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Abstract: Robots allow industrial manufacturers to speed up production and to increase the product 1

quality. This paper deals with the grasping of partially known industrial objects in an unstructured 2

environment. The proposed approach consists of two main steps: 1) the generation of an object 3

model, using multiple point clouds acquired by a depth camera from different points of view; 2) the 4

alignment of the generated model with the current view of the object in order to detect the grasping 5

pose. More in detail, the model is obtained by merging different point clouds with a registration 6

procedure based on the Iterative Closest Point (ICP) algorithm. Then, a grasping pose is placed on 7

the model. Such a procedure only needs to be executed once and it works even in the presence of 8

objects only partially known or when a CAD model is not available. Finally, the current object view is 9

aligned to the model and the final grasping pose is estimated. Quantitative experiments using a robot 10

manipulator and three different real-world industrial objects have been conducted to demonstrate 11

the effectiveness of the proposed approach. 12

Keywords: Robot grasping; 3D registration; Automotive industry; Industrial robots. 13

1. Introduction 14

The term Industry 4.0 was used for the first time in 2011 in order to denote the fourth 15

industrial revolution, which includes the actions needed to create Smart Factories [1]. In 16

these smart factories a novel type of robots, called collaborative robots (or cobots) [2] are 17

used in order to overcome the classical division of labour, which requires robots to be 18

confined in safety cages far away from human workers. In the context of Industry 4.0, 19

collaborative robots are designed to work in unstructured environments by leveraging 20

on learning capabilities. A challenging issue in collaborative robotics is the grasping of 21

partially known objects. This problem can be divided into other small tasks, equally 22

important, that include object localization, grasp pose detection and estimation and force 23

monitoring during the grasp phase. Moreover, the choice of the contact point between 24

the robot end-effector and the object and the type and amount of forces to be applied is a 25

nontrivial task. The object localization and grasp pose detection task can be resolved by 26

using vision sensors that allow the robot to get information about the environment without 27

entering in contact with it. 28

It is important to notice that the visual techniques have some drawbacks. In particular, 29

they are affected by the lighting conditions of the environment and the object texture 30

or reflection. Also calibration errors and partial occlusions can occur, especially in the 31

presence of an eye-in-hand configuration, i.e., when the camera is rigidly mounted on the 32

robot end-effector (see Fig. 1). This configuration differs from the so-called eye-to-hand 33

setup, where the camera observes the robot within its work space. A camera in eye-in- 34

hand configuration has a limited, but more precise, view of the scene, whilst a camera in 35

eye-to-hand configuration has a global, but less detailed, sight of the scene [3]. 36

In this work, we focus on the problem of grasping partially known objects for which a 37

model is not available, with an industrial robot equipped with an eye-in-hand depth sensor 38

in an unstructured environment. 39
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Figure 1. Robot and camera setup for the data acquisition.

The proposed method consists of two steps: 40

1. The generation of a model of the object based on a set of point clouds acquired from 41

different points of view. The point clouds are merged by means of a 3D registration 42

procedure based on the ICP algorithm. Once the model is obtained, the grasping pose 43

is selected. It is worth noticing that such a procedure is needed only once. 44

2. The alignment of the obtained model with the current view of the object in order to 45

detect the grasping pose. 46

The contributions of the paper is threefold. 47

1. As a difference with respect to expensive 3D scanning systems usually adopted for 48

high production batches, the proposed strategy only requires an off-the-shelf low-cost 49

depth sensor to generate the model and to acquire the current view of the object. 50

Moreover, the proposed system is highly flexible with respect to the position of 51

the object and it allows to acquire different views of the object, since the camera is 52

mounted on the wrist of a robot manipulator. 53

2. According to the Industry 4.0 road-map, our system is robust to possible failures. In 54

fact, it can detect a potential misalignment between the acquired point cloud and 55

the model. In such a case, the point of view is modified and the whole procedure is 56

restarted. 57

3. While deep learning-based approaches to object grasping pose detection usually 58

require a huge amount of data and a high computational burden to train the network, 59

the proposed approach exploits a fast model reconstruction procedure. 60

The rest of the paper is organized as follows. Related work is discussed in Section 2; 61

our strategy for grasping the objects and the adopted methods are described in Section 3. 62

The hardware setup and the software details are presented in Section 4. Section 5 shows 63

the experimental tests conducted by considering three different automotive components. 64

Finally, conclusions are drawn in Section 6. 65
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2. Related work 66

In this section, the related approaches to object grasping pose detection and some 67

recent registration methods are analyzed. 68

2.1. Object Grasping 69

Approaches to the problem of object grasping can be roughly classified into analytic 70

and data-driven [4]. 71

• Analytic methods require a knowledge (at least partial) of the object features (e.g., 72

shape, mass, material) and a model of the contact [5]. 73

• Data-driven approaches aim at detecting the grasp pose candidates for the object via 74

empirical investigations [6]. 75

Among data-driven methods, deep-learning based approaches are becoming very 76

popular thanks to the availability of powerful GPUs. More in detail, in order to make deep- 77

learning techniques very effective a database with geometric object models and a number 78

of good grasp poses is needed. In [7], Convolutional Neural Network (CNN) are adopted 79

with a mobile manipulator, in order to perform a 2D object detection, which combined 80

with the depth information allow to grasp the object. They propose an improvement of 81

the structure of the Faster R-CNN neural network to achieve a better performance and a 82

significant reduction in computational time. 83

In [8,9] a Generative Grasping Convolutional Neural Network (GG-CNN) has been 84

proposed. It directly generates a grasp pose and quality measure for every pixel in an input 85

depth image and it is fast enough to perform grasping in dynamic environments. Given a 86

depth image I ∈ IRh×w, where h and w are the height and width of the image, respectively, 87

a grasp is described by g̃ = (s, ϕ̃, w̃, q), where s = (u, v) is the center in pixel of the box 88

representing the grasp pose, ϕ̃ is the grasp rotation in the camera reference frame, w̃ is the 89

grasp width in image coordinates, i.e., the gripper width required for a successful object 90

grasp, and q is a scalar quality measure, representing the chances of grasp success. 91

The set of grasp poses in the image space is referred as the grasp map of I, G, from 92

which it is possible to compute the best visible grasp in the image reference frame. Then, 93

through the calibration matrices, this pose is expressed in the inertial reference frame to 94

command the robot and grasp the object. 95

In CNN-based grasping approaches, when the camera is in eye-in-hand configuration, 96

once the grasp pose is determined, often, the robot executes the motion without visual 97

feedback since occlusion appears under a certain distance. For this reason, a precise 98

calibration between the camera and the robot and a completely structured environment 99

are often required. Recently, in [10], grasping of partially known objects in unstructured 100

environments is proposed based on an extension to industrial context of the well-known 101

technique of Background Subtraction [11]. In [12], the authors propose a CNN-based 102

architecture, named GraspNet, in charge of distinguish on the object surface the candidate 103

grasping region. 104

In the case of unknown objects, where it is assumed neither object knowledge nor 105

grasp pose candidates are available, some approaches approximate the object with shape 106

primitives, e.g., by determining the quadratic function that best approximates the shape 107

of the object using multi-view measurements [13]. Other approaches require to identify 108

some features in sensory data for generating grasp pose candidates [14]. The concept of 109

familiar objects, i.e., known objects similar to that to be grasped in terms of shape, color, 110

texture or grasp poses is exploited in [6]: to transfer the grasp experience, the objects are 111

classified on the basis of a similarity metric. Similarly, in [15] the grasp pose candidates are 112

determined by identifying parts to which a grasp pose has already been successfully tested, 113

and in [16] the objects are classified in categories characterized by the same grasp pose 114

candidates. In [17] a data-driven object grasp approach using only depth-image perception 115

is proposed. In this case, a Deep Convolutional Neural Network has been trained in a 116

simulated environment. The grasps are generated by analytical grasp planners and the 117

algorithm learns grasping-relevant features. At execution time, a single-grasp solution 118
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is generated for each object. In [18], some strategies that exploit shape adaptation are 119

presented. Two types of adaptation are used to implement these strategies: the hand/object 120

and the hand/environment adaptation. The first allows to simplify the scene perception. 121

Indeed, the algorithm can make errors in determining the object shape, because they are 122

canceled by the shape adaptation. Moreover, shape adaptation also occurs between the 123

hand and the environment, i.e., the algorithm optimizes the grasping strategy based on the 124

constraints induced by the environment. 125

The work proposed in [19] is focused on grasping unknown objects in cluttered 126

scenes. A shape-based method, called Symmetry Height Accumulated Features (SHAF), is 127

introduced. This method reduces the scene description complexity and the use of machine 128

learning techniques becomes feasible. SHAF derive from Height Accumulated Features 129

(HAF) [20]. The HAF approach is based on the idea that to grasp an object from top, parts 130

of the end-effector need to envelop the object and, for this reason, need to go further down 131

than the top of the object. Considering small regions, the differences between the average 132

heights give an abstraction of the objects shape. The HAF approach does not check if 133

there is symmetry between features, hence in [19] this approach has been extended by an 134

additional feature type. These symmetry features are used to train a SVM classifier. 135

An approach that requires as input only the raw depth data from a single frame, does 136

not use explicit object model and is free from online training, is proposed in [21]. The inputs 137

of the algorithm are a depth map and a registered image acquired from a stereo sensor. 138

The first step consists of finding a candidate grasp pose in a 2D slice of the depth map. 139

After that, based on the idea that a solid grasp requires that the shape of the grasped part 140

should be similar to the shape of the gripper interior, the regions of the depth map which 141

better approximate the 3D shape of the gripper interior is computed. To choose between all 142

the found regions, an objective function that assign a score to each region is defined and 143

needs to be maximized. The method is reliable and robust, but, since only a single view is 144

exploited, uncertainties on grasp pose selection could be experienced due to the presence 145

of occluded regions. To overcome this problem, different views can be added. 146

2.2. 3D Registration 147

Thanks to the diffusion of powerful graphical processors and low-cost depth sensors, 148

many 3D registration algorithms have been proposed to solve the object localization and 149

reconstruction problem [22]. For example, in [23], the reconstruction of a non-flat steel 3D 150

surface is performed by means of the 3D-Digital Image Correlation (3D-DIC) [24]. Such a 151

method leads to very accurate results, but it requires a time-consuming elaboration and 152

the presence of a known pattern on the surface. Another technique that overcome this 153

drawback is the Iterative Closest Point (ICP) [25], based on an iterative minimization of 154

a suitable cost function. The ICP algorithm has been adopted to reconstruct an entire 155

object starting from point clouds acquired from different views [26,27]. In [28], the ICP, 156

combined with a Genetic Algorithm in order to improve its robustness to local minima, is 157

adopted in an automotive factory environment in order to estimate the pose of car parts. 158

The problem of local minima is addressed also by [29], where a global optimal ICP, based 159

on a branch-and-bound theory, is presented. A recent algorithm for registration of point 160

clouds in the presence of outlier can be found in [30], where the registration problem is 161

reformulated using a truncated least squares cost function. It allows to decouple scale, 162

rotation, and translation estimation in three subproblems solved in cascade thanks to an 163

adaptive voting scheme. 164

3. Proposed approach 165

The proposed strategy is shown in Fig. 2 and includes the following steps: 166

(a) 3D data of the object are acquired from different points of view, e.g., by using a RGB-D 167

camera, in order to obtain n different point clouds of various portions of the object. 168

(b) The point clouds are merged to obtain the model of the object surface, through a 169

registration algorithm. 170
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Figure 2. Proposed strategy. (a) Object data acquisition; (b) Model generation; (c) Grasp pose fixing.
At execution time: object data acquisition and overlapping with the model (d); coordinate frame
transformation and object grasping (e).

(c) A frame that represents the best grasping pose for the object is attached to a point of 171

the model built in the previous step. The grasping point is selected on the basis of the 172

object geometry and the available gripper. Since more than a grasping point can be 173

defined for each object, the one closest to the end-effector frame is selected. 174

(d) The model is aligned to the current point cloud, in order to be able to transport the 175

grasp pose on the current object. As a measure of the alignment, a fitness metric is 176

computed. Thus, in the case of bad alignment, the robot can move the camera in a 177

new position, acquire the object point cloud from a different point of view, and repeat 178

the alignment. 179

(e) The current grasp pose is transformed into the robot coordinates frame through the 180

camera-end-effector calibration matrix and the robot is commanded to perform the 181

grasp. 182

The registration algorithm used to merge the initial point clouds to obtain the object model 183

is the Iterative Closest Point algorithm (ICP) [25]. In particular, the point-to-plane version 184

described in [31,32] has been used. The calibration matrix is computed by acquiring a series 185

of images of a calibration target, in arbitrary positions. A calibration target is a panel, with 186

a predefined pattern, and the calibration software knows exactly its size, the color tone and 187

the surface roughness. 188

3.1. Object model reconstruction 189

Consider two point clouds obtained by the same surface from two different points of
view, S and Q. They are in registration if, for any pair of corresponding points si ∈ S and
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qj ∈ Q, representing the same point on the surface, there exists a unique homogeneous
transformation matrix T ∈ IR4×4 such that

∀si ∈ S , ∃qj ∈ Q | ∥T s̃i − q̃j∥ = 0. (1)

The symbol ˜ in (1) is the homogeneous representation of the coordinate vectors [33], i.e., 190

s̃i = [sT
i 1]T. 191

Consider n point cloud acquired by means of a RGB-D camera from different views, 192

Pi (i = 1, . . . , n), the registration requires to find the homogeneous transformation matrices, 193

T i, that align the point clouds in a common reference frame. 194

To this aim, the same approach followed in [32], based on the point-to-plane Iterative
Closest Point (ICP) algorithm, has been adopted. More in detail, the transformation matrix
T i

j (j = i + 1, . . . , n) that aligns Pj to Pi is derived by minimizing the following cost function

with respect to T i
j

C(T i
j) = ∑

π j,l ∈Pj , π i,l ∈Pi

(
(T i

jπ̃ j,l − π̃i,l)
Tñi

j,l

)2
, (2)

where ñi
j,l = T i

jñj,l is the homogeneous representation of the unit vector normal to the 195

surface represented by the point cloud Pj in the point π j,l . Each T i
j is characterized by 12 196

unknown components: by resorting to a a least-squares estimation, finding the matrix T i
j 197

that minimizes the function (2) requires at least 4 pair of corresponding points. 198

This method is exploited in the multiway registration algorithm, implemented in 199

the Open3D library [34], which has been run to register the acquired point clouds, Pi. 200

The registered point clouds are, finally, merged in a single point cloud to have the
reconstructed object model, i.e.,

Pr =
n⋃

i=1

Ni⋃
j=1

T iπ̃i,j. (3)

3.2. Grasp point estimation 201

Once the model of the object has been built, one grasp point candidate, O, is selected 202

and the relative coordinate frame Fo = O, xoyozo is defined. The RGB-D camera acquires a 203

point cloud, Pa, of the object to be grasped and such a point cloud is aligned to the known 204

one (3) representing the model. Again, a procedure based on the ICP algorithm is applied: 205

1. A set of local features, called Fast Point Feature Histograms (FPFH), are extracted 206

from each point of Pa [35]; 207

2. The corresponding points of the two point clouds are computed by using a RANSAC 208

(RANdom SAmple Consensus) algorithm [36]: at each iteration, given µ points ran- 209

domly extracted from Pr the corresponding points of Pa are the nearest with respect 210

to the extracted features. 211

3. The transformation matrix computed at previous step is used as an initial guess for 212

the ICP algorithm aimed at refining the alignment. 213

If the acquired point cloud is not very detailed, the previous algorithm leads to 214

accurate results only in the presence of a small orientation error between the two point 215

clouds, otherwise poor surface alignments can be obtained. To avoid this issue and to have 216

an accurate estimation of the grasping pose, the acquired point cloud is compared with nR 217

different point clouds, obtained by rotating the reconstructed model of an angle 2π/nR. 218

The point cloud with the best match is then selected to compute the grasping pose. The best 219

match is measured through a fitness metric, which measures the overlapping area between 220

the two point clouds. In particular, the fitness is computed as the ratio between the number 221
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ℱ𝑐𝑐

ℱ𝑜𝑜

ℱ𝑒𝑒

Figure 3. Reference frames for the end-effector, the camera, and the object.

of correspondence points, i.e., points for which has been found the corresponding point in 222

the target point cloud and the number of the points in the target point cloud. 223

Once the point cloud model Pr is aligned with the acquired one Pa, it is possible 224

to localize the position of the grasping point O and the orientation of the corresponding 225

reference frame in the camera coordinate frame. Finally, trough a camera calibration process 226

[37], it is possible to compute the camera-end-effector transformation and transform the 227

grasping pose in the robot base coordinate frame. 228

3.3. Grasping 229

Define the coordinate frame Fe attached to the robot end-effector as shown in Fig. 3. 230

The grasp requires the alignment of Fe to the object’s frame Fo. To this aim, a trajectory 231

planner for the end-effector is implemented by assigning three way-points, namely: the 232

current pose, a point along the z axis of the object reference frame at a distance of 10 cm to 233

the origin O, and the origin of the object frame O. 234

Regarding the orientation of Fe, the planner aligns the axis ze to −zo and ye to yo 235

before reaching the second way-point and then it is kept constant for the last part of the 236

path. 237

By denoting with xd and xe the desired and the actual end-effector pose, respectively,
the velocity reference for the robot joints, q̇r, are computed via a closed-loop inverse
kinematics algorithm [33]

q̇r = J†(q)(ẋd + K(xd − xe)), (4)

where J†(q) is the right pseudo-inverse of the Jacobian matrix and K ∈ IR6×6 is a matrix of 238

positive gains. 239

4. Implementation 240

The experimental setup consists of a collaborative robot Franka Emika Panda [38] 241

equipped with an Intel RealSense D435 camera in eye-in-hand configuration as shown in 242

Fig. 1. The libfranka C++ open source library is used to control the robot by means of an 243

external workstation through Ethernet connection. The workstation, equipped with an Intel 244

Xeon 3.7 GHz CPU with 32 GB RAM, runs the Ubuntu 18.04 LTS operating system with a 245

real-time kernel. The camera has been previously calibrated with a set of 30 images of a 2D 246
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(a) (b)

Figure 4. Some examples of point cloud (b) for the plastic oil separator crankcase (a). The red circle
indicates the same part in the various views.

𝑧𝑧𝑜𝑜

𝑥𝑥𝑜𝑜

𝑦𝑦𝑜𝑜

(a) (b)

Figure 5. Example of the generated model for one object (a) and the relative grasp pose (b).

checkerboard flat pattern through the method developed in [37]. The vision software runs 247

on the same workstation of the robot control, while the camera data acquisition requires 248

the librealsense2 library. 249

5. Experimental results 250

The proposed approach has been evaluated by considering three different objects used 251

in a real-world automotive factory. Each object is located above the table surface to allow a 252

faster background elimination from the point cloud. 253

To generate the model, having the camera in a fixed position, the object have been 254

rotated to allow the data acquisition in 30 different configurations. Examples of acquired 255

point cloud are shown in Fig. 4. Then, according to the method described in Section 3.1, 256

these point clouds are merged by using the ICP algorithm and a point cloud of the whole 257

object is obtained (see Fig. 5a). This point cloud represents the object model in which the 258

grasp pose will be selected, by using any modeling software. An example of a grasping 259

pose is shown in Fig. 5b. 260

The mechanical workpieces used in the experiments and their corresponding gener- 261

ated model are shown in Fig. 6. 262

When an object needs to be grasped, its point cloud is acquired and it is overlapped 263

with the one that represents the model. As detailed in Section 3.2, the current point cloud is 264
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(a) (b) (c) (d) (e)

Figure 6. Mechanical workpieces and relative generated models: (a) plastic oil separator crankcase,
(b) metal oil separator crankcase, (c) air pipe.

Figure 7. Example of the various models with different orientations for the plastic oil separator
crankcase. The red, green and blue arrows represent the x, y and z axis, respectively.

compared with the model point cloud with eight different orientations, in order to find the 265

best matching. Fig. 7 shows the models with different orientations. 266

In order to evaluate our approach the following procedure has been implemented: 267

• for each model orientation, a maximum number of 100 iterations was established; 268

• two thresholds for the fitness are defined: threshold fl below which the overlap 269

is considered failed and threshold fh above which the overlap is considered good 270

enough; 271

• during the overlapping, if threshold fh is exceeded, the algorithm stops and no further 272

comparisons are made; 273

• if no overlap exceeds the threshold fh, the one with the highest fitness is considered; 274

• if no overlap exceeds threshold fl , the algorithm reports a failure. 275
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(a) (b) (c)

Figure 8. Examples of overlap failure (top row) and successful (bottom row) for three objects: (a)
plastic oil separator crankcase, (b) metal oil separator crankcase, (c) air pipe. The current point clouds
acquired by the depth sensor are in red, while the model point clouds are in green. The blue circles
highlight the non-overlapping for the metal oil separator crankcase by indicating the same object
part not aligned.

Examples of correct and incorrect overlapping for the three considered workpieces are 276

reported in Fig. 8. 277

In the case of failure, the robot manipulator moves the camera around the object in 278

order to acquire a new image from a different point of view. Then, the whole procedure is 279

restarted. 280

After the above procedure, the labeled grasp pose can be projected on the current 281

object, that is referred with respect to the robot base frame. After a further transformation, 282

by using the camera-end-effector calibration matrix, the robot can be commanded to 283

perform the object grasp. 284

Regarding the plastic and metal oil separator crankcases (see Fig. 6a and Fig. 6b), the 285

algorithm was able to find the match and the robot was able to grasp the object. 286

Define the estimation grasping position and orientation errors as 287

eo
p = po − p̂o, (5)

eo
ϕ = ϕo − ϕ̂

o, (6)

where p (ϕ) is the actual grasping point position (orientation, expressed as a triple of Euler 288

angles [33]) while p̂ (ϕ̂) are the estimates provided by the visual algorithm. The superscript 289

o means that all the variables are expressed in the object frame Fo. 290

Tables 1-2, report the errors for the plastic oil separator crankcase and the metal one, 291

respectively. A set of snapshots of the grasping procedure for the two objects is detailed in 292

Fig. 9. 293

As can be observed, on 18 successfully tests, conducted in different light conditions 294

due to the presence of natural light in the environment, the mean error is about 3.82 mm 295

(0.15 radians) for the plastic oil separator crankcase and 4.64 mm (0.06 radians) for the 296

metal one. However, a wide deviation is experienced in the different tests, as witnessed by 297

the values of the standard deviations in the Tables. This is mainly due to the adoption of 298

low-detailed point clouds. More in general, regarding the whole experimental campaign, a 299

success rate of 88.3% has been experienced for the plastic oil separator crankcase and 84.8% 300

for the metal one. 301

Although the model has been well-built, for the air pipe (see Fig. 6c) the experiments 302

show that the search for the best match was not successful. This is probably due to the 303

symmetry of object and the model not very accurate. The algorithm was not able to find 304
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Figure 9. Snapshots of the grasping procedure for two different objects: (a)-(e) a point cloud is
acquired; (b)-(f) the robot approaches the object close to the estimated grasping point; (c)-(g) the end
effector grasps the object; (d)-(h) the object is raised by the robot.

the match because many portions of the object are quite similar. Correct overlaps were 305

found only when the object orientations are close to that considered for the model. In this 306

case, only a success rate of 32.7% has been experienced. 307

The obtained results show that the proposed method can be promising for the grasp- 308

ing of partially known objects in the absence of a CAD model, but it requires a further 309

investigation in order to better analyze the features required for a correct execution of the 310

registration and make it working also on symmetric components. 311

A video of the execution can be found at https://web.unibas.it/automatica/machines. 312

html while the code is available in the GitHub repository at https://github.com/sileom/ 313

graspingObjectWithModelGenerated.git. 314

6. Conclusions 315

A method to handle the problem of grasping partially known objects in unstructured 316

environment has been proposed. The approach can be used in absence of accurate object 317

models and consists of a comparison between a point cloud of the object and a model 318

built from a set of point clouds previously acquired. The experiments, conducted on 319

a set of mechanical workpieces used in real world automotive factories, show that the 320

method is applicable in case of objects with particular shapes, but not in the case of 321

objects with symmetric shape. Camera features influence the overall performance: a more 322

accurate sensor could allow to build a more detailed model to improve the performance 323

and robustness of the approach. Future work will be devoted to extend the method to any 324

kind of components. 325
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Table 1. Test results for the plastic oil separator crankcase. The position errors are in mm while the
orientation errors are in rad.

Test epx epy epz eϕx eϕy eϕz

1 1.964 5.316 5.858 0.293 0.084 0.273
2 4.759 1.076 4.006 0.176 0.123 0.233
3 8.460 1.400 1.040 0.048 0.116 0.237
4 0.600 0.380 0.000 0.304 0.072 0.142
5 2.260 2.300 8.200 0.392 0.263 0.130
6 0.310 3.320 6.433 0.169 0.489 0.083
7 5.011 1.637 5.641 0.133 0.171 0.164
8 4.989 1.151 4.758 0.219 0.146 0.230
9 1.240 1.331 5.402 0.202 0.065 0.155

10 4.373 0.095 10.515 0.016 0.170 0.107
11 5.966 1.398 3.785 0.101 0.019 0.179
12 1.442 4.579 5.702 0.104 0.052 0.189
13 4.529 1.033 10.044 0.048 0.115 0.099
14 2.042 1.057 3.729 0.092 0.033 0.113
15 3.533 1.509 2.023 0.110 0.088 0.166
16 2.202 5.128 3.623 0.084 0.154 0.043
17 4.798 3.496 7.289 0.066 0.019 0.216
18 7.122 2.755 13.521 0.012 0.254 0.146

Mean
error 3.644 2.164 5.643 0.143 0.135 0.161

Standard
deviation 2.219 1.542 3.299 0.103 0.110 0.059

Table 2. Test results for the metal oil separator crankcase. The position errors are in mm while the
orientation errors are in rad.

Test epx epy epz eϕx eϕy eϕz

1 1.143 3.243 13.409 0.039 0.015 0.133
2 3.157 2.066 10.148 0.005 0.051 0.146
3 0.852 6.250 4.402 0.013 0.042 0.291
4 8.063 7.524 0.843 0.024 0.017 0.018
5 6.522 4.445 7.708 0.012 0.019 0.053
6 2.922 0.093 5.704 0.024 0.005 0.068
7 1.727 2.234 6.592 0.013 0.002 0.096
8 0.379 1.559 11.784 0.013 0.026 0.009
9 7.802 1.887 7.063 0.060 0.091 0.054

10 8.114 0.677 8.383 0.023 0.054 0.028
11 2.548 1.079 8.268 0.002 0.040 0.079
12 2.814 2.884 6.487 0.169 0.003 0.183
13 0.816 0.460 13.407 0.017 0.024 0.157
14 5.874 0.002 7.367 0.070 0.189 0.073
15 9.727 0.415 2.165 0.001 0.105 0.000
16 5.761 0.153 9.530 0.038 0.101 0.012
17 4.702 3.785 0.587 0.091 0.082 0.027
18 5.360 2.653 7.143 0.002 0.029 0.051

Mean
error 4.349 2.301 7.277 0.034 0.050 0.082

Standard
deviation 2.845 2.077 3.616 0.041 0.047 0.073
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