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Abstract: Genetics of Familial Hypercholesterolemia (FH) is ascribable to pathogenic variants in
genes encoding proteins leading to an impaired LDL uptake by the LDL receptor (LDLR). Two forms
of the disease are possible, heterozygous (HeFH) and homozygous (HoFH), caused by one or two
pathogenic variants, respectively, in the three main genes that are responsible for the autosomal
dominant disease: LDLR, APOB and PCSK9 genes. The HeFH is the most common genetic disease in
humans, being the prevalence about 1:300. Variants in the LDLRAP1 gene causes FH with a recessive
inheritance and a specific APOE variant was described as causative of FH, contributing to increase FH
genetic heterogeneity. In addition, variants in genes causing other dyslipidemias showing phenotypes
overlapping with FH may mimic FH in patients without causative variants (FH-phenocopies; ABCG5,
ABCG8, CYP27A1 and LIPA genes) or act as phenotype modifiers in patients with a pathogenic variant
in a causative gene. The presence of several common variants was also considered a genetic basis of
FH and several polygenic risk scores (PRS) have been described. The presence of a variant in modifier
genes or high PRS in HeFH further exacerbates the phenotype, partially justifying its variability
among patients. This review aims to report the updates on the genetic and molecular bases of FH
with their implication for molecular diagnosis.

Keywords: familial hypercholesterolemia; genetics; FH phenocopies; oligogenic FH; polygenic risk
score; modifier factor; genetic heterogeneity; phenotypic variability; molecular diagnosis

1. Introduction

Familial Hypercholesterolemia (FH) is a very heterogeneous genetic disease lead-
ing to high plasma low-density lipoproteins (LDL) cholesterol levels and premature
atherosclerosis-based cardiovascular diseases (ASCVD) [1,2]. The FH heterogeneity is
related both to the heterogenous genetic basis and to the very variable phenotype observed
among affected patients.

Molecular bases of FH are related to an impaired LDL uptake by the LDL receptor
(LDLR), a condition genetically inherited mainly through pathogenic variants in the genes
encoding for LDLR (LDLR gene), apolipoprotein B (ApoB—APOB gene) and Proprotein
Convertase Subtilisin/Kexin Type 9 (PCSK9 gene) [1]. FH is an autosomal dominant disease
that can be either heterozygous (HeFH) or homozygous (HoFH), depending on the number
of alleles carrying a pathogenic variant [2].

HeFH is the most common genetic disease in humans. A prevalence of 1:250 in the
general population was estimated by a meta-analysis in 2017 [3], whereas more recently,
it was estimated at 1:311 and 1:313 by two independent meta-analyses on 7,297,363 and
10,921,310 subjects, respectively [4,5]. However, according to the latter study, in 90%
of world’s countries the national prevalence of FH is unknown. The FH prevalence is
especially high in specific groups of patients, such as those with ASCVD (1:17), according
to Hu et al. [4] or those affected by premature ischemic heart disease (prevalence of 1:15)

Int. J. Mol. Sci. 2023, 24, 3224. https://doi.org/10.3390/ijms24043224 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24043224
https://doi.org/10.3390/ijms24043224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0618-7940
https://doi.org/10.3390/ijms24043224
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24043224?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 3224 2 of 14

and severe hypercholesterolemia (1:14) according to Beheshti SO et al. [5]. In 2022, a
meta-analysis demonstrated that FH prevalence varies across ethnicity, ranging from 1:400
in Asian individuals to 1:192 in black and brown individuals [6]. A high FH prevalence
implies that most of FH patients remain undiagnosed and therefore untreated, as noted
by the European Atherosclerosis Society (EAS) consensus paper already in 2013 [1]. It
suggests to deeply analyze the patient characteristics and familial history in order to
inquire about FH presence in case of high LDL-cholesterol levels and of familiarity for high
LDL-cholesterol levels.

Since FH has a dominant inheritance, such a wide distribution of gene allele carrying
a pathogenic variant appears to be quite unexpected. The high prevalence of FH-causative
alleles can be justified by the fact that these alleles can be considered thrifty, i.e., genotypes
with a pathogenic variant may provide a selective advantage during evolution due to
the possibility to maintain high circulating cholesterol levels even during eras of food
shortages [7]. In addition, no negative selection of FH alleles occurs. In fact, ASCVD
development happens late in the life of FH patient, after the usual reproductive age and,
therefore, the disease presence does not impair the capacity of affected patients to transmit
the mutated alleles to new generations [7]. In short, during natural evolution, alleles
with FH-causative variants undergo a positive selection and did not undergo a negative
selection, despite the severe cardiovascular consequences.

From a simple PubMed search with the words “Familial hypercholesterolemia”, 579
results were retrieved in 2022 alone (search performed on 30 December 2022), indicating
that frequent updates of literature reviews are required.

2. Genetics and Molecular Basis

Not all severe hypercholesterolemias are FH [8]. FH is a genetic disease in which a
clear dominant inheritance should be observed within affected families. Several criteria are
available to clinically identify potentially affected patients, as reported in reference [9].

Genetic bases of the autosomal dominant FH are typically ascribable to pathogenic
variants in the three major genes related to LDL uptake, LDLR, APOB and PCSK9, with
a high number of different causative variants. However, additional genetic alterations
could determine or exacerbate the FH phenotype, thus further contributing to the genetic
heterogeneity of the disease.

2.1. Classical FH-Causative Genes

In the endogenous pathway of lipid metabolism, the liver secretes triglyceride-rich
lipoproteins called very low-density lipoproteins (VLDL), as lipoprotein subclasses are
defined based on their density. After triglyceride hydrolysis by different lipases in turns,
the VLDLs produced by the liver are progressively depleted of both triglycerides and
their protein constituents (apolipoproteins), first turning into intermediate-density lipopro-
teins (IDL), then into LDL, requiring receptor-mediated endocytosis to be removed from
blood [10]. The molecular alteration leading to FH is the impaired clearance of LDLs
by their receptor, the LDLR, the only one receptor binding ApoB. This could happen in
presence of a pathogenic variant in LDLR, APOB, PCSK9 and LDLRAP1 genes.

The LDLR gene is the first gene identified as causative of FH by Goldstein J. and Brown
M., who were awarded the Nobel prize in Medicine in 1985 for this discovery [11]. Since
then, more than 2000 rare variants in the LDLR gene have been reported [9].

Five functional classes define the different mechanisms underlying a dysfunctional
LDLR: class 1: absence of protein synthesis; class 2: altered protein maturation and exposure
on the plasma membrane; class 3: impaired binding to ApoB; class 4: impaired endocytosis;
and class 5: defective recycle on the plasma membrane after endocytosis [12].

The LDLR variants are the most frequent cause of FH in several regions [13–16].
Despite the high number of different pathogenic variants reported in the LDLR gene, some
of these show a very high frequency in specific geographic regions due to the presence of a
founder effect [17,18].
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As to ApoB, not all the dysfunctional proteins lead to a hypercholesterolemic pheno-
type. In fact, the APOB genetic variants leading to an absent protein or to a protein unable
to assemble in VLDLs cause low plasma cholesterol levels due to a defective synthesis
of VLDLs by liver [19]. Variants in the APOB gene leading to FH are those causing an
impaired binding of ApoB to LDLR [20], i.e., mainly those present in the gene regions
encoding for the LDLR binding domains (exons 26 and 29), even though variants present
in other regions were described [21].

The PCSK9 gene is the latest discovered gene [22], but probably the most relevant
one for FH management because its discovery allowed the identification of the molecular
mechanism that is mostly targeted by innovative therapies based on its inhibition by
monoclonal antibodies or small interfering RNAs [23]. The encoded protein is able to
decrease the number of LDLRs on the plasma membrane through different mechanisms
taking place either in the extracellular region or inside the cell. After the binding to the LDL-
LDLR complex, the secreted PCSK9 is internalized with it triggering LDLR degradation
rather than its recycling on the cell membrane [24]. An intracellular mechanism leading to
low levels of LDLR was also described, but not completely disclosed [25,26]. FH-causative
variants lead to an increased PCSK9 activity (Gain-of-function—GOF), whereas those
leading to a decreased PCSK9 activity (Loss-of-function—LOF) are causative of decreased
LDL-cholesterol levels [24].

The LDLRAP1 gene encoding for the protein mediating the interaction of LDLR with
the clathrin-coated pits (LDLR adaptor protein 1) is responsible for autosomal recessive
hypercholesterolemia (ARH), being causative of the disease only if both alleles carry a
pathogenic variant. In absence of this protein, the LDL–LDLR complex cannot be inter-
nalized. ARH is an extremely rare form of genetic hypercholesterolemia showing clinical
features common to the HoFH [27]. An interesting feature of the disease diffusion is that it
is mainly prevalent in specific populations, due to a founder effect [27].

Extreme phenotypic variability can be observed among FH patients with the same
genetic status, which was partially explained by the different impact of the mutated
gene or by the different variant types, in both adult and pediatric patients [28–32]. The
genetic status and the variant type were also associated with different responses to PCSK9
inhibitors regarding both the LDL-cholesterol lowering effect and the changes in carotid
stiffness [33,34].

2.2. Heterozygous and Homozygous FH

Since the above three genes act on the phenotype with a co-dominant inheritance,
the number of alleles carrying a pathogenic variant determines the phenotype severity
being associated with the two forms of the disease, the HeFH and the HoFH. In the former,
a single pathogenic variant is present in one of the three causative genes, whereas two
pathogenic variants are present in the latter [2]. The term “HoFH” indicates a clinical
condition characterized by very high LDL-cholesterol levels (usually 300–500 mg/dL) and
very early onset of ASCVD (also in childhood if untreated) rather than a genetic state [2].
In fact, HoFH can be caused by true homozygosis (the same variant on the two alleles
of a gene), compound heterozygosis (two different variants in the two alleles of a gene),
and double heterozygosis (two variants at heterozygous status in two different genes);
biallelic variants in the LDLRAP1 gene can also be causative of HoFH [35] (Figure 1). The
prevalence of HoFH was estimated as approximatively 1:300,000 [35]; in particular, we
reported a frequency of 1:320,000 in a region of Southern Italy, although it is likely that
further HoFH patients remain undetected [36].
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Figure 1. Different genetic status at the basis of hypercholesterolemia and relation with phenotype. 
The y-axis indicates the number of rare genetic variants, whereas the x-axis indicates the increase in 
LDL-cholesterol and the associated CVD risk. PRS: Polygenic risk score; HeFH: heterozygous 
Familial hypercholesterolemia (FH); HoFH: homozygous FH; CVD: cardiovascular disease. 

Despite the very high LDL-cholesterol levels suggestive of FH disease, a recent study 
on the largest HoFH cohort, collected from 38 countries, has indicated that diagnosis is 
not always promptly performed [35]. Thanks to the wide use of next-generation 
sequencing (NGS), the identification of HoFH patients will be improved since variants in 
all causative genes can be detected at the same time. An accurate and comprehensive 
genetic screening is essential for the identification of HoFH patients allowing them to 
access to the most appropriate therapies that revealed to be very promising. Since in case 
of biallelic pathogenic variants in the LDLR gene, only a very low residual activity of the 
LDLR is present, novel and effective therapies for HoFH are independent of the LDLR 
activity. These therapies include lomitapide for the inhibition of microsomal triglyceride 
transfer protein (MTTP), leading to a decreased production of VLDLs by the liver [37,38] 
or monoclonal antibodies for the inhibition of the Angiopoietin-Like Protein 3 
(ANGPTL3), which was proved to increase IDL and LDL clearance by LDLR independent 
pathways [39]. Bempedoic acid is another drug acting independently of LDLR used in 
HeFH patients; it is an inhibitor of the ATP citrate lyase, the enzyme transforming citrate 
into acetyl-CoA molecules used for fatty acid synthesis [40]. A recent paper has reviewed 
the new therapies for FH management in relation to the genetic status of patients [23]. 

2.3. Other Genes Involved in FH 
No pathogenic variants were identified in a consistent percentage of FH patients 

[41,42] suggesting that additional causative genes should be identified. Unfortunately, 
attempts to identify new FH-causative genes ended up detecting another dyslipidemia 
(sitosterolemia) [43], genes or loci which were never confirmed [44–46] or whose role was 
subsequently disowned [47]. 

In 2013, a rare variant in the APOE gene leading to the deletion of leucine 167 of 
protein was described in a French family with FH [48], making this another FH causative 
gene. Additionally, an APOE missense variant at homozygous status was described in a 
child with FH; in this case the presence of the heterozygous variant was not associated 
with the disease [49]. For years, the ApoB was considered the only remaining 

Figure 1. Different genetic status at the basis of hypercholesterolemia and relation with phenotype.
The y-axis indicates the number of rare genetic variants, whereas the x-axis indicates the increase
in LDL-cholesterol and the associated CVD risk. PRS: Polygenic risk score; HeFH: heterozygous
Familial hypercholesterolemia (FH); HoFH: homozygous FH; CVD: cardiovascular disease.

Despite the very high LDL-cholesterol levels suggestive of FH disease, a recent study
on the largest HoFH cohort, collected from 38 countries, has indicated that diagnosis is not
always promptly performed [35]. Thanks to the wide use of next-generation sequencing
(NGS), the identification of HoFH patients will be improved since variants in all causative
genes can be detected at the same time. An accurate and comprehensive genetic screening
is essential for the identification of HoFH patients allowing them to access to the most ap-
propriate therapies that revealed to be very promising. Since in case of biallelic pathogenic
variants in the LDLR gene, only a very low residual activity of the LDLR is present, novel
and effective therapies for HoFH are independent of the LDLR activity. These therapies
include lomitapide for the inhibition of microsomal triglyceride transfer protein (MTTP),
leading to a decreased production of VLDLs by the liver [37,38] or monoclonal antibodies
for the inhibition of the Angiopoietin-Like Protein 3 (ANGPTL3), which was proved to
increase IDL and LDL clearance by LDLR independent pathways [39]. Bempedoic acid is
another drug acting independently of LDLR used in HeFH patients; it is an inhibitor of the
ATP citrate lyase, the enzyme transforming citrate into acetyl-CoA molecules used for fatty
acid synthesis [40]. A recent paper has reviewed the new therapies for FH management in
relation to the genetic status of patients [23].

2.3. Other Genes Involved in FH

No pathogenic variants were identified in a consistent percentage of FH patients [41,42]
suggesting that additional causative genes should be identified. Unfortunately, attempts
to identify new FH-causative genes ended up detecting another dyslipidemia (sitos-
terolemia) [43], genes or loci which were never confirmed [44–46] or whose role was
subsequently disowned [47].

In 2013, a rare variant in the APOE gene leading to the deletion of leucine 167 of
protein was described in a French family with FH [48], making this another FH causative
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gene. Additionally, an APOE missense variant at homozygous status was described in a
child with FH; in this case the presence of the heterozygous variant was not associated with
the disease [49]. For years, the ApoB was considered the only remaining apolipoprotein in
LDL, whereas it was recently demonstrated that also a few molecules of Apolipoprotein E
(ApoE) are present in this lipoprotein class [50].

It is clear that APOE variants lead to the disturbance of lipoprotein metabolism, in-
volving both cholesterol and triglyceride lipid classes [51]. Among the others, APOE rare
variants were associated with lipoprotein glomerulopathy and familial combined hyper-
lipidemia (FCH), whereas the homozygosity for the E2 polymorphic variant is associated
with dysbetalipoproteinemia. The involvement of the APOE gene in several dyslipidemias
is emblematic of the interrelation between the metabolisms of different lipid classes. A
recent screening showed the involvement of several rare variants in the APOE gene in
both autosomal dominant hypercholesterolemia and FCH [52]. Sometimes, the partial
overlapping phenotype and familiarity makes it hard to distinguish FH from FCH. Genetic
screening can contribute to the identification of FH-causative variants among FCH patients
as previously described [53–55]. However, due to the rarity of each variant the biochemical
analysis of several unrelated patients was not performed, and therefore it could not be
proved whether the same variant can be associated with different lipid alterations.

The STAP1 gene was initially identified as a new FH-causative gene [47], but further
evidence disowned this role [56]. Other loci were candidate as potential FH-causative
FH [45,46], although the genes have never been identified.

2.4. FH Phenocopies

The term “FH phenocopies” is widely used to indicate the genes whose pathogenic
variants can induce diseases with a phenotype partially overlapping the one of FH, i.e.,
mainly high cholesterol and xanthomas [29,57]. It should be noted that all these diseases
are inherited by an autosomal recessive trait, hence only the presence of biallelic variants
(homozygosity or compound heterozygosity) may cause disease.

1. Among these genes, the ABCG5 and ABCG8 encoding for the two subunits of the sterol
transporter mediating efflux of plant sterols both in the enterocytes, immediately after
their absorption or in the liver causing their excretion in the bile [58]. These genes
are causative for sitosterolemia, an autosomal recessive disease leading to severe
xanthomatosis and high cholesterol levels. Variants in the ABCG5 and ABCG8 genes
were identified in 2.4% of Dutch FH patients [59].

2. Cerebrotendinous xanthomatosis is another disease characterized by diffuse xan-
thomas and, in some cases, by high cholesterol levels that can mimic FH [60,61].
Variants in the causative gene, the CYP27A1, were identified in suspected FH patients
without other pathogenic variants [62] or in presence of a FH-causative variant as
worsening effects [63]. The molecular defect is due to the absence of functional sterol
27-hydroxylase, an enzyme essential for turning cholesterol in bile acids.

3. The LIPA gene encodes for the lysosomal acid lipase, the enzyme essential for the
degradation of cholesteryl esters that in absence of a functional enzyme accumulate
within lysosomes giving rise to a severe disease characterized by high cholesterol lev-
els that can be misdiagnosed as FH (Lysosomal Acid Lipase Deficiency—LALD) [64].
In Slovenia, during the universal screening for FH, 3 children suffering from LALD
were identified among hypercholesterolemic children [65].

The correct identification of patients suffering from the above diseases allows to
modify the patient therapy accordingly. In fact, sitosterolemia can benefit from ezetimibe
inhibiting the transported Niemann-Pick C1-Like 1 (NPC1L1), thus reducing intestinal
sterol absorption, whereas cerebrotendinous xanthomatosis is usually treated by chen-
odeoxycholic acid, one of the molecules synthesized by sterol 27-hydroxylase. As for
LALD, the replacement therapy is the most effective treatment.
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2.5. Oligogenic FH and Modifier Genes

Oligogenic FH was first defined in 2018 as the contemporary presence of a heterozy-
gous variant in one of the FH-causative genes and of a heterozygous variant in genes
causing recessive hypercholesterolemia (LDLRAP1), sitosterolemia (ABCG5 and ABCG8) or
APOE [66]. However, without the use of the term “oligogenic”, these genetic conditions
were previously identified [63,67]. Thanks to the analysis of multiple genes at the same
time by NGS, several studies highlighted the complex involvement of multiple genes in
hypercholesterolemia, worsening the FH phenotype.

Two cases of oligogenic hypercholesterolemia with variants in three genes were re-
cently reported. A French family was examined by NGS and the segregation analysis
revealed an oligogenic form of FH caused by the contemporary presence of heterozygous
variants in two genes (LRP6 and CYP7A1 genes) further complicated by a heterozygous
variant in the LDLRAP1 gene in some family members [68]. In this case, a single variant
was not associated with a FH-like phenotype that was instead present as a combined effect
of 2 or more variants. In Japan, a case of FH with the contemporary presence of a potential
pathogenic variant in the PCSK9 gene, a pathogenic variant in the ABCG5 gene and a
homozygous variant in the CD36 gene was reported [69]. CD36 is a receptor for oxidized-
LDL and a transporter of fatty acids; its deficiency was caused by biallelic variants in the
CD36 gene, is associated with high LDL-cholesterol levels, worsening the FH phenotype in
the patient.

If some genetic variants can exacerbate the hypercholesterolemic phenotype, it is
feasible that other genetic variants are likely do the opposite. In fact, Huijgen et al. analyzed
patients carrying a FH-causative variant with normal LDL-cholesterol levels and identified
variants in APOB, PCSK9 and ANGPTL3 genes, potentially lowering LDL-cholesterol
levels [70]. Additionally, the MTTP gene was investigated as a gene likely to mitigate FH
phenotype [71], and the coexistence of FH and hypobetalipoproteinemia was described [72].

The possibility of multiple variants in FH causative genes one leading to high choles-
terol levels and the other to low cholesterol levels highlights that during cascade screening
the analysis of all causative genes may be useful for a comprehensive evaluation of the
genetic basis of lipid alterations.

High circulating levels of Lipoprotein(a) can contribute to the manifestation of hyperc-
holesterolemia mimicking the FH phenotype [73]. High Lipoprotein(a) levels are inherited
because they are genetically determined by a low repetition number of the Kringle IV
type 2 domain [74]. Due to genetic inheritance, high Lipoprotein(a) familiarity, similar to
genetic hypercholesterolemia, can be observed. Lipoprotein(a) should be regarded as a
mimicking and modifier factor of the hypercholesterolemia phenotype as recently reported
by Marco-Benedí et al. [75]. A sub-study of the Italian LIPIGEN registry of genetic dyslipi-
demias reported that high Lipoprotein(a) levels were associated with a positive history of
ASCVD in FH children [76]. The potential of including Lipoprotein(a) as an integration of
the clinical FH diagnosis was recently reviewed [77].

2.6. Polygenic Risk Scores

The difficulty in identifying a clear genetic cause in several FH patients, suggested
that the disease could be caused not only by a rare variant with a great impact on a
protein function, but also by the contemporary presence of several common variants
(polymorphisms) in different genes, each of which with a moderate impact on protein
function. A specific weight is assigned to each polymorphism and a total score is calculated
(Polygenic risk score—PRS). If the score is greater than a defined threshold, the polygenic
basis of hypercholesterolemia is established. The first score described in patients with
a clinical suspect of FH was built on 12 polymorphisms [78], and afterwards refined
considering only 6 polymorphisms [79]. Both scores were slightly higher in FH patients
without pathogenic variants than in healthy controls.

However, due to different genetic background PRS set-up in a population cannot
be applied to another, making the PRS poorly generalizable [80] and suggesting creating
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different PRS. In addition, thanks to NGS, PRS including more and more polymorphisms
were constructed with the aim to improve diagnostic ability; the most recent score was
constructed on 165 polymorphism, promising to outperform the previous ones [81].

Based on a study on 16,324 subjects from different ethnicities, a larger portion of sub-
jects with very high LDL-cholesterol levels was better explained by PRS than by monogenic
causes [82], suggesting that PRS could be useful to make a diagnosis of hypercholes-
terolemia. The presence of a diagnosed genetic basis for hypercholesterolemia could
improve patient compliance with therapy. Even in patients with a recognizable genetic
cause of FH, PRS can impact the lipid profile and the risk for ASCVD, further explaining
the phenotypic variability typical of FH, similarly to the case of oligogenic FH [83].

Taken together, these data indicate that PRS can be considered as both an alternative
cause of hypercholesterolemia and as a modifier factor. Table 1 reports the involved genes
and the different genetic conditions observed among patients with FH.

Table 1. Genetic status and different molecular alterations identified in the different forms of familial
hypercholesterolemia.

Hypercholesterolemia Form Genes Genetic Status

Homozygous FH
LDLR, APOB,

PCSK9, LDLRAP1

at homozygous status
at compound

heterozygous status
at double heterozygous status

Oligogenic FH LDLR, APOB, PCSK9 at heterozygous status
and

ABCG5, ABCG8 or other
modifier genes at heterozygous status

Heterozygous FH LDLR, APOB, PCSK9,
APOE genes heterozygous status

Polygenic
hypercholesterolemia Multiple

combination of heterozygous
and homozygous variant
according to determined

score attribution

3. Molecular Diagnosis

Genetic analysis of FH patients can now be performed by NGS decreasing costs and
time and while increasing the number of screened genes.

Certainly, the main causative genes must be thoroughly analyzed to avoid missing
the diagnosis of patients carrying variants in genes with a low prevalence of pathogenic
variants, but also to be able to identify compound heterozygotes and double heterozygotes.
As an example, FH-causative variants in the APOB gene are mainly located in the exon
26 and 29, the gene regions mostly investigated in the sequencing studies conducted with
traditional low throughput methods. To date, NGS allows to analyze the whole APOB gene,
thereby identifying FH-causative variants also in the other regions [21]. Furthermore, a
high coverage should be maintained to be able to analyze copy number variants (CNV) [84]
accounting for a considerable percentage of LDLR pathogenic variants. A CNV consisting
in the duplication of the whole PCSK9 gene was also described [85].

Genes representing FH-phenocopies should be included to rule out the presence
of different genetic dyslipidemias (biallelic variants) or to identify cases of oligogenic
FH (a pathogenic variant in causative genes together with a pathogenic variant in other
genes). Actually, due to the interrelation between different lipid traits and the ascertained
involvement of genes causative of different dyslipidemias in modulating FH phenotype,
the analysis of all known genes related to lipid metabolism could be useful to identify
oligogenic cases. Through a widespread use of NGS complex genotypes at underlying FH
could be more easily observed.
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Since PRS may help to explain a large portion of hypercholesterolemic patients, albeit
not FH, it should be evaluated when no clear pathogenic variants were reported. The
presence of a PRS associated with hypercholesterolemia could improve patient compliance.

As to lipoprotein(a), several single nucleotide polymorphisms in the LPA gene were
identified as being associated with a low number of Kringle IV type 2 domains and, conse-
quently, with high circulating levels of the Lipoprotein(a) [77]. Despite the Lipoprotein(a)
measurement is always the recommended choice, a NGS panel should also include the
analysis of the above polymorphisms.

Finally, exome and whole-genome sequencing should be restricted to gene discovery,
due to the complexity of data analysis. However, precision medicine by deep genetic
analysis helps improving the diagnosis and the management of patients. An application
of genome sequencing in relation to lipid traits was recently published highlighting that
this approach can identify new causative loci, new variants in gene-regions usually not
analyzed and can be even used to evaluate PRS [86].

Pathogenicity Evaluation

To date, molecular screening and identification of genetic variants is no more a chal-
lenge since many genes can be reliably analyzed by NGS, whereas the correct interpretation
of the pathological role of variants remains the most difficult issue.

Considering the molecular mechanisms of FH, it appears clear that genetic variants
in APOB and PCSK9 should be carefully evaluated for FH pathogenicity because they can
be causative of two opposite phenotypes, but their evaluation is essential also for variants
in the LDLR gene. According to the American College of Medical Genetics and Genomics
(ACMG) guidelines [87], all genetic variants should be evaluated on the basis of several
aspects including, among the others, the expected variant effect, its frequency in the general
population, co-segregation of variant and disease within families, the identification of sev-
eral unrelated patients carrying the variant and a functional demonstration of protein alter-
ation. Based on these criteria, variants can be classified as pathogenic, likely pathogenic, be-
nign, likely benign or variants of uncertain significance (VUS) if the available evidence does
not allow for any clear classification. Since these are general guidelines, large autonomy of
evaluation is left to establish the feasibility and, in some instances, the relevance of each
criterium. Given the high prevalence of the disease and the increasing interest in perform-
ing a genetic diagnosis of FH, the ACMG guidelines were improved with specifications for
FH-causative genes [88,89]. Considering the molecular features of FH, the ClinGen Familial
Hypercholesterolemia Variant Curation Expert Panel created specific guidelines for variants
in the LDLR gene [89] and applied them to several variants that are now reported in the Clin-
Var database (https://www.ncbi.nlm.nih.gov/clinvar/ accessed on 29 December 2022) as
“Reviewed by expert panel” (https://www.ncbi.nlm.nih.gov/clinvar/submitters/508055/
accessed on 29 December 2022).

These guidelines have the great advantage to reduce a personalized interpretation of
pathogenicity and benignity criteria providing precise indications for the interpretation of
each criterion. As an example, based on the specific number of unrelated patients with the
variant, a specific strength is given to the corresponding criterion. In this way a universal
interpretation of results can be made avoiding different pathogenicity evaluations from
different laboratories.

Unfortunately, some data useful for pathogenicity evaluation may be available only
within a single center, such as the above-mentioned criterion related with the number
of unrelated patients carrying the variant or data about co-segregation of variant and
disease. To date, these data are still unreported in public databases, such as ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/ accessed on 29 December 2022), and cannot be
used for a general interpretation of the variant. It would be very useful if all research groups
or laboratories working on FH molecular diagnosis made these data publicly available
for the community. Table 2 reports some available on-line resource helping to retrieve

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/submitters/508055/
https://www.ncbi.nlm.nih.gov/clinvar/
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information useful for pathogenicity assessment of FH-related variants. To date, the most
of relevant source of data about pathogenicity of genetic variants is the published literature.

Table 2. Online resources useful to retrieve data about genetic variants.

Resource Available Information Website Link

ClinVar

Previous identification of
variants and related condition;

number of patients with the
variant; pathogenicity
evaluation and related

evidence; literature references

https://www.ncbi.nlm.nih.
gov/clinvar/ (accessed on 29

December 2022)

ClinGen curated variants
in ClinVar

FH-related variants curated by
the ClinGen Familial

Hypercholesterolemia Variant
Curation Expert Panel

https:
//www.ncbi.nlm.nih.gov/
clinvar/submitters/508055/

(accessed on 29
December 2022)

ClinGen Familial
Hypercholesterolemia Variant

Curation Expert Panel

Revised pathogenicity criteria
for variants in FH-causative

variants; Evidence Repository
about analyzed variants

https://www.clinicalgenome.
org/affiliation/50004

(accessed on 29
December 2022)

Human Gene Mutation
Database (HGMD)

Database of variants
associated with different

diseases; literature references;
bioinformatic predictions

https://www.hgmd.cf.ac.uk/
ac/index.php (accessed on 29

December 2022)

LOVD 3.0

Database of variants
associated with different

diseases; literature references;
functional data;

bioinformatic predictions

https:
//www.lovd.nl/3.0/home

(accessed on 29
December 2022)

LitVar
Search instrument to retrieve

information from
scientific literature

https://www.ncbi.nlm.nih.
gov/CBBresearch/Lu/

Demo/LitVar/#!?query=
(accessed on 29
December 2022)

Functional evaluation greatly contribute to the pathogenicity evaluation of variants
potentially causative of FH [90], although only a few variants were tested so that the most
of APOB and PCSK9 variants are classified as VUS [91]. On the other hand, due to the wide
expression of LDLR, patients’ cells can be easily used to test new genetic variants [92,93].
This is particularly due to the peculiar molecular mechanisms of pathogenicity, which is
not based on a total defective function, but on a partial LOF and a GOF, respectively. This
characteristic makes it necessary to integrate genetic analysis with a functional assay to
correctly claim the pathogenic role of the variant. We experienced that some variants in
PCSK9 and in LDLR, which are not relevant for protein function modification [94,95].

Functional tests or predictive models could greatly contribute to the pathogenicity
assessment, so that a platform for variant testing [96] and pathogenicity prediction tools
based on machine learning [97] were recently implemented. New computational methods
are promising tools for analyzing complex biological data [98].

4. Conclusions

In summary, FH was traditionally considered a monogenic disorder with dominant
inheritance, but on the light of new evidence, it should be better defined as a genetic
disorder with co-dominant inheritance characterized by genetic heterogeneity with an
allele dosage effect and multiple modifier factors impacting phenotype and inducing
a variable expression of the disease. This review summarizes the different molecular
alterations identified in patients with a clinical suspect of FH and highlights the critical
aspects of FH genetic diagnosis.

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/submitters/508055/
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