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Abstract

The classical model that describes the motion of an atom in a magnetic trap is solved in order to

investigate the relationship between the failure of the usual adiabatic approximation assumption

and the physical parameters of the trap. This allows to evaluate the effect that reversing of the

bias field rotation produces on the vertical position of the atomic orbit, a displacement that is

closely related to the adiabatic character of the trap motion. The present investigation has been

motivated by a similar experimental test previously carried out in the actual magnetic time orbiting

potential trap. We find that the non-adiabatic effects provided by the classical model are extremely

small. Thus, we conclude that the theoretical explanation of the experimental measures, requires

a quantum description of the dynamics in magnetic traps.
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I. INTRODUCTION

In the realization of Bose-Einstein condensates (BECs) in alkali atoms, the gas is confined

and cooled in magnetic traps. Among the different kinds of setups, in many experiments

have been used time-orbiting-potential (TOP) traps [1], which are realized with two magnetic

components: a static inhomogeneous magnetic-field and an uniform rotating one. The static

inhomogeneous component originates a potential well for the atoms, around a local minimum

of the magnetic field. The smaller this minimum is, the tighter the atomic confinement

is. Nevertheless, at zero magnetic field, atoms can leak from the trapping potential as a

consequence of Majorana transitions. In order to avoid these atomic losses, in the TOP

traps is added the second magnetic component, that eliminates the zero of the magnetic

field at the trap center. The tight and stable confinement of the atomic clouds, achieved in

the TOP traps, makes these systems well-suited for the Bose-Einstein condensation as well

as for quantum statistical/dynamical studies. With respect to the theoretical investigation

of the dynamics of atoms in TOP traps, the adiabatic approximation, in which the atomic

magnetic moment is assumed to be constantly anti-aligned with respect to the magnetic field,

is usually assumed. A further possible mathematical simplification, comes from the time-

average approximation, in which one assumes as potential for the atoms the time average

of the true one. Under these two approximations, the potential seen by an atom in a TOP

trap results harmonic and then the system Hamiltonian has trivial quantum eigenstates.

However, such systems display a residual micromotion due to the fact that the trapping

potential is, indeed, time-dependent. This phenomenon has been theoretically predicted in

Ref. [2] on the base of a classical model that prescinds from the adiabatic approximation,

and it has been experimentally observed in Refs. [3, 4]. These latter papers, have recently

met the interest of several authors [5–10]. Other theoretical investigations on the quantum

dynamics of atoms (condensates) in TOP traps with the adiabatic approximation [11, 12]

([13]), or without this approximation [14], agree with the experimental observations about

this phenomenon.

A second surprising phenomenon has been observed in Ref. [3], in this experiment, and

for the first time, this team has been able to reveal an anomalous shift in the vertical position

of the atomic cloud, as the rotating uniform magnetic field reverses its rotation. In the same

paper it has been hypothesized that the failure of the adiabatic approximation could be
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at the origin of this phenomenon. To our knowledge, this anomalous shift has never been

explained from a theoretical point of view. Thus, the main purpose of the present paper

is to establish if, within a classical description of the dynamics of an atom in a TOP trap,

such phenomenon can be explained. The definite outcome of the present paper is that the

non-adiabatic effects in the classical description of this system are extremely small. Thus,

such anomalous shift, cannot be explained within the classical scenario commonly used to

give a simple explanation of the mechanism behind cloud stability in the magnetic traps.

Consequently, we conclude that, the theoretical explanation of this phenomenon, requires a

quantum description of the dynamics of atoms in a TOP trap.

This work is organized as follows. In section II and III we review some results and

general ideas concerning the atomic motion in a magnetic trap. In particular in section IIA

are introduced the classical equations of motion describing the dynamics of an atom in a

magnetic trap, whereas section IIB is devoted to a general discussion about the adiabatic

approximation that simplifies drastically the resolution of the equations of motion for this

kind of systems. In section III, we derive several periodic orbits that take place in a magnetic

trap that has a cylindric symmetry around the vertical axis. In section IV we discuss the

periodic motion in a triaxial TOP trap similar to that used in the experimental investigation

of Ref. [3] and we put a special emphasis on the reversing bias field rotation test. Therefore,

in Sec. IVA we derive the periodic orbit that takes place in a triaxial trap for a very

small asymmetry. In Sec. IVB we perform a perturbative calculation that, by using the

result of App. A, allows us to evaluate the effect that the asymmetry produces on the

dipole orientation in space and the consequent reposition of the atomic trajectory along the

vertical axis. Finally, in Sec IVB, we evaluate the consequent shift in the vertical position

of the atomic trajectory as the bias field reverses its rotation. In Section V we review some

fundamental point concerning the above experimental results, and the connected numerical

simulation. Thus we analyze the perspective emerging from the fact that the results provided

by the classical model do not agree with what is observed experimentally.

II. ATOMIC MOTION IN A MAGNETIC TRAP

The confinement in space of a neutral particle carrying a magnetic moment, can be

obtained by means of the gradient magnetic-field forces experienced by a magnetic dipole,
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in the presence of an inhomogeneous magnetic field. This mechanism is at the basis of the

atomic traps used by many experimental groups working on the subject of Bose-Einstein

condensation [1]. In these traps, the atoms are first collected by means of laser forces in a

limited region of the space where such inhomogeneous magnetic field plays its active role,

and, afterwards, cooled down by an evaporative mechanism so as to make the transition

to a Bose-Einstein condensate possible. So far the physics of the confinement by magnetic

field has been explained mainly by means of a set of equations in which the particle is seen

as a classical point-like magnetic dipole that obeys to the classical equations of motion [2].

Some quantum mechanical calculations exists for the more simple configuration without the

rotating bias field [15]. Nevertheless, this rotating field plays an important role in the TOP

traps and makes the physics of these systems more intriguing and complicated. In fact,

an important matter inherent this motion is the validity of the adiabatic approximation.

In the case where this approximation holds, the magnetic dipole is constantly anti-aligned

with respect to the magnetic field and, thus, the magnetic energy of the atoms assumes

the role of a space confining potential. Existing quantum mechanical approaches [11–13]

of atoms (or Bose-Einstein condensates) within a magnetic trap, assumes from the start

the fulfillment of the adiabatic condition which is, actually, classical in nature. Indeed the

question concerning its range of validity has been tested experimentally in [3]. From these

investigations it turns out that such an approximation could become less stringent in the

proximity of the marginal stability configuration of a TOP trap. The critical test performed

in [3] concerns the observation of an anomalous shift in the vertical position of the atomic

cloud as the bias radio-frequency field reverses its rotation. The issue of adiabatic motion has

also been theoretically investigated for a symmetric trap, from which the triaxial trap used

in [3] is obtained by setting the symmetry axis in the rotating bias field horizontal plane.

The dynamics in the cylindric trap has been studied by means of a variational technique

approach to the full quantum problem in [14]. Whereas a semi-classical equations including

quantum atomic correlation has been used to investigate the more general problem of the

motion in a inhomogeneous magnetic field in [16].

However, as said above, genuine quantum approaches to the study of the dynamics of

atoms in the TOP trap of Ref. [3] does not exists. These would have the merit of shedding

light on the condition of validity of the adiabatic approximation in the presence of the spatial

motion that a magnetic dipole confined in a magnetic trap undergoes. These questions can
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also be related to the existence of a Berry’s phases phenomenology [17]. While acknowledging

the need of a more detailed quantum investigation we will discuss here some features of the

magnetic confinement in a magnetic trap entirely from the classical point of view and in

particular we will focus on the test of the reversal of the bias field rotation. We believe

that this has to be carried out considering the importance and the intuitive support that

this model provides in explaining the trapping mechanism in the BEC experiments. Thus

before of proceding with a quantum computation it is necessary to assess clearly the scope

of validity of the already existing classical-model. This will be done here by checking the

validity of this model against the experimental results in [3]. In particular when we will

refer generically to the experimental work or to the experimental measurements we will

mean experimental work and experimental measurements as done in Ref. [3].

A. Trap classical equations

As a basic ingredient of a magnetic trap there is a magnetic field configuration having

a minimum of its intensity at a point in the space generally named trap center. This is

obtained with a static quadrupole magnetic field whose components along the Cartesian

axes are

bx = b x , by = b y , bz = −2 b z . (1)

Moreover, in order to prevent the spin flip transition that would occur when the atom

approaches the trap center, a rotating radio-frequency uniform magnetic-field, usually known

as bias field, is superimposed to the static inhomogeneous one. In such a way the atom

trajectory is kept quite far away from this point. Let Bb be the bias field intensity and ω its

angular velocity in the x − y plane. A different configuration for the inhomogeneous field

can be obtained by setting the symmetry axis to coincide with the x axis and by inverting

the currents, this leads to

bx = 2 b x , by = −b y , bz = −b z , (2)

which also provide a stable confinement. We denote by ~B the total magnetic field experienced

by an atom which is given by the sum of the inhomogeneous magnetic field and the bias

rotating field. The configuration where the inhomogeneous magnetic field is given by Eqs.

(1), is known as symmetric or cylindric TOP trap, while the one corresponding to the
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configuration of Eqs. (2) is named triaxial trap and is the one used in the experimental

setup of Ref. [3].

Within the classical realm, the dynamics for an atom in a magnetic trap is given by the

equations of motion

m~̈r = ~F = (~µ · ~∇) ~B +m~g ,

~̇µ = γ ~µ× ~B ,
(3)

where γ connects the magnetic moment to the angular momentum of the particle, i.e. ~µ =

g′ e
2me

~L = γ~L := µ~n, here me is the electron mass, g′ is the gyro-magnetic factor and ~n

is the unit vector parallel to the magnetic moment. In the discussion that follows we will

use normalized units for the quantities involved in the trap dynamics. First of all we will

assign a unit value to the period of the rotating bias field and we adopt a length unit which

coincide with the characteristic length of the trap. Furthermore, in order to lift the constant

in the second of Eqs. (3), we will include the γ constant in the magnetic field ~B, that

will be measured in angular frequency units. Consistently we will absorb the factor 1/γ

in constant µ/m. For a typical TOP trap, we have a bias field frequency of the order of

10kHz and a characteristic length of the order of 1.µm. Thus the time unit will correspond

to T0 = 10−4s, the length unit to L0 = 10−6m, and the magnetic field intensity in the new

unit, will be obtained by multiplying the old value for the factor γT0. E.g., a magnetic

field of 10.Gauss (order of magnitude of the bias field used in [3]) transforms to a field

of about 10−3 1.6×10−19

9.1×10−31 10
−4 = 1.8 × 104, a field gradient b of 100.Gauss cm−1 transform to

10−2×1.8×1011×10−4

10−2×106
= 18. The parameter µ/m of the first of Eqs. (4), in the new unit is

obtained by multiplying the original value for the factor T0/(L
2
0γ). Thus, by doing so for

a trap, as the one of Ref. [3], operating with 87Rb atoms we have the following numerical

values µ

m
= 0.036, which is independent from the unit chosen, g = 0.0981, ω = 2π, Bb ≈ 104

and a value of the field gradient b ranging from 0.1 up to a value of 10. We will refer to

these values in the following as the the standard trap parameters. From Eqs. (3) we finally

obtain the normalized evolution equations

~̈r =
µ

m
(~n · ~∇) ~B + ~g ,

~̇n = ~n× ~B ,
(4)

where ~n is the unit vector corresponding to the atomic magnetic dipole.
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B. Adiabatic approximation

In the present section we summarize the conditions of validity of the adiabatic approxi-

mation and its consequences about the dynamics of atoms in magnetic traps. The adiabatic

approximation, that greatly simplifies the analysis of the atomic motion, comes, pretty natu-

rally, from an analysis of equations (4) and, in particular, from the second one. By indicating

with n‖ the projection of the vector ~n on the magnetic field ~B, i.e. n‖ = ~n ·
~B
B
, and with ~n⊥

the component of ~n perpendicular to this same field, that is ~n⊥ = ~n− (~n ·
~B
B
)
~B
B
, it is easy to

show, by using the second of Eqs. (4), that the following equality holds true

ṅ‖ = ~n⊥ ·
~̇B

B
. (5)

From this equality it results clear that the validity of the adiabatic regime is a consequence

of the fast rotation of ~n⊥ around ~B, that takes place at an angular velocity of the order of

B. In fact, if
~̇B
B
has the same direction of ~B, i.e. ~B changes only in magnitude, the quantity

n‖ is exactly constant. If this is not the case, but ~̇B is small, ṅ‖ is also a small quantity with

zero average because of the fast rotation of ~n⊥ around ~B. Thus, under the hypothesis of fast

rotation of ~n⊥ (that is B >> 1) and small ~̇B, we can conclude that n‖ is a quasi-constant

of motion and the magnetic energy of a particle in the trap results to be

U = −~µ · ~B = −n‖ µ | ~B| . (6)

Now the magnetic energy only depends on the projection of the magnetic moment on the

field ~B and not from the orientation of the dipole in space, since the other degrees of freedom

have been frozen as a result of the adiabatic approximation. Thus, a particle anti-aligned

with the field, or more in general a particle for which n‖ is negative, experiences a confining

magnetic potential in the proximity of a minimum of the magnetic field intensity.

In the case of the TOP traps, where the total magnetic field ~B is time-dependent, it is

more convenient to examine the torque equation (second of (4)) in a reference frame rotating

around the z axis together the bias magnetic field. In this frame, the effective magnetic field

experienced by the particle is given by ~B0 = ~B+ ~ω, where ~ω is directed along the z axis. In

the case of a cylindric trap the latter will be a time-independent quantity, whereas for the

triaxial trap ~B0 remains time-dependent. Thus, in the case of the TOP traps, the adiabatic

approximation has to be applied in the reference frame rotating with the bias field and,
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therefore, it is the field ~B0 that plays the role of the field ~B of Eqs. (5) and (6). Some

questions related to the fact that a proper choice of the reference frame really improves the

analysis of a dynamical system when the adiabatic approximation is to be used have been

discussed in [18]. As a matter of fact it is out of doubt that in the TOP traps the frame

co-rotating with the bias field is the one that has such property.

In the following we will summarize briefly the peculiarities of the motion in the symmetric

and triaxial traps. In this last case, we will calculate the shift of the vertical position of

the atomic cloud, as the bias field reverses its rotation. In the case of the symmetric trap

this shift is shown to be exactly ∆z = −ω
b
. In fact, a −2ω change in the magnetic field ~B0,

is exactly compensated by the z component of the inhomogeneous field in Eq. (1), as the

orbit displaces itself of ∆z in the vertical position. However, in the case of the triaxial trap,

this argument does no more hold true because its inhomogeneous field configuration does

not enjoy the rotational symmetry around the z axis. This produces a different dynamical

evolution of the atomic magnetic moment, that influences also the trap vertical position

beyond the simple argument given above. The calculation of this contribution, will show

how this shift is connected to the failure of the adiabatic approximation, and to which extent

this mechanism can be understood within the limit of this classical model.

III. CYLINDRIC TRAP MOTION

A. The periodic orbits

Stationary solutions of the classical equations (4) for the case of a cylindrical trap, have

been given in Ref. [2]. In order to derive these solutions, and to find the stable orbits, Eqs.

(4) are transformed, and then solved in the reference frame rotating around the z vertical axis

which is opposite to the gravity vector ~g. This frame is the most convenient one because

here the bias field results to be time-independent as well as the fictitious magnetic field

~B0 = ~B+ ~ω. In the latter expression ~ω is directed along the z axis, and ~B includes both the

bias field and the inhomogeneous field. Remarkably, this latter has the cylindrical symmetry

around the z axis. For the first of Eqs. (4), also the apparent forces must be taken into

account. There exists a stable solution in which the magnetic dipole is anti-parallel to field

~B0, this complying with the torque equation, and the particle is at rest in this frame. Thus
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the total force on the particle must be zero. The projection of the equilibrium equation

along the z axis yield Fz = −2µ b nz −mg = 0, from which we derive

nz = − cosϑ = −
mg

2 b µ
. (7)

Let us consider now the equilibrium in the x−y plane. To fix the ideas we chose the rotating x

axis coincident with the bias field (which has intensity Bb), thus ~B0 = (Bb+bx, by,−2bz+ω)

and the gradient force has components in the x−y plane given by Fx = bµnx and Fy = bµny.

The balance with centrifugal force leads to nx = −mω2

bµ
x and ny = −mω2

bµ
y. By combining

this latter equation with the anti-alignment condition, that is ~B0×~n = 0, from ( ~B0×~n)z = 0

we obtain y = 0. This means that the particle rotates in phase with the bias field. The

above arguments lead, therefore, to

nx = −
√

1− n2
z = − sin ϑ = −

mω2

b µ
r , (8)

where ~n = (− sinϑ, 0,− cosϑ) and r being the distance of the equilibrium point from the

origin, i.e. the radius of the particle orbit in the original frame at rest. This latter quantity

can be derived by the condition of normalization of ~n, and it results

r =
µb

mω2

√

1−

(

mg

2µb

)2

. (9)

The magnetic moment configuration for the dynamical regime of this trap, and its relative

position with respect to the bias field and total field are shown in Fig. 1. Finally the

anti-alignment condition between ~n and ~B0 leads to

B0z

B0x

=
−2 b z + ω

Bb + b r
=

1

tanϑ
. (10)

By combining this latter equation and the one derived from the Eqs. (7) and (8), we can

obtain the z equilibrium position. From Eqs. (9) and (10) we can observe that if ω changes

its sign, by keeping fixed all the other parameters of the trap, ϑ does not undergo any change,

as can be gather from Eqs. (7) and (8), and a displacement in the z position of amplitude

−ω
b
will therefore occur.

B. The pseudo-periodic orbits

We derive in the present subsection a particular kind of orbits that are important for the

discussion we will make in the following about the results contained in Ref. [3]. In the case
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FIG. 1: The relative position of the magnetic moment, the bias field for a symmetrical trap

configuration.

in which the bias field Bb is much greater of its rotation frequency ω, a class of orbits which

are almost periodic do exist, even if the magnetic moment is not exactly anti-aligned with

total field ~B0. As we have recalled in the discussion about the adiabatic approximation,

whatever the initial angle between the dipole and the field is, it will remain unchanged since

the dipole performes a very fast processional motion around the magnetic field. As far as the

orbital motion is concerned, the fast oscillation of the dipole, that happens on shorter time

scales, will be averaged out, and, consequently, the force on the dipole will depend only on

its time averaged value. When a motion similar to that described above will take place, the

average vector 〈~n〉 replaces the original vector ~n, in the expressions (7)-(10) for the periodic

motion given in the previous section. Thus, 〈~n〉 will be anti-aligned with respect to ~B0, and

will have intensity | 〈~n〉 | = | cosψ| where ψ is the initial angle between the dipole and the

field. Thus, from Eqs. (7), (8) and (10) we deduce

〈nz〉 = −| cosψ| cosϑ = −
mg

2bµ
,

〈nx〉 = −| cosψ| sinϑ = −
mω2

bµ
r ,

(11)

that combined with the equation

−2bz + ω

Bb + br
=

1

tanϑ
(12)
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determine the orbits height. It is worth to pointing out that, in this case, the orbit z

coordinate depends also on the dipole-field angle ψ as also ϑ does, in virtue of Eqs. (11). In

other words this orbit z-coordinate depends on the dipole initial conditions.

One may ask if, such an orbit, has any relation with the trapping mechanism operating

in the BEC experiments. In this respect it should be remarked that the only classical orbits

which correspond to a stationary quantum state are periodic orbits. For these trajectories,

the wave associated to the orbital motion undergoes constructive interference as it returns

in the same position in space, after that a period has elapsed. This condition gives account

for the old Sommerfeld’s quantization rule. On the contrary, in the quasi-periodic orbit,

the magnetic dipole evolution, is quite independent of the orbital evolution and the particle

returns in the same spatial position with its dipole state differing from that of the previous

passage through that point. This would lead to destructive interference of the wave associ-

ated to the particle. Therefore, the pseudo-periodic orbits can hardly be associated to any

stationary quantum state of the system.

C. Oscillations in the vertical position

In the presence of a strong adiabatic field, we can easily describe the oscillations which

take place when the initial z-position of the trapped particle is different from the z position

given by Eq. (12), in the case of a pseudo-periodic trajectory with initial angle ψ. Indeed,

the potential energy in the case of strong adiabatic motion is given by

U = mgz + µ| cosψ|
√

(Bb + br)2 + (−2bz + ω)2 (13)

to which it corresponds the force

Fz = −mg − 2bµ 〈nz〉 = −mg + 2bµ| cosψ|
(−2bz + ω)

√

(Bb + br)2 + (−2bz + ω)2
. (14)

Thus, when r is small such as br can be neglected with respect to Bb, this force depends only

on z, and the resulting motion is an oscillatory one around the z equilibrium position derived

by Eq. (12). This oscillating regime is important for the discussion that will follow. In fact

the z equilibrium position of a BEC cloud is experimentally evaluated just by measuring the

average value of these oscillations.
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IV. TRIAXIAL TRAP MOTION

In the case of a triaxial trap it is no more possible to obtain an exact solution for the

periodic orbit as done above. Indeed, the rotational symmetry about the vertical axis is lost

and, consequently, the magnetic field ~B0 in the frame rotating with the bias field, remains a

time-dependent quantity. In order to overcome this problem, we will perform a perturbative

calculation in which we will take as a basis the periodic orbit that takes place in this trap, for

a very small b parameter. Therefore, in Sec. IVA, we will derive such an orbit, then, by using

the result of calculation of App. A, we will evaluate the effect that the small inhomogeneous

static magnetic field, seen as a varying one by the dipole during its motion, produces on the

dipole orientation in space. We shall show that in general, the dipole orientation, after that

the particle returns in its initial position in space, will be changed.

Thus, an additional rotation that brings the magnetic dipole back to its initial state, can

be obtained by a static magnetic field. This magnetic field compensation will be obtained

by a vertical shift of the orbit in space. Of course, such an adjustment is not needed for the

symmetric trap, because the inhomogeneous field is seen as constant one during the orbital

motion. It is noteworthy that, such a repositioning of the orbit, will turn out to be different

for a bias field rotating in the positive or in the negative sense. This latter point will be

shown in Sec. IVB

A. Zero order solution

In this section, we derive the periodic orbit that takes place for a very small b parameter.

In order to accomplish this, we neglect the inhomogeneous field components in the x − y

plane, only in the torque equation. Thus we write

~̇n = ~n× (Bb cos(ωt), Bb sin(ωt),−bz) .

We can assume the adiabatic approximation i.e that ~n is anti-aligned with respect to the

approximate magnetic field, which is given by the bias field and by the z component of

the inhomogeneous field. This condition allows us to write, in the laboratory frame, nx =

−n⊥ cosω t and ny = −n⊥ sinω t, where n⊥ indicates the intensity of the component of the

dipole unit vector in the plane x − y. Let nz be the intensity of the z component of the
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dipole unit vector. Thus, the anti-alignment condition gives the equation

n⊥

nz

=
Bb

(bz − ω)
. (15)

The forces on the particle are

Fx = −2µ b n⊥ cos(ωt) ,

Fy = µ b n⊥ sin(ωt) ,

Fz = −µ b nz −mg ,

(16)

by solving the Newton’s equations in the x − y plain, we get the time law for the position

coordinates x and y in the laboratory frame

x(t) =
2µ b

mω2
n⊥ cos(ωt) , and y(t) = −

µ b

mω2
n⊥ sin(ωt) , (17)

where n⊥ is still an unknown quantity. Thus, for small b the orbit takes place entirely in a

plane parallel to the x− y one on an elliptic trajectory, and is counter-rotating with respect

to the bias field. The force equation along the z axis provides the angle by which ~n must

be tilted with respect to this axis, and the value of n⊥. Indeed, the equation Fz = 0 gives,

from the third of Eqs. (16),

− nz =
mg

µ b
:= cosϑ , and n⊥ = sinϑ . (18)

By combining the latter equations with the one in (15), we get

−b z + ω

Bb

=
1

tanϑ
, (19)

which with (18) makes it possible to determines the orbit’s z level.

In order to include in the torque equation the contribution given by inhomogeneous field

in the plane x − y, we have to compute the magnetic field ~b′(t), in the x − y plane, that

the dipole experiences along its trajectory for effect of the inhomogeneous field. In the

laboratory frame this is given by ~b′(t) = (2bx(t),−by(t)), where x(t) and y(t) are given in

Eq. (17). It is convenient to refer this field respect to the system frame rotating with the

bias field, it is not difficult to find

b′x =
3

2

µ b2

mω2
n⊥ cos 2ω t+

5

2

µ b2

mω2
n⊥ ,

b′y = −
3

2

µ b2

mω2
n⊥ sin 2ω t .

(20)
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Thus, the inhomogeneous field component on the dipole results to be the sum of a constant

field and a small time varying component. Apart form the constant term which resets the

value of the bias field, as occurred also in the previous case concerning the symmetric trap,

the sinusoidal components produces deviations from the anti-alignment condition. In order

to evaluate these deviations, and how they can be compensated, we will solve the torque

equation under the presence of a constant field complemented with two small oscillating

components.

B. Difference of height between ω and -ω

In the present section we will apply the results found in appendix IVA, making explicit

Eq. (A6), in the case of the motion in the triaxial trap. Before making these equations

explicit for the case of the triaxial trap, we evaluate the order of magnitude of the deviation

from the adiabatic approximation, a fair indication of this being the angle between ~n0 and

~B0. From Eq. (A6) is clear that this quantity increases as ~B0 gets closer to ω. However,

in the usual experimental setups, this condition is carefully avoided because it is known to

lead to instabilities in the trap. Indeed, reasonable experimental values for the quantities

that appear in (A6) are B0 ≈ Bb of the order of 104 and ω = 2π in our units. Thus, if we

assume the condition in which ω ≪ B0, the second term of Eq. (A6) dominates over the

first one. Its intensity is of the order of
b2
0

B2

0

with b0 standing for the order of magnitude of

|~b1| and |~b2| of (A1). Now, for typical experimental parameters, b0 =
3
2

µb2

mω2n⊥ ≈ µb2

mω2 = 0.92

(here we have used b = 10.). Thus the amplitude of the corrections due to the second term

in Eq. (A6) results of the order of 10−8. The first term of the same equation, is instead

of the order of ω
B0

·
b2
0

B2

0

, and then, it results to be smaller. However, its dependence on ω is

important and it may perhaps become more relevant for trap where the adiabatic condition

is not so strongly enforced, as in the case of the experimental setup being considered here.

We will derive explicitly the shift entailed from this term in the following of the section. It

must be noticed also that, given the relative size of the two terms in the above equation,

the adiabatic approximation is broken earlier than the effect of the reversed rotation can be

observed.

In order to use the result of appendix IVA, we adopt a frame rotating with the bias field
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and we set

b0 =
3

2

µ b2

mω2
n⊥ . (21)

The only components of the fields ~b1 and ~b2 of Eq. (A1), different from zero in this frame are

b1,x = b0 and b2,y = −b0, as they can be read from Eq. (20). Moreover we have ~B0 = (Bb +

5
3
b0, 0, −b z+ ω) and ~n0 = (− sinϑ, 0., − cos ϑ), where the angle ϑ is that one corresponding

to the unperturbed motion and given by Eq. (18). Since initially ~n0 and ~B0 are opposite

to each other, Eq. (A6) prescribes how one of them should be modified. However since ~n0,

and consequently the angle ϑ is already determined by the equilibrium equation along the

z axis, only ~B0 can be modified. This modification amounts to a small time-independent

contribution obtained, in the specific case of the triaxial trap, by a shift of the whole orbit

in the z direction. In order to calculate the angle between ~n0 and ~B0 we note that the only

component of ~n0 × ~B0 different form zero is given by

(~n0 × ~B0)y =
1

2

(

b0
∆

)2

(−2ω sin ϑ+B0 sinϑ cosϑ) , (22)

where one should remind that the angular frequency of the oscillating field component is

2ω instead of ω (Cf. Eqs. (20) and (A1)). The above equation makes evident that ~n0 still

lies in the x − z plane, and that the tilting angle of ~B0 with respect to ~n0, whose sign is

determined by the y axis, is now given by

∆ϑ = −
1

2

(

b0
∆

)2 (

−
2ω

B0

sin ϑ+ sin ϑ cosϑ

)

, (23)

where B0 is the intensity of the total magnetic fields and ∆2 = B2
0 − 4ω2. The new compo-

nent B0,z must now satisfy the condition
B0,z

Bb+
5

2
b0

= 1
tan (ϑ+∆ϑ)

. By using the approximation

1
tan (ϑ+∆ϑ)

= 1
tan ϑ

− ∆ϑ
sinϑ2 we obtain

z = z0 +
1

2

(

b0
∆

)2
(

z0 +
ω

b

)

, (24)

where z0 is the z position of the orbit in the zero approximation. From this expression

it results that the shift in z, caused by the change ω → −ω, for which ∆z0 = −2ω
b

and

∆ω = −2ω, is given by

∆z = −
2ω

b

[

1 +

(

b0
∆

)2
]

. (25)

This expression depends on b but, considered the small size of the perturbing field b0 =

3
2

µ b2

mω2 sin ϑ, it remains very small anyway even if B0 becomes close to the bias field frequency
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ω where, on the other hand, the perturbative calculation presented here would no longer

apply. It is important to point out that the correction found above depends, quite naturally,

on the ratio between the strength of the average inhomogeneous field experienced by the

particle during its motion and the total static field B0. Then, it is approximatively given by

the ration between b0, and Bb. The predicted shift is shown in Fig. 2 and compared with

the zero order compensation shift ∆z0 = −2ω
b
. As it is expected the difference between the
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∆z

FIG. 2: The shift obtained with the theoretical calculations (continuous line) and the zero order

compensation shift (dotted line).

two is really a very small one even for the parameter used in a real trap of Fig. 2.

C. Non-adiabatic regime and bi-stability of the trap

In order to compare the above theoretical derivation with the results obtained by numeri-

cally integrating the equations of motion (4), we have determined, by numeric computations,

the periodic orbits for this system. The method, which is customarily used in investigations

of this kind, assumes that a periodic, and then closed, orbit, named reference orbit, is known

for certain values of the system parameters. A small change of one of these parameters opens

in space, by a slight amount, the reference orbit when evolved over a period of the time-

dependent force. Thus, a small variation of the initial condition could recover the periodicity,

and close the orbit in space again. A linear map connecting initial and final values, for all

orbits that lay close to the reference one, can thus be determined by performing evolutions

of the system with initial conditions very close to those of the reference orbit. This map does
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not appreciably change as the parameters undergo small changes. Thus the new periodic

orbit can be found as the fixed point of this map by inverting numerically the related matrix.

In our case the initial reference orbit is that corresponding to a small value of the parameter

b. Starting from this orbit, we can determine numerically the periodic orbit of the system

for any given parameter value b∗ by means of many small changes of the b parameter, until

the final value b∗ is reached.

First of all, we have used this numerical procedure to compare the shift in the z position

of the orbit with that derived in the previous section. More precisely we have numerically

calculated averaged value of this quantity, and compared it with Eq. (25). As reported in
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 0   0.04   0.08    0.12    0.16    0.2

1/b

∆z -∆z0

FIG. 3: Comparison between the theoretical shift (continuous line) and the numerical one (crosses).

In order to make more evident this comparison the zero order shift ∆z0 =
2ω
b

has been subtracted

to both of these two quantities. At small values of the 1
b
the regularity of this dependence is

somewhat broken as shown by the little terminating wiggle. This corresponds also to orbits which

are on the point of becoming unstable. The parameters used for this figure are Br = 50., µ
m
=0.036,

g = 0.1.

Fig. 3, we observe that the agreement is quite good even for values of b in a more wide range

of those commonly encountered in experimental setups. The calculated shift is extremely

small such as being, at the present, out of the reach of experimental verification, and certainly

far away from the values observed in the experiment of Ref. [3].

By using the numerical routines that we have designed for the analysis of the periodic

orbits, we have performed a coarse examination of the unstable dynamical regimes of the
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FIG. 4: The cosine of the angle between the magnetic field and the magnetic dipole at time t = 0

of the periodic orbit, as a function of the b parameter for both σ+ (continuous line) and σ− (big

dots) polarization of the bias field.
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FIG. 5: Two bistable orbits corresponding to trap values of b = 10., Br = 11.36 and σ+ (anti-

clockwise) bias field.

trap. It is found that signatures of instability appears, quite naturally, as the intensity of

the inhomogeneous field experienced by the particle becomes of the same order than that of

the bias field. For these values the peculiar scenario leading to unstable behavior with orbit

bifurcations, orbit bi-stability and eventually chaotic behavior will emerge. However the

instability is always connected, at least for the range of the parameters observed here, to the

loss of the system adiabatic condition. We have numerically determined the angle between
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the effective field ~B0 and the dipole vector at time t = 0, i.e. when the bias field crosses the

positive x axis. This is shown in Fig. 4 for both directions of bias field rotation. As it can

be seen here the adiabatic approximation is quite resilient even if the trap parameters are

rather loose, in terms of the adiabatic condition enforcement, with respect to those normally

used in a TOP trap. For the same range of values of the b parameter where an appreciable

dis-alignment occurs we have observed a bi-stability regime. The two orbits involved in this

regime are shown in Fig. 5. The analysis of the unstable regimes of this system would

require a systematic study that is out of the purpose of the present work.

V. COMPARISON WITH THE EXPERIMENTAL RESULTS

There is an evident discrepancy between the results obtained here and the experimental

ones reported in Ref. [3]. One of the hypothesis that we can follow to deal with this situation

is to assume that a classical model is not an adequate one to describe the dynamics of an atom

in the triaxial TOP trap and that a quantum calculation is in order. Before to assume the

above hypothesis as the final one, let us to try an alternative analysis that take in account

of a procedure for the bias-field reversal, similar to that one actually performed in the

experiment of [3]. In the reasoning which follow we will refer to a symmetric trap considered

that the perturbation to the magnetic dipole motion produced by the inhomogeneous field

of the triaxial trap are really negligible for the experimental parameters. Thus the effect

that we are going to describe will occur indifferently for the symmetric and triaxial trap.

Let us suppose that the system moves actually on a quasi-periodic orbit with an angle ψ

between dipole and field. We remind that this angle does determine the z position of the

orbit according to Eq. (11) and Eq. (12). Now, if the sense of rotation of the bias field is

abruptly changed the system will experience the oscillations along the z axis discussed in

Section IIIC, because the z coordinate corresponding to the new pseudo-periodic orbit will

be different from the one in which the system is actually in. In the experiment, the averaging

of these oscillations is assumed as the z coordinate of the BEC stationary state corresponding

to the new bias field rotation sense. On the other hands, the classical equations will lead

to a shift that coincide with a zero order compensation shift only if the angle ψ, and by

consequence the equilibrium ϑ, does not change. On the contrary, if this does not occur an

anomalous contribution should be added to the standard compensation shift. Indeed, this
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would be the case if we assume that during the switching between the two rotation senses

the dipole orientation in space does not change. If this is the case, the angle ψ will change

uniquely as a result of the change of the direction of ~B0 in space, as a consequence of the

change of its z projection by an amount of ∆ ~B0,z = ∆ω = −2ω. In appendix B, we have

calculated the shift obtained under these conditions, assuming that both the magnetic dipole

and the field lies in the plane x − y, and that ψ is the initial angle between the two. This

latter quantity can, of course, assume positive or negative values. After a bit of algebra,

reported in appendix B we have found

∆z = −
2ω

b

(

1 +
mg

2bµ

1

sin ϑ

sinψ

cos2 ψ

)

. (26)

This expression evidences how by choosing appropriately the angle ψ, the trend of the

experimental data, according to which the deviation increases as b approaches its minimum

value, could be reproduced. We notice that in this case, also ϑ approaches the zero value,

thus amplifying even further the expected effect. The above expression indicates that the

anomalous shift effect disappear in absence of gravity, a particularity which coincides also

with the conclusions reported in the experimental work. Here we are presuming that the

switching between positive and negative ω does occur so fast that the dipole has no time

to adapt to the new field ~B0, present after the switch has taken place. Although this is

rather unlikely to occur, an alternative mechanism wouldn’t make sense. In fact, it would

be possible to imagine that a loss of the adiabaticity could take place during the switching

process, if at certain point the intensity of the magnetic field would get close to zero, in such

a way that the angle between the field and the dipole emerges out the switching process

changed. This, of course, would depend on how technically this switching is carried out.

If this would be the case, the new oscillation point would be displaced by a quantity that

contains a further anomalous contribution. However, if it would be so, the anomalous ∆za

would be only a fictitious one being dependent just on how the switching process is carried

out. Moreover the question of why the system selects a particular value of ψ 6= 0 and, in

addition, of how a pseudo-periodic orbit can be put in correspondence with a quantum state,

would still remain open ones. In this respect we believe that although our arguments, based

on periodic orbits, are particular sound it might still be possible that this is not jet sufficient

to properly describe quantum stationary states of the BEC cloud and quantum calculation

should be in order. In any case further evidences in support of some of the possibilities
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expressed here should also be searched for.

VI. CONCLUSION

In this work, we have used the classical equations of motion to investigate some properties

of the magnetic confinement of a neutral atom in the TOP trap. Our initial purpose was

that of understanding the origin of an anomalous shift in the vertical position of a BEC

cloud that has been observed experimentally in Ref. [3]. We have calculated analytically

this shift and found that this is not in agreement with these measurements. In spite of this,

our calculations show that, in principle, there is no reason for this shift being limited only

to the standard compensation shift 2ω
b
, as it is the case in the symmetrical trap. We have

shown that an anomalous shift exists in any case in the triaxial trap. In fact, the anomalous

shift calculated here is produced by the interplay between the particle space dynamics, and

that of its magnetic moment driven by the torque equation. However its magnitude results

to be extremely small for the parameters used in the normal trap. On the contrary, if such

a shift were to exist in line with the calculations made in [3], of which account has been

given here, it would be independent of the kind of trap used, i.e. symmetrical or triaxial

one, and would depend basically by the peculiarity of the switching precess. In addition

we have observed a bi-stability regime in the range of values of the b parameter where

the adiabatic regime is lost. The systematic study of this bi-stability regime and of the

consequent unstable-dynamics, deserves a further investigation.

In conclusion, the general feeling is that, the approach based on the classical model, leaves

so many unanswered questions, that we have the only possible alternative to explain the

experimental results by means a quantum mechanical calculation. In fact, in the quantum

mechanical approach, the periodicity condition of both the space and the internal spin

variables, could be much more stringent than in the classical case thus amplifying an effect

that appears otherwise to be quite a small one.

Appendix A: Dynamics of the small oscillating components

In the present appendix we consider a dipole moving in a magnetic field given by a static

component with added small sinusoidal components. In particular, the present section
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is aimed at derive the small deviations from the anti-alignment, due to the effect of the

sinusoidal components like the ones of Eqs. (20). Let the total field acting on the magnetic

dipole be

~B0 +~b1 cosω t+~b2 sinω t , (A1)

and let us suppose that |~b1| and |~b2| are very small with respect to | ~B0|, which is a time-

independent vector. We look for a periodic solution of the form

~n = ~n0 + ~n1 cosω t + ~n2 sinω t (A2)

where ~n1 and ~n2 are small deviations from the anti-alignment. Here ~n0 is the zero order

solution which is anti-aligned with respect to the field ~B0. By inserting the above expressions

in the torque equation for the dipole unit vector, and by neglecting the higher order terms

coming from both the product between the small rotating components of the magnetic

moment and the small rotating components of the magnetic field, one obtains the following

equations

−ω ~n1 = ~n2 × ~B0 + ~n0 ×~b2 ,

ω ~n2 = ~n1 × ~B0 + ~n0 ×~b1 .
(A3)

These equations can be solved for ~n1 and ~n2, thus we obtain [19]

~n1 =
ω ~n0 ×~b2 − B0 (~b1)⊥

B2
0 − ω2

,

~n2 =
−ω ~n0 ×~b1 − B0 (~b2)⊥

B2
0 − ω2

.

(A4)

Here the subscript ⊥ means perpendicular to the static magnetic field. To the smallest order

in the oscillating field amplitude, the constant term in the torque equations yields

~n0 × ~B0 +
1

2
(~n1 ×~b1 + ~n2 ×~b2) = 0 . (A5)

This expression shows that the anti-alignment condition between ~n0 and ~B0 can no longer

be satisfied. Thus we calculate the last two terms of the above equation by using the Eqs.

(A4), after a bit of algebra we obtain

~n0 × ~B0 =ω
(~b2 · ~n0)~b1 − (~b1 · ~n0)~b2

2 (B2
0 − ω2)

+

{(~b1 · ~B0) (~n0 ×~b1) + (~b2 · ~B0) (~n0 ×~b2)}

2 (B2
0 − ω2)

. (A6)

This equation indicates how ~n0 or ~B0 must be modified in order to satisfy the torque equa-

tion.
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Appendix B

We assume that the dipole and the magnetic field ~B0 lies both in the x − y plane of

the rotating frame and that the system moves in a quasi-periodic orbit. Let ϑ be the angle

between the z axis and the field and ψ the angle formed by the dipole with the field, both

measured with reference to the y axis rotations. It is not difficult to calculate the change

in the vertical position of the orbit that occurs as a consequence of a change of the dipole-

field angle ψ and of the bias pulsation frequency ω. Indeed from Eq. (11), noting that

| cosψ| = − cosψ for ψ > π
2
, we obtain

∆ϑ =
mg

2bµ

sinψ

cos2 ψ

1

sinϑ
∆ψ , (B1)

which is the change that the pseudo-periodic orbit angle ϑ undergoes. Thus from Eq. (12)

we obtain that ∆z and ∆ω are correlated as follows

− 2b∆z +∆ω = −Bb

∆ϑ

sin2 ϑ
= −

Bb

sin2 ϑ

mg

2bµ

sinψ

cos2 ψ

1

sinϑ
∆ψ , (B2)

where the small term corresponding to the inhomogeneous field has been neglected with

respect to Bb. On the other hand the change in the field direction, as a result of small

changes of the z component is simply given by

−
∆ϑ

sin2 ϑ
=

∆ω

Bb

, (B3)

where the fact that the vertical position of the orbit is unmodified during the phase that

reverts the rotation of the bias field has been taken into account. A change in the field

direction reflects in a change of the dipole-field angle and, assuming that in the mean time

the dipole angle has remained fixed, we have ∆ψ = −∆ϑ. Thus

∆z = −
2ω

b

(

1 +
mg

2bµ

1

sin ϑ

sinψ

cos2 ψ

)

. (B4)

As a consequence of the instantaneous modification of the bias field rotation, the system

performs oscillations around a position which is displaced by a quantity ∆z with respect to

the initial position of the quasi-periodic orbit.
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