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Weak and strong chaos in FPU models and beyond
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3Dipartimento di Fisica, Università di Pisa, via Buonarroti 2, I-56127 Pisa, Italy
4The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA

(Dated: October 29, 2018)

We briefly review some of the most relevant results that our group obtained in the past, while
investigating the dynamics of the Fermi-Pasta-Ulam (FPU) models. A first result is the numerical
evidence of the existence of two different kinds of transitions in the dynamics of the FPU models: i)
a Stochasticity Threshold (ST), characterized by a value of the energy per degree of freedom below
which the overwhelming majority of the phase space trajectories are regular (vanishing Lyapunov
exponents). It tends to vanish as the number N of degrees of freedom is increased. ii) a Strong
Stochasticity Threshold (SST), characterized by a value of the energy per degree of freedom at
which a crossover appears between two different power laws of the energy dependence of the largest
Lyapunov exponent, which phenomenologically corresponds to the transition between weakly and
strongly chaotic regimes. It is stable with N . A second result is the development of a Riemannian
geometric theory to explain the origin of Hamiltonian chaos. The starting of this theory has been
motivated by the inadequacy of the approach based on homoclinic intersections to explain the origin
of chaos in systems of arbitrarily large N , or arbitrarily far from quasi-integrability, or displaying
a transition between weak and strong chaos. Finally, a third result stems from the search for the
transition between weak and strong chaos in systems other than FPU. Actually, we found that a
very sharp SST appears as the dynamical counterpart of a thermodynamic phase transition, which
in turn has led, in the light of the Riemannian theory of chaos, to the development of a topological
theory of phase transitions.

PACS numbers: 05.45.+b; 05.20.-y

In a foreword to their co-authored work reprinted in the Fermi Collected Papers [1], S. Ulam wrote:
“...Fermi expressed often the belief that future fundamental theories in physics may involve non-linear
operators and equations, and that it would be useful to attempt practice in the mathematics needed
for the understanding of nonlinear systems. The plan was then to start with the possibly simplest such
physical model and to study the results of the calculation of its long-time behavior.... The motivation
then was to observe the rates of mixing and thermalization with the hope that the computational
results would provide hints for a future theory. One could venture a guess that one motive in the
selection of problems could be traced to Fermi’s early interest in the ergodic theory...”
Actually, Fermi’s early interest in ergodic theory is witnessed by his contribution to a theorem

due to Poincaré and thenceforth known as the Poincaré-Fermi theorem. This asserts that neither
analytic (Poincaré) nor smooth (Fermi) integrals of motion besides the energy can survive a generic
perturbation of an integrable system with three or more degrees of freedom, thus, in the absence of
other isolating integrals of motion, any constant energy surface of these generic systems is expected
to be everywhere accessible to the phase space trajectory. At this level, no hindrance to ergodicity
seems to be possible. Whence the surprise of Fermi, Pasta and Ulam (FPU) when no apparent ten-
dency to equipartition was observed in their numerical experiment whose 50th anniversary we are
celebrating. Fermi himself considered what they found a “little discovery”. The almost contempo-
rary announcement by Kolmogorov of the starting of what would later become the celebrated KAM
theorem, seemed to provide an explanation to the unexpected FPU’s results. But later developments
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of KAM theory, including optimal estimates of the N-dependence of the perturbation thresholds and
the Nekhoroshev theorem, revealed that this is not really an adequate framework to explain the FPU
problem. The rich variety of the numerical phenomenology accumulated over time seemed to keep
off ”the hope that the computational results would provide hints for a future theory”. In fact, ”rates
of mixing and thermalization” have a startling and complicated dependence on energy, number of
degrees of freedom and initial conditions. Actually, any dynamical evolution of the system depends
on the starting point in phase space and on the ”landscape” of its surroundings. Thus, there can be
a huge variety of dynamical behavior entailed by the preparation of the system in an initial condition
out of equilibrium. As a consequence, in order to get some global information on the phase space
structure, independently of the initial conditions, one has to look at the chaotic component of phase
space. This way of tackling the FPU problem is very illuminating and leads to the conclusion that the
FPU problem does not threaten the validity of statistical mechanics. Moreover, this has stimulated
the starting of a new theory of Hamiltonian chaos.

I. INTRODUCTION

Few problems have been studied so extensively over the last decades as the one devised originally by E. Fermi,
J. Pasta and S. Ulam (FPU) in 1954 [1]. Their purpose was to check numerically that a generic but very simple
non-linear many particle dynamical system would indeed behave for large times as a statistical mechanical system,
that is it would approach equilibrium if initially not in equilibrium. In particular their purpose was to obtain the
usual equipartition of energy over all the degrees of freedom of a system, for generic initial conditions. To their
surprise, for the system FPU considered – a one dimensional anharmonic chain of 32 or 64 particles with fixed ends
and in addition to harmonic, cubic (α-model) or quartic (β-model) anharmonic forces between nearest neighbors –
this was not observed. A variety of manifestly non-equilibrium and non-equipartition behaviors was seen, including
quasiperiodic recurrences to the initial state. In fact, a behavior reminiscent of that of a dynamical system with
few degrees of freedom was found, rather than the expected statistical mechanical behavior. The duration of their
calculations varied between 10000 and 82500 computation steps. These results raised the fundamental question about
the validity or at least the generally assumed applicability of statistical mechanics to non-linear systems of which
the system considered by FPU seemed to be a typical example. Most of the attempts to clarify this difficulty have
approached the problem as one in dynamical systems theory. These analyses have revealed many very interesting
properties of the FPU system and uncovered a number of possible explanations for the resolution of the observed
conflict with statistical mechanics. The classical explanations are: i) the survival of invariant tori in the phase space of
a quasi-integrable system (KAM theory) [2], ii) the existence of Zabusky and Kruskal’s solitons in a special continuum
limit leading to the integrable Korteweg de Vries equation [3, 4], iii) the existence of an order-to-chaos transition [5].
In this paper we will first try to exhibit the reasons why this apparently bona fide statistical mechanical system did

not behave as such and, in particular, what in our opinion the significance of this apparent failure is for the general
validity of statistical mechanics; then, we will review a number of results that we obtained studying the dynamics of
the FPU models or being directly inspired by it.
There are a number of obvious questions related to the unstatistical mechanical behavior observed by FPU, which

all address the generic nature of the results of Fermi and collaborators:

a) Was their time of integration long enough?

b) Was their dynamical system of N = 32 or 64 particles in one dimension large enough, i.e. possessing a sufficient
number of degrees of freedom, to qualify as a statistical mechanical system?

c) Were the recurrence phenomena (to within 3%) observed by FPU, transient or generic, i.e., possibly related to a
Poincaré recurrence time?

The search for answers to these questions made the work of FPU very seminal, spawning many new developments
and connections in the theory of nonlinear dynamical systems, such as the connection with continuum models based
on the Korteweg – de Vries equation, leading to solitons [3], heavy breathers etc., or with few degrees of freedom
models like the Hénon-Heiles [6] and the Toda lattice [7].
Thus, the effort to resolve the so-called FPU problem has led to enormous advances in our understanding of non

linear dynamical systems; for a review we refer to [8]. Although in our opinion the FPU problem has possibly not yet
exhausted its power of inspiration, we believe that the FPU paradox, i.e., FPU’s original question, can nowadays be
reasonably answered along the lines we are going to describe hereafter.
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II. STOCHASTICITY THRESHOLDS IN FPU MODELS

For some time, it has been a commonly accepted idea [8] that the KAM theorem provides the essential answer to
FPU’s observations, i.e., for sufficiently small nonlinearities and a class of initial conditions living on non-resonant
tori, the FPU system behaves like an integrable system and is represented by deformed tori in phase space. With
increasing strength of the non-linearities, a progressive chaotic behavior appears, which would ultimately lead to
the expected approach to equilibrium and equipartition. Even though we found regular regions in phase space, the
existing typical KAM estimates of the N -dependence of the perturbation threshold (below which a positive measure
of KAM tori survive), are qualitatively different from our results, indicating that the physics of the FPU model is
quite different from what is contained in these estimates.
Thanks to the power of modern computers, we have considerably extended the calculations performed in the past

by various authors and we have been able to reconcile different, and sometimes contradictory, aspects of the FPU
dynamics.

A. FPU-α model

Very interesting results have been obtained revisiting the FPU-α model [9] by focusing on the development of
chaoticity in the time evolution of the system rather than on the attainment of equipartition. For these numeri-
cal experiments, the chosen initial conditions – single mode excitations – were the same as chosen by Fermi and
collaborators in their original experiment.
The model is described by the Hamiltonian [1]

H(p, q) =

N
∑

k=1

[

1

2
p2k +

1

2
(qk+1 − qk)

2 +
α

3
(qk+1 − qk)

3

]

, (1)

where the particles have unit mass and unit harmonic coupling constant and the end-points are fixed (q1 = qN+1 = 0).
Comparing the behaviour in time of the largest Lyapunov exponent in the FPU system with that of the same

quantity in a suitable integrable system, it has been possible to define clearly what a trapping time in a regular region
of phase space is and to determine numerically and unambiguously its value. The integrable system we chose for this
comparison is the Toda lattice, from which the FPU-α model can be obtained as a third order truncation of the power
series expansion of its potential. The Toda lattice is defined by the Hamiltonian

H(p, q) =

N
∑

k=1

1

2
p2k +

a

b

N
∑

k=1

[

e−b(qk+1−qk) + b(qk+1 − qk)− 1
]

. (2)

The decay pattern toward zero of λToda(t) is undistinguishable from the decay pattern of λFPU (t) up to some time
τT , after which λFPU (t) separates from λToda(t) and converges to a finite value while λToda(t) goes to zero. This
suggests that non-integrable motions of the FPU lattice, originated by one-mode initial excitations, enter their chaotic
component after a transient and possibly long trapping in a regular region of phase space (some kind of “Nekhoroshev-
like” trapping) and that equipartition is eventually attained on a finite, albeit possibly very long, time scale.
Fig. 1 shows that the trapping times τT (ε,N) – so defined – for the FPU-α model at different values of both the

energy density ε and of the number of degrees of freedom N , with decreasing ε first tend to increase monotonically,
then, abruptly, display an apparently divergent behavior.
This very steep increase of τT with decreasing ε suggests the existence of, at least, a very narrow bottleneck in

phase space, through which the system can only escape with great difficulty or, perhaps, it might not escape at all.
The sharp variation with ε of the shape of τT (ε) brings about a natural definition of a threshold value of ε below
which τT seems to diverge.
For what concerns the behavior of the largest Lyapunov exponents, when ε is smaller than the threshold value,

λToda(t) and λFPU (t) do not show any separation, even after a very long integration time. That τT is really a trapping
time and not, for example, a trivial effect of the numerical statistics is suggested by the fact that τT (ε) ∼ ε−2 whereas
λ(ε) ∼ ε3/2, that is λ 6= τ−1

T . In Fig. 2, λFPU (ε,N) is reported.
The shapes of both λFPU (ε,N) and τT (ε,N) strongly suggest the existence of a threshold value – which depends

on N – of the energy density, above which the motion is chaotic and below which the trajectories appear to belong
to a regular region of phase space. This threshold is referred to as stochasticity threshold (ST). To our knowledge, its
direct evidence in a non-linear Hamiltonian system at N ≫ 2 has been found for the first time in [9].
Fermi and coworkers chose an initial condition well below this ST (the energy density corresponding to their initial

condition is shown by the vertical dotted line in Fig. 2); had they taken a ten times larger amplitude of the initial
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FIG. 1: FPU-α model. The trapping times τT (ε,N) at different values of energy density ε (i.e. at different values of the
initial excitation amplitudes), are reported. Open squares refer to the case N = 32, solid triangles refer to N = 64, open circles
refer to N = 128, respectively. The endpoints of the broken lines are lower bounds for the trapping time (the cut-off of the
integration time is at t = 4.3× 108). The dotted vertical line at ε = 0.00241 corresponds to the initial excitation amplitude of
the FPU’s original paper. From Ref. [9].

FIG. 2: FPU-α model. The largest Lyapunov exponents λ(ε,N) are shown for different values of the energy density ε and a
sine wave initially excited. Symbols as in Fig. 1; here the arrows are upper bounds for λ. From Ref. [9].

excitation, they would have observed equipartition during the integration time they used. This appears to be the
simple but non-trivial explanation of the lack of statistical mechanical behavior observed in the original FPU numerical
experiment.
In order to understand whether the ST refers to a global property of the constant energy surface ΣE or is rather a

local property of ΣE , sensitive to the initial condition, two other choices of more physically generic initial conditions,
i.e., random positions and momenta, were considered.
In each case a threshold energy (or equivalently energy density, since N is fixed) was found. This fact suggests



5

that the phase space undergoes some important structural change as the energy is varied: we can find regions of the
phase space where ordered trajectories are observed, regions where there is coexistence of order and chaos and regions
where chaos is fully developed.
An important question is whether the stochasticity threshold is stable or unstable with respect to N . Unambiguous

information about this point is provided by the Lyapunov exponents λ(ε,N) computed at different N , always starting
with random initial conditions (Fig. 3).

FIG. 3: FPU-α model. The largest Lyapunov exponents λ(ε,N) are plotted vs. the energy density ε, for different values of N .
Random initial conditions are chosen. Star-like polygons refer to N = 8, crosses to N = 16, asterisks to N = 32 and star-like
squares to N = 64, respectively. The arrows have the same meaning as in Fig. 2. From Ref. [9].

At large ε, there is a tendency of all the sets of points to join, while they tend to separate at small ε: the larger
N , the smaller the energy density at which the separation occurs. The “critical” energy density εc at which the
separation occurs shows the N -dependence εc(N) ∝ 1/N2.
A qualitative agreement about the vanishing with N of the critical energy to get chaos is reported in a recent paper

on the FPU-α model [10]. The question of how to explain the existence and the 1/N2 dependence of the stochasticity
threshold remains open.
We thus see that revisiting the FPU-α model led to the observation of some very interesting phenomena: the

apparent existence of regular regions in the phase space of a non-integrable Hamiltonian system with many degrees
of freedom at large values of the anharmonic energy (even very large if compared with what they should be according
to the KAM theory), and the existence of almost regular regions of phase space where the trajectories are trapped
during long but finite times. The behavior of the largest Lyapunov exponent suggests that the sudden escape from
the regular region might occur as if the trajectory would eventually find a ’hole’ in its boundary.
Moreover, the coexistence of regular regions of the phase space and of a large chaotic “sea” reconciles different and

sometimes apparently contradictory aspects of the FPU dynamics found in the past. The lack of equipartition in the
original FPU experiment is not representative of a global property of phase space: apparently regular, soliton-like
structures, similar to those of Zabusky and Kruskal, have a very long, possibly infinite, life-time below the stochasticity
threshold, whereas, above the same threshold, they have only a finite life-time[9].
The threshold energy density for the onset of chaos shows a clear tendency to vanish at an increasing number of

degrees of freedom (∼ 1/N2), so that strong evidence has been found in support of the point of view that the so-called
“FPU-problem” does not invalidate the (generic) approach to equilibrium and the validity of equilibrium statistical
mechanics. On the other hand the existence of long living initial states far from equilibrium, may well have interesting,
non trivial physical applications.



6

B. FPU-β model

The FPU-β model is described by the Hamiltonian [1]

H(p, q) =
N
∑

k=1

[

1

2
p2k +

1

2
(qk+1 − qk)

2 +
β

4
(qk+1 − qk)

4

]

, (3)

where the particles have unit mass and unit harmonic coupling constant and the end-points are fixed (q1 = qN+1 = 0);
for this model also periodic boundary conditions have been considered (q1 = qN+1).
The approach to equilibrium of the FPU-β model was studied extensively for various classes of initial conditions by

Kantz et al. [11] and recently by De Luca et al. [12] who extended and improved earlier computations of ours [13, 14].
A very detailed picture has emerged from these works, as to the behavior of the FPU-β model in its dependence

on non-equilibrium initial conditions as well as in the role played by low frequency and high frequency mode-mode
couplings [15] during its time evolution.
Several years ago, we introduced [14] a time dependent spectral entropy S(t) = −

∑

iwi(t) logwi(t), where wi(t) =
Ei(t)/

∑

k Ek(t) is the normalized energy content of the i-th harmonic normal mode, defined so as to detect energy
equipartition (when it attains its maximum value) and to measure the time needed to reach it. By means of this
spectral entropy, we investigated in Refs. [16, 17] the relationship between equipartition times, measured through
the time relaxation patterns of this spectral entropy, and the chaotic properties of the dynamics in nonlinear large
Hamiltonian systems. For the FPU-β model, we have put in evidence that, at different initial conditions and at long
times, the spectral entropy always relaxes toward its maximum value signaling equipartition, however, depending on
the value of the total energy density, the relaxation occurs with quite different modalities. The relaxation time is
approximately constant for energy densities greater than some threshold value εc, but it steeply grows by decreasing the
energy density below this threshold. Moreover, the largest Lyapunov exponent shows a crossover in its ε-dependence
corresponding to this threshold value. We interpret this phenomenological result as the (smooth) transition – at εc
– between two different regimes of chaoticity, weak chaos and strong chaos, thus we called this transition the Strong
Stochasticity Threshold (SST) [16]. Weak and strong chaos are qualitative terms to denote slow and fast phase
space mixing respectively. In Refs. [16, 17] we resorted to a random matrix model for the tangent dynamics to try
to make more precise and quantitative the definitions of weak and strong chaos. At least in a limited high energy
range of values, the random matrix model predicts the numerically observed scaling λ(ε) ∼ ε2/3 (this law changes
to λ(ε) ∼ ε1/4 at very high energy density, however this is not explained by the random matrix model, the reason
is that a free parameter, a time-scale of unknown ε dependence, enters the random matrix model. This time-scale
is arbitrarily assumed constant). Thus we say that chaos is strong in the energy density range where λ(ε) ∼ ε2/3,
because the random matrix model assumes that the dynamics looks as a random uncorrelated process (if sampled with
the just mentioned unknown time scale). At low energy density, the ε-scaling of λ is found to be steeper, λ(ε) ∼ ε2,
so that λ fastly decreases as ε is lowered and is much smaller than it should be if the high energy random matrix
prediction could be extrapolated down to low energy values. For this reason we say that here chaos is weak. Figure
4 shows λ(ε,N).
The SST is independent of the initial conditions so it has to be ascribed to some change in the global properties

of the phase space, for this reason it has to have major consequences on the dynamics. An interesting explanation
based on a model for phase space diffusion is given in Ref. [18].
The SST has been found to be correlated with changes in the transient non-equilibrium behavior (e.g., relaxation

to equipartition) [16, 17, 19], and has been found to be also correlated with stationary non-equilibrium phenomena
like heat conduction[20]. The SST is found to be independent of the number of degrees of freedom, which makes it of
prospective relevance for equilibrium statistical mechanics. Among the model dependent consequences of the existence
of the SST, it is worth mentioning that in the FPU-β model, at ε < εSST

c high-frequency excitations yield longer
relaxation times with respect to low frequencies. This is in agreement with the common belief that high-frequencies
have the tendency to freeze; at ε > εSST

c the situation is reversed. High frequency excitations yield a quicker relaxation
than low frequencies [16].
It is remarkable that the existence of the SST is not only a characteristic of the FPU-β model. In fact, it has

been detected in the following one dimensional lattices: with diatomic Toda interactions (i.e., with alternating masses
that break integrability) [21]; with single-well φ4 interactions [17]; with smoothed Coulomb interactions [21]; with
Lennard-Jones interactions [21]; in an isotropic Heisenberg spin chain [22]; in a coupled rotators chain which displays
two thresholds separating two regions of weak chaos (occurring at low and high energies) from an intermediate region
of strong chaos [23, 24]; in a “mean-field” XY chain [25] and in homopolymeric chains [26]. It has been also detected
in two and three dimensional lattices, with two-wells ϕ4 interactions [27, 28], with XY Heisenberg interactions [29, 30].
Therefore the SST seems to be a generic property of Hamiltonian systems with many degrees of freedom.
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FIG. 4: FPU-β model. Largest Lyapunov exponents λ1 vs. energy density ε at N = 128 and at different initial conditions:
random at equipartition (circles), wave packets at different average wave numbers (squares, triangles and asterisks). From
Ref. [16].

C. FPU-(α+ β) model

In the FPU-α model, the existence of a stochasticity threshold (ST) at an energy density below which the dynamics
is regular has been observed. In the FPU-β model, a strong stochasticity threshold (SST) above which the dynamics
is strongly chaotic has been found. By combining these two models into the FPU-(α + β) model, it is possible to
observe the coexistence of both the ST and the SST. This model has been studied recently in [31]. It is described by
the Hamiltonian

H(p, q) =

N
∑

k=1

[

1

2
p2k +

1

2
(qk+1 − qk)

2 +
α

3
(qk+1 − qk)

3 +
β

4
(qk+1 − qk)

4

]

, (4)

where the particles have unit mass and a unit harmonic coupling constant and the end-points are fixed (q1 = qN+1 = 0).
This model Hamiltonian, with the choice of α = 0.25 and β = 2

3α
2, is a fourth-order expansion of the Toda model

(2). Consequently, its potential function is very close to interatomic potentials of the Morse or Lennard-Jones type
in solids, provided that a suitably restricted energy density range is considered. Random initial conditions have
been chosen. The results of the computation of the largest Lyapunov exponents at different energy densities and for
different values of N are shown in Fig. 5. The patterns of λ(ε,N), therein reported, display some remarkable features.
For small values of the energy density, there is a sudden drop of λ which, in close analogy with Ref. [9], allows us
to define an ST below which we can assume that the overwhelming majority of the trajectories in phase space are
regular. This ST moves to smaller and smaller values of ε as N is increased.
Around ε ≃ 0.8, a “knee” is observed in the pattern λ(ε,N) (Fig. 5), due to a crossover between two power law

behaviors, ∼ ε2 at small ε and ∼ ε
1
4 at large ε, where the latter has been attributed to the existence of an SST

[16, 17]. This crossover is the signature of the transition from weak to strong chaos, as already discussed in [16, 17].

III. RIEMANNIAN GEOMETRY OF CHAOS IN THE FPU-β MODEL

In this Section we sketch how we have analytically computed, in the limit of arbitrarily large N , the largest
Lyapunov exponent λ as a function of the energy density ε for the FPU-β model. The excellent agreement of the
analytic outcome with the numerical results for λ(ε) provides a preliminary understanding of the transition between
weak and strong chaos (SST), and strongly supports the general validity of the proposed explanation of the origin of
Hamiltonian chaos.
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FIG. 5: FPU-(α+β) model. The largest Lyapunov exponents λ(ε,N) are shown for different values of the energy density ε for
various values of N . Starlike squares refer to N = 8, asterisks to N = 16, open squares to N = 32, open triangles to N = 64,
open circles to N = 128, starlike polygons to N = 512 and crosses to N = 1024, respectively. Full squares refer to N = 32

and excitation amplitudes A ranging from 5 to 50. Solid lines are the asymptotic scalings ε2 and ε
1
4 at low and high energy

density, respectively. From Ref. [31].

For generic non-integrable Hamiltonian systems, when the number of degrees of freedom is large, which in practice
means already a few hundred, the whole phase space is filled by chaotic trajectories, at least at physically meaningful
values of the energy density. Therefore, any framework of analytic description of the dynamics has to cope with chaos.
However, even the basic question about the origin of chaos itself, in many degrees of freedom Hamiltonian systems
seems to lack an answer. For example, all the theoretical machinery of Classical Perturbation Theory (CPT) is of
little use if we want to deal with chaos, and so does the traditional explanation of its origin based on homoclinic
intersections [24].
Until a few years ago, the “only game in town”, which seemed of potential interest to treat chaos at large N , was an

attempt by Krylov [32] at explaining the origin of phase space mixing as a consequence of negative scalar curvature of
suitable Riemannian manifolds whose geodesics coincide with the solutions of Newton equations of motion. Krylov’s
idea was to take advantage of some mathematical results about the stability properties of geodesics on negatively
curved Riemannian manifolds. These results are associated with the names of Hadamard [33], Hedlund [34] and Hopf
[35]. Since Krylov’s, other attempts have been done along the same line of thought (see e.g. the discussion in [36]),
but none of them appeared very useful.
More recently, we have reconsidered the Riemannian geometric approach and, with the aid of numerical simulations

on the FPU-β model, we have discovered why the previous attempts failed: the dominant mechanism for chaotic
instability in physically relevant geodesics flows is parametric instability due to curvature variations along the geodesics,
and not necessarily geodesic flows on negatively curved manifolds [24, 36, 37, 38, 39, 40]. On this basis, we have
started the formulation of a Riemannian theory of Hamiltonian chaos which applies to dynamical systems described
by a standard Lagrangian function

L(q, q̇) =
1

2
aik q̇

iq̇k − V (q) , (5)

where aik is the kinetic energy matrix (aik = δik for the usual form of the kinetic energy) or, equivalently, by the
Hamiltonian H(p, q) = 1

2a
ikpipk + V (q), where the momenta are given by pi = aik q̇

k. From Maupertuis’ least action
principle for asynchronous isoenergetic varied paths γ(t) with fixed endpoints

δ

∫

γ

2W (q, q̇)d t = δ

∫

γ

{2[E − V (q)]aik q̇
iq̇k}1/2dt = 0 , (6)

where W is the kinetic energy, the equations of motion follow. Equation (6) is equivalent to the extremization of the
length-integral

∫

γ
ds where ds is ds2 = gik(q)dq

idqk = 2[E − V (q)]aikdq
idqk. In other words, mechanical trajectories



9

are geodesics of the configuration space endowed with a proper Riemannian manifold structure described by the metric
tensor

gik(q) = 2[E − V (q)]aik . (7)

This is known as Jacobi metric and is defined in the region of the configuration space where V (q). In local coordinates,
the geodesic equations on a Riemannian manifold are given by

d2qi

ds2
+ Γi

jk

dqj

ds

dqk

ds
= 0 , (8)

where s is the proper time and Γi
jk are the Christoffel coefficients of the Levi-Civita connection associated with gik.

By direct computation, using gik = (E − V (q))δik, Γ
i
jk = 1

2W δim(∂jWδkm + ∂kWδmj − ∂mWδjk) and ds
2 = 2W 2dt2,

it can be easily verified that the geodesic equations yield

d2qi

dt2
= −∂V

∂qi
, (9)

i.e. Newton’s equations associated to the Lagrangian (5).
Among other Riemannian geometrizations of Newtonian dynamics, a very interesting one is defined in an enlarged

configuration spacetime M ×R
2, with local coordinates (q0, q1, . . . , qi, . . . , qN , qN+1), endowed with a non-degenerate

pseudo-Riemannian metric whose arc-length is [42]

ds2 = gµν dq
µdqν = aij dq

idqj − 2V (q)(dq0)2 + 2 dq0dqN+1 , (10)

called Eisenhart metric. The natural motions are obtained as the canonical projection on the configuration space-time
of those geodesics for which the arclength is positive-definite and given by ds2 = (const)2dt2. A way of measuring
of how much a Riemannian manifold deviates from being a Euclidean manifold is provided by the degree of non-
commutativity of the covariant derivatives which is properly defined by the Riemann-Christoffel curvature tensor
R(X,Y ) = ∇X∇Y − ∇Y ∇X , where ∇ is the Levi-Civita connection, and X,Y are tangent vectors [41]. There are
two relevant curvature scalars: the Ricci curvature KR in a given direction v, and the scalar curvature R (see [36]).
There is an important relation between the curvature of a manifold and the stability of its geodesics. In fact,

the evolution of a vector field J , called geodesic separation vector, is completely determined by the curvature tensor
according to the equation

∇2
γ̇J(s) + R[J(s), γ̇(s)]γ̇(s) = 0. (11)

This is the Jacobi – Levi-Civita equation, where ∇γ̇ is the covariant derivative in the direction of the velocity vector
γ̇ = v. J contains the whole information on the stability – or instability – of any given reference geodesic γ(s) because
it locally measures the distance from γ(s) of any given geodesic close to γ(s).
Since the Jacobi equation (11) relates the stability of the geodesics of a manifold to its curvature, the Jacobi

equation links stability and instability (chaos) of the dynamics with the curvature of the “mechanical” manifold [43],
if the metric is associated with a physical system.
In the particular case of isotropic – or constant curvature – manifolds, Eq. (11) becomes very simple: choosing a

geodesic frame, i.e., a reference frame transported parallel along a reference geodesic, the Jacobi equation is written
as

d2J

ds2
+K J = 0 , (12)

where K = KR/(N − 1) ≡ R/N(N − 1), which has either bounded oscillating solutions ‖J‖ ∝ cos(
√
K s) or ex-

ponentially unstable solutions ‖J‖ ∝ exp(
√
−K s) according to the sign of the curvature and thus of the constant

K.
As long as the curvatures are negative, the geodesic flow is unstable even if the manifold is no longer isotropic,

and the instability exponent is greater than or equal to (−maxM (K))1/2. Geodesic flows on compact manifolds with
everywhere negative curvature were studied for the first time in the classic works by Hadamard, Hedlund and Hopf
[33, 34, 35] and many results were then established by Anosov [44], among them the fact that such systems are ergodic
and mixing.
Equation (12) is valid only when K is constant. Nevertheless in the case in which dimM = 2 (surfaces), the Jacobi

equation – again written in a geodesic reference frame for the sake of simplicity – takes a form very close to that of
isotropic manifolds,

d2J

ds2
+

1

2
R(s)J = 0 , (13)
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where R(s) denotes the scalar curvature of the manifold along the geodesic γ(s). The solutions of Eq. (13) may
exhibit an exponentially growing envelope even if the curvature R(s) is everywhere positive but non constant. For
example, in the case of the celebrated Hénon-Heiles model [6], the scalar curvature R, computed with the Jacobi
metric, is always positive despite the existence of fully developed chaos above some threshold energy [39]. As a matter
of fact, the generic condition of physically relevant systems (like coupled anharmonic oscillators on d-dimensional
lattices) is that Ricci and scalar curvatures of the mechanical manifolds are neither constant nor everywhere negative,
and the straightforward approach based on Eq. (12) does not apply.
The key point is to realize that negative curvatures are not necessary to generate chaos, while the generic non

constancy of the curvature of mechanical manifolds (in the absence of very ”exotic” hidden symmetries [45]), triggers
parametric instability of the geodesics. Thus the exponential growth of the solutions of the stability equation (13),
that is chaos, even if no negative curvature is “felt” by the geodesics.

A. A geometric formula for the Lyapunov exponent

In the large N case, with some simplifying assumptions, mainly that the mechanical manifolds are quasi-isotropic
[24, 36], it is possible to derive an effective scalar stability equation resembling Eq. (13), where the role of R(s) is
played by a random process, so that an analytic estimate of the largest Lyapunov exponent can be worked out. This
effective equation is independent of the knowledge of the dynamics and has the form

d2ψ

ds2
+Ω(s)ψ = 0 (14)

where ψ denotes any of the components of J because now all of them obey the same effective equation of motion, and
the squared frequency Ω(s) is a gaussian random process

Ω(s) = 〈kR〉µ + 〈δ2kR〉1/2µ η(s) , (15)

where kR = KR/(N − 1) and 〈δ2kR〉µ is a shorthand for 1
N−1〈δ2KR〉µ; the averages 〈·〉µ are microcanonical averages;

η(s) is a gaussian random process with zero mean and unit variance. Our estimate for the (largest) Lyapunov exponent

λ is then given by the growth-rate of ‖(ψ, ψ̇)(t)‖2 according to the definition

λ = lim
t→∞

1

2t
log

ψ2(t) + ψ̇2(t)

ψ2(0) + ψ̇2(0)
. (16)

The ratio (ψ2(t) + ψ̇2(t))/(ψ2(0) + ψ̇2(0)) is computed by means of a technique developed by Van Kampen, sum-
marized in Ref. [24], where the following expression for λ has been derived

λ(Ω0, σΩ, τ) =
1

2

(

Λ− 4Ω0

3Λ

)

,

Λ =



2σ2
Ωτ +

√

(

4Ω0

3

)3

+ (2σ2
Ωτ)

2





1/3

, (17)

where Ω0 = 〈kR〉µ, σΩ = 〈δ2kR〉µ = 1
N [〈K2

R〉µ − 〈KR〉2µ] and τ is a time scale expressed in terms of Ω0 and σΩ. The
quantities Ω0, σΩ and τ can be computed as static, i.e. microcanonical averages. Therefore Eq. (17) gives an analytic,
though approximate, formula for the largest Lyapunov exponent independently of the numerical integration of the
dynamics and of the tangent dynamics.
A completely analytical computation of λ(ε) has been performed – in the thermodynamic limit – for the FPU-β

model (such a result first appeared in [46], then it was refined in [24, 36]) and for other models. We report in Fig. 6
the result for the FPU case: the agreement is strikingly good. The analytic values of λ agree with the numerical ones
with errors of a few percent in a range of six orders of magnitude both in ε = E/N and λ, and no use of adjustable
parameters has been made. A preliminary explanation of the existence of the SST proceeds as follows. At low ε,
the amplitude of the curvature fluctuations σΩ is much smaller than the average curvature Ω0, thus the mechanical
manifolds are not very different from constant curvature manifolds, so that the geodesic flow has many of the features
that it would have if it lived on a strictly constant curvature (equal to the average curvature) manifold, and, loosely
speaking, a slow phase space filling through tortuous paths will take place: chaos is weak. Conversely, when σΩ ∼ Ω0,
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FIG. 6: FPU-β model. Lyapunov exponent λ vs. energy density ε with β = 0.1. The continuous line is the theoretical
computation according to Eq. (17), while the circles and squares are the results of numerical simulations with N respectively
equal to 256 and 2000. From Ref. [24].

we can imagine that no similarity at all will exist between the chaotic geodesic flow and its integrable counterpart
living on a constant curvature (equal to the average curvature) manifold. As a consequence the geodesic flow can
quickly diffuse in any direction in phase space: chaos is strong.
Other systems for which good results have been obtained are: a one-dimensional chain of coupled rotators [24],

two and three dimensional classical XY Heisenberg models [30], two and three dimensional classical lattice ϕ4 models
[27, 28], “mean-field” XY model [25], though some adjustments are necessary in these cases.
An important remark is in order. The geometrical theory of chaos aims at explaining what is the origin of chaos

in Hamiltonian systems, and not at providing a recipe for the computation of Lyapunov exponents. The impressive
success of the theory in analytically computing Lyapunov exponents for the FPU model, means that we have actually
found the right conceptual framework and the right explanation for the existence of Hamiltonian chaos and warrants
that any effort to further develop the theory is worthwhile.
One has to keep in mind that the above given analytic formula for the largest Lyapunov exponent has a limited

validity domain: that of the fundamental assumption of quasi-isotropy of the mechanical manifolds. The next step
will be that of relaxing the assumption of quasi-isotropy by letting in nontrivial topology of configuration space.

IV. HAMILTONIAN DYNAMICS, PHASE TRANSITIONS AND TOPOLOGY

Though the content of this Section could appear to be somewhat far from the initial FPU problem, we have
nonetheless sketched it in order to remark how fertile, inspiring and far reaching a systematic investigation of the
(once) surprising behavior of the FPU dynamics has been.
The macroscopic properties of large-N Hamiltonian systems can be understood by means of the traditional methods

of statistical mechanics. The origin of the possibility of describing Hamiltonian systems via equilibrium statistical
mechanics are the chaotic properties underlying the dynamics.
Above, we have observed that the crossover in the ε-dependence of λ phenomenologically corresponds to a transition

between weak and strong chaos (SST), or slow and fast mixing respectively. Thus we have surmised that this transition
has to be the consequence of some “structural” change occurring in configuration space, and thus also in phase space.
This dynamical (mild) transition has been observed, we said above, in many other systems besides FPU. Then, some
natural questions arise: could some kind of dynamical transition between weak and strong chaos (possibly sharper
than the SST found in FPU models) be the microscopic counterpart of a thermodynamic phase transition? and if
this was the case, what kind of difference in the λ(ε) pattern would discriminate between the presence or absence of
a phase transition? and could we make a more precise statement about the kind of “structural” change to occur in
configuration space when the SST corresponds to a phase transition and when it does not?
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During the last years, after an earlier attempt in Ref. [29] where the classical XY model in two dimensions was
considered, and its largest Lyapunov exponent was found to display some indication of the transition temperature of
the Kosterlitz-Thouless phase transition, there has been a renewed interest in the study of the behaviour of Lyapunov
exponents in systems undergoing phase transitions, and a number of papers have appeared: see [27, 28, 30] and
[25, 47, 48, 49, 50, 51, 52, 53, 54, 55].
Two systems have received considerable attention in this framework: the so-called lattice ϕ4 model, and the mean-

field XY model. The lattice ϕ4 model is described by the Hamiltonian

H =
∑

i

1

2
p2i +

J

2

∑

〈i,j〉

(ϕi − ϕj)
2 +

∑

i

[

−m
2

2
ϕ2
i +

u

4!
ϕ4
i

]

, (18)

where the pi are momenta conjugated to the ϕi, real valued scalar variables defined on the sites of a d-dimensional
lattice; m2 and u are positive parameters, and the brackets 〈i, j〉 stand for nearest-neighbors. This model has a phase
transition at a finite temperature provided that d > 1.
The mean-field XY model [56] describes a system of N equally coupled planar classical rotators. It is defined by

the Hamiltonian

H =
∑

i

1

2
p2i +

J

2N

N
∑

i,j=1

[1− cos(ϕi − ϕj)]− h

N
∑

i=1

cosϕi . (19)

Here ϕi ∈ [0, 2π] is the rotation angle of the i-th rotator. Defining at each site i a classical spin vector si =
(cosϕi, sinϕi) the model describes a planar (XY) Heisenberg system with interactions of equal strength among all
the spins. The equilibrium statistical mechanics of this system is exactly described, in the thermodynamic limit, by
mean-field theory [56]. In the limit h→ 0, this system has a continuous phase transition.
Through standard methods of molecular dynamics, thermodynamical observables have been computed and found

to be in agreement with statistical mechanical predictions. The energy density (ε = E/N) dependence of the largest
Lyapunov exponent numerically found in the ϕ4 model – reported in Fig. 7 – shows a pattern similar to that found
in the FPU model but now the mild transition between weak and strong chaos is replaced by an abrupt transition, a
sharp SST: a “cuspy” point in λ(ε) shows up which corresponds to the critical energy locating the phase transition.
Also the Lyapunov exponent of the mean field XY model, obtained through an analytic estimate worked out in the
limit N → ∞ [25] by means of the above discussed geometrical theory of chaos, sharply signals the phase transition
(see Fig. 8).
In both cases, it is evident that the ε-pattern of the largest Lyapunov exponent clearly signals the presence of a

phase transition; the same happens for all the other models studied in the above mentioned references.
Then, coming to the other questions, as Lyapunov exponents are tightly related with the geometry of the mechanical

manifolds in configuration space (as well as in phase space), we have been led to conjecture that in presence of a phase
transition we have to go to the deeper level of topology of these manifolds to find an adequate explanation [57]. If this
is actually the case, we are confronted with a possible – at least conceptual – deepening of our understanding of the
origin of phase transitions. In fact, the topological properties of configuration space submanifolds, mainly equipotential
hypersurfaces Σv = V −1(v) = {q ∈ R

N |V (q) = v} or the regions bounded by them Mv = {q ∈ R
N |V (q) ≤ v}, are

already determined when the microscopic potential V is assigned and are completely independent of the statistical
measures. The appearance of singularities in the thermodynamic observables could then be the effect of a suitable
topological transition in configuration space. Several results strongly support this Topological Hypothesis and suggest
that a phase transition might well be the consequence of an abrupt transition between different rates of change in the
topology above and below the critical point. More details can be found in the review paper [36] and in the subsequent
papers: [58] where the topology of the Mv is analytically studied for the mean-field XY model; [59, 60] where the
topology of the Mv is analytically studied for a trigonometric model undergoing also a first-order phase transition;
[60, 61] where an analytic relationship between topology and thermodynamic entropy is given among other results;
[62, 63] where a preliminary account of a general theorem on topology and phase transitions is given.

V. CONCLUDING REMARKS

By chance, Fermi, Pasta and Ulam chose the initial condition, in their numerical experiment on the α-model, below
the threshold energy of a transition between regular and chaotic motions. With a stronger initial excitation, no
“FPU problem” would have arisen because equipartition of energy could have been observed even with the rather
short integration time that the authors could afford 50 years ago. Apparently the observed phenomenology cannot
be explained by the existing formulations of the KAM theory, both because of the large degree of anharmonicity
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FIG. 7: Lyapunov exponent λ vs. the energy per particle ε, numerically computed for the two-dimensional O(1) ϕ4 model,
with N = 100 (solid circles), N = 400 (open circles), N = 900 (solid triangles), and N = 2500 (open triangles). The critical
energy is marked by a vertical dotted line; the dashed line is the power law ε2. From Ref. [27].

FIG. 8: Mean field XY model: analytic expression for the Lyapunov exponent (solid curve). The curves above the transition

are finite-N results for N = 80 (upper dashed line) and N = 200 (lower dashed line): here λ ∝ N−1/3. From Ref. [25].

(nonintegrability) at which the ST occurs, and because of its slow vanishing at increasing N . Since this threshold
energy goes to zero as the number of degrees of freedom is increased, the FPU problem is not a true problem
for equilibrium statistical mechanics. Nevertheless, the existence of possibly long-living transient nonequilibrium
phenomena draws attention to the relevance of dynamics, initial conditions and observational time scales in order to
assess whether dynamics can be replaced by statistics or not. Because of the cubic potential, the α-model is unstable
above an upper bound in energy density, so FPU considered also the so-called β-model which is well defined at any
energy. However, in the β-model it is hard to detect the ST because it seems to occur at a very low energy density,
where the convergence of the largest Lypaunov exponent requires huge computational times. On the other hand, the
β-model displays another and much more interesting chaotic transition, that we called SST, which is a transition
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between weak and strong chaos. Strong chaos is related with fast phase mixing and fast thermalization of an out of
equilibrium initial condition. Weak chaos is associated with a sudden increase of relaxation times of nonequilibrium
initial conditions when the energy density is smaller than a threshold value (which corresponds to the SST). At
sufficiently low energy density the thermalization can be so slow that the system can give the wrong impression to
recur ad infinitum, if the observational time is not long enough. The study of the α + β–model, which provides a
good approximation of interatomic interaction potentials of the Morse or Lennard-Jones type, displays both the ST
and the SST. However, only the SST is stable with N and can thus be relevant for equilibrium and nonequilibrium
statistical properties of a large class of classical many-body systems. In fact, this kind of transition seems a common
property of many degrees of freedom Hamiltonian systems.
The systematic investigation of the chaotic properties of FPU models – being a heavy numerical task – has become

possible only rather recently, with the advent of modern powerful computers. The results so obtained demanded a
satisfactory and constructive explanation of the origin of Hamiltonian chaos as well as for the reason of the transition
between weak and strong chaos. Motivated by the need of understanding chaos in FPU models, we have started a new
and successful theory of Hamiltonian chaos which resorts to basic concepts and methods of Riemannian geometry.
Later on, all these findings have suggested to look at phase transition phenomena from a new point of view which,
eventually, has inspired the development of a new theoretical approach to them, based on topological concepts.
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Fermi, edited by E. Segré, (University of Chicago, Chicago, 1965), Vol. 2, p. 978.

[2] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 98, 527 (1954); V. I. Arnold, Russ. Math. Surv. 18, 9 (1963); J. Moser, Nachr.
akad. Wiss. Göttingen Math. Phys. Kl. 2 1, 1 (1962).

[3] N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).
[4] N. J. Zabusky and G. S. Deem, J. Comp. Phys. 2, 126 (1967); N. J. Zabusky, J. Phys. Soc. Japan 26, 196 (1969).
[5] F. M. Izrailev and B. V. Chirikov, Dokl. Akad. Nauk SSSR 166, 57 (1966) [Sov. Phys. - Dokl. 11, 30 (1966)].
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