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ABSTRACT
Dissecting the underlying structure of galaxies is of main importance in the framework of galaxy formation and evolution
theories. While a classical bulge+disc decomposition of disc galaxies is usually taken as granted, this is only rarely solidly
founded upon the full exploitation of the richness of data arising from spectroscopic studies with integral field units. In this
work we describe a fully Bayesian estimation method of the global structure of disc galaxies which makes use of the wealth of
photometric, kinematic, and mass-to-light ratio data, and that can be seen as a first step towards a machine-learning approach,
certainly needed when dealing with larger samples of galaxies. Ours is a novel, hybrid line of action in tackling the problem of
galactic parameter estimation, neither purely photometric nor orbit-based. Being rooted on a nested sampler, our code, which
is available publicly as an online repository †, allows for a statistical assessment of the need for multiple components in the
dissecting process. As a first case-study the GPU-optimized code is applied to the S0 galaxy NGC-7683, finding that in this
galaxy a pseudo-bulge, possibly the remnant of a bar-like structure, does exist in the center of the system. These results are then
tested against the publicly available, orbit-based code DYNAMITE, finding substantial agreement.
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1 INTRODUCTION

Since the first structural studies on galaxies, the "bulge+disc" de-
composition has been a commonly adopted framework to analyse the
different constituents of galaxies (see e.g.Mendel et al. 2014). Bulges
were commonly thought to be spheroidal components with little net
rotation well described by the de Vaucouleurs surface brightness
profile (De Vaucouleurs 1948) originated mainly via merger events
(Toomre & Toomre 1972). On the other hand, angular momentum
conservation together with gas accretion and cooling into dark matter
halos leads to the formation of a disc (White & Rees 1978) which has
typically been described by a flat exponential profile (Freeman 1970)
supported by ordered rotation. In more recent years, though, high
resolution observations have revealed that the two-component de-
composition is an over-simplification of the reality. Nowadays bulges
are commonly divided into "classical bulges", which look indistin-
guishable from ellipticals, and "pseudobulges", which are the result
of secular processes (Kormendy & Kennicutt 2004). The latter ones
frequently show presence of disc-like features and bars resulting in
an observed net rotation and/or boxy isophotes (see Laurikainen et al.
2016, for a review), this example clearly shows that a separation in
bulge-plus-disc is indeed more complicated than originally thought.
Attempts at modelling such a structural complexity has lead to the de-
velopment of purely photometric decomposition methods and codes,
initially working on 1D azimuthally averaged surface brightness pro-
files (e.g., Gavazzi et al. 2000), then applied to the full 2D images
(e.g., GIM2D, by Simard et al. 2002) and including a growing wealth

† https://github.com/FabioRigamonti/BANG
★ E-mail: frigamonti@uninsubria.it

of structure, such as multiple discs, bars (e.g., BUDDA, by de Souza
et al. 2004), spiral arms, rings and warps (e.g., GALFIT, by Peng
et al. 2002).

In the last decade, the advent of integral field spectroscopy (IFS)
units allowed for an unprecedentedly detailed description of the ve-
locity field of galaxies, together with their surface brightness profile
and, through the collected spectra, estimates of themass-to-light ratio
of their visible constituents. Such a richness of observational con-
straints is rarely fully exploited to extract information about galaxy
sub-structures.

Still, galaxy "bulge+disc" decomposition has been addressed also
with IFU data providing in some cases extensions of already exist-
ing software (GALFIT) on multi-wavelength images (e.g., BUDDI,
Johnston et al. 2017), or combining different techniques to directly
extract information on the two components from the spectra (Oh
et al. 2016; Tabor et al. 2017). These methods have been successfully
applied on sub-samples of surveys such as SAMI (Oh et al. 2016),
MaNGA (Tabor et al. 2019) and CALIFA (Pak et al. 2021), helping to
disentangle and characterise the kinematical properties of bulges and
discs. In all these efforts the relative weights of the two components
is determined by a purely photometric decomposition of the galaxy;
this further constraint is then used to break the degeneracy, and to
extract the kinematic of each component. The decomposition is gen-
erally performed in two separate steps such that the relative weights
of the visible components in the potential is essentially fixed solely
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by the photometric decomposition which may significantly bias the
following kinematic extraction.
On the other hand, still triggered by IFU kinematic measurements,

a different notion of structure has been put forward, which is essen-
tially related to the dynamics of a galaxy. Starting from the seminal
idea and methodology developed by Schwarzschild (1979), the stel-
lar density field of a galaxy is seen as the superposition of suitably
weighted “orbital families” (e.g. boxes, tubes etc.), which play the
same role as bulges and discs play in the 6D phase space (e.g. Van De
Ven et al. 2008). In this framework, the structural decomposition of a
galaxy is meant to reproduce both themeasured line-of-sight velocity
distribution at any projected 2D resolution element and the measured
surface brightness (stellar mass surface density). The drawback of
these methods is that the calculation of the orbital families is very
expensive from the computational point of view, while depending
on the assumed gravitational potential. Ideally one would like to fit
for the gravitational potential as well as for the orbital decomposi-
tion, but this is practically impossible. Therefore the potential of the
visible component is assumed at the beginning, using minimal con-
straints from the observed stellar surface brightness (mass density),
and then is left unchanged.
In this work we develop a novel approach that conceptually sits

in between the pure photometric approach and the orbit-based ap-
proach described above. As in the photometric approach, we start
from the assumption that each galaxy is composed by the superpo-
sition of simple "classical" components, i.e., bulge plus one or more
discs. These components are parameterized in terms of analytic den-
sity distributions and characterized by well defined dynamics in the
6D phase space, similarly to the orbital families in the orbit-based
approach. Their kinematic properties, however, are not fixed by an a-
priori assumed gravitational potential, but are fitted to reproduce the
kinematic and photometric data simultaneously. The gravitational
potential is actually an output of the fitting procedure along with
the parameters that describe the different components, both from the
spatial and the kinematic points of view.
The relative light weight of the computational burden of the fitting

procedure (especially relative to the orbit-based methods), allows us
to adopt a fully Bayesian strategy to infer the probability distributions
of the relevant model parameters.
Our goals are reached by employing the so-called nested sam-

pling algorithm presented in (Skilling 2004). The architecture of our
scheme allows us to explore different models until a user-defined
convergence criteria is reached. Moreover we can evaluate the ev-
idence of each dynamical prescription allowing for a direct model
selection, e.g., by making it possible to check whether the inclusion
of additional components/parameters is statistically significant. The
computational cost of the parameter estimation is significantly re-
duced by parallelizing our scheme on high-performance GPU units.
The paper is organized as follows. In Section 2 we describe our

methodology, in section 3 we show the application of our tool to a
real galaxy and in section 4 we leave our conclusions.

2 METHODOLOGY

In the following section we describe our methodology and its under-
lying assumptions regarding both the dynamical modelling and the
parameter estimation.
In our framework each galaxy is composed by the superposition of

simple components (the full description of which is provided in the
next sub-sections) whose parametric dependencies can be fitted to
the photometric and spectroscopic data. The (semi-)analytical nature

of our models reduces significantly the computational cost of the
procedure, allowing for its coupling with state-of-the-art Bayesian
techniques for parameter estimation and model selection. We opted
for a nested sampling algorithm presented in Skilling (2004), due to
its two main features: (1) it automatically evaluates the evidence1
allowing for a direct model selection, e.g. by making it possible
to check whether the inclusion of additional components/parameters
results (or not) in statistically preferredmodels; (2) it keeps on explor-
ing the parameter space until a sufficiently large amount of models
has been evaluated, stopping when the evidence accuracy reaches a
user-defined threshold.
Still, the large number of model constructions and likelihood eval-

uations needed by the nested sampling would require more than a
day on a single processor for each individual galaxy (see below for
more details). We therefore decided to speed-up (by more than a
factor of 100) the model construction by parallelizing it on graphical
processing units (GPUs). In the following we provide a complete
description of all the ingredients of our algorithm, which is pub-
licly available at https://github.com/FabioRigamonti/BANG,
while the description of the parallelization strategy is discussed in
Appendix A.

2.1 Extrinsic parameters: Setting the reference frame

Each galaxy is the superposition of a spherical bulge, two exponential
thin disc and a dark-matter halo. Eachmodel is axially symmetric and
has a well defined centre, that corresponds to both the photometric
and dynamical centre shared by all the components. We also assume
3 independent constant 𝑀/𝐿 ratios one for the bulge and one for
each of the two discs. The 2-D coordinates defining the position of
the centre of the model in the plane of the sky are dubbed as 𝑥0 and
𝑦0, and are used to translate the observed galaxy setting its centre in
the origin.
In addition to the centre, the observables associated to non-

spherically symmetric components (discs) depend on two angles:
the position angle P.A., i.e. the angle of the major axis of the pro-
jected discs with respect to an arbitrary direction in the plane of the
sky 2 and the inclination angle 𝑖, defined as the angle between the
normal to the plane of the discs3 and the line of sight (l.o.s. hereafter).
The two angles allow to project the 3-D properties of themodel either
on the l.o.s. as well as on plane of the sky by means of two simple
rotations. Hereon, we will identify with 𝑟 the 3-D distance of a point
to the centre of the galaxy, and with 𝑅 the projected radius of such
point on the plane of the sky.
It is worth noting that all the assumptions we adopt in charac-

terizing the model, such as spherical bulge, razor-like thin discs and
isotropic velocity dispersion, aremandatory formaintaining the com-
putational cost of the algorithm affordable. In principle, it is possible
to avoid these approximations in the model construction (Ciotti et al.
2021) at the cost of a significant increase in the computational cost
due to demanding numerical quadratures in solving the Jeans equa-
tions and in the line-of-sight projection (see, e.g., Caravita et al. 2021)

1 In Bayesian theory the evidence is the normalization factor of the posterior
probability. The evaluation of this number is usually avoided since it requires
to compute an integral over the whole parameter space.
2 The P.A. in the model is measured starting from the horizontal direction
and going counterclockwise to guarantee the alignment of the galaxy major
axis with the 𝑥 axis after rotation.
3 All disc components are assumed to be razor thin and to lie in the same
plane.
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4. Such a computational burden is poorly compliant with Bayesian
parameter estimation techniques which are necessary given the large
parameter space. In the future, we plan to develop a generalised ver-
sion of our model exploring different optimization strategies such as
multi-GPU parallelization and machine learning techniques.

2.2 Intrinsic parameters: Bulge & Halo

We assume the bulge to be a spherically symmetric component
with an isotropic velocity distribution. We implement two differ-
ent potential-density pairs, an Hernquist profile (Hernquist 1990)
and a more centrally concentrated Jaffe profile (Jaffe 1983). Unlike
the Hernquist profile, the Jaffe model features a density profile with
a steeper inner slope (𝜌 ∼ 𝑟−2). Hernquist and Jaffe models can be
considered representative of bulges with different inner slopes, an
additional parameter that could eventually be included as a general-
ization of the model following, for example, Dehnen (1993). In the
following, we will describe the properties of the Hernquist model
as reported in Hernquist (1990), used for the analysis discussed in
the paper, while the description of the Jaffe model is reported in
Appendix B. From Hernquist (1990) the 3-D density profile follows

𝜌b (𝑟) =
𝑀b
2𝜋

𝑅b
𝑟 (𝑟 + 𝑅b)3

, (1)

where 𝑀b is the total mass of the bulge and Rb is its scale radius.
The circular velocity of a test particle subject only to the gravita-

tional attraction of an Hernquist model is therefore

𝑣circ,b (𝑟) =
√︁
𝐺𝑀b𝑟

𝑟 + 𝑅b
. (2)

The radial velocity dispersion can be determined from the Jeans
equation as

𝑣2𝑟 =
𝐺𝑀b
12𝑅b

{
12𝑟 (𝑟 + 𝑅b)3

𝑅4b
log

(
𝑟 + 𝑅b
𝑟

)
− 𝑟

𝑟 + 𝑅b

[
25 + 52 𝑟

𝑅b
+ 42

(
𝑟

𝑅b

)2
+ 12

(
𝑟

𝑅b

)3]}
.

(3)

From the 3-D properties of the bulge, we can derive the corre-
sponding projected quantities, namely

• the surface density

Σb (𝑅) = 2
∫ ∞

𝑅

𝜌(𝑟)𝑟
√
𝑟2 − 𝑅2

𝑑𝑟 =
𝑀b

2𝜋𝑅2b (1 − 𝑠
2)2

[(2 + 𝑠2)𝑋 (𝑠) − 3],

(4)

where 𝑠 = 𝑅/𝑅b, and the auxiliary variable 𝑋 is defined as

𝑋 (𝑠) =


1√
1−𝑠2
sech−1𝑠 =

log
[
1+

√
1−𝑠2/𝑠

]
√
1−𝑠2

if 0 ≤ 𝑠 ≤ 1

1√
𝑠2−1

sec−1 𝑠 = cos
−1 (1/𝑠)√
𝑠2−1

if 𝑠 > 1

(5)

4 As an example, in the case of an exponential disc the potential itself has
not a simple analytical expression outside the equatorial plane.

• and the line of sight velocity dispersion

𝜎2b (𝑅) =
2

Σb (𝑅)

∫ ∞

𝑅

𝜌𝑣2𝑟 𝑟√
𝑟2 − 𝑅2

𝑑𝑟

=
𝐺𝑀2b

12𝜋𝑅3bΣb (𝑅)

{
1

2(1 − 𝑠2)3
[−3𝑠2𝑋 (𝑠)

(8𝑠6 − 28𝑠4 + 35𝑠2 − 20) − 24𝑠6 + 68𝑠4 − 65𝑠2 + 6] − 6𝜋𝑠
}
.

(6)

Note that the velocity distribution of the bulge is computed taking
into account its own potential only (an approximation that best rep-
resents compact bulges), on the contrary, as shown in the following
paragraph, the velocity distribution of the disc components takes in
consideration the whole potential.
We adopt an Hernquist profile also for the dark matter halo, which

is the only dark component in our model hence only contributes to
the overall potential. Collisionless simulations in a ΛCDM Universe
found that dark matter halos can be well described by the Navarro-
Frenk-White profile (Navarro et al. 1996) which is almost equivalent
to the Hernquist model until their scale radius, typically larger then
the resolved kinematic. In the following, all the quantities associated
with the halo will be indicated by the subscript ℎ .

2.3 Intrinsic parameters: Inner & outer disc

The other visible components of our model are two exponential
thin discs. The exponential profile is a commonly adopted choice to
describe the external regions of disc-like galaxies (De Vaucouleurs
1959) and, in the assumption of zero thickness, the circular velocity
and the potential in the equatorial plane can be computed with simple
equations (Freeman 1970). Even though this last hypothesis may not
hold in all cases, it is necessary in order to keep the model analytical
and hence computationally fast. The two discs differ by total mass
(𝑀d, 𝑗 , with 𝑗 = 1, 2 discriminating between the two discs), scale
radius (𝑅d, 𝑗 ) and mass-to-light ratio ((𝑀/𝐿)d, 𝑗 ), and the discussion
below applies to both of them. We conventionally decided to refer
to the inner disc with the subscript 𝑗 = 1, and to the disc with the
largest scale radius with the subscript 𝑗 = 2.
The intrinsic (i.e. non-projected) surface density of the 𝑗-th disc

is:

Σint,d, 𝑗 (𝑟) =
𝑀d, 𝑗

2𝜋𝑅2d, 𝑗
exp(−𝑟/𝑅d, 𝑗 ), (7)

and, since the disc is assumed to be razor-thin, the surface density
projected onto the sky plane is simply

Σd, 𝑗 (𝑟) =
Σint,d, 𝑗 (𝑟)
cos 𝑖

(8)

The circular velocity corresponding to the potential generated by
the disc distribution in the disc plane is (Binney & Tremaine 1987)

𝑣circ,d, 𝑗 (𝑟) =
√√
𝑀d, 𝑗

2𝑅2d, 𝑗
𝑦2 [𝐼0 (𝑦) 𝐾0 (𝑦) − 𝐼1 (𝑦) 𝐾1 (𝑦)], (9)

where 𝑦 = 𝑟/𝑅d, 𝑗 while 𝐼0, 𝐾0, 𝐼1, 𝐾1 are the modified Bessel
functions of first and second kind. We evaluate the intrinsic bulk
tangential velocity (i.e. the average velocity, since the velocity dis-
persion is considered isotropic) following the prescription presented
in Satoh (1980), where it is assumed that a fraction 𝑘 𝑗 of the total
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kinetic energy is in ordered bulk motion and the rest goes into a
velocity dispersion component. 𝑘 𝑗 is a free parameter of the model
ranging between −1 and 1. For instance, if 𝑘 𝑗 = 1 the disc is exactly
in circular motion 5, while if 𝑘 𝑗 = 0 the disc is entirely supported
by dispersion. Under this assumption the intrinsic bulk tangential
velocity of each disc is

𝑣int,d, 𝑗 (𝑟) =
√︃
𝑣2circ,b (𝑟) + 𝑣

2
circ,d,1 (𝑟) + 𝑣

2
circ,d,2 (𝑟) + 𝑣

2
circ,h (𝑟),

(10)

where 𝑣circ,h is the circular velocity associated with the dark matter
halo potential computed as in eq. 2 using the total mass and scale
radius of the halo. The bulk l.o.s. velocity component at any location
in the plane of the sky R is then

𝑣d, 𝑗 (R) = −𝑘 𝑗 sin 𝑖 cos 𝜙 𝑣int,d, 𝑗 (𝑟), (11)

where 𝑟 is the deprojected distance from the centre of the galaxy of
the R position and 𝜙 is the azimuthal angle evaluated in the plane of
the disc from the major axis of the projected disc.
The l.o.s. velocity dispersion of the disc is instead

𝜎2d, 𝑗 (R) = (1 − 𝑘2𝑗 )
𝑣2int,d, 𝑗 (𝑟)
3

, (12)

where the factor 3 at the denominator is due to the assumption of
an isotropic velocity dispersion tensor. Note that in our model the
discs are thought to have a finite, even though small, thickness and
the razor-thin disc assumption is only an approximation of their
description. This implies that the vertical velocity dispersion is not
zero, justifying the 1/3 term in eq. 12.
As we will see in the following analysis, the introduction of the

inner disc component, which is partially superimposed to the bulge,
can affect the kinematics increasing the rotational support in the
central regions. The system "bulge+inner disc" can be considered as
an approximate description for a rotating (pseudo)-bulge.

2.4 Full model observables

.
In general, since our model is the superposition of different

potential-density pairs, total quantities are computed through light-
weighted averages of each component.
Using Eqs. (4,8) for each position R in the sky, we determine the

total surface brightness as

𝐵𝑡𝑜𝑡 (R) = 𝐵b (R) + 𝐵d,1 (R) + 𝐵d,2 (R)

=

(
𝑀

𝐿

)−1
b

Σb (R) +
(
𝑀

𝐿

)−1
d,1

Σd,1 (R) +
(
𝑀

𝐿

)−1
d,2

Σd,2 (R),

(13)

where (𝑀/𝐿)b, (𝑀/𝐿)d,1 and (𝑀/𝐿)d,2 are the constant mass to
light ratios of the bulge, the inner disc and the outer disc.
The line of sight velocity, as anticipated, is the average weighted

on each surface brightness of the velocities of the three components:

𝑣los (R) =
𝐵d,1 (R)𝑣d,1 (R) + 𝐵d,2 (R)𝑣d,2 (R)
𝐵b (R) + 𝐵d,1 (R) + 𝐵d,2 (R)

, (14)

5 𝑘 𝑗 = −1 describes a disc in circular motion with counter-rotating orbits. In
this work we assumed only co-rotating orbits since the galaxy analysed does
not show any peculiar kinematic signatures in its velocity field.

Table 1. Summary of the model parameters.

name description

𝑥0 ; 𝑦0 horizontal/vertical position of the center
P.A. position angle
𝑖 inclination angle
𝑀b ; 𝑅b mass and scale radius of the bulge
𝑀d,1 ; 𝑅d,1 mass and scale radius of the inner disc
𝑀d,2 ; 𝑅d,2 mass and scale radius of the outer disc
𝑀ℎ ; 𝑅ℎ mass and scale radius of the halo
(𝑀/𝐿)b mass-to-light ratio of the bulge
(𝑀/𝐿)d,1 mass-to-light ratio of the inner disc
(𝑀/𝐿)d,2 mass-to-light ratio of the outer disc
𝑘1 kinematical decomposition parameter of the inner disc
𝑘2 kinematical decomposition parameter of the outer disc

where no bulge contribution is included in the numerator due to its
isotropic velocity field.
Similarly, the projected dispersion can be computed as

𝜎2los (R) =
𝐵b (R)𝜎2b (R) + 𝐵d,1 (R)𝜎

2
d,1 (R) + 𝐵d,2 (R)𝜎

2
d,2 (R)

𝐵b (R) + 𝐵d,1 (R) + 𝐵d,2 (R)
,

(15)

where 𝜎b depends only on the magnitude of R, due to the spherical
symmetry of the bulge model and the average is weighted by the
contribution of each component to the total luminosity.
The 17 model parameters used in the reference model are summa-

rized in table 1.

2.5 Parameter Estimation

In the presence of such a large parameter space standard fitting rou-
tines, such as 𝜒2 minimization by gradient descend, often fail. This
is mainly due to the presence of multiple local minima and strong
correlations between the parameters. In these situations a possible
solution can be found in genetic algorithms, such as particle swarm
optimization (Kennedy & Eberhart 1995), which directly search in
the parameter space using a momentum based approach, without
considering any gradient. Even though these methods are quite fast,
since they require only few likelihood evaluations, they usually de-
pend on a number of hyperparameters which must be carefully tuned
in order to ensure convergence to the correct maximum. Moreover,
we are particularly interested in exploring the parameter space in its
entirety, thus to be able to map the full 𝑛-dimensional probability dis-
tribution, including all correlations among parameters. Furthermore,
we wish to be able to compare the predictions of several models and
select among them the ones that better reproduce the observations.
For these reasons, we decided to operate within the framework of
Bayesian inference and to adopt the nested sampling Bayesian algo-
rithm to reconstruct the full probability distribution for all parameters
of interest as well as for the estimation of the evidence. More specifi-
cally, we use the python packageCPNest6 (Veitch et al. 2017), which
allows for multi-threading and offers different sampling techniques.7
We will now briefly summarize the most important features of the

nested sampling algorithm in order to understand when it might be
preferable to a standard Markov Chain Monte Carlo (MCMC).

6 https://github.com/johnveitch/cpnest
7 In our specific implementation we have selected a slice sampler (Neal
2003).
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Bayes theorem states that

𝑝(Ω|𝑑𝑎𝑡𝑎) = L(data|Ω) × 𝜋(Ω)
𝑍 (data) , (16)

where Ω is the parameter vector, 𝑝 is the posterior probability
distribution, L is the likelihood function, 𝜋 is the prior distribution
and 𝑍 is the evidence. Usually, MCMCmethods draw a fixed number
of samples directly from the posterior probability making use of the
fact that it is proportional to the product between the likelihood and
the prior. 𝑍 is considered as a normalization factor, hence in the
exploration step it simplifies.
The primary target of the nested sampling method is, instead,

the evidence itself. The algorithm starts by sampling 𝑁 parameters
vectors Ω𝑖=1,..,𝑁 , usually referred as "live points", from the prior
probability. Then all the live points are sorted by their likelihood
such that L1 < ... < L𝑁 . At each iteration 𝜏, the parameter vector
associated to the lowest likelihood value is replaced by a new live
point Ω𝑘 such that L𝑘 > L18. Given the live point with the lowest
likelihood (L1 in this case) we can define the enclosed prior mass
𝑋1 as the integral of the prior over all the parameters Ω𝑖 such that
L𝑖 > L19. Now, starting from 𝑋0 = 1 we can compute the prior
mass at iteration 𝜏 = 1 as 𝑋𝜏 = 𝑡𝜏𝑋𝜏−1 where 𝑡𝜏 is the largest of
N random numbers uniformly drawn between 0 and 1 and increment
the evidence by ∼ L𝜏 (𝑋𝜏−1 − 𝑋𝜏 ). This operation is repeated until
further increases in 𝑍 will not change its value more that a small
fraction 𝑓 .
The existence of a stopping criterion based on the accuracy of

the evidence calculation is a major difference compared to standard
MCMC methods where the number of iterations must be chosen a
priori and, especially in cases with complicated posteriors, it is often
unclear how large it should be. The evidence is critical for model
selection, since, given two competing models 𝐻1 and 𝐻2, one can
compute the odds ratio as:

𝑂12 =
𝑝(𝐻1)
𝑝(𝐻2)

𝑝(𝐷 |𝐻1)
𝑝(𝐷 |𝐻2)

=
𝑝(𝐻1)
𝑝(𝐻2)

𝑍1
𝑍2

≡ 𝑝(𝐻1)
𝑝(𝐻2)

𝐵12 (17)

where 𝑝(𝐻1)/𝑝(𝐻2) is the prior odds that can be typically set to 1,
and 𝑍1/𝑍2,the ratio of the model evidences obtained by integrating
over the entire parameter spaces for 𝐻1 and 𝐻2, is called the Bayes
factor. If 𝐵12 is > 1 (< 1) then model 𝐻1 is favoured (disfavoured)
compared to 𝐻2 (see Jeffreys 1948 for a detailed classification). The
Bayes factor offers a practical way of discriminating among models
by taking into account the entirety of the posterior distribution for
the model parameters.

2.5.1 The likelihood

FromEq. (16)we can see that the likelihood functionL plays a funda-
mental role in Bayesian inference. The likelihood, in fact, quantifies
how likely the data are given a specifiedmodel, hence it quantifies the
predictive power of a model. In our case the likelihood is composed
by 4 different terms, each of them modelled assuming a Gaussian
distribution, and reads

logL = logL𝐵 + logL𝑣𝑙𝑜𝑠 + logL𝜎𝑙𝑜𝑠
+ logL𝑀/𝐿 . (18)

8 Note that finding Ω𝑘 is not trivial and it is usually done with standard
MCMC sampling techniques. Note also that we only need to identify the
worst live point (i.e. the one with the lowest likelihood) without sorting the
other 𝑁 − 1.
9 Note that with such a definition 0 ≤ 𝑋 ≤ 1 is a monotonically decreasing
function of L.

The first three terms compare the output of our model (i.e. Eq
13, 14, and 15) with the data, while the last one contains additional
information regarding the 𝑀/𝐿 ratio.
From our modelling we can easily compute an average mass-to-

light ratio as

〈𝐿/𝑀〉 =

(
𝑀
𝐿

)−1
b

Σ𝑏 +
(
𝑀
𝐿

)−1
d,1

Σ𝑑,1 +
(
𝑀
𝐿

)−1
d,2

Σ𝑑,2

Σ𝑏 + Σ𝑑,1 + Σ𝑑,2
, (19)

10 Since we work with IFU observations it is possible to compute
the two dimensional 𝑀/𝐿 ratio maps and its error comparing the
spatially resolved spectra with stellar population synthesis (SPS)
models (for a more complete description see Zibetti et al. 2017).
In the case that an SPS modelling is not doable we provide our

fitting tool with a preprocessing routine that compute the resolved
𝑀/𝐿 ratio based on multiple band photometry and color–𝑀/𝐿 rela-
tions (García-Benito et al. 2019; Zibetti et al. 2009). More precisely
the 𝑀/𝐿 ratio is computed as

log10 (𝑀/𝐿)𝛼 = 𝑎𝛼 + 𝑏𝛼 × (𝑚𝛽 − 𝑚𝛾) (20)

where 𝑚𝑘 are the magnitudes in the 𝑘 = 𝛼, 𝛽 and 𝛾 bands used
to estimate 𝑀/𝐿 and (𝑎𝛼, 𝑏𝛼) are two constants calibrated against
different independent estimates of the ratio. Note that this relation
can use three different bands or assume either 𝛼 = 𝛽 or 𝛼 = 𝛾.
In the following analysis of the NGC 7683 galaxy we used spa-

tially resolved 𝑀/𝐿 ratio computed from SPS modelling. We refer to
Appendix C for more details about the analysis with multiple bands
photometry and for a comparison between the two methods.
Although the evaluation of the likelihood on a single central pro-

cessing unit (CPU) has a moderate computational cost, i.e. fractions
of a second, the nested sampling algorithm requires a huge amount of
likelihood evaluations, which usually results in days or event weeks
of computation for a single run. This major drawback motivated us
to move part of the algorithm on GPUs using the python package
numba. We reached so far a total duration for the parameter estima-
tion of about 3 hours with a boost of more than a factor of 100 on an
NVIDIA TESLA V100.

3 RESULTS

In the following paragraphs, we will show the results of the appli-
cation of out fitting tool to the test galaxy NGC 7683, and compare
them with those obtained using well-tested independent methods.

3.1 NGC 7683

NGC 7683 is an S0 galaxy at redshift 𝑧 = 0.01227 (∼ 53Mpc)
with a mild inclination and a regular velocity pattern that can be
considered a representative example of the disc galaxies population
in the local Universe. Even though our assumptions of razor-thin
disc with a clear bulge to disc decomposition may fit better Sa-
Sb galaxies we instead opted for an S0 galaxy. Lenticular galaxies
are usually dominated by old stellar populations, affected by little or
negligible dust attenuation, thus resulting in homogeneousM/L ratios
and prominent absorption features in their spectra, which facilitate

10 We thus approximate the average mass-to-light ratio as 〈𝑀/𝐿〉 =

1/〈𝐿/𝑀 〉
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the extraction of the kinematics. Among the S0s in the CALIFA
surveywe selectedNGC7683 by visually inspecting its highly regular
photometry and kinematics (no isophotal distortions, rings, spiral
structures, counter rotation etc.) resulting in an optimal candidate for
a first test of our implementation. NGC 7683 has been observed in
IFS as part of the main sample of the CALIFA survey (Sánchez et al.
2012). Our work is based on the results of the analysis performed by
Zibetti et al. (2017), who joined the information from the CALIFA
Data Release 3 (DR3 Sánchez et al. 2016) “COMBO” cubes and from
the Sloan Digital Sky Survey (Gunn et al. 2006) imaging in the ugriz
bands. The fully detailed description of the analysis can be found in
Zibetti et al. (2017), here we recall the features that are most relevant
to the present analysis. The adopted “COMBO” cube from CALIFA
provides a spectral coverage from 3700 to 7140 Å at the resolution
of ∼ 120 km/s, which results from the joining of the two observing
setups (red, low-resolution and blue, high-resolution) of the survey.
The native spatial resolution is ∼ 2.6′′, but the cube is smoothed in
the 2D spatial plane with an adaptive kernel, using the IFS version
of the ADAPTSMOOTH code (see Zibetti et al. 2009; Zibetti 2009).
This procedure provides the best trade-off between spectral signal-
to-noise ratio (sufficient for reliable stellar population and kinematic
analysis) and spatial resolution, by preserving the maximum possible
information about the galaxy structure. The cube has been analysed
using the PPXF (Cappellari & Emsellem 2004) and GANDALF
(Sarzi et al. 2006) in order to derive accurate kinematic information
(first and second moment of the l.o.s. velocity distribution, 𝑣𝑠𝑦𝑠 and
𝜎) and to subtract the ionized-gas line emission from the stellar
continuum. The images in the five ugriz bands are taken from the
nineth data release of the SDSS (DR9 Ahn et al. 2012) and are
matched to the spatial resolution of the smoothed CALIFA cubes as
far as stellar population analysis is concerned. Using the bayesian
stellar population inference method described in Zibetti et al. (2017)
we derive maps of various stellar population parameters, including
the stellar mass-to-light ratio, which will be used next in this work.
Since the errors from the raw image cannot be easily retrieved and

propagated during the reduction and calibration process, we assumed
for the surface brightness 𝐵 a standard 5% error, comparable with
the relative error in the kinematic quantities. We added a constant
systematic error in the surface brightness too, that we estimate to be
' 10% of its minimum value (i.e., ' 5L�/pc2). This implies that the
relative error on the surface brightness increases moving outwards.
Note that the systematic error in 𝐵 could be treated as an additional
fitting parameter in the likelihood, rather than fixed a priori as done
in this work. Given that, as we verified, the twomethods actually give
similar results, we opted to reduce the number of fitting parameters.
The errors on the line of sight velocity and on the line of sight velocity
dispersion (𝛿𝑣, 𝛿𝜎) directly come from the spectral analysis and are,
on average, about 10 km/s and 15 km/s.
Before comparing the predictions of our model to the observed

data, we have to modify Eq.s (13,14,15,19) in order to account for the
PSF. We thus assume a Gaussian PSF with an instrument-dependent
width 𝜎, which gives the convolution11 in each point (𝑥, 𝑦̃) as

𝐹 (𝑥, 𝑦̃) =
∑
𝑖, 𝑗 𝑓 (𝑥𝑖 , 𝑦 𝑗 ) × exp{−

[
(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑥)2

]
/2𝜎2}∑

𝑖, 𝑗 exp{−
[
(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑥)2

]
/2𝜎2}

,

(21)

where 𝑓 can be 𝐵𝑡𝑜𝑡 , 𝑣𝑙𝑜𝑠 , 𝜎𝑙𝑜𝑠 , or 〈𝐿/𝑀〉, 𝐹 is the convolved

11 Note that since we work on pixellated maps, the convolution is given by
discrete sums.

Table 2. Results of the fit over the NGC 7683 galaxy. The first column is
the name of the parameter, the second one refers to the uniform prior range
and the third one shows the best fit value and the errors estimated from the
posterior probability using the median and the 16 and 84 percentiles. Note
that we do not have estimations for 𝑀h and 𝑅h due to the lack of kinematic
information at large radii, but we can roughly infer the mass enclosed within
5𝑅d,2.

Parameter Prior range Best fit value

𝑥0 [kpc] [−2, 1] −1.031+0.002−0.002

𝑦0 [kpc] [−2, 1] −1.054+0.002−0.002

P.A. [deg] [−180, 180] 44.120.060.06
sin 𝑖 [0.17, 0.97] 0.8290.0010.001

log10 (𝑀b/M�) [8.5; 11.5] 10.670.010.01
log10 (𝑅b/kpc) [−2, 1] −0.650.020.02
log10 (𝑀d,1/M�) [8.5; 11.5] 10.420.020.02
log10 (𝑅d,1/kpc) [−2, 1] −0.0150.0030.003

log10 (𝑀d,2/M�) [8.5; 11.5] 10.8650.0030.003

log10 (𝑅d,2/kpc) [−2, 1] 0.6030.0020.002

log10 (𝑀h/M�) [11.5, 14.5] -

log10 (𝑅h/kpc) [1; 3] -

log10 𝑀h,5/M� - 11.8620.0060.006

(𝑀/𝐿)b [M�/L� ] [1; 100] 10.50.20.2
(𝑀/𝐿)d,1 [M�/L� ] [0.1; 100] 2.120.060.06
(𝑀/𝐿)d,2 [M�/L� ] [0.1; 100] 2.620.020.02
𝑘1 [0; 1] 0.2990.0020.002

𝑘2 [0; 1] 0.7000.0020.001

function, and 𝑥𝑖 and 𝑦 𝑗 are linearly spaced points centered at (𝑥, 𝑦̃)
within a radius 3𝜎.
The best fit parameters estimated by applying our fitting tool to the

NGC 7683 galaxy are reported in Tab. 2 together with the associated
errors and the priors imposed to initialise the nested sampling. The
priors are either uniform in a relatively broad range or, for the param-
eters possibly varying by several orders of magnitude, log-uniform,
with the exception of the inclination angle 𝑖, that is weighted as
the corresponding solid angle. Note that from our analysis it is not
possible to fully gauge the halo parameters likely because of the lim-
ited spatial extension of the kinematic data, nevertheless we give an
estimation of the halo mass within 5 disc scale radii (𝑀h,5).
Fig. 1 illustrates the best fit model obtained from our analysis for

the logarithm of the surface brightness (left column), the line of sight
velocity (middle column), and the line of sight velocity dispersion
(right column). The first and the second rows refer respectively to the
data and the best fit model, while in the last two rows we show the
residuals respectively divided by the data errors 𝛿𝑣 (for the velocity),
𝛿𝜎 (for the velocity dispersion), and by the data themselves (in the
case of the surface brightness). Comparing our model predictions
with the data, we generally find a quite good agreement between all
the three quantities, as can also be noticed by looking at the residuals
maps (third row) and histograms (last row), which are relatively small
in magnitude and do not exhibit any systematic deviation from zero.
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Bayesian modelling of galaxies 7

Figure 1. Best fit model of the NGC 7683 galaxy. The first, second and third columns refer to the surface brightness, the line of sight velocity and the line
of sight velocity dispersion, respectively. From top to bottom we report the observational data, the best fit model, the residual maps and the histograms of the
residuals together with the result of a Gaussian fit. The residuals are divided by the data errors 𝛿𝑣 , 𝛿𝜎 in the case of the velocity and velocity dispersion, and
by the data in the case of the surface brightness.

The histograms are fit with Gaussian functions whose mean (𝜇)
and dispersion (𝜎) are reported in fig. 1. For all three observables
𝜇 is always close to 0, highlighting the absence of large systematic
deviations between model and data. Similarly, 𝜎 is in general quite
small even though, especially for the kinematics, it is larger than
unity. This is due to the presence of features and noise in the data

which cannot be reproduced by the intrinsically smooth nature of our
model.

The corner plot in Fig. 2 describes the behaviour of the posterior
probability for all the estimated parameters. More specifically, each
column refers to a specific parameter of the model and the top panel
represents its one dimensional (i.e. marginalized over all the other
parameters) probability distribution. The remaining panels illustrate

MNRAS 000, 1–14 (2015)



8 F. Rigamonti et al.

Figure 2. Corner plot of the posterior probability computed from the fit of the NGC 7683 galaxy. The posteriors for each of the parameters are well constrained
with an almost Gaussian shape.

Figure 3. Average radial profiles of the logarithm of the surface brightness (left-hand panel), of the velocity (middle panel) and of the line of sight velocity
dispersion (right-hand panel). The data are reported as black dots, with the errors (a 5% uncertainty for the brightness, 10 km/s for the velocity, and 15 km/s
for the velocity dispersion) are shown as a grey shaded area. The blue lines refer to the the best fit model in the case of three visible components (bulge +
inner disc + outer disc), the green lines to a model composed by a bulge and a disc, and the red lines to a bulge plus a fast-rotating disc (priors on 𝑘 > 0.7, on
(𝑀/𝐿)𝑑 > 2.5 and on log10 𝑀𝑏 < 11.1).

the joint posterior probability between different parameters and are
used to detect possible correlations among them.
The one dimensional histograms reveal a clear peak with an almost

Gaussian shape characterised by small widths suggesting optimal
convergence for all the reported parameters. As a reference value
we report in Tab. 2 the medians of the distributions, and the 84th
(16th) percentile as upper (lower) uncertainties. Looking carefully

at the errors we can see that most of them are often smaller than
a few percents; this is a quite common situation when using nested
sampling algorithms,12 and, in our case, it is probably related to

12 see for example Pancoast et al. (2014) which includes a "temperature term"
in the likelihood in order to increase the errors on the estimated parameters.
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Table 3. Evidences of the three models reported in Fig. 3.

Name log 𝑍

B + D1 + D2 -24331
B + D -31999
B + D with priors -36706

the simplified nature of the model. We stress the fact that the errors
reported in Tab. 2 rely on the assumption that ourmodel is catching all
the relevant physics although, in principle, the best fit parameters and
their errors should be estimated bymarginalising over all the possible
dynamical models. Future works based on more complete modelling
may result in more reliable uncertainties on the parameters.
The two dimensional histograms reported in the corner plot of

fig. 2 represent the posterior probability of two parameters after
marginalising over all the remaining ones. Analysing them in details
we can identify some interesting trends. For instance the posterior
probabilities of 𝑥0, 𝑦0 and P.A. are uncorrelated with all the other
parameters; these three physical quantities, which define the geomet-
rical location of the system, are indeed the firsts to be constrained
during the fit and their estimated value is fairly independent on the
other parameters. This behaviour is not unexpected since, for exam-
ple, the location of the center (𝑥0,𝑦0) is consistent with the brightest
pixel of the galaxy whose position is independent on the "intrinsic"
parameters of the model. Other parameters, on the contrary, show
very strong correlations as in the case of the 𝑀/𝐿 ratios and the
respective mass. This positive correlation is consistent with the fact
that an increase in both these two quantities will result in the same
luminosity.
The most massive component is the outer disc, which is the only

one exhibiting a fast rotation (𝑘 ∼ 0.7), the k parameter starts from a
dispersion dominated component (the bulge) where k is essentially
zero and increases gradually up to nearly circularmotion. The bulge is
a fundamental component in order to account for the large dispersion
in the center, but note that its scale radius is of the order of the PSF
width, suggesting that it could probably be interpreted, together with
the inner disc, as a single structure describing a rotating (pseudo)-
bulge.
The need for rotational motion in the center of NGC 7683 can

also be deduced from a statistical analysis based on the evidence
comparison of different dynamical models. Fig. 3 shows the average
radial profiles of the surface brightness, the velocity and the line of
sight velocity dispersion for different dynamical models. The black
dots correspond to the data and the grey shaded area to the associated
errors.13 The blue line is the best fit model assuming a bulge, an
inner disc and an outer disc ("B + D1 + D2"), the green line refers to
a model with a central bulge and a single disc component ("B+D"),
and the red line to a model with a bulge and a rotation-dominated
disc ("B+D" with priors14). All the three models assume the same
dark matter component.
From Fig. 3 it is clear that the "B + D1 + D2" model is a much

better fit to the data. Nonetheless, this does not necessarily imply
a deeper understanding of the underlying physics. More precisely,
the "B + D1 + D2" model has 4 additional parameters with respect
to the other models and, when models with a different number of
parameters are compared, the residuals are not always a sufficient

13 Here we assume a 5% error in the brightness, 10 km/s for the velocity and
15 km/s for the velocity dispersion.
14 We use priors on 𝑘 > 0.7, on (𝑀/𝐿)𝑑 > 2.5 and on log10 𝑀𝑏 < 11.1

statistical diagnostic to prefer one model with respect to others. In
our case, however, the algorithm also computes the evidences of the
three models (see Tab. 3) clearly indicating that the one with the
(by far) highest 𝑍 (i.e. "B + D1 + D2") is statistically preferred, and
confirming that the addition of the second disc component is well
motivated 15.
Comparing the evidences of the "𝐵 + 𝐷" and the "𝐵 + 𝐷" with

prior models we can see that the first one is significantly better,
even though the details of the velocity dispersion profile are not
reproduced at all (as can be clearly seen in Fig. 3). The reason is
that the term in the likelihood related to the velocity dispersion has a
relatively small weight, especially in the outer regionswhere the error
is significantly higher, hence the nested sampling prefers a solution
which fits slightly better the brightness and the velocity in the central
regions at the expense of the velocity dispersion.
We also want to stress that the "B+D" models are clearly under-

estimating the amount of rotation in the center of the NGC 7683
galaxy, due to the presence of the isotropic bulge (see the middle
panel in Fig. 3). Our statistical analysis suggests that the inner disc
is crucial in order to account for significant rotation in the central
regions of the galaxy, strengthening the interpretation that the bulge
+ inner disc system can be considered a reasonable approximation
for a rotating central structure such as a pseudo-bulge or the remnant
of a former bar (see e.g. Kormendy & Kennicutt 2004). Such struc-
tures are currently not implemented in our models, but are a natural
extension that we plan to include in a future follow-up.

3.2 Comparison with DYNAMITE

In this section we compare the results described in the previous
paragraph with a similar analysis performed with dynamite (Jethwa
et al. 2020), a publicly available tool based on the Schwarzschild orbit
superposition method (Schwarzschild 1979), useful for investigating
the internal properties of galaxies.
The Schwarzschild method can be schematically divided in three

main steps:

• The first step consists in determining the total potential, usually
a superposition of dark components (halo and/or black hole) and at
least one visible component, assumed to be triaxial. The visible com-
ponents are typically described by superpositions of triaxial Gaussian
ellipsoids (MGE, Cappellari 2002), whose 2-D ellipsoidal Gaussian
projections depend on four parameters: their total luminosity (𝐿 𝑗 ),
the axial ratio (𝑞′

𝑗
), the dispersion along themajor axis (𝜎𝑗 ),16 and the

position angle (𝜓 𝑗 ), where 𝑗 refer to the specific Gaussian ellipsoid.
These parameters are fitted to the observed surface brightness maps
17 using a large enough number of Gaussian components. Sometimes
it can be useful to give some physically motivated constraints to the
parameters, for instance in our case we used a constant position angle
and fixed 𝑞′

𝑗
> 𝑞′

𝑚𝑖𝑛
= 0.6. As dark component (contributing only

to the potential) we selected among the 4 possible choices a Navarro-
Frenk-White dark matter halo with a fixed concentration parameter
𝑐 = 8, in order to reduce the dimension of the parameter space. Due
to the limited spatial resolution of our data, we did not include any

15 The odds ratio computed as the fraction of the evidences of the
"B + D1 + D2" model in respect to the others is � 1 meaning that, from
a statistical point of view, the "B + D1 + D2" is the most favoured one.
16 The dispersion about the minor axis is then univocally determined by the
𝑞′
𝑗
parameter.

17 Note that for the MGE we used a larger field of view in respect to the
analysis in the previous paragraph with the full SDSS spatial resolution.
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Figure 4. Best fit model obtained with dynamite for the NGC 7683 galaxy. The first column refers to the surface brightness, the second column to the line of
sight velocity, and the last one to the line of sight velocity dispersion. From top to bottom, we report the best fit model, the residual maps, and the histograms
of the residuals together with Gaussian fits of the 2 distributions. The blue histograms refer to the residuals of our model while the red ones come from the
dynamite model) .

Figure 5. Same as Fig. 3, but comparing our best model (shown as blue lines) with dynamite. The red and green lines correspond to the best fit model obtained
with dynamite using a different number of orbits, i.e. 285 000 orbits and 95 000 orbits respectively.
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central massive black hole in themodel. dynamite requires as input a
‘dynamical’ mass-to-light ratio ((𝑀/𝐿)dyn) which is amultiplication
factor of the overall potential. This prevents the re-computation of
all the orbits (see next step) when only (𝑀/𝐿)dyn varies. We decided
instead to fix (𝑀/𝐿)𝑑𝑦𝑛 = 1 and to define a stellar mass to light ratio
(𝑀/𝐿)★ which is directly applied on the MGE.
• In the second step, a huge amount of orbits is integrated for

a timescale much larger then the orbital period. In our case, we
choosed to integrate approximately 285 000 orbits, each for 200
orbital periods. After that, each orbit is properly weighted in order to
match the measuredmoments of the line of sight velocity distribution
(LOSVD).18Wemanually tuned some of the hyperparameters of the
weight solver in order to reach optimal convergence in the fit.

• the last step consists in running different dynamical models,
in order to gauge all the free parameters which, in our case, are:
the logarithm of the halo mass fraction log10 𝑓 , the stellar mass
to light ratio (𝑀/𝐿)★ and the intrinsic flattening 𝑞. The intrinsic
flattening is defined as the ratio between the major axis and the
minor axis of the triaxial Gaussian ellipsoid (Cappellari 2002). To
explore the parameter space, we created a 9 × 9 × 4 grid covering
respectively the ranges: (𝑀/𝐿)★ ∈ [2.85, 4.15], 𝑞 ∈ [0.3, 0.59] and
log10 𝑓 ∈ [0.9, 1.8]. In order to allow for a fast exploration of all
the 9 × 9 × 4 parameter combinations, we used a high-performance-
computingmachine equippedwith 4 nodes of 48 cores each, resulting
in 192 models evaluated simultaneously. The evaluation of a single
model lasts for hours, and the occupied disc memory is about 2.5GB
(a total of ∼ 800GB). Note that in total we explored 324 different
models, which is a number significantly smaller then the amount
of likelihood evaluations required by any Bayesian technique; for
these reason the parameter estimation performed with the grid search
should be treated carefully.

Fig. 4 shows the best fit model, which has been selected using
the minimum kinematic 𝜒2, with parameters: 𝑞 = 0.4, (𝑀/𝐿)★ =

4.1M�/L� and log10 𝑓 = 1.125. Inverting Eq. (9) of (Cappel-
lari 2002), we can estimate the inclination angle of the galaxy
as 𝑖 = 60 deg, which is in agreement with our estimation of
𝑖 = 55.69+0.06−0.06 deg considering that we explored only 4 intrinsic flat-
tening with dynamite. Also our estimate for the total visible mass
of the galaxy which is 𝑀 = 1.46+0.02−0.02 × 10

11𝑀� , is consistent with
the value given by the MGE within 40′′ of 1.5 × 1011𝑀� . A good
agreement is maintained also for the total mass profile, although dis-
crepancies exist when separating the visible and dark components.
These differences can be associated with 𝑀/𝐿 ratios which, dif-
ferently from our model, we assumed constant in the analysis with
dynamite.
As mentioned above, Fig. 4 shows the best results obtained with

dynamite. The picture scheme is similar to the one reported in
Fig. 1. Note however that the surface brightness is normalized to
its maximum and that the dimension of the maps is down-scaled to
the dimension of the velocity dispersion one since, differently from
our tool, dynamite cannot read as input observables mapped with a
different number of pixels.
The residual maps in the second line of the figure show a general

agreement between the model and the data, even though the line
of sight velocity seems to be slightly overestimated in the center.
Also the pattern of the velocity dispersion in the central regions is

18 The LOSVD is usually expanded in terms of Gauss-Hermite polynomials
(Cappellari 2016) up to the fourth moment (ℎ4). However, this parametric
expansion must be treated carefully since in some cases it can lead to negative
and unphysical LOSVDs.

Figure 6. x-axis: distance from the center, y-axis: circularity (i.e. angular
momentum along z divided by the angular momentum of the circular orbit).
The greymap represents the density of orbits at a specific distancewith a given
circularity. The red line is the circularity averaged on the orbit density and
the shaded area is the associated error computed as the weighted dispersion.
The blue line is the circularity predicted from our model which essentially
correspond to the average radial profile of the k parameter weighted on the
surface brightness. The horizontal dashed lines split the diagram into different
regions depending on the orbit type. From bottom to top: counter rotating
orbits, hot dispersion-dominated orbits, warm orbits and cold rotating orbits.

quite peculiar, with an initial decrease followed by an increase in the
outer regions along the minor axis. Despite some little systematic
deviations in the surface brightness and in the velocity, the residuals
histograms obtained from dynamite (red) and from our model (blue)
show similar scatters (𝜎), suggesting that, overall, our simplified
model can recover all the observed properties with good accuracy.
The average radial profiles are presented in Fig. 5. The blue line,

the black dots and the grey area are identical to Fig. 3, while the red
and the green lines refer to the best fit model obtained with dynamite
using respectively 285 000 orbits and 95 000 orbits. Interestingly, we
can notice that the modelling of the velocity dispersion improves
when the number of orbits is increased. Since these two models have
similar best fit parameters, it is not clear whether further increasing
the number of orbits (above a certain threshold) is useful to strengthen
the constraints on the free parameters, or if it only adds more degrees
of freedom, resulting in smaller residuals. On the contrary, the sta-
tistical gain or loss obtained adding new parameters can be gauged
in our nested-sampling-based approach.
Fig. 6 illustrates in grey-scale the density of orbits in the distance

vs circularity19 plane, with the red line corresponding to the average
circularity weighted by the orbit density from dynamite, the red area
to the standard deviation error, and the blue line to the azimuthally-
averaged circularity predicted by our model. The figure reveals the
presence of 2 clumps with zero circularity superimposed to many
rotating orbits. The first groups of orbit with 𝜆𝑧 = 0 is concentrated
in the center even though the average profile (red line) does not reach
zero, meaning that a non negligible amount of rotation is required
also in the central regions, consistently with our statistical analysis

19 The circularity is defined as the angular momentum along the 𝑧-axis
divided by the angular momentum of a circular orbit with the same energy.
In our model, it coincides with the average of the 𝑘 parameters weighted on
their surface brightness

MNRAS 000, 1–14 (2015)
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Figure 7. x-axis: distance from the center,y-axis: anisotropy in spherical
coordinates. The anisotropy is computed as 𝛽𝑟 = 1 − 𝜎2𝑡 /𝜎2𝑟 where 𝜎2𝑡 =

(𝜎2
𝜃
+ 𝜎2

𝜙
)/2. 𝛽𝑟 = 0 means isotropy, while 𝛽𝑟 > 0 (< 0) means radially

(tangentially) biased orbits.

described in Section 3.1. The second bundle of orbits with null
circularity is between 15′′ and 20′′ and it is probably responsible
for the excess in the velocity dispersion seen in the right picture
of Fig. 5. Note also that the average circularity computed from our
model is broadly consistent with the prediction of dynamite even
though the two increasing trends have opposite concavity, note also
that the most significant difference between the 2 profiles is located
in correspondence of the second bundle of orbit with zero circularity.
To further check our assumption of isotropy, we show in fig. 7 the

anisotropy parameter 𝛽𝑟 = 1 − 𝜎2𝑡 /𝜎2𝑟 as a function of the distance
from the center. Isotropy is defined by the condition 𝛽𝑟 ' 0, while for
𝛽𝑟 > 0 (< 0) the galaxy is said to be radially (tangentially) biased.
The resulting −0.3 . 𝜎𝑡/𝜎𝑟 . 0.15 supports the assumption of
general isotropy. Note, however, that orbits in the center (𝑟 . 10′′)
tend to be radially biased, reaching 𝛽𝑟 = 0 only at small radii.
Interestingly, the transition to tangentially biased orbits happens at
𝑟 ' 12′′, where the rotational support and the warm orbits start to
dominate.

4 SUMMARY AND CONCLUSIONS

In this work we described a numerical methodology aimed at the
estimation of the global properties of disc galaxies. Our methodol-
ogy is novel in that it relies on an hybrid approach to the problem
of galactic parameter estimation which is neither purely photomet-
ric nor orbit-based, as commonly employed in those sort of studies
(Mendel et al. 2014, Zhu et al. 2018). The algorithm we developed
exploits simultaneously the entire wealth of photometric, kinematic,
and mass-to-light ratio measurements available for single targets. We
adopt an idealizedmodel of disc galaxywhose structure is in the form
of an axi-symmetric superposition of one or more discs and a central
bulge, embedded in the host dark-matter halo. The model, described
by 17 parameters, is then fitted against photometric, kinematic, and
mass-to-light ratio data.
In order to keep the galaxy parameter estimation reasonable in

terms of computational burden, we made a number of necessary
assumptions and simplifications, namely:

• the bulge kinematics neglects the effect of the disc components

on the potential. This approximation is better suited to model com-
pact bulges, and may result in a poor description of more extended
spheroidal components;

• the mass-to-light ratio is constant in radius for each galaxy
component. Note that, once the galactic components are combined
together, this results in a mass-to-light ratio that effectively depends
upon the galaxy radial coordinate;

• the disc component(s) is(are) assumed to be geometrically thin,
its(their) kinematics is obtained by allowing the total kinetic energy
to be shared between ordered and isotropic motions.

Given the galaxy model just described, the parameter estimation
is performed via a Bayesian nested sampling analysis, that automati-
cally evaluates the evidence of each model allowing for direct model
selection. Since the analysis is intrinsically computationally demand-
ing (e.g., a large number of evaluations of the likelihood is involved;
the calculation of the evidence is regarded as simply too demanding
in many applications; etc.), in order to speed-up calculations the code
has been optimized for running on GPUs. The parameter estimation
has been specifically tailored to perform an accurate, still reasonably
fast survey of the 17-dimensional parameter space. This results in a
clean determination of the posterior probability distributions of all
17 fitting parameters involved in the model, as shown in Figure 2.
As a first case-study, we applied the algorithm to NGC 7683, an

S0 galaxy at redshift 𝑧 ' 0.012, whose kinematics has been obtained
as part of the CALIFA survey (Sánchez et al. 2012), while the ugriz-
band photometry was collected within the Sloan Digital Sky Survey
(Gunn et al. 2006). The Bayesian analysis is able to: fully constrain
the posterior probability distributions of all 17 fitting parameters;
detect with high statistical significance the presence of a rotating
component in the very center of NGC 7683. This may suggest that
NGC7683 possesses a rotating pseudo-bulge, possibly a bar remnant.
We compared our parameter estimation with the results we obtained
for the same galaxy with the publicly available code DYNAMITE
(Jethwa et al. 2020), a numerical tool based on orbit superposition
(Schwarzschild 1979; VanDen Bosch et al. 2008), finding substantial
agreement.
The present effort must be considered as a first step towards a

systematic analysis of the information deriving from the kinemat-
ics, photometry and the mass-to-light ratio of disc galaxies, with the
aim of deriving their underlying structure. The results obtained are
indeed very promising, and make the proposed methodology an ef-
fective and available tool for estimating galactic parameters, pushing
to a more comprehensive exploitation of the code. As amatter of fact,
we are currently planning to utilize our code in a systematic study
of a large sample of disc galaxies. This inevitably calls for a more
advanced engineering in order to further reduce the computational
burden. To this aim, we are working on an up-dated version of the
code rooted on machine learning strategies, specifically we are im-
plementing a strategy based on state-of-the-art neural networks for
super-resolution image reconstruction (see, e.g., Dong et al. 2016).
This new effort is underway, and it will be presented in a future paper.
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APPENDIX A: GPU PARALLELIZATION

The evaluation of each model on CPU passes through two main
loops. We build around each pixel a subgrid of 𝐾 new points where
we evaluate and then convolve all the relevant quantities described in
Section 2. Given 𝑁𝑥 and 𝑁𝑦 number of pixels in the horizontal and
vertical direction, the total number of operations is O(𝑁𝑥 ×𝑁𝑦 ×𝐾).

Algorithm 1Model evaluation on CPU
1: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, . . . , 𝑁𝑥 × 𝑁𝑦 do
2: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, . . . , 𝐾 do
3: Evaluate 𝐵𝑡𝑜𝑡 ,𝑣𝑙𝑜𝑠 ,𝜎𝑙𝑜𝑠 ,〈𝑀/𝐿〉 and their dependencies.
4: Average the relevant quantities weighted on the PSF.
5: end for
6: end for

Note that, due to the grid-based nature of our model, most of the
computations done on two different pixels are independent of each
other and they can be easily parallelized. However, part of the code
must be kept serial. For example, it is not possible to calculate the
projected radius 𝑅 in each pixel before translating the galaxy to the
coordinates center.
In this context, where a significant part of the computation may

be performed in parallel, GPUs are ideal tools since they are com-
posed of thousands of cores (threads) that can process a lot of simple
operations simultaneously. GPU programming is based on the dec-
laration of the so-called kernels, which are ‘special functions’ that
can be run in parallel on the cores of the GPU die. In this way, in
each clock cycle the same kernel can be evaluated a large number of
times simultaneously. GPUs can be visualized as grids organized in
blocks each containing a number of threads. The number of blocks
per grid and the number of threads per block must be optimized in
order to reach maximum efficiency. In our approach, each evalua-
tion of the model can be visualised as a series of operations on a 3
dimensional (𝑁𝑥 , 𝑁𝑦 , 𝐾) tensor. Although GPU could, in principle,
operate directly on multi-dimensional arrays, we modeled our ten-
sors as 1D flattened vectors to speed up the computation thanks to a
lower number of memory accesses.
The overall structure of the code once moved on GPUs can be

summarized as:
We fixed the number of threads per block to 64 while the number

of block per grid depends on the total number of threads required by
a specific kernel.
The memory allocation and the loading operation are performed

only once at the beginning of the parameter estimation. This is crucial
in order to reach a relevant speed up since loading operations are
usually severe bottlenecks for GPUs programming. With the GPU
porting we finally reduced the computational cost of each single
model evaluation by 210 times.
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Algorithm 2Model evaluation on GPU
1: define a serial structure of kernels each one related to a pre-
cise task of the model (e.g. coordinates transformation, density
computation, etc.).

2: allocate the necessary amount ofmemory on theGPUand upload
all the CPU vectors there.

3: run sequentially all the kernels with 𝑁𝑥 × 𝑁𝑦 × 𝐾 threads in
order to compute all the necessary quantities.

4: run the kernels dedicated to the PSF convolution (𝑁𝑥 × 𝑁𝑦

threads summing over 𝐾).
5: download from the GPU (if necessary) the output of the model.

APPENDIX B: JAFFE PROFILE

The model with 3-D density

𝜌b (𝑟) =
𝑀b
4𝜋

𝑅b
𝑟2 (𝑟 + 𝑅b)2

(B1)

refers to the Jaffe profile which, similarly to the Herquinst model, is
commonly used to describe bulges and elliptical galaxies.
The circular velocity determined by the Jaffe potential is

𝑣circ,b (𝑟) =

√︄
𝐺𝑀b
𝑟 + 𝑅b

; (B2)

while the radial velocity dispersion reads

𝑣2𝑟 (𝑟) =
𝐺𝑀b𝑟

2 (𝑟 + 𝑅b)2

𝑎4

{
3
𝑟
+ 6𝑟 + 7𝑅b
2(𝑅b + 𝑟)2

− 𝑅b
2𝑟2

− 6
𝑅b
log

(
1 + 𝑅b

𝑎

)}
.

(B3)

The surface brightness and the line of sight velocity dispersion for
the isotropic Jaffe model are analytical and correspond to

Σb (𝑅) =
𝑀b
𝑅2b

[
1
4𝑠

+ 1 − (2 − 𝑠2)𝑋 (𝑠)
2𝜋(1 − 𝑠2)

]
, (B4)

and

𝜎2b (𝑅) =
𝐺𝑀2b

4𝜋𝑅3bΣb (𝑅)
1(

1 − 𝑠2
) [ 𝜋
2𝑠

+ 11 − 13
2
𝜋𝑠 − 12𝑠2 + 6𝜋𝑠3

−𝑋 (𝑠)
(
6 − 19𝑠2 + 12𝑠4

)]
.

(B5)

respectively.

APPENDIX C: 𝑀/𝐿 RATIO FROM COLORS-𝑀/𝐿
RELATION

We report here the same analysis performed in sec. 3.1 while con-
sidering 𝑀/𝐿 data computed from eq. (19). More specifically, in the
case of the NGC 7683 galaxy we choose 𝛼 = 𝛾 corresponding to
the SDSS i-band and 𝛽 as the SDSS g-band. We underline that the
𝑀/𝐿-color relation is only a proxy for the real mass-to-light ratio and
relies on several assumptions such as the star formation history and
the initial mass function, assumptions that we take into account when
computing the associated errors. More precisely, the uncertainty on
the output of Eq. (20) is computed by propagating the error on the

Table C1. Same as tab. 2 using 𝑀/𝐿 ratio data from 𝑀/𝐿-color relation.

Parameter Prior range Best fit value

𝑥0 [kpc] [−2, 1] −1.031+0.002−0.002

𝑦0 [kpc] [−2, 1] −1.055+0.002−0.002

P.A. [deg] [−180, 180] 44.120.060.06
sin 𝑖 [0.17, 0.97] 0.8270.0010.001

log10 (𝑀b/M�) [8.5; 11.5] 10.640.010.01
log10 (𝑅b/kpc) [−2, 1] −0.710.010.01
log10 (𝑀d,1/M�) [8.5; 11.5] 10.400.010.01
log10 (𝑅d,1/kpc) [−2, 1] −0.0290.0030.003

log10 (𝑀d,2/M�) [8.5; 11.5] 10.8600.0020.002

log10 (𝑅d,2/kpc) [−2, 1] 0.5970.0020.002

log10 (𝑀h/M�) [11.5, 14.5] -

log10 (𝑅h/kpc) [1; 3] -

log10 𝑀h,5/M� - 11.8700.0060.008

(𝑀/𝐿)b [L�/M� ] [1; 100] 9.900.20.2
(𝑀/𝐿)d,1 [L�/M� ] [0.1; 100] 1.960.020.02
(𝑀/𝐿)d,2 [L�/M� ] [0.1; 100] 2.580.010.01
𝑘1 [0; 1] 0.3020.0020.002

𝑘2 [0; 1] 0.6950.0010.001

magnitudes 𝑚𝛽 , 𝑚𝛾 and adding in quadrature a tabulated constant20
𝜎𝛼 which account for the scatter in the color–𝑀/𝐿 relation. In our
test case we fixed the tabulated parameters 𝑎𝛼 = −0.70, 𝑏𝛼 = 0.89,
and 𝜎𝛼 = 0.07.
Comparing the best fit parameters obtained in the two different

cases (tab. 2 and tab. C1) we can see that they are all recovered within
a maximum relative discrepancy of a few percents, see for example
that the total visible masses respectively of 1.41+0.01−0.01 × 10

11𝑀� in
this case and 1.46+0.02−0.02 × 10

11𝑀� in the SPS 𝑀/𝐿 ratio case which
are consistent within 2𝜎 uncertainty. Based on this comparison we
can conclude that the two method are compatible, even though we
suggest, when possible, to prefer SPS modelling due to is better
accuracy in predicting 𝑀/𝐿 ratio data.

This paper has been typeset from a TEX/LATEX file prepared by the author.

20 See the appendices of García-Benito et al. 2019.
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