=
⌊
2r +

ε

2

⌋
are both satisfied only if (s, p) = (n− 1, 1) and (s, p) = (n− 2, 2) when n is even, and

only if (s, p) = (n− 1, 1) when n is odd. Analogously, since diam ∆p,q = p+ q+ 1, by

distinguishing the cases ε ∈ {2, 3} and ε ∈ {4, 5}, we check without difficulty that the

conditions

|V∆p,q
| = p+ q + 4 = n = 4r + ε and p+ q + 1 6

⌊n
2

⌋
=
⌊
2r +

ε

2

⌋
are only satisfied for ε = 1, r = 0 and (p, q) = (1, 0), and ε = 3, r = 1 and p+ q = 2,

i.e. (p, q) = (1, 1) or (p, q) = (2, 0).

We are now ready to finish the proof of Theorem 4.7. Summarizing the results gath-

ered so far, we have proved that, up to switching equivalence,

⋃
n>5

thn = {Θi, | 1 6 i 6 39} ∪ {∆′1,1,∆′2,1, Zs;p,∆p,q, s > 3, p > q > 0, p 6= 0}. (23)

If we add to (23) the diamond ∆0,0 with four vertices and two unbalanced triangles we

obtain the switching equivalence representatives of all signed bicyclic graphs whose

base is a theta-graph and whose index is smaller than 2.

Denoted by ni the order of Θi for 1 6 i 6 39 in Fig. 8, from Table 4 in the Appendix

we learn that λ1(Φ(ni)) < λ1(Θi) for 1 6 i 6 39. Now, by Corollary 3.10 and

Proposition 4.6 we only need to check the inequalities λ1(Φ{s+p}) < λ1(Zs;p) and

λ1(Φ{p+q+4}) < λ1(∆p,q) for the graphs listed in Proposition 4.14(i)-(iii). On Table 4

we read that λ1(Φ{6}) < min{λ1(∆1,1), λ1(∆2,0)}. For the remaining signed graphs

we distinguish three cases.

Case 1. n = 4r + 2.

For r = 1, a direct computation shows that λ1(Z5;1) = 1.75660 and λ1(Z4;2) = 1.81361

are both larger than λ1(Φ1,2) = 1.67828. For r > 2, we consider the vertex w in Fig. 9.

By interlacing and Proposition 3.9, we arrive at

λ1(Z4r+1;1) > λ1(Z4r+1;1 − w) =

λ1(Cu4r+1) = 2 cos
π

4r + 1
> 2 cos

π

2r + 4
> λ(Φ{4r+2}),
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and

λ1(Z4r;2) > λ1(Z4r;2 − w) = λ1(Cu4r) = 2 cos
π

4r
> 2 cos

π

2r + 4
> λ(Φ{4r+2}).

Case 2. n = 4r + 4.

Again by interlacing and Proposition 3.9, we see that

λ1(Z4r+3;1) > λ1(Z4r+3;1 − w) =

λ1(Cu4r+3) = 2 cos
π

4r + 3
> 2 cos

π

2r + 5
> λ(Φ{4r+4}), for all r > 1.

Moreover,

λ1(Z4r+2;2) > λ1(Z4r+2;2 − w) =

λ1(Cu4r+2) = 2 cos
π

4r + 2
> 2 cos

π

2r + 5
> λ(Φ{4r+4}), for all r > 2.

Finally, for r = 1, λ1(Z6;2) = 1.87228 > 1.76893 = λ(Φ{8}).

Case 3. n = 4r + 2t+ 1 with t ∈ {1, 2}.
Arguing as above,

λ1(Z4r+2t;1) > λ1(Z4r+2t;1 − w) =

λ1(Cu4r+2t) = 2 cos
π

4r + 2t
> 2 cos

π

2r + 3 + t
> λ(Φ{4r+2t+1}).

5. A comparison of algebraic connectivities

In this section we compare the algebraic connectivity of some pairs of graphs of

type Tl1,l2,l3 or Hq
l1,l2,l3,l4

(see Figg. 2 and 4). The main tools for doing that is the

algorithm presented in Figure 12, which may be used to determine the number of

Q-eigenvalues of a given tree in any interval. It is a Q-variant of the Jacobs-Trevisan

algorithm [15] originally devised for the adjacency matrix. Recently, such Q-variant

has been successfully employed to compare Q-indices of quipus [5]. The algorithm is

based on the diagonalization of the matrix Q(T )+αI, where α is a given real number.

In fact, it produces a diagonal matrix D congruent to Q(T ) + αI. Consequently, the

following result holds.

Theorem 5.1. [5, Theorem 3.1] Let T be a tree and consider Diagonalize(T,−α). Let
(dv)v∈V (T ) be the sequence it produces. Then, the diagonal matrix D = diag(dv)v∈V (T ) is
congruent to Q(T )−αI. So the number of ( positive | negative | zero ) entries in (dv)v∈V (T )

is equal to the number of eigenvalues of Q(T ) that are ( greater than α | smaller than α |
equal to α ).
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Figure 12. The algorithm Diagonalize(T,−α).

Input: tree T, scalar α

Output: diagonal matrix D congruent to A(T ) + αI

Algorithm Diagonalize(T, α)

initialize d(v) := deg(v) + α, for all vertices v
order vertices bottom up

for k = 1 to n

if vk is a leaf then continue

else if d(c) 6= 0 for all children c of vk then

d(vk) := d(vk)−
∑ 1

d(c)
, summing over all children of vk

else

select one child vj of vk for which d(vj) = 0

d(vk) := − 1
2

d(vj) := 2

if vk has a parent vl, remove the edge vkvl.
end loop

Tl1,l2,l3

z1 z2 z l1 aṽ

z l3

z l3−1

z1

z l2 z2 z1

z1

z1

z2

z2
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baṽ

z1

z1

z2

z2z l3
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l1,l2,l3,l4

z1

z1

z2

z2
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z l1

aṽ
cb

z1

z1

z2

z2z l3

z l4

H3
l1,l2,l3,l4

Figure 13. Valued T - and H-trees after running the algorithm

Figure 13. Valued T -shape and H-shape trees after running the algorithm

Note that the algorithm requires the choice in T of a root ṽ, which is the last vertex to

be processed. For each v 6= ṽ, the final output dv is given by the value d(v) computed

on line 6 of the algorithm if d(v) 6= 0. The types of trees on which the algorithm will

be implemented are depicted in Fig. 13.

Lemma 5.2. Let T be one of the trees in Fig. 13, and let l be the maximum among the
labels of the zi’s involved. Once we execute Diagonalize(T,−α) with 0 < α < 1, and zh > 0
for a fixed h 6 l − 1, then zh+1 < zh.
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Proof. By choosing as root the vertex ṽ with output aṽ, we arrive at the following

recursive relations {
z1 = 1− α
zi+1 = 2− α− 1

zi
, i = 1, . . . , l − 1.

If zi > 0, the inequality zi+1 < zi is equivalent to z2
i − (2 − α)zi + 1 > 0, which

actually holds. In fact, ∆ = (2− α)2 − 4 is negative.

The following lemma is known to the experts and it is a consequence of [18, Theorem

3.1].

Lemma 5.3. Let T and T ′ be two trees. If T ⊆ T ′, then µ2(T ) > µ2(T ′).

Proposition 5.4. For each r > 1, µ2(Tr+2,r+1,r+1) > µ2(H2
r+1,r+1,r+1,1).

Proof. Let T := Tr+2,r+1,r+1, T ′ = H2
r+1,r+1,r+1,1 and T ′′ = T3,2,2. Since T ′′ ⊆ T ⊂

T ′, by Lemma 5.3 or, equivalently, by Proposition 3.11 and interlacing,

µ2(T ′) 6 µ := µ2(T ) 6 µ2(T ′′) = 0.2434. (24)

In order to show that the first inequality in (24) is strict, we are going to execute

D:=Diagonalize(T,−µ) first, and D′=Diagonalize(T ′,−µ) afterwards. Our claim will

be proved once we show that D′ provides at least two negative outputs. In the case

at hand, the graph on the left of Fig. 13 has (zl1 , zl2 , zl3) = (zr+2, zr+1, zr+1). Since T

has only one Q-eigenvalue less than µ2(T ), at its completion the algorithm D produces

(at least) a zero and exactly one negative output. Whilst the D is processing, the

case zi = 0 for some i cannot occur. In fact, the appearance of 0 among z1, . . . , zr+1

would produce two negative outputs, and zr+2 = 0 (once we know that zi 6= 0 for

i < r + 2) would produce no zero outputs. Hence, zr+2 < 0 and

aṽ(T ) = (3− µ)− 2

zr+1
− 1

zr+2
= 0. (25)

By plugging in (25) zr+2 = 2−µ− z−1
r+1, it turns out that zr+1 is the smallest root of

(5− 5µ+ µ2)x2 − (7− 3µ)x+ 2, i.e.

zr+1 =
7− 3µ−

√
9− 2µ+ µ2

2(5− 5µ+ µ2)
. (26)

From zr+2 = zr+1((2 − µ)zr+1 − 1)−1 < 0, we deduce zr+1 < (2 − µ)−1, therefore,

when we execute D′, the output correspondent to the non-root of degree 3 is

b = 3− µ− 1

zr+1
− 1

z1
< 3− µ+ (µ− 2)− (1− µ)−1 = −µ/(1− µ) < 0,
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and with the aid of Wolfram|Alpha we discover that the output at the root of T ′

(3− µ)− 2

zr+1
− 1

b
= (3− µ)− 2

zr+1
+

(1− µ)zr+1

(1− µ)− (2− 4µ+ µ2)zr+1

is negative as well for µ ∈ (0, 0.25) when we plug (26) in it.

Corollary 5.5. For each r > 1, µ2(Tr+2,r+1,r+1) > µ2(H2
r+1,r+1,r+1,r).

Proof. Since H2
r+1,r+1,r+1,1 ⊆ H2

r+1,r+1,r+1,r, from Lemma 5.3 and Proposition 5.4

we immediately obtain

µ2(Tr+2,r+1,r+1) > µ2(H2
r+1,r+1,r+1,1) > µ2(H2

r+1,r+1,r+1,r).

The next three propositions compare the algebraic connectivity of H-shape trees with

4r + 3 vertices.

Proposition 5.6. For each r > 2, µ2(H2
r+1,r,r,r) < µ2(H2

r+1,r+1,r,r−1).

Proof. We set T (r) := H2
r+1,r,r,r, T

′(r) := H2
r+1,r+1,r−1,r−2, and µ := µ2(T (r)). For

r ∈ {2, 3} the statement comes from a direct computation.

Let r > 4. The proof first requires the execution of D:=Diagonalize(T (r),−µ). Since

T (4) ⊆ T (r), Lemma 5.3 yields µ := µ2(T (r)) 6 µ2(T (4)) = 0.07165 < 0.0844. The

importance of this bound will be clear later on.

Note that D produces (at least) one zero output and just one negative final value;

therefore, zi > 0 for 0 6 i 6 r. We also have zr+1 = (2 − µ) − z−1
r > 0. Otherwise

z−1
r 6 2− µ, and D would produce at least two negative outputs: one along the first

H-ray (or at the root if zr+1 = 0) and

b = 3− µ− 2z−1
r 6 (3− µ)− (4− 2µ) < 0.

When b is firstly processed, it cannot be zero. Otherwise the outputs at the two

vertices of degree 3 would be 2 and −1/2, and no zero output would come out.

So far, we have proved that zi > 0 for 1 6 i 6 r + 1 and b = 3− µ− 2z−1
r < 0. From

zr+1 > 0 and b < 0, we deduce

(2− µ)−1 < zr < 2(3− µ)−1. (27)

A straightforward manipulation shows that a(ṽ) = 3 − µ − z−1
r − z−1

r+1 − b−1 is zero

if and only if fµ(zr) = 0, where

fµ(x) = (13− 19µ+ 8µ2 − µ3)x3 − (24− 21µ+ 4µ2)x2 + (13− 5µ)x− 2. (28)
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x

f(x)

1
2−µ

−2

2
3−µzr

z∞

fµ(x)

Figure 14. The function fµ(x)

As a consequence of (7) and (12), when r → ∞, µ tends to 0. Thus, by (27) and

(28), zr tends to z∞ = (11 +
√

17)/26, which is the only root of f0(x) in the interval

(1/2, 3/2). Condition µ < 0.0844 (holding for r > 4) ensures that z∞ belongs to the

interval (1/(2− µ), 2/(3− µ)). Moreover,

fµ(z∞) = − 1

4394

(
(95
√

17 + 473)µ2 − 4(47
√

17 + 49)µ− (353
√

17 + 555)
)

is positive and belongs to the interval (0.0458, 0.052). The contour plot of the function

fµ(x) is sketched in Fig. 14. It takes into account the equalities fµ(1/(2 − µ)) =

(1− µ)/(2− µ)3 > 0 and fµ(2/(3− µ)) = −4(1− µ)/(3− µ)3 < 0.

Since the number

fµ

(√
5− 1

2

)
= −1

2

(
2(
√

5− 2)µ3 + 4(11− 5
√

5)µ2 + 16(4
√

5− 9)µ− 63
√

5 + 141
)

is negative for µ < 0.0844, we also infer by Fig. 14 that

0 < z∞ < zr < (
√

5− 1)/2. (29)

We now consider the graph T ′(r) and execute D′:=Diagonalize(T ′(r),−µ), proving

that it just gives one negative output; namely b(T ′). We already know that the zi’s

are all positive for 1 6 i 6 r + 1, and

b(T ′) = 3− µ− z−1
r − z−1

r−1 = 3− µ− z−1
r + zr − (2− µ)

= z−1
r (z2

r + zr − 1).
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This number is negative by (29). The output corresponding to the root is

aṽ(T
′) = 3− µ− 2z−1

r+1 − b(T ′)−1 =
Ω(zr)

(z2
r + zr − 1)((2− µ)zr + 1)

where

Ω(x) = (µ2 − 5µ+ 4)x3 + (µ2 − 3µ+ 1)x2 − (µ2 − 6µ+ 6)x+ 3− µ.

The proof will be over once we show that aṽ(T
′) > 0 or, equivalently, Ω(zr) < 0. By

the Descartes’s rule of signs, the polynomial Ω(x) has two positive roots, but only

one of them belongs to the interval ((2− µ)−1, 1), since

Ω(1/(2− µ)) = 2(2− µ3)(µ3 − 3µ+ 1) > 0, and Ω(1) = −µ(3− µ) < 0.

With the aid of Wolfram|Alpha, we compute

Ω(z∞) = − 1

4394

(
3(23
√

17− 163)µ2 + 2(55
√

17 + 852)µ− 777
√

17 + 3023
)

which is negative for µ < 0.0844. As claimed, Ω(zr) < 0. In fact,

zr ∈
(
z∞, 2(3− µ)−1

)
⊂ (z∞, 1),

an interval along which Ω(x) is always negative.

Proposition 5.7. For each r > 1, µ2(H2
r+1,r,r,r) > µ2(H3

r,r,r,r).

Proof. A direct check suffices to prove the statement for r ∈ {2, 3}. Let now r > 4.

We set once again µ := µ2(H), where H =: H2
r+1,r,r,r and use some results obtained

along the previous proof to execute DH′ :=Diagonalize(H ′,−µ), where H ′ := H3
r,r,r,r

(see the H-shape tree on the right in Fig. 13). In fact, we already know that zi > 0

for all i 6 r + 1, and b(H) := 3− µ− 2z−1
r < 0. Now, the numbers b(H ′) and c(H ′)

correspondent to the two vertices of degree 3 in H ′ are both equal to b(H). The

presence of at least two negative outputs for DH′ prove the statement.

Proposition 5.8. For each r > 2, µ2(H2
r+1,r+1,r,r−1) > µ2(H3

r+1,r+1,r−1,r−1).

Proof. We set T̃ (r) := H2
r,r−1,r+1,r+1 (the root we are choosing is adjacent to H-rays

of different length), T̃ ′(r) := H3
r+1,r+1,r−1,r−1, and µ := µ2(T̃ (r)). Since µ2(T̃ (2)) =

0.18216, by Lemma 5.3 we know that µ 6 0.18216 for every r > 2.
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The proof first requires the execution of D̃:=Diagonalize(T̃ (r),−µ). Since many ar-

guments are similar to the ones used along the proof of Proposition 5.6, we shall skip

some details. We know that among the final values produced by D̃ at least one is zero

and precisely one is negative; therefore zi > 0 for all i 6 r. Note that zr+1 is positive

as well: if along the process zr+1 = 0, then the final outputs at the two vertices of

degree 3 would be both negative.

Now, by Lemma 5.2, the numbers

b(T̃ (r)) = 3− µ− 2z−1
r+1 =

zr
z2
r + zr − 1

(30)

and 3−µ−z−1
r −z−1

r−1 cannot be both zero. Thus, b(T̃ (r)) is the (necessarily negative)

output correspondent to the non-root vertex of degree 3, whereas the output at the

root is

aṽ(T̃ (r)) = 3− µ− z−1
r − z−1

r−1 − b(T̃ (r))−1 = 0.

Since b(T̃ (r)) < 0, Equation (30) shows that zr < (
√

5−1)/2. By expressing aṽ(T̃ (r))

only in terms of zr and µ, we discover that zr is the only root of

gµ(x) = (4− 5µ+ µ2)x2 − (1 + 3µ− µ2)x2 − (6− 6µ+ µ2)x+ 3− µ

belonging to the interval (0, 1). In fact, the polynomial has a negative root, gµ(0) > 0

and gµ(1) = −µ(3 − µ) < 0. We also deduce that the function gµ(x) is positive for

x ∈ (0, zr) and negative for x ∈ (zr, 1).

When r → ∞, zr tends to z∞ = (
√

57 − 3)/8, which is the smallest positive root of

g0(x). We observe that zr > z∞ since the number

gµ(z∞) =
µ

128

(
(45− 7

√
57)µ+ 27

√
57− 137

)
is positive.

We now execute D̃′:=Diagonalize(T̃ ′(r),−µ). The proof will be over once we show

that D′ has at least two negative outputs. We already know that zi > 0 for all

i 6 r + 1. Let b(T̃ ′(r)) and c(T̃ ′(r)) denote the outputs of D′ in correspondence of

the two vertices of degree 3 (see Fig. 13). We have

b(T̃ ′(r)) = b(T̃ (r)) = 3− µ− 2z−1
r+1 < 0.

On the contrary,

c(T̃ ′(r)) = 3− µ− 2z−1
r−1 = 2zr + µ− 1

is positive, since zr > z∞ > 0.568 > (1−µ)/2. The last step consists in showing that

aṽ(T̃ ′(r)) = 2 − µ − b(T̃ ′(r))−1 − c(T̃ ′(r))−1 is negative. After some calculations, it

turns out that

aṽ(T̃ ′(r)) = − Υµ(zr)

(2zr + µ− 1)(3− µ− zr(4− 5µ+ µ2))
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where the denominator is positive and

Υµ(x) = 2(2−µ)(3−5µ+µ2)x2− (20−34µ+23µ2−8µ3 +µ4)x+8−11µ+6µ2−µ3.

For 0 < µ < 0.18216, Υµ(x) is a facing up parabola with two positive roots. Further-

more, Υµ(0) > 0, Υµ(1) < 0, and

Υµ

(√
5− 1

2

)
=

1

2
·
(

72− 32
√

5− 2(30
√

5− 67)µ− (37
√

5− 77)µ2

+2(5
√

5− 8)µ3 − (
√

5− 1)µ4
)
> 0

This implies that Υµ(x) is always positive in the interval (0, (
√

5−1)/2). In particular,

it is positive when evaluated in zr.

The remaining two propositions compare the algebraic connectivity of H-shape trees

with 4r + 5 vertices.

Proposition 5.9. For each r > 1, µ2(H2
r+1,r+1,r+1,r) > µ2(H2

r+2,r+1,r,r).

Proof. For r ∈ {2, 3} the statement comes from a direct computation. Let r > 4. We

set T (r) := H2
r+1,r,r+1,r+1 (this notation suggests that the chosen root is adjacent to

H-rays of different length), T ′(r) := H2
r+1,r+1,r−1,r−2, and µ := µ(T (r)). The proof

initially requires the execution of D :=Diagonalize(T (r),−µ). Since T (4) ⊆ T (r),

µ := µ2(T (r)) < µ2(T (4)) = 0.06162 < 0.07. Since D produces just one negative

output, zi > 0 for 1 6 i 6 r + 1, and the root value aṽ(T (r)) is zero.

As a consequence of Lemma 5.2 the numbers

b̂ = 3− µ− 2z−1
r+1 and â = 3− µ− z−1

r − z−1
r+1

cannot be both zero. The number â would compute the root value aṽ(T (r)) if it were

zero b̂, the first number computed by the algorithm in correspondence of the non-root

of degree 3. In other words, we surely have

b = b̂ < 0 and aṽ(T (r)) = â− b−1 = 0.

Replacing −z−1
r with zr+1−2+µ in the equation b−1 = â, we arrive at b = zr+1(z2

r+1+

zr+1−1)−1. Knowing that b is negative, we discover that 0 < zr+1 < q̂ := (
√

5−1)/2.

Furthermore, by equating

3− µ− 2

zr+1
=

zr+1

z2
r+1 + zr+1 − 1

,



238 Signed bicyclic graphs with minimal index

it turns out that zr+1 is the unique root of the polynomial

hµ(x) = (3− µ)x3 − µx2 − (5− µ)x+ 2

in the interval (0, q̂); in fact, the Descartes’ rule of signs says that hµ(x) has two

positive roots, and precisely one of them is larger than q̂ since hµ(0) = 2 and hµ(q̂) =

−(3−
√

5)/2.

We now execute D′:=Diagonalize(T ′(r),−µ). We already realized that zi > 0 for

i 6 r + 1, whereas

zr+2 = 2− µ− z−1
r+1 < 0 ⇐⇒ zr+1 < (2− µ)−1,

and the latter is precisely the case since

hµ

(
1

2− µ

)
= 1− 9− 9µ+ 2µ2

(2− µ)3

is negative for µ ∈ (0, 1). The proof ends once we show that D′ has at least a second

negative output. Let us compute

b(T ′) = 3− µ− 2z−1
r = 3− µ+ 2(zr+1 − (2− µ)) = 2zr+1 − (1− µ).

This number is negative, since

hµ

(
1− µ

2

)
= −1− 12µ− 12µ2 + 8µ3 − µ4

8

is negative for µ < 0.07, implying that zr+1 < (1− µ)/2.

The H-shape trees involved in Propositions 5.6 and 5.9 are obtained one from another

through a graph perturbation called shifting in [8], yet the sufficient conditions on the

Fiedler vector considered in [8, Lemma 7] guaranteeing the inequality in the two

statements does not hold.

Proposition 5.10. For each r > 1, µ2(H2
r+1,r+1,r+1,r) > µ2(H3

r+1,r+1,r,r).

Proof. For r ∈ {2, 3} the statement comes from direct computations. Let now

r > 4, µ := µ2(H2
r+1,r+1,r+1,r) and T ′′(r) = H3

r+1,r+1,r,r (see the H-shape tree on the

right in Fig. 13). In order to execute the algorithm D′′ :=Diagonalize(T ′′(r),−µ), we

acquire several data from the proof of Proposition 5.9. We know that zi > 0 for all

i 6 r + 1, 3 − µ − 2z−1
r < 0 and 3 − µ − 2z−1

r+1 < 0. Since the latter two numbers

are the output values processed by D′′ for b(T ′′(r)) and c(T ′′(r)) (see Fig. 13), the

algorithm D′′ has (at least) two negative outputs, proving the statement.
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Appendix: Indices of small graphs in B∗n

Table 1. Indices of graphs of type (2) up to 10 vertices.

n 5 6 7 8 9 10

Γ Φ0,5 Φ1,2 Φ1,3 Φ1,4 Φ1,5 Φ̃2,2

λ1

√
17−1
2

1.67828 1.69353 1.76893 1.79129 1.81784

Table 2. Indices of some ‘small’ graphs considered along the paper

Graph λ1 Graph λ1 Graph λ1 Graph λ1

n = 5 n = 7 n = 8 n = 8 (continuation)

Φ0,1 1.56155 Φ1,3 1.69353 Φ1,3 1.76893 Θ11 1.97446

∆1,0 1.74912 Γ1 1.90321 Γ2 1.96607 Θ15 1.97121

Γ5 1.94242 Γ3 1.97722 Θ16 1.97597

Γ10 1.95546 Γ4 1.98010 Θ17 1.97722

n = 6 Γ13 1.96202 Γ6 1.97280 Θ26 1.96255

Φ1,2 1.67828 Θ2 1.87939 Γ7 1.97926 Θ27 1.97086

Γ9 1.90321 Θ6 1.90211 Γ8 1.98166 Θ28 1.97280

Λ1
0,0;0 1.81361 Θ12 1.92103 Γ11 1.98227 Θ29 1.98011

Γ2
0,0,0,0

√
3 Θ13 1.93230 Γ12 1.98407 Θ30 1.98237

Θ5

√
3 Θ14 1.93543 Γ14 1.98595 Θ31 1.95197

Θ18 1.84943 Θ20 1.87939 Γ15 1.98708 Θ32 1.97825

Θ19 1.87112 Θ21 1.92022 Γ16 1.98552 Θ33 1.98095

Θ34 1.89420 Θ22 1.93543 Λ1
1,1;0 1.89761 Θ38 1.97908

∆1,1 1.79129 Θ23 1.94011 Θ1 1.95630 Θ39 1.98460

∆2,0 1.85133 Θ24 1.94551 Θ3 1.93894

∆′1,1 1.90321 Θ25 1.94781 Θ4 1.95069

∆′2,0 1.86620 Θ35 1.94341 Θ7 1.95630

Θ36 1.95423 Θ8 1.96962

Θ37 1.95546 Θ9 1.96884

Θ10 1.97230
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