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MAXIMALITY OF LOGIC WITHOUT IDENTITY

GUILLERMO BADIA, XAVIER CAICEDO, AND CARLES NOGUERA

ABSTRACT. Lindström’s theorem obviously fails as a characterization of first-order logic
without identity (L−

ωω). In this note, we provide a fix: we show that L−
ωω is a maximal

abstract logic satisfying a weak form of the isomorphism property (suitable for identity-
free languages and studied in [10]), the Löwenheim–Skolem property, and compactness.
Furthermore, we show that compactness can be replaced by being recursively enumerable
for validity under certain conditions. In the proofs, we use a form of strong upwards
Löwenheim–Skolem theorem not available in the framework with identity.
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1. INTRODUCTION

In the 1960s, Per Lindström [25] showed that first-order logic is maximal (in terms of
expressive power) among its extensions satisfying certain combinations of model-theoretic
properties. The best known of these combinations are:

Löwenheim–Skolem theorem + Compactness

Löwenheim–Skolem theorem + Recursively enumerable set of validities.
This list is by no means exhaustive though (the reader can consult the encyclopaedic mono-
graph [3] for a thorough treatment of this topic). Philosophically, these results have been
interpreted as providing a case for first-order logic being the “right” logic in contrast to
higher-order, infinitary, or logics with generalized quantifiers, which can be argued to be
more mathematical beasts (see [21, 28]). An implicit assumption of Lindström’s work is
that identity (=) belongs in the base logic.

The classical Lindström theorems clearly fail for first-order logic without identity (L−
ωω)

since first-order logic with identity (Lωω) is a proper extension of L−
ωω. In fact, there are

continuum-many logics between the former and the latter satisfying the compactness and
Löwenheim–Skolem properties, and with recursively enumerable sets of validities (see
Example 1 below).

In this article, we aim at finding a way to amend Lindström’s two central theorems so
that they apply in the identity-free context.1 Our proofs make heavy use of a property that
is not available in the presence of identity, namely, an unrestricted upwards Löwenheim–
Skolem theorem that applies even to finite models. We also observe other maximality
results: a very simple one for the monadic version of the logic (i.e. restricted to vocabular-
ies that only have unary predicates), L1−

ωω, as well as results for both L−
∞ω and L−

ωω in terms
of a suitable variant of the Karp property. A simple by-product will be a preservation theo-
rem characterizing the identity-free fragment of first-order logic (essentially [10, Cor. 2.10]
obtained by a rather different method).

L−
ωω has attracted mathematical attention in other works such as [20] where the prob-

lem of categoricity of theories in that logic is studied. Moreover, the results in the present
paper may provide new insight on the philosophical discussion whether L−

ωω is suitable as

1Recall that any criteria for first-order axiomatizability in terms of closure of a class of structures under
certain algebraic operations can be recast as a Lindström-style theorem. In this way, [10, Thm. 3.4] can be seen
as a Lindström-style result for logic without identity.
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2 GUILLERMO BADIA, XAVIER CAICEDO, AND CARLES NOGUERA

a contender for the title of the “right logic” against Lωω. After all, the logicality of the =
predicate is not obvious (cf. [16]). So, if the criteria were to involve only indisputably log-
ical operators (thus more than what Lωω already involves), be reasonably expressive (quite
a bit can be formalized already in L−

ωω, including set theory), and satisfying a neat Lind-
ström-style characterization, L−

ωω would appear to be as good an option as any. However,
we will not pursue those issues here.

We use the notion of an abstract logic from [3, Def. II.1.1.1] which presents logics as
model-theoretic languages [15] (see also [2, 17, 25]), not as consequence relations or col-
lections of theorems. Furthermore, we assume logics to have the basic closure properties
from [3, Def. II.1.2.1], except that in the atom property we use L−

ωω as the base logic, and
demand that ⊤ be an atomic formula of every vocabulary. For greater generality, we do
not require the relativization property. As usual, if L and L′ are logics, we write L ≤ L′

if, for any vocabulary τ and any formula φ ∈ L(τ), we can find an equivalent formula
φ′ ∈ L′(τ).

For vocabularies containing a binary relation symbol, L−
ωω is, properly speaking, a frag-

ment of Lωω that includes the guarded fragment corresponding to basic modal logic. In
this setting, the most fruitful approach has been to use bisimulations as a modal analogue
of potential isomorphisms in first-order logic [5]. In the present context all we require is
the notion of weak (partial) isomorphism introduced in [10], which is stronger than bisim-
ulation.2

Interestingly, the presence of identity can make a substantial difference regarding com-
pactness. For example, monadic first-order logic with the Henkin quantifier, L1

ωω(Q
H), is

not compact and not contained in (monadic) first-order logic with identity for it can express
the quantifier “there are at least ℵ0-many elements”; however, the identity-free fragment
of the very same logic admits the effective elimination of the quantifier QH and, hence, it
is compact [23, Thm. 1.5].3

The paper is arranged as follows: in §2 we start with the preliminary observation that
there is a continuum of abstract logics between L−

ωω and Lωω, and we recall the definitions
of the properties of abstract logics employed in the paper, while referring to the litera-
ture for some particular technical notions. In §3 we present our main new results, that
is, Lindström-style characterizations of the identity-free first-order logic and its monadic
fragment, together with instrumental observations regarding the logical relations of the in-
volved properties and a useful form of upwards Löwenheim–Skolem theorem. In §4 we
examine a few interesting particular extensions of L−

ωω that help us understand the role of
compactness and the Löwenheim–Skolem property in our characterizations. Finally, in §5,
we collect some open problems that arise from this investigation.

2. PRELIMINARIES

We begin this section by noting that there are continuum-many pairwise non-equivalent
abstract logics between L−

ωω and Lωω (actually, already between their monadic fragments).

Example 1. Consider quantifiers ∃≥n with semantics A |= ∃≥nxφ iff there are at least n
elements a such that A |= φ[a]. For each non-empty X ⊊ ω \ {0, 1}, we can prove that
the logic L−

ωω({∃≥n | n ∈ X}) indeed lies properly between L−
ωω and Lωω in terms of

expressive power and, moreover, there is a continuum of such intermediate abstract logics.
For distinct X,Y ⊆ ω \ {0, 1}, the corresponding logics L−

ωω({∃≥n | n ∈ X}) and
L−
ωω({∃≥n | n ∈ Y }) are also distinct. To see this, it suffices to focus our attention on

a monadic vocabulary τ = {P}. Suppose, without loss of generality, that we have an
element r ∈ X \ Y . We abbreviate, for n < m, ∃≥nx θ ∧ ¬∃≥mx θ as ∃[n,m)x θ, and, for

2This notion has incidentally proven useful in recent philosophical debates on the logicality of quantifiers and
other operators [6, 11].

3In contrast, the logic obtained from (monadic) identity-free first-order logic by adding the quantifier “there
are at least ℵ0 elements” does not satisfy compactness [32, Thm. 8].
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each n, ∃≥nx θ as ∃[n,∞)x θ. Then, using results from [8], any sentence φ from the logic
L−
ωω({∃≥n | n ∈ Y }) over the vocabulary τ is equivalent to a disjunction θ1 ∨ · · · ∨ θq

involving only quantifiers from φ where each θi is of one of the three following forms:
• ∃[ni,mi)xP (x) ∧ ∃[ri,si)x¬P (x)
• ∃[ni,mi)xP (x)
• ∃[ri,si)x¬P (x)

where ni ≤ mi and ri ≤ si belong to Y ∪ {1,∞}. Thus, φ just describes an array of pos-
sible cardinalities for the interpretations of P and its complement, and clearly, ∃≥rxP (x)
is equivalent to this disjunction if and only if [r,∞) =

⋃
ni<mi

[ni,mi), or r = ni for the
least ni, which is impossible as r ̸∈ Y ∪ {1}.

We use the definitions from [10]: A ∼ B means that there is a relativeness correspon-
dence between the structures [10, Def. 2.5] (we prefer to call this a weak isomorphism);
A ∼p B means that there is a back-and-forth system I of partial relativeness correspon-
dences between the models [10, Def. 4.7] (we will say that these structures are partially
weakly isomorphic); and we denote by ∼n the finite approximation of ∼p [10, Def. 4.2].
In the setting of first-order logic without identity, the relation ∼ behaves like a weak notion
of isomorphism [10], which motivates the name for the third property defined below.4

The properties of abstract logics that we consider in this article are:
• Compactness property: for any vocabulary τ and Φ ⊆ L(τ), if every finite subset

of Φ has a model then Φ has a model.
• Löwenheim–Skolem property: for any vocabulary τ and sentence φ ∈ L(τ), φ has

a countable model if it has an infinite model.
• Weak isomorphism property: for any structures A and B, A ∼ B only if A ≡L B.
• Finite weak dependence property: for any vocabulary τ and any φ ∈ L(τ), there

is a finite τ0 ⊆ τ s.t. for any τ -structures A and B, if A ↾ τ0 ∼ B ↾ τ0, then
A |= φ iff B |= φ.

• Karp− property: for any structures A and B, A ∼p B only if A ≡L B.
• Boundedness property: any sentence φ(<, . . . ) which for arbitrary large ordinal

type α has a model where the interpretation of < is an irreflexive and transitive
binary relation containing a chain of order type α has a model where the interpre-
tation of < contains an infinite descending chain.

All these properties, with the exception of Karp− and weak isomorphism, hold in Lωω.
Given a structure A, we denote by A∗ the reduction of A [10, Def. 2.4], i.e., the quotient

structure A⧸Ω(A) obtained from the Leibniz congruence relation.

Proposition 2 ( [10]). Let A and B be structures. Then:
(i) If A and B are countable, then A ∼p B iff A ∼ B.

(ii) A ∼ B iff A∗ ∼= B∗.

Thanks to Proposition 2, the weak isomorphism property can be equivalently formulated
as follows: for any structures A and B, A∗ ∼= B∗ only if A ≡L B. Observe that A and A∗

are relatives: A∗ ∼= A∗∗, so by Proposition 2, A ∼ A∗.

3. MAXIMALITY RESULTS

We start this section by showing a form of upwards Löwenheim–Skolem theorem, which
will be heavily used in the arguments below:

Lemma 3. Let L be an abstract logic with the weak isomorphism property. Then, a theory
T ⊆ L(τ) has a model A of cardinality λ only if, for any κ > λ, there is a model B of
T with cardinality κ and a surjective strict homomorphism (in the sense of [10, Def. 2.1]),
and hence a weak isomorphism, from B onto A.

4Another place in the literature where this has been studied, albeit in less detail, is [30].
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Proof. It follows by inspection of the proof of [7, Lem. 2.24] or [1, Ch. IV, §1] (which is
only formulated for relational languages but can be easily generalized to languages with
function symbols). For any structure A of cardinality λ, in that proof one builds a model B
of size κ and a mapping B −→ A which is, in fact, a surjective strict homomorphism. □

Remark 4. Lemma 3 allows us to see that a plethora of logics do not have the weak
isomorphism property, e.g. the logics in Example 1. Interestingly, the usual Lindström
quantifiers may destroy the property, in particular in the logics L−

ωω(Qα). However, as
we will see in Example 17, all of these logics have counterparts which do have the weak
isomorphism property. On the other hand, as we will see below, the Henkin quantifier QH

is a curious case of a natural Lindström quantifier that has the weak isomorphism property.

Now we can provide an analogue of (1) from [3, Thm. III.1.1.1].

Lemma 5. Let L be an abstract logic such that L−
ωω ≤ L. If L has the compactness and

weak isomorphism properties, then it also has the finite weak dependence property.

Proof. Given a vocabulary τ, let τ ′ be a disjoint copy and consider the theory Φ(τ,R):

{∀x1 . . . xn∀y1 . . . yn[
∧

iRxiyi → (θ(x1 . . . ) ↔ θ′(y1 . . . ))] | θ ∈ τ , θ′ ∈ τ ′ its copy}
∪{∀x1, . . . , xn ∀y1, . . . , yn [

∧
iRxiyi → Rt(x1 . . . )t

′(y1 . . . )] | t a term of τ}
∪ {“R and R−1 are surjective”}

For any φ ∈ L(τ), let φ′ denote its renaming in the type τ ′. Then, Φ(τ,R) |= φ ↔ φ′ by
closure of the logic L under weak isomorphisms, and by compactness

Φ(τ0, R) |= φ↔ φ′

for some finite τ0 ⊆ τ .
Assume now that A ↾ τ0 ∼ B ↾ τ0 by some τ0-weak isomorphism r ⊆ (A ∪ B)2, and

|A| < |B|. By Lemma 3, there is a C of power |B| and a surjective strict homomorphism
h : C → A. Thus, r ◦ h is a τ0-weak isomorphism from C onto B. Renaming the last
structure as B′ with τ ′ we may put C and B′ together in a structure C + B′ sharing the
same domain. Then, ⟨C+B′, r ◦ h⟩ |= Φ(τ0, R), and hence, ⟨C+B′, r ◦ h⟩ |= φ ↔ φ′

this implies: C |= φ iff B |= φ. But A ∼ C with respect to full τ, then A |= φ iff B |= φ.
If |A| = |B|, we apply the construction directly with A and B. □

We are now ready to provide the main result of this paper:

Theorem 6. Let L be an abstract logic such that L−
ωω ≤ L. If L has the weak isomorphism,

compactness, and Löwenheim–Skolem properties, then L ≤ L−
ωω.

Proof. Assume φ ∈ L(τ) \L−
ωω(τ) and φ depends on a finite vocabulary τ0 ⊆ τ (by com-

pactness and Lemma 5). Notice that there are only finitely many sentences of rank ≤ n in
L−
ωω(τ0) [10, Lem. 4.4], thus the relation A ↾ τ0 ≡−

n B ↾ τ0 has finitely many equivalence
classes of structures of type τ and the equivalence class of a structure A coincides with
Modτ (ΘA) for the sentence

ΘA =
∧

{θ of rank ≤ n | A |=θ}.

Therefore, Modτ (φ) cannot be a union of these classes (it would be equivalent to a finite
disjunction of sentences in L−

ωω(τ0)) and it must cut some equivalence class in two non-
emtpy pieces. In other words, there are τ -structures An and Bn such that

An ↾ τ0 ≡−
n Bn ↾ τ0, An |= φ,Bn |= ¬φ.

By Lemma 3, we may assume that An and Bn have the same infinite power and share the
same domain An.

By [10, Lem. 4.4 and Prop. 4.5], An ↾ τ0 ∼n Bn ↾ τ0; that is, there are sets I0, . . . , In
of weak finite τ0-partial isomorphisms from An to Bn such that In ̸= ∅ and, for each
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p ∈ Ij+1, a ∈ An, b ∈ Bn, there are q, q′ ∈ Ij such that q, q′ ⊇ r and a ∈ dom(q),
b ∈ rg(q′), and further extension properties guaranteeing that constants and functions
are eventually preserved. The set of all finite weak τ0-partial isomorphisms has the same
power as D, so we may enumerate them as {Rp | p ∈ An}; moreover, we may assume
{0, . . . , n} ⊆ An. Then, renaming Bn as B′

n on the vocabulary τ ′, as in the proof of
Lemma 5, and defining in An:

<∗= usual order of {0, . . . , n}
c∗0 = n
⟨j, p⟩ ∈ I∗ ⇔ Rp ∈ Ij
⟨p, x, y⟩ ∈ G∗ ⇔ ⟨x, y⟩ ∈ Rp,

the structure ⟨An +Bn, <
∗, c∗0, I

∗, G∗⟩ satisfies the following finite theory Ψ in the vo-
cabulary

τ0 ∪ τ ′0 ∪ {<, c0, I, G},
where c0 is a constant, < and I are binary relations, and G is a ternary relation (all fresh
symbols; moreover, for each formula ψ ∈ L(τ0), we denote by ψ′ its renaming in the
vocabulary τ ′0):

1. φ, ¬φ′

2. ∃p Ic0p
3. ∀p−→x−→y (

∧
iGpxiyi → (χ(−→x ) ↔ χ′(−→y ))),

for each relation symbolχ ∈ τ0 of arity |−→x |
4. ∀uvp−→x−→y (u < v ∧ Ivp ∧

∧
iGpxiyi → ∃q[Iuq ∧Gqf(−→x )f ′(−→y )

∧∀zw(Gpzw → Gqzw)]),
for each function symbol f ∈ τ0 of arity |−→x |

5. ∀uvp(u < v ∧ Ivp→ ∃q[Iuq ∧Gqcc′ ∧ ∀zw(Gpxw → Gqzw)]),
for each constant symbol c ∈ τ0

6. ∀uvp(u < v ∧ Ivp→ ∀x∃qq′yy′[Iuq ∧ Iuq′ ∧Gqxy ∧Gq′y′x
∧∀zw(Gpxw → Gqzw ∧Gq′zw)]

The second sentence states that In is non-empty. Sentences 3–6 describe a sequence
I0, . . . , In of sets of weak τ0-partial isomorphisms in the sense of [10, Def. 4.2].

As the above holds for any n, we have models for any finite part of the infinite theory
with additional constants c1, c2, ...:

Ψ(τ0, <, I,G) ∪ {φ,¬φ′} ∪ {cj+1 < cj | j ∈ ω}.

By compactness, we have a model ⟨C, <C, IC, GC, ⟨cCj ⟩j∈ω⟩ of this theory. By the axioms,
each p ∈ C encodes a weak τ0-partial isomorphism Rp = {⟨x, y⟩ ∈ A2 | ⟨p, x, y⟩ ∈
GC} between C ↾ τ0 and C ↾ τ ′0, and the sequence

Ij = {Rp ∈ C | ⟨p, cCj ⟩ ∈ IC}, j = 0, 1, . . .

has the back-and-forth extension property with respect to increasing subindexes: ifRp ∈ Ij
and c ∈ C, then there is aRq ∈ Ij+1 such that c ∈ dom(Rp), etc. Hence,KC =

⋃
j Ij has

the unrestricted extension property and becomes a Karp system of weak τ0-isomorphisms.
This is expressible by the finite theory Φ(τ0,K,G) which results of changing the back-
and-forth axioms of Ψ(τ0, <, c0, I, G) to

∀px(Kp→ ∃q q′ ∃yy′[Kq ∧Kq′ ∧Gqxy ∧Gq′y′x ∧ ∀z∀w(Gpzw → Gqzw ∧Gq′zw)]

In sum, ⟨C,KC, GC⟩ |= Φ(τ0,K,G) ∪ {φ,¬φ} which means

C ↾ τ0 ∼p C ↾ τ ′0, C ↾ τ |= φ,C ↾ τ ′ |= ¬φ′.

By the Löwenheim–Skolem property, we may assume that C is countable. Hence, by
Proposition 2, C ↾ τ0 ∼ C ↾ τ ′0 and thus C↾ τ |= φ⇐⇒ C↾ τ ′|= φ by the choice of τ, a
contradiction. □
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Remark 7. The Karp− property may replace the Löwenheim–Skolem hypothesis in the
above theorem because the proof yields before the last step a model of Φ(τ0,K,G) ∪
{φ,¬φ} for any finite τ0 ⊆ τ, which by an additional use of compactness gives a model
⟨C,KC, GC⟩ of Φ(τ,K,G) ∪ {φ,¬φ}; that is, the weak isomorphisms encoded by K,G
are weak τ -isomorphisms, thus we have

C ↾ τ ∼p C ↾ τ ′, C↾ τ |= φ, C↾ τ ′|= ¬φ′

which, by the Karp− property, gives directly the contradiction C↾ τ |= φ⇐⇒ C↾ τ ′ |= φ′.

Remark 8. Note that the boundedness property for L−
∞ω is essentially a corollary of the

classical one from [4, Thm. 1.8]. Then, if we use our approach in encoding weak partial
isomorphisms in Theorem 6 and working with the Karp− property, it is straightforward
to modify the argument from [3, Thm. III.3.1] to show that L−

∞ω is maximal among its
extensions in having the boundedness, and Karp− properties. In fact, all we need from the
boundedness property is that it will give us a model where < is not well founded.

Remark 9. As a referee suggests, a small modification of the given proof of Lind-
ström’s result permits to prove the following separation theorem: if φ, φ∗ ∈ L(τ), L
is an extension of L−

ωω satisfying the conditions of Theorem 6 except for closure, and the
classes of structures Mod(φ) and Mod(φ∗) are disjoint, then they are separable by some
θ ∈ L−

ωω(τ), i.e. Mod(φ) ⊆ Mod(θ) and Mod(φ∗) ⊆ Mod(¬θ). Just make φ∗ play
the role of ¬φ in the proof (for a thorough discussion of the case with identity see [18]).
Applying this property to second-order existential logic without identity L−II∃

ωω , yields
Craig interpolation theorem for L−

ωω [13, Thm. 5]. Assume φ |= ψ with φ ∈ L−
ωω(τ),

ψ ∈ L−
ωω(µ), and ρ = τ ∩µ. Then, ∃τ∖ρφ |= ∀µ∖ρψ, where ∃τ∖ρ, ∀µ∖ρ are second-order

quantifier binding the symbols in τ ∖ ρ and µ∖ ρ, respectively. Now, ∃τ∖ρφ and ∃µ∖ρ¬ψ
define disjoint model classes belonging to L−II∃

ωω (ρ) and, by the separation property, we
obtain θ ∈ L−

ωω(ρ) such that ∃τ∖ρφ |= θ |= ∀µ∖ρψ. That is, φ |= θ |= ψ.

Comparing the proof of Theorem 6 with that of its classical counterpart with identity,
the reader should note that our approach makes a substantial use of the strong upwards
Löwenheim–Skolem theorem given by Lemma 3. This allows us to deal with cardinality
situations that in the classical context are dealt with the expressive power of identity.

One may wonder whether we can obtain a Lindström-style characterization for identity-
free monadic first-order logic, L1−

ωω, analogous to Tharp’s result [28, Thm. 1] for monadic
first-order logic. The answer is yes and the result does not require, surprisingly, any form
of the Löwenheim–Skolem theorem (not even the other two properties if we assume the
finite weak dependence property; see Remark 11).

Theorem 10. Let L be a monadic logic such that L1−
ωω ≤ L. If L satisfies the compactness

and weak isomorphism properties, then L ≤ L1−
ωω.

Proof. Assume φ ∈ L(τ) \ L−
ωω(τ), τ = {Pi | i ∈ I}. As in the proof of Theorem 6, we

have for each finite τ0 ⊆ τ :

A ↾ τ0 ≡−
1 B ↾ τ0, A |= φ, |= ¬φ.

and by compactness
A ≡−

1 B, A |= φ,B |= ¬φ.
By Lemma 3, we may assume A and B share the same domain A.

Each map δ : I → {0, 1} determines a type

tδ(x) = {Pi(x) | δ(i) = 1} ∪ {¬Pi(x) | δ(i) = 0}.
A type tδ is consistent with A if for each finite J ⊆ I, A |= ∃x ∧ (tδ(x) ↾ J). Clearly, A
and B above have the same consistent types and, if tδ is not consistent with A, there is a
witness ηδ of the form ¬∃x ∧ (tδ↾Jδ

(x)), Jδ ⊆fin I, true in both A and B.
Consider the following theory on the vocabulary τ ∪ τ ′ ∪ {Pδ, P

′
δ | δ ∈ 2I}:
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− φ,¬φ′

For each tδ consistent with A and each finite J ⊆ I:
− ∃xPδ(x), ∀x(Pδ(x) → ∧(tδ↾J(x))
− ∃xP ′

δ(x), ∀x(P ′
δ(x) → ∧(t′δ↾J(x)).

For each tδ inconsistent with A:
− ηδ, η

′
δ.

Then, C = A + B′ may be expanded to a model ⟨A+B′, PC
δ , P

′C
δ ⟩δ∈2J of each fi-

nite part Σ of this theory, taking PC
δ = {a ∈ A | A |=tδ↾J(a)} and P ′C

δ = {b ∈ A |
B′|=t′δ↾J(a)} for J = {i | Pi or P ′

i occur in Σ}.
By compactness, there is a model ⟨Â+ B̂′, PA

δ , P
′B′

δ ⟩δ∈2J of the full theory. Then,
Â and B̂ realize exactly the same types tδ (those originally consistent) and thus Â ∼ B̂,
defining aRb iff a and b realize the same type tδ. This contradicts the weak isomorphism
property since Â |= φ and B̂ |= ¬φ. □

Remark 11. If L has the finite weak dependence property, then the compactness and weak
isomorphism properties are not needed in the previous theorem. Indeed, if φ depends on
finite τ0 ⊆ τ , the first step of the proof A ↾ τ0 ≡−

1 B ↾ τ0, A |= φ, B |= ¬φ, yields
already a contradiction, since A and B realize trivially the same tδ types based on τ0, and
thus A ↾ τ0 ∼ B ↾ τ0.

Since Lωω and L1
ωω have both the compactness and the Löwenheim–Skolem properties,

then we can obtain the following preservation result from Theorems 6 and 10 (which is
essentially [10, Cor. 2.10]5 proved by a rather different method):

Corollary 12. L−
ωω (resp. L1−

ωω) is the fragment of Lωω (resp. L1
ωω) preserved under weak

isomorphisms.

We proceed now to obtain an analogue of the second Lindström theorem from [25].
First, we need the following lemma:

Lemma 13. 6 Let L be an abstract logic such that L−
ωω ≤ L satisfying the finite weak

dependence and weak isomorphism properties. If L extends properly L−
ωω, then there

exist a finite vocabulary σ containing at least one unary relation U and, for each finite
vocabulary ρ ⊇ σ, a sentence θ ∈ L(ρ) such that

(1) for each n ≥ 1, there is a model A |= θ with |UA| = n, and
(2) if A |= θ and A is countably infinite, then UA∗

is finite and non-empty.

Proof. Assume φ ∈ L(τ) \ L−
ωω(τ) and φ depends on finite τ0 ⊆ τ . Let τ ′0 be a disjoint

copy of τ0, and set

σ = τ0 ∪ τ ′0 ∪ {<, c0, I, G, U,E},

which results of adding to the vocabulary in the proof of Theorem 6 a unary predicate
symbol U and a binary predicated symbol E. Next, let ρ ⊇ α be finite and consider the
sentence θ ∈ L(ρ) which is the conjunction of the theory Ψ introduced in the proof of
Theorem 6 plus the following new sentences:

5Note that [10, Cor. 2.10] is equivalent to our formulation due to [10, Pro. 2.6].
6This lemma is an analogue of [3, Lem. III.1.1.2] for Lωω , but simpler. In particular, we need not use the

Löwenheim–Skolem property.
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7. ∀x(Ux↔ ∃y(x < y ∨ y < x) “U is the field of <”
8. ∀xExx

∀xy∀−→w (Exy → (χ(−→w ) ↔ χ(−→w (y/x))) ∧ Ef(−→w )f(−→w (y/x))), χ, f ∈ ρ.
This says that E satisfies the finite list of axioms of identity for the vocabulary ρ,
and guarantees that E is the Leibniz congruence relation (this is enough by
[22, §73 Thm. 41]) with respect to ρ.

9. ∀x¬(x < x), ∀xyz(x < y ∧ y < z → x < z),
∀xy(Ux ∧ Uy → x < y ∨ y < x ∨ Exy) ,
Uc0 ∧ ∀x(Ux→ x < c0 ∨ xEc0),
∀xy(Ux ∧ Uy ∧ x < y → ∃z(z < y ∧ ∀w(w < y → w < z ∨ Ewz))
These axioms say, with E replacing =: “< is a strict linear order of U with last
element c0 and immediate predecesor for non minimal elements”.

Using [10, Lem. 4.4 and Prop. 4.5] and Lemma 3 as in Theorem 6, for each n < ω, we get
a model C = ⟨An +B′

n, <
∗, c∗0, I

∗, G∗, U∗, E∗⟩ |= θ where UA = {0, . . . , n}, and EA is
true identity.

All that is left to show is that if for a countably infinite structure A we have A |= θ, then
UA∗

is finite and non-empty. The first thing to notice is that <A∗
is a strict linear ordering

with last element [c0] and immediate predecesors for non miminal elements, because E
collapses to true identity in A∗. Now, suppose that UA∗

is infinite, then we have an infinite
descending sequence

· · · <A∗
[a2] <

A∗
[a1] <

A∗
[a0] = [c0],

in UA∗
, where [an+1] is the immediate predecesor of [an]. But then we have the sequence

· · · <A a2 <
A a1 <

A a0

in A. Reasoning as in the proof of Theorem 6 (i), A ↾ τ0 ∼p (A ↾ τ ′0)
−′

and, since A is
countable, A ↾ τ0 ∼ (A ↾ τ ′0)

−′
but A ↾ τ0 |= φ, (A ↾ τ ′0)

−′ |= ¬φ′, contradicting the
weak isomorphism property. □

Theorem 14. Let L be an effectively regular abstract logic [3, Def. II.1.2.4] such that
L−
ωω ≤ L. Then, L has the weak isomorphism property, is recursively enumerable for

validity, and has the Löwenheim–Skolem property only if L ≤ L−
ωω.

Proof. Assume for a contradiction that L ̸≤ L−
ωω.Using Vaught’s generalization of Trakht-

enbrot theorem to L−
ωω [31], we obtain a finite purely relational vocabulary τ ′ such that the

set Vfin ⊆ L−
ωω(τ

′) of sentences valid on finite models is not recursively enumerable.
Let θ ∈ L−

ωω(σ ∪ τ ′) where σ and θ are given by Lemma 13 (we may obviously assume
σ ∩ τ ′ = ∅). Now we may observe that

ψ ∈ Vfin iff ⊨ θ → ψU,

where ψU is the relativization in L−
ωω of ψ to the unary predicate U (which is possible

since L−
ωω has the relativization property). If ψ ∈ Vfin , then whenever A is a countably

infinite σ ∪ τ ′-structure such that A |= θ we must have that UA∗
is finite and non-empty

by Lemma 13, thus A∗ |= ψU , and by the weak isomorphism property, A |= ψU as desired
(given that A ∼ A∗). But for any sentence χ of L, ⊨ χ iff χ is valid on countably infinite
structures: if ̸⊨ χ, a countably infinite countermodel for χ can be found by either applying
the Löwenheim–Skolem property or Lemma 3 as needed.7 On the other hand, if ⊨ θ → ψU

and A is a τ ′-model of size n, say, we may assume (since τ ′∩σ = ∅) that A ∼= (A′|U) ↾ τ ′

for a model A′ that comes from extending and expanding A to a τ ′ ∪ σ-model of θ given
by (1) of Lemma 13 in a suitable way. Hence, A′ |= ψU and thus A |= ψ. Since, by
hypothesis, L is effectively regular and recursively enumerable for validity, we must have
then that Vfin is recursively enumerable after all, which is a contradiction. □

7This point is different from the proof of the classical counterpart of the theorem, where identity is available.
Obviously, in that setting, from a finite countermodel we cannot simply go to a countably infinite one.
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Remark 15. Proper extensions of L−
ωω which are recursively enumerable for validity

and have the weak isomorphism property are given in Examples 17 and 18 below. Notice
that an analogous theorem for the monadic case is trivial by Remark 11 because, in the
presence of the weak isomorphism property, the effectivity of the logic implies the finite
weak dependence property.

Remark 16. Other maximality results can be obtained by similar methods to those in this
paper. For example, L−

ωω is the maximal logic with the weak isomorphism property, com-
pactness and the so called Tarski union property. This can be seen by adapting the argument
of [3, Thm. III.2.2.1] for Lωω to the context without identity with the help of [14, Prop.
2.8]. We conjecture that the λ-omitting types theorem also provides a characterization of
the maximality of L−

ωω (cf. [26]).

4. EXTENSIONS OF L−
ωω

In this section, we collect a number of interesting examples of identity-free logics that
help answer some questions posed by our results, e.g. is there a proper extension of L−

ωω

satisfying both the compactness and weak isomorphism properties?8 Notice that the in-
finitary logic L−

ω1ω is an example of an abstract logic with the weak isomorphism and
Löwenheim–Skolem properties, but without compactness.

Our examples will rely on the addition of suitable Lindström quantifiers which conve-
niently differ from usual definitions found in the literature. Indeed, adding a Lindström
quantifier to L−

ωω usually destroys the weak isomorphism property, as is the case with car-
dinality and cofinality quantifiers. However, each quantifier has a natural version closed
under weak isomorphisms.

Example 17 (The logic L−
ωω(Q

−
α )). Consider the Lindström quantifier Q−

α defined as:

{⟨A,M,E⟩ |M ⊆ A,E equivalence relation on A congruent with M,
∣∣M⧸E

∣∣ ≥ ωα}.

The satisfaction condition for this operator then is

A |= Q−
αxyz[φ(x), θ(y, z)] iff {⟨a, b⟩ ∈ A2 | A |= θ[a, b]} is an equivalence relation onA,

A |= ∀xy(θ(x, y) → (φ(x) → φ(y))), and∣∣{a ∈ A | A |= φ[a]}⧸{⟨a, b⟩ ∈ A2 | A |= θ[a, b]}
∣∣ ≥ ωα.

The quantifier Qα may be recovered by letting E be the true identity relation =.

The first observation we wish to make is that Q−
1 (seen as a Lindström quantifier) is

closed under weak isomorphisms, i.e. if ⟨A,M,E⟩ ∈ Q−
1 and ⟨A,M,E⟩ ∼ ⟨A′,M ′, E′⟩,

then ⟨A′,M ′, E′⟩ ∈ Q−
1 . To see this, suppose that ⟨A,M,E⟩ ∈ Q−

1 and R is a weak
isomorphism from ⟨A,M,E⟩ onto ⟨A′,M ′, E′⟩. E′ is an equivalence relation on A′ com-
patible with M ′ because that fact can be expressed as a formula in L−

ωω. We wish to show
then that R induces a bijection M⧸E −→ M ′

⧸E′. Consider the relation R′ defined as
[x]R′[y] iff xRy. We wish to show that R′ is in fact a bijection. It is obviously surjective
since R is. For functionality: assume that x ∈ M , xRy1 and xRy2, then, since xEx,
we must have that y1E′y2, which then means that if [x]R′[y1] and [x]R′[y2], [y1] = [y2].
Injectivity is obtained by an analogous argument in reverse. Hence, |M

′
⧸E′| ≥ ω1 as

desired.
L−
ωω(Q

−
1 ) is clearly more expressive than L−

ωω since the latter has the Löwenheim–
Skolem property but the former does not (thus, the quantifier Q−

1 is not definable in L−
ωω).

8The positive answer to this question in Example 18 shows that the Löwenheim–Skolem property is necessary
in Theorem 6.
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Recall that a logic L is said to be congruence closed [27] if, for any φ ∈ L(τ), there is a
sentence φE ∈ L(τ ∪ {E}) (where E is a new binary predicate) such that

(∗) A⧸E |= φ iff ⟨A, E⟩ |= φE

for any structure A and any equivalence relationE onA. We will follow the notation of [9]
in using qL to denote the congruence closure of a given logic L, obtained by adjoining to
L the sentences defined by (∗) as new quantifiers (see [27]). Then it is not difficult to
observe that the logic L−

ωω(Q
−
1 ) is contained in the logic (with identity) qLωω(Q1). By

the definition above,∣∣{a ∈ A | A |= φ[a]}⧸{⟨a, b⟩ ∈ A2 | A |= θ[a, b]}
∣∣ ≥ ω1

can be expressed by the relativized sentence ((Q1x(x = x))θ)
{x|φ(x)}. Recall a logic is

(κ, λ)-compact if every set of sentences of cardinality ≤ κ which has models for each
of its subsets of cardinality < λ, has itself a model. By [27, Prop. 3.2], for any L, if L
is (κ, λ)-compact, so is qL, and hence qLωω(Q1) is (ω, ω)-compact since Lωω(Q1) is,
which means that L−

ωω(Q
−
1 ) also inherits this property. Once more, by [27, Prop. 3.2],

since Lωω(Q1) is recursively enumerable for validity, qLωω(Q1) is too, and hence, so is
the logic L−

ωω(Q
−
1 ).

Example 18 (The logic L−
ωω(Q

cfω−)). Consider now the following Lindström quantifier:

Qcfω− = {⟨A,M,E⟩ |M ⊆ A2, E is an equivalence relation on A congruent with M,

⟨A,M⟩⧸E is a linear order with cofinality ω}.
Then, we have that A |= Qcfω−xyzw[φ(x, y), θ(z, w)] iff

• θA = {⟨a, b⟩ ∈ A2 | A |= θ[a, b]} is an equivalence relation on A,
• A |= ∀xy((θ(x, y) ∧ θ(z, w)) → (φ(x, z) → φ(y, w))),
• A |= “φ(x, y) is an irreflexive transitive relation”,
• A |= ∀xy (φ(x, y) ∨ φ(y, x) ∨ θ(x, y)), and

• ⟨A, θA⟩⧸{⟨a, b⟩ ∈ A2 | A |= θ[a, b]} has cofinality ω.

Once more, the quantifier Qcfω can be defined as above by letting E be the true identity
relation =.

We can show that the quantifier Qcfω− is closed under weak isomorphisms. Suppose
that ⟨A,M,E⟩ ∈ Qcfω− and R is a weak isomorphism from ⟨A,M,E⟩ onto ⟨A′,M ′, E′⟩.
As in Example 17, R′ defined as [x]R′[y] iff xRy gives a bijection from ⟨A,M⟩⧸E to
⟨A′,M ′⟩⧸E′. Furthermore, R′ preserves the order: assume that [x1]R′[y1], [x2]R′[y2]

and ⟨[x1], [x2]⟩ ∈ M
⟨A,M⟩⧸E , so ⟨x1, x2⟩ ∈ M and, since x1Ry1 and x2Ry2, we have

⟨y1, y2⟩ ∈M ′, and thus ⟨[y1], [y2]⟩ ∈M
′⟨A′,M ′⟩⧸E′ . Hence, the cofinality ofM

′⟨A′,M ′⟩⧸E′

must be ω as well.
Shelah’s logic Lωω(Q

cfω) is (∞, ω)-compact9 and, by [27, Prop. 3.2], so is qLωω(Q
cfω).

But, given that L−
ωω(Q

cfω−) is included in qLωω(Q
cfω), the former is also (∞, ω)-compact.

Similarly, L−
ωω(Q

cfω−) is recursively enumerable for validity. Moreover, we can observe
that L−

ωω(Q
cfω−) does not have a Löwenheim–Skolem theorem. For example, the sentence

in the signature {E,<} with two binary relation symbols,
¬Qcfω−xyzw[x < y,E(z, w)] ∧ “E is an equivalence relation”
∧ ∀xy((E(x, y) ∧ E(z, w)) → (x < z → y < w))
∧“ < is an irreflexive transitive relation”
∧ ∀xy (x < y ∨ y < x ∨ E(x, y)) ∧ ∀x∃y (x < y)

9A nice detailed proof can be found in [12].
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has no countable models since it produces in the quotient model an infinite linear order
without last element with cofinality ̸= ω, and hence ≥ ω1.

Interestingly enough, some known quantifiers can be shown to preserve the weak iso-
morphism property:

Example 19 (The logic L−
ωω(Q

H)). Recall the Henkin quantifier QH which is defined as
follows:

QH = {⟨A,M⟩ |M ⊆ A4,M ⊇ f × g for some f, g : A −→ A}.
Then, we have that A |= QHxyzwφ(x, y, z, w) iff for some f, g : A −→ A and for each
a, b ∈ A, A |= φ[a, f(a), b, g(b)] iff A |= ∃f, g ∀x, y φ[x, f(x), y, g(y)].

First, we must show that QH is closed under weak isomorphisms. Assume then that
⟨A,M,E⟩ ∈ QH and R is a weak isomorphism from ⟨A,M⟩ onto ⟨A′,M ′⟩. Then M ⊆
A4,M ⊇ f×g for some f, g : A −→ A. All we need to do now is define f ′, g′ : A′ −→ A′

such that M ′ ⊇ f ′ × g′. Define f ′ as follows: take any a1 ∈ A′, we know then that
Ra0a1 for some a0 ∈ A, so let f ′(a1) be some b1 ∈ A′ such that Rf(a0)b1. Do a
similar thing for g′. Now, for any ⟨a1, f ′(a1), b1, g′(b1)⟩ ∈ f ′ × g′, there are a0, b0 ∈ A
s.t. Ra0a1, Rf(a0)f ′(a1), Rb0b1, Rg(b0)g′(b1), and since R is a weak isomorphism and
⟨a0, f(a0), b0, g(b0)⟩ ∈M by hypothesis, ⟨a1, f ′(a1), b1, g′(b1)⟩ ∈M ′, as desired.

Take now the sentence φinf ∈ L−
ωω(Q

H)(τ) where τ = {E} and E is binary:

“E is an equivalence relation” ∧ ∃z ∃f, g ∀x, y (¬zEf(x) ∧ (f(x)Ey → g(y)Ex))

Since QH is closed under weak isomorphisms, A ∼ A∗ = A⧸EA in the vocabulary

τ , and A⧸EA |= ∀x, y (xEy ↔ x = y), we have that A |= φinf only if A⧸EA |=
∃z ∃f, g ∀x, y (z ̸= f(x)∧(f(x) = y → g(y) = x)). The latter sentence says that A⧸EA is
infinite. On the other hand, for a τ -structure A, if A |= “E is an equivalence relation” and
A⧸EA = A∗ is infinite, A⧸EA |= ∃z ∃f, g ∀x, y (z ̸= f(x) ∧ (f(x) = y → g(y) = x)),
so, reversing the previous reasoning, A |= φinf.

Hence, we might consider the following theory T in the vocabulary τ :

{¬φinf} ∪ {∃x0, . . . , xn
∧

i<j≤n

¬xiExj | 1 ≤ n < ω} ∪ {“E is an equivalence relation”}

This theory says that E is an equivalence relation with infinitely many equivalence classes,
so for any model A |= T , A⧸EA is infinite and then A⧸EA |= ∃z ∃f, g ∀x, y (z ̸= f(x) ∧
(f(x) = y → g(y) = x), which is impossible, since A |= ¬φinf. Hence, T has no models.
However, T is finitely satisfiable. Thus, compactness fails for the logic L−

ωω(Q
H), which

is then obviously a proper extension of L−
ωω.

To see that L−
ωω(Q

H) does not have the Löwenheim–Skolem property, consider first the
formula θ(x, y) in the vocabulary {E,<}:

“E is an equivalence relation congruent with <”
∃f, g ∀u, v((E(u, v) ↔ E(f(u), g(v))) ∧ (u < x→ f(v) < y))
∧ ∃f, g ∀u, v((E(u, v) ↔ E(f(u), g(v))) ∧ (u < y → f(v) < x))

Now, if A |= θ[a, b], since A ∼ A⧸EA, and given that A⧸EA |= ∀x, y (xEy ↔ x = y),
A⧸EA |= ∃f, g∀u, v((u = v ↔ f(u) = g(v)) ∧ (u < [a]E → f(u) < [b]E))
A⧸EA |= ∃f, g∀u, v((u = v ↔ f(u) = g(v)) ∧ (u < [b]E → f(u) < [a]E))

This implies that |{z | A⧸EA |= z < [a]E}| = |{z | A⧸EA |= z < [b]E}|. Hence, θ(x, y)
is an instance of a Härtig quantifier in the quotient by E. We can then use this method-
ology to adapt the typical counterexample for the Löwenheim–Skolem property for the
Härtig quantifier [19, Sentence (1.2)], axiomatizing infinite linear orderings of successor
cardinalities.
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Logic Compactness LöwSko Property Weak Iso Property
Lωω + + −
L−
ωω + + +

L−
ωω({∃≥n | n ∈ X}) + + −

L−
ωω(Q

−
1 ) + (at least (ω, ω)) − +

L−
ωω(Q1) + (at least (ω, ω)) − −

L−
ωω(Q

cfω−) + − +
L−
ωω(Q

cfω) + − −
L−
ωω(Q

H) − − +
L−
ω1ω − + +

L−
∞ω − − +

TABLE 1. Summary of properties of some logics.

Incidentally, the expressive power on finite models of fragments of existential second-
order logic without identity, but containing the Henkin quantifier (in particular Indepen-
dence Friendly logic), has been studied in great detail in [24].

5. CONCLUSIONS

We have fulfilled our aim of finding Lindström-style characterizations for the maximal-
ity of (variants of) the identity-free first-order logic. The properties we have employed
are collected in Table 1. Our work, however, still leaves a number of interesting open
questions, including:

Problem 1. Is there a proper extension of L−
ωω satisfying both the Löwenheim–Skolem and

compactness properties that is not contained in Lωω?

Problem 2. Is there a compact extension of L−
ωω which does not remain compact when

adding identity to the logic?
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Logic 56(4): 1153–1183 (1991).
[20] H.J. Keisler and A.W. Miller. Categoricity without equality, Fundamenta Mathematicae 170(1–2): 87–106

(2001).
[21] J. Kennedy and J. Väänänen. Logicality and Model Classes. The Bulletin of Symbolic Logic 27 (4): 385–414

(2021).
[22] S.C. Kleene. Introduction to Metamathematics, Van Nostrand, New York (1952).
[23] M. Krynicki and A. Lachlan. On the Semantics of the Henkin Quantifier, The Journal of Symbolic Logic

44(2): 184–200 (1979).
[24] A. Kuusisto. Expressivity of Imperfect Information Logics without Identity, Studia Logica 101: 237–265

(2013).
[25] P. Lindström. On extensions of elementary logic, Theoria 35: 1–11 (1969).
[26] P. Lindström. Omitting uncountable types and extensions of Elementary logic, Theoria 44: 152–156 (1978).
[27] J.A. Makowsky and S. Shelah. The theorems of Beth and Craig in abstract model theory II, Archiv für

mathematische Logik und Grundlagenforschung 21: 13–35 (1981).
[28] L.H. Tharp. The Characterization of Monadic Logic, The Journal of Symbolic Logic 38(3): 481–488 (1973).
[29] L.H. Tharp. Which logic is the right logic?, Synthese 31(1): 1–21 (1975).
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