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We discuss the possibility of exponential quantum localization in systems of ultracold bosonic
atoms with repulsive interactions in open optical lattices without disorder. We show that expo-
nential localization occurs in the maximally excited state of the lowest energy band. We establish
the conditions under which the presence of the upper energy bands can be neglected, determine
the successive stages and the quantum phase boundaries at which localization occurs, and discuss
schemes to detect it experimentally by visibility measurements. The discussed mechanism is a par-
ticular type of quantum localization that is intuitively understood in terms of the interplay between
nonlinearity and a bounded energy spectrum.

PACS numbers: 03.75.Lm, 05.30.Jp, 03.65.Sq

1. INTRODUCTION

The phenomenon of Anderson localization in disor-
dered quantum systems [1] was originally discovered in
the context of the study of electrons in a crystal with
imperfections [2]. In fact, it is much more general [3] and
has been observed in a variety of systems, including light
waves in random media [4, 5]. Despite remarkable efforts,
Anderson localization has not been observed directly in
crystals, owing to the high electron-electron and electron-
phonon interactions. It has finally been observed in non-
interacting Bose-Einstein condensates in one-dimensional
quasi-periodic optical lattices [6], that feature a crossover
between extended and exponentially localized states, as
in the case of purely random disorder in higher dimen-
sions; moreover, the effects of random disorder in optical
lattices can also be simulated manipulating the interac-
tions in multi-species mixtures [7]. These achievements
are due to the unprecedented degree of control over the
system physical parameters, in particular the vanishing
of the interaction strength, that ultracold atoms offer.

Indeed, ultracold degenerate gases in optical lattices
provide an unprecedented toolbox for the experimental
realization of what were once just toy models sketch-
ing the key features of complex condensed matter sys-
tems. One prominent example is the Bose-Hubbard
model [8, 9], that was originally introduced as a variant
of the better known Hubbard model and whose prop-
erties were later discussed at length in the context of
the description of superfluid 4He trapped in porous me-
dia. The suggested realization in optical lattices loaded
with ultracold bosonic atoms [10] was soon achieved in
a spectacular breakthrough experiment [11]. Driven by
this brilliant result, a growing number of investigations
has focused on the possibility to use optical lattices to re-
alize various phenomena of considerable interest in con-
densed matter physics [12, 13]. Amongst these, in the
last years much attention has been devoted to the study
of localized quantum phases in many-body systems. For

instance, it has been showed that it is possible to use
boundary dissipation [14] or the control of the sign of
the local interactions, exploiting Feshbach resonances, to
switch from the repulsive Hubbard model to the attrac-
tive one, whose ground state may feature a collapse of all
the atoms of the system into a single site of the lattice
[15–17]. The transition to collapse is essentially due to
the combination of the nonlinear dependence of the local
Hamiltonian on the site occupation that makes energet-
ically favorable those states that are characterized by a
concentration of all atoms in a single site.

In the present work we describe a route to quantum
localization in many-boson systems with repulsive inter-
actions, that has one important feature in common with
the transition to collapse discussed in Refs.[15–17]. The
basic idea is to consider the maximally excited state in
the lowest energy band of an interacting system in a
non-translationally invariant lattice. Within the Bose-
Hubbard framework this is just the eigenstate with high-
est energy of an Hamiltonian H with repulsive interac-
tions. This state is then the eigenstate with lowest energy
(i.e. the ground state) of a new Hamiltonian H

′

equal

to minus the original Hamiltonian: H
′

= −H . The ro-
tated Hamiltonian has attractive interactions (instead of
repulsive interactions) and a negative tunneling ampli-
tude. However, this can be turned positive again by a
π-phase shift on every other lattice site. If one can show
the occurrence of exponential localization in the high-
est excited state of the repulsive Hamiltonian, this phe-
nomenon is then completely equivalent to the collapse in
the ground state of the corresponding attractive model.
In the latter case, upon increasing the intensity of the at-
traction, the particles form a bound state, with increas-
ing mass, which appears to be localized if the correlation
length becomes smaller than the lattice spacing. The two
mechanisms differ in that the former is not realized as an
on-site collapse in the ground state of a system with at-
tractive interactions, but rather as a proper exponential
localization in the maximally excited state of the lowest
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energy band in systems with repulsive interactions. It
is thus a mechanism that is solely due to the interplay
between nonlinearity and an energy spectrum bounded
from above. The latter in turn is a fundamental feature
associated to the fact that the Bose-Hubbard Hamilto-
nian preserves the total particle number.
In the following we will investigate the properties of

the maximally excited state of the one-dimensional repul-
sive Bose-Hubbard model defined on open lattice chains.
Such analysis, besides resorting to exact diagonalization
for systems of very small size, will be carried out for larger
systems using numerical solutions obtained with a con-
trollable recursive algorithm as well as a semi-classical
approach when the size of the problem makes the nu-
merical computation impractical. We will show that, de-
pending on the physical parameters of the system, the
maximally excited state of the repulsive Bose-Hubbard
Hamiltonian defined on an open chain features three dif-
ferent phases of which the first one, associated to small
values of the local repulsion, is characterized by a rela-
tive atomic population spread on all sites of the lattice.
At intermediate values of the on-site interaction there
occurs a second phase in which a macroscopic fraction
of the atoms begins to localize in a single site while the
remainder of the atomic population is still spread over
the lattice. Finally, we will show that for large values of
the on-site repulsion the maximally excited state is char-
acterized by an exponential localization in the center of
the lattice and we will investigate the decay rate both nu-
merically and analytically. We will then determine the
physical conditions such that the overlap of the maxi-
mally excited state of the lowest energy band with the
lowest states of the upper bands can be neglected, and
we will discuss how to detect experimentally the three
different behaviors by measurements of the visibility.

2. MODEL AND METHODS

Let us consider a system of N ultracold atoms with re-
pulsive on-site interactions described by a Bose-Hubbard
model on a one-dimensional lattice of M sites:

H =
U

2

d
∑

j=−d

n̂j(n̂j − 1)− T

d−1
∑

j=−d

(

â†j âj+1 + h.c.
)

. (1)

One needs to consider open chains to look, even in prin-
ciple, for the possibility of true localization. Indeed, in
a translationally-invariant geometry the atoms would be
unable to localize on a definite site. Namely, even in the
presence of strong repulsive on-site interactions, the max-
imally excited state would be essentially a Schrödinger-
cat state, i.e. a superposition of localized states charac-
terized by a flat distribution of the atomic density over

the entire lattice [17]. In Eq.(1) d = (M − 1)/2, âj (â†j)

are the bosonic annihilation (creation) operators on the

j-th site, n̂j = â†j âj are the occupation number opera-
tors, U > 0 is the strength of the repulsive nonlinear

on-site interaction, and T is the hopping amplitude be-
tween neighboring sites.
In order to determine an optimized analytic approx-

imation to the maximally excited state of the Hamil-
tonian Eq.(1) on a finite open chain we proceed by a
dynamical variational method and compare results with
the ones obtained by exact diagonalization. We follow
the route adopted for the corresponding attractive model
[16, 17], introducing a macroscopic trial state of the form

|φ̃〉 = eiϕ|φ〉 where ϕ is a time-dependent phase and |φ〉
is a coherent state of the form

|φ〉 = 1√
N !





d
∑

j=−d

φj â
†
j





N

|Ω〉 . (2)

Here |Ω〉 is the vacuum state and the coherent-state con-
stants, φj ∈ C for j = 1, . . . ,M , must satisfy the normal-

ization condition
∑M

j=1 |φj |2 = 1. The complex quanti-
ties φj describe the on-site bosonic states by the on-site
population |φj |2 and the macroscopic local phase argφj .
The request that the trial state satisfies the Schrödinger
equation on the average, 〈φ̃|i∂t−H |φ̃〉 = 0, identifies the
time derivative ϕ̇ with an effective Lagrangian for the
dynamical variables φj and the corresponding effective
Hamiltonian [18]:

H =
U

2
N(N − 1)

d
∑

j=−d

|φj |4−TN

d−1
∑

j=d

(

φ∗
jφj+1 + cc

)

(3)

Maximizing the latter with respect to the variables φj

under the normalization constraint, one obtains a semi-
classical variational approximation to the maximally ex-
cited energy eigenstate of the system. The first term of
Eq.(3), i.e. the on-site interaction term, does not depend
on the phases of the on-site variables φj , while the hop-
ping term, at arbitrarily fixed values of |φj | and |φj+1| , is
maximized by a phase difference ±π. Therefore, except
for an irrelevant global phase factor, the values φj associ-
ated to the maximally excited state can be assumed to be
real quantities with alternating signs. Defining xj = |φj |,
and taking into account the property of invariance under
mirror reflection (xj = x−j) with respect to the center
of the finite chain, Eq.(3) can be recast in the equivalent
forms

H
N

=
U

2
(N − 1)



x4
0 + 2

d
∑

j=1

x4
j



+ 2T

d
∑

j=1

xjxj−1 ,

H = Λ



x4
0 + 2

d
∑

j=1

x4
j



+

d
∑

j=1

xjxj−1 . (4)

Introducing the dimensionless ratio of the interaction to
kinetic energy scales: Λ = U(N − 1)/(8T ), one can solve
the problem for different values of Λ and maximize Eq.(4)
using the hyperspherical representation of the variables
xj to enforce automatically their exact normalization,
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FIG. 1: (Color online) The atomic density profile 〈nj〉/N in
the maximally excited state of Hamiltonian (1) obtained by
exact diagonalization (full black squares) and by the semi-
classical variational approximation (empty red circles linked
by solid red line), for different values of the dimensionless
energy ratio Λ in an open chain of M = 9 sites and N = 9
atoms. All quantities being plotted are dimensionless.

and can then compares the atomic distribution densi-
ties so obtained with the ones provided by exact diag-
onalization for small samples. The latter in turn can
be performed very efficiently with the help of augmented
recursive Lanczos algorithms [19]. The result of this com-
parison is reported in Fig.(1).

Fig.(1) shows that the semi-classical solution provides
an excellent approximation to the maximally excited
state that becomes more and more accurate with in-
creasing strength of the interaction and of the localiza-
tion of the atoms at the center of the lattice, and can
thus be extended to systems of much larger size that
cannot be investigated by exact diagonalization. More
important, Fig.(1) shows that as the Λ parameter varies
the atomic density profile in the maximally excited state
crosses three different phases. The first one, associated
to small values of Λ, is characterized by the absence of
localization; the third one, associated to very large val-
ues of Λ, corresponds to a complete concentration of all
the atoms of the system in the center of the lattice; fi-
nally, the second one, associated to intermediate values
of Λ, corresponds to the onset of the localization of a sig-
nificant fraction of the atomic population in the central
site, while the distribution of the remainder of the atomic
population over the entire lattice stays finite.
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FIG. 2: (Color online) Atomic density distribution (in log-
arithmic scale) associated to the maximally excited energy
eigenstate in the localized phase obtained by exact diagonal-
ization (solid lines and full symbols) and by the semi-classical
variational approximation (dashed lines and empty symbols)
for a chain of M = 9 sites and N = 9 atoms. From top to bot-
tom: Black circles and lines (Λ = 1.0); red squares and lines
(Λ = 2.0); blue diamonds and lines (Λ = 3.0). All quantities
being plotted are dimensionless.

3. EXPONENTIAL LOCALIZATION AND

VISIBILITY

We now investigate in detail the exponential nature
of the localization in the maximally excited state. The
presence of an exponential decay is reported (in loga-
rithmic scale) in Fig.(2). It shows the behavior of the
relative occupation 〈ni〉/N as a function of the distance
from the center of the lattice. The occurrence of an ex-
ponential localization allows to introduce a simple and
effective method to obtain an excellent analytical ap-
proximate solution the problem of the maximization of
the effective Hamiltonian. We introduce a dimension-
less parameter χ and assume |φj | = χj ∀j ∈ [1, d], with
|φ0| = 1− 2χ2(1 − χ2d)/(1− χ2) in order to satisfy nor-
malization. Within this setting the maximization of the
effective variational Hamiltonian can be performed ana-
lytically. Exploiting the condition χ ≪ 1, necessary to
have a state localized in the central site, one finds the
approximate analytical solution χ = Λ/8. It is worth
observing that the expression for χ that determines the
approximate solution to the maximally excited state of
the system does not depend on the size of the chain. On
the other hand, it depends on the number of atoms in
the lattice through Λ. In Fig.(3) we have compared the
exact numerical solution of the variational problem with
the approximate analytical solution for different value of
Λ within the interval compatible with localization. One
sees that even at moderate values of Λ the analytical ap-
proximation reproduces the essential features of the exact
localized quantum solution.
The onset of localization in the maximally excited state

can be naturally captured either by analyzing the behav-
ior of the relative occupation of the central site 〈n0〉/N
or by looking at the factor f0 = 1− 〈n0〉/N that mea-
sures the relative atomic population outside the central
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FIG. 3: (Color online) Atomic density distribution (in loga-
rithmic scale) as a function of the distance from the center
of the lattice for an open chain of M = 21 sites and N = 21
atoms. Solid lines and filled symbols: Exact numerical so-
lution of the variational problem. Dashed lines and empty
symbols: Approximate analytical solution χ = Λ/8. From
top to bottom: Blue lines and triangles (Λ = 2.0); black lines
and circles (Λ = 5.0); red lines and squares (Λ = 10.0); green
lines and diamonds (λ = 20.0). All quantities being plotted
are dimensionless.
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FIG. 4: (Color online) Relative atomic population ratio f0 =
1 − 〈n0〉/N (upper panel) and visibility V (lower panel) as
functions of Λ for open chains of different size at unit filling.
Green solid lines: Chain of M = 11 sites and N = 11 atoms.
Red dashed lines: Chain of M = 21 sites and N = 21 atoms.
Black dot-dashed lines: Chain of M = 31 sites and N = 31
atoms. All quantities being plotted are dimensionless.

site. The upper panel of Fig.(4) shows that for small
values of Λ the ratio f0 is enhanced. In this regime and
for very long chains, such that the border effects can be
neglected, f0 → 1 − 1/M . It begins to decrease at the
onset of localization at the critical value Λc ≃ 0.7, finally
vanishing asymptotically in the limit Λ → ∞.

The rationale for the study of f0 lies in the fact that
it is directly associated to the visibility V , a quantity
that can be actually measured by looking at the relative
difference between the maximum and the minimum of
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FIG. 5: (Color online) Relative atomic population outside
the central site f0 (red squares) and relative population of
the upper energy band r (black circles) as a function of the
gap width ε for different values of the energy ratio Λ. Filled
symbols: Λ = 2. Empty symbols: Λ = 3. All quantities being
plotted are dimensionless.

the momentum interference pattern [6]. The visibility
is related to the overall coherence [20] according to the
relation

V =
Smax − Smin

Smax − Smin

, (5)

where Smax and Smin are the maximum and minimum
values of the momentum distribution function:

S(K) =
1

M

M
∑

l,m=1

eiK(l−m)〈a†l am〉 (6)

In the lower panel of Fig.(4) we report the behavior of
the visibility, as a function of Λ. We see that the visi-
bility is very sensitive to the onset of localization. It is
approximately constant around its maximum when the
atoms are delocalized over the lattice at small values of
Λ and begins to decrease exponentially, at the onset of
the transition in the center of the lattice, for Λc ≃ 0.7.

4. ROLE OF HIGHER BANDS

A most serious issue concerns the possibility that in
the process of driving the system in the maximally ex-
cited state of the lowest energy band, the lowest states of
the higher energy bands may get significantly populated.
The problem is then to establish under what conditions
the relative overlap between these states and the maxi-
mally excited level of the lowest band is negligible. We
thus need to consider the two-band Bose-Hubbard Hamil-
tonian with intra-band and inter-band interaction terms
[21]. One needs to add to the lowest-band Bose-Hubbard
Hamiltonian Eq.(1) both the Bose-Hubbard Hamiltonian
of the first upper energy band

H2 =
U2

2

d
∑

j=−d

n̂
(2)
j (n̂

(2)
j −1)−T2

d−1
∑

j=−d

(

â
(2)†
j â

(2)
j+1 + h.c.

)

,

(7)



5

and the inter-band interaction terms

HI = Eg

d
∑

j=−d

n̂
(2)
j +W

d
∑

j=−d

4n̂j n̂
(2)
j +(â†jâ

†
ja

(2)
j â

(2)
j +h.c.).

(8)
In Eqs.(7,8) Eg is the energy gap between the first ex-
cited level of the optical lattice potential and the relative

ground state, while â
(2)
j , â

(2)†
j , and n̂

(2)
j are, respectively,

the on-site bosonic annihilation, creation, and number
operators relative to the first upper energy band. The
Hamiltonian parameters of the two bands are obviously
not independent: resorting to the standard harmonic ap-
proximation for the optical lattice potential one has that
T2 ≃ 9.4T , U2 ≃ 3U/4, and W ≃ U/2. Hence, the to-
tal Hamiltonian HT = H + H2 + HI depends only on
the two independent parameters ε = Eg/8T , that mea-
sures the width of the energy gap, and the previously
introduced Λ = U(N − 1)/(8T ), that expresses the ratio
of the interaction to kinetic energy scales. Going again
through the same dynamical variational procedure for
the two-band model HT and finite values of the gap ε,
we solve the maximization problem in the previously de-
termined range of values of Λ that are compatible with
exponential localization in the maximally excited state
of the lowest energy band. As we can see from Fig.(5),
the relative atomic population outside the central site f0
is quite unaffected by the inter-band energy gap width
until the latter becomes so small to allow a relative pop-

ulation r =
∑d

j=−d〈n′
j〉/N of the first upper band that is

comparable with f0. If the energy gap is further reduced,
the occupation outside the central site begins to increase
exponentially even if the population of the central site re-
mains a substantial fraction of the total number of atoms
until ε ≃ Λ and Eg ≃ U(N − 1). This finding allows to
conclude that if the lattice is loaded with a total number
of atoms N ≤ Eg/(10U), one can safely disregard the
presence of the upper energy bands.

5. CONCLUSIONS AND OUTLOOK

In conclusion, we have introduced and discussed a
mechanism of exponential localization in the maximally

excited state for systems of ultracold bosonic atoms with
repulsive interactions in open optical lattices. The prop-
erties of the maximally excited state have been studied as
a function of the Hamiltonian parameter both with nu-
merical and analytical techniques in order to determine
the region of the parameter space in which exponential
localization take place and the dependence of the expo-
nential decay on the Hamiltonian parameters. Finally,
we have discussed how the transition to localization can
be detected experimentally by visibility measurements,
and we have established the physical conditions under
which the overlap with the upper energy bands can be
neglected. This localization mechanism depends on the
properties of the maximally excited state that stem from
the interplay of nonlinearity and a bounded energy spec-
trum. Being not a ground state property, it does not
require the presence of random disorder, attractive local
potentials, or ad hoc truncations of the Hilbert space.
At first sight it would seem that to populate the max-

imally excited state of a system in realistic experiments
is an extremely challenging goal to achieve. However,
thanks to the exceptional properties of controllability
and manipulability of optical lattice systems, the pre-
dicted phenomenon might be observed first by cooling
the system in the presence of a strong local field favor-
ing a substantial atomic population at the center of the
lattice. After switching off instantaneously the local field
the system would remain, with probability close to unity,
in the strongly localized maximally excited state. Re-
peated transitions to delocalization and exponential re-
localization could then be observed simply varying the
energy ratio Λ by changing the depth of the lattice and/or
by tuning the scattering length.
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