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Abstract: Oasis lands in Egypt are commonly described as salty soils; therefore, waterlogging and
higher soil salinity are major obstacles to sustainable agricultural development. This study aims to
map and assess soil salinization at El-Farafra Oasis in the Egypt Western Desert based on salinity
indices, Imaging Spectroscopy (IS), and statistical techniques. The regression model was developed
to test the relationship between the electrical conductivity (ECe) of 70 surface soil samples and seven
salinity indices (SI 1, SI 2, SI 5, SI 6, SI 7, SI 8, and SI 9) to produce soil salinity maps depending on
Landsat-8 (OLI) images. The investigations of soil salinization and salinity indices were validated in
a studied area based on 30 soil samples; the obtained results represented that all salinity indices have
shown satisfactory correlations between ECe values for each soil sample site and salinity indices,
except for the SI 5 index that present non-significant correlations with R2 value of 0.2688. The SI
8 index shows a higher negative significant correlation with ECe and an R2 value of 0.6356. There is a
significant positive correlation at the (p < 0.01) level between SI 9 and ECe (r = 0.514), a non-significant
correlation at the (p < 0.05) level between soil ECe and SI 1 index (r = 0.495), and the best-verified
salinity index was for SI 7 that has a low estimated RMSE error of 8.58. Finally, the highest standard
error (R2) was represented as ECe (dS m−1) with an R2 of 0.881, and the lowest one was SI 9 with an
R2 of 0.428, according to Tukey’s test analysis. Therefore, observing and investigating soil salinity are
essential requirements for appropriate natural resource management plans in the future.

Keywords: soil salinity; statistical analyses; remote sensing; El-Farafra Oasis

1. Introduction

The problem of soil salinization is the most significant environmental issue in predom-
inantly arid and semi-arid regions of Egypt, which are characterized by low rainfall rates,
high temperature and evaporation values, and soil fertility that reduces seed growth, crop
production, fertility, and agricultural ecological sustainability development. Wherefore, soil
salinity monitoring, prediction, and mapping are necessary to alleviate land degradation in
arid regions wherein massive data related to saline soils and their characteristics, distribu-
tion areas, and salinity process dynamics do not have to be obtained. Traditional irrigation
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methods and poor drainage systems can be considered prevalent human-induced activities
that lead to secondary soil salinization; therefore, monitoring and mapping soil salinity
have become of great importance in overcoming this problem [1,2]. Soil salinity temporal
and spatial variability information is required to minimize the adversarial effects of this
important environmental problem on agricultural productivity [3]. Numerous salinity
indices produced using satellite images and simple or complicated data combinations of
spectral band ratios have been applied to recognize saline soil spatio-temporal distribution
in several case studies. These indices generally achieve Visible Near-Infrared (vis-NIR)
bands and are more related to multispectral images slightly or moderately high of relevant
saline soils, comparatively higher than non-saline soils spectral reflectance in vis-NIR
bands [4]. Moreover, extremely salt-affected soils show higher spectral responses compared
to moderately or highly saline soils [5]. Multispectral sensors, such as the Landsat series,
have delivered much potential for sequential, rapid, and low-cost observation, detection,
and mapping of soil salinity [6,7]. Egyptian lands are suffering from increasing soil saliniza-
tion due to many factors such as climate factors, groundwater resources, and sub-standard
soil management; soil salinity may provide an advance of toxicity problems according to
salinity concentration increasing in soil solution and the absorption of surplus amounts by
crops [8].

Satellite images and RS techniques are suitable tools for temporal monitoring and map-
ping soil salinity coupled with field measurements. Soil salinity mapping has developed
as an undemanding process performed by using GIS practices, which shows soil salinity
spatial distributions and salinization environmental hazards. Additionally, to determine
the ability of satellite images to accurately map and monitor salinization processes it is
necessary to compare the spatial salinity data with field studies. For the last two decades,
remotely sensed imagery has demonstrated its ability to monitor salinity changes effectively
from surface characteristics in real-time and at various scales. Some previous studies have
revealed that optical sensors, such as vis-NIR or Short-Wave Infra-Red (SWIR) spectral
bands, are promising for the sensing and detection of soil surface salinity [8–12].

Different spatial indices, such as the Normalized Difference Salinity Index (NDSI) and
the Brightness Index (BI), were executed to examine the resources used by these indices
during soil salinity mapping in arid and semi-arid regions [13].

Unfortunately, traditional sampling soil laboratory analysis methods are expensive,
time-consuming, laborious, and require many preparatory stages and large amounts of
chemicals for the determination of the properties, which can be harmful to the environ-
ment [14,15]. Hence, routine laboratory analysis is restricted to only a few soil samples;
therefore, there is a global need for a new approach to soil analysis, which is faster and
cost-efficient [16,17]. Imaging Spectroscopy (IS) has proven to be a vital tool for spatially
distributing soil properties and generating maps. Moreover, spectroscopy works in the
vis-NIR and Short-Wave Infrared (SWIR) region, offering the possibility of mapping soil
salinization [18]. The IS tool has been used to study and map spatially distributed soil
characteristics, such as soil Electrical Conductivity (ECe), which could be quantitatively
assessed and mapped using advanced technology of regression models under laboratory
conditions or using imaging sensors [19]. Over the past 35 years, soil spectroscopy has
provided a promising capability for identifying vegetation, rocks, and minerals. As a
modern technology proven to be highly efficient for estimating soil salinization, regres-
sion models are faster and cheaper than conventional methods. Additionally, these tools
are environmentally friendly, non-destructive, reproducible, and repeatable in analytical
methods. The regression models were applied under both field and laboratory conditions
to calculate several soil characteristics without soil sample preparation [20]. Spectral re-
flectance ranging between 0.35 and 2.5 µm is more suitable for estimating the majority of
soil salinization [21]. The integration of Imaging Spectroscopy and regression models for
the accurate prediction of soil salinization has become a promising tool for saving time, cost,
and effort. Multivariate algorithms that are commonly used in soil spectroscopy to capture
soil variability (spectral variables at a wavelength range) include the Linear Regression
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Model (LRM), which is used for the quantitative analysis of soil parameters prediction [22].
Root Mean Square Error (RMSE) was reported as a prediction error for soil salinization
estimations and validation of that concentration from spectral data. The coefficients of mul-
tiple determinants, such as the correlation square (R2) between the response and predicted
values, were also unsuitably regression computed [23].

Geostatistical analysis is an effective method for studying, analyzing, and evaluating
the spatial distribution of soil properties and their changes, and it has had a significant
and effective contribution to reducing error rates and increasing production efficiency [9].
Ordinary Kriging (OK) model is a largely widespread technique used to predict the spatial
distribution of soil properties.

The principal aim of this research paper is to predict and map soil salinity to enhance
the national management strategy program by using seven different soil salinity indices
derived from Landsat-8 (OLI) images integrated with electrical conductivity (ECe) field
measurements from the El-Farafra Oasis of the Egyptian Western Desert using statistical
and distribution techniques. Whereas, decision-makers, farmers, land-use planners, and
agricultural inspectors require updated, reliable, and accurate assessments of the inves-
tigated area’s soil salinity, and the extensive spatial-temporal variation in the salinity of
soil leads to difficult and costly monitoring, especially on a regional scale, is a determinant
of the use of satellite imagery, which contributes to the significant capability for soil salin-
ization detection, and systematically collects relevant information and consolidates large
spatial data formats.

2. Materials and Methods
2.1. The Investigated Area

The total area of El-Farafra Oasis is about 980 km2 of a geological depression, it is
the second-biggest Oasis by size in the Western Desert of Egypt, and it has the smallest
population. The Oasis is located between latitude 26◦40′00” and 27◦30′15” N and longitude
27◦05′00” and 28◦50′17” E, and it lies in the large desert of Western Egypt centered between
El-Bahariya and El-Dakhla Oases, as shown in Figure 1. According to the geography
and geo-formations, the El-Farafra Oasis has many underground water wells spread out
over the surface of the land, many of which are artesian, and some wells are used in
cultivated land for irrigation. The climate of the area is characterized as a hot desert and
experiences long, dry, and very hot summers, cold winters, very low rainfall, and high
evapotranspiration. The average temperatures in the hot months are normally between
13.8 and 47.8 ◦C, with a mean of 22.1 ◦C [24], as shown in Figure 2. The soil climate of this
area contains a Torric soil moisture regime and a Thermic temperature regime [25].

2.2. Remote Sensing and GIS Procedures

To calculate the soil salinity indices and generate the soil salinity maps for the study
area, the following data were used:

1. The Landsat-8 (OLI) satellite image data were radiometrically, geometrically, and
atmospherically corrected using ENVI 5.1 software [26] to minimize the radiometric
distortions and atmospheric perturbations caused by clouds, aerosols, and other
atmospheric particles, respectively. These data were downloaded from the United
States Geological Survey (USGS) website through Path, 178 and Row, 41 obtained on
8 December 2021.

2. Field electrical conductivity (ECe dS m−1) measurements were conducted in May–July
2021. The soil salinity maps were generated using ArcGIS 10.2.2 software [27].
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2.3. Field and Laboratory Work

The study area was represented by 100 surface soil samples with depths between 0 and
30 cm (where the highest salt accumulation is situated in the topsoil) that were collected
to cover the spatial differences of the investigated area, then the soil’s physical–chemical
properties at each site were characterized according to the Soil Survey Staff [28]. The
soil samples were air-dried and then passed through a 2 mm sieve. To investigate the
soil salinization in the studied area, the soil salinity was determined through the use of
electrical conductivity (ECe) laboratory analyses, which were carried out in a saturated
extract using a Beckman conductivity bridge at 25 ◦C, according to Bashour and Sayegh
(2007) [29], and the soil samples were analyzed using standard methods for the Soil Survey
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Staff [30]. Agronomic classification of soil salinity based on ECe [31] was used to evaluate
and classify soil salinization in the investigated area, which is characteristic at the genesis
part (Table 1).

Table 1. Soil salinity classifications based on ECe (dS m−1) and effects on different crops.

Soil Salinity Classification ECe
(dSm−1) Crop Yieldaffected

Non-saline 0–2 Not affected, salinity effects are negligible

Slightly saline 2–4 Sensitive crops affected, yield loss for
very sensitive crops

Saline 4–8 Many crops were affected, and their
yields restricted

Strongly saline 8–16 Only tolerant crops bear this condition

Extremely saline >16 A few very tolerant crops resist.

2.4. Soil Salinity Mapping

The soil salinity maps were generated from the Operational Land Imager (Landsat
OLI-8) by using the base data related to the soil salinity indices in order to produce the
maps that include five salinity classes (non-saline, slightly saline, moderately saline, highly
saline, and extremely saline). Soil salinity was derived using the RS techniques developed
through OLI-8 images, which are the most used RS data in soil salinity mapping. Soil
salinity indices are mainly used to identify salt-affected soils based on the diverse reactions
of salty soils to different Landsat-8 (OLI) image spectral bands. Table 2 shows the soil
salinity indices used to generate the salinity maps for the investigated area; seven soil
salinity indices, SI 1, SI 2, SI 5, SI 6, SI 7, SI 8, and SI 9, were functional and calculated to
produce soil salinity maps depending on Landsat-8 (OLI) image bands of B2, B3, B4, and B5
(Red, Green, Blue, and Near-Infrared, respectively). The indices applying and calculating
output images were necessary to produce soil salinity maps using GIS software due to the
slicing approach level of diverse soil salinity indices range and map integration, and then
the corresponding pixel values for each field sample locations were extracted to produce
the relationship. The soil salinity classes were rated due to image bands pixel values to
ECe values of 2, 4, 8, 16, and more than 16 dS m−1, and salinity degrees related to the
observed values.

Table 2. Soil salinity indices description based on different spectrum band ratios of Landsat-8 (OLI).

Satellite
Data

Soil
Salinityindices Band Ratios Description References

Landsat-8
(OLI)

SI 1 SI 1 =
√
(B ∗ R)

R =Band 4 = Red
G = Band 3 = Green
B = Band 2 = Blue

NIR = Band 5 = Near
Infra-Red

[32]
SI 2 SI 2 =

√
(G ∗ R)

SI 5 SI 5 =
(

B
R

)
[33]SI 6 SI 6 = (B−R)

(B+R)

SI 7 SI 7 = (G∗R)
(B)

SI 8 SI 8 = (B∗R)
(G) [34]

SI 9 SI 9 = (NIR∗R)
(G)

2.5. Spatial Distribution Mapping (Geostatistical Workflow)

Geostatistics is a statistical class used to examine and predict the rates related to spatio–
temporal features. Mapping and geostatistical techniques, such as semi-variogram γ (h),
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cross-validation, kriging analyses, and kriged spatial distribution mapping appreciations,
were used to calculate and create surface maps of variance structure for soil salinity. The
semi-variogram experimental is the mean square graphical representation of variability
between two distance nearest neighbors (h), as shown in the following equation [35]:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[z (xi + h)− z(xi)]2

where γ (h) is the semi-variogram expressed as a magnitude function separation vector h,
N (h) is the number of the examination pair’s discrete points by distance h, and z (xi) is the
random variable at location xi.

2.6. Developed Linear Regression Model

Linear regression test analysis was performed to authenticate the relationship between
the field data ECe values used as a dependent relative variable and the soil salinity indices,
which were derived from satellite images as an independent variable. ECe values were
estimated for unmeasured locations by using the known salinity index values of the same
location based on the generated plots [36]. A correlation coefficient test was computed
to verify the relationship between the grounds ECe values and the soil salinity indices
extracted values; all of the statistical analyses were performed using the Microsoft Excel
package and SPSS software.

2.6.1. Pearson Correlation Coefficient Analysis

The Pearson correlation coefficient is used to measure two variables (x and y) linear
association strength, where the value of (r = 1) means a perfect positive correlation and the
value of (r = −1) means a perfect negative correlation, and where a value of (0) indicates no
linear correlation [37]. The sample correlation coefficient between the two variables of x
and y is denoted as r or rxy and can be computed as follows:

rxy =
cov(x, y)√

var(x)
√

var(y)

where cov(x, y) is the sample covariance of x and y, var(x) is the sample variance of (x), and
var(y) is the sample variance of (y).

2.6.2. Root Mean Square Error (RMSE)

The RMSE error is the standard deviation of the prediction errors (residuals) that
are computed to show whether the point data are far or concentrated around the best
regression line. RMSE was used in the regression examination to confirm the experimental
results and test the validity of the soil salinity indices; RMSE was calculated using the
following equation [38]:

RMSE =

√
1/N

n

∑
i=1

(y− x)2

where N is the number of observations values, y represents the forecasted or expected
values (unknown results), and x represents the observed values extracted from field data
(known results).

2.6.3. Tukey’s Range, Significant and Difference Test (Model Validation)

Tukey’s range test, also known as the Tukey’s HSD (honestly significant difference)
test, is a single-step multiple comparison procedure and statistical test used to obtain the
means (expected normal values and observed values) that are significantly different and
detect any differences between these means greater than the expected standard error (R2).
Tukey’s test compares the means of every treatment to the means of every other treatment;
that is, it is applied simultaneously to the set of all pairwise comparisons and identifies any
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difference between two means that is greater than the expected standard error [39]. Tukey’s
test is based on a formula very similar to that of the t-test. In fact, Tukey’s test is essentially
a t-test, except that it corrects for family-wise error rate. Tukey’s test formula is as follows:

qs =
YA − YB

SE
(1)

where YA is the largest of the compared means, YB is the smallest of the compared means,
and SE is the standard error of the summation means. The qs value can be compared to
the q value extracted from the studied distribution values. If the qs value is larger than
the critical value of q obtained from the distribution, the two means will be significantly
different at the α: 0 ≤ α ≤ 1 level [40].

3. Results
3.1. Estimation of Soil Salinity Based on Landsat-8 (OLI) Data and Soil Salinity Indices

After calculating each soil salinity index (SI 1, SI 2, SI 5, SI 6, SI 7, SI 8, and SI 9) from
the satellite images, pixel values with various ranges in all image bands were extracted, and
then the corresponding ECe values were compared with their exacted pixel values of the
same location. Figure 3 represents the soil salinity spatial distribution in the investigated
area, displaying the soil characteristics and trend extent of soil salinization processes, also
representing total salinity and salinity classes.

The relationship between the appointed measured ECe values and salinity index
values derived from digital satellite images is required to generate soil salinity maps and
evaluate soil salinity classes and rates. The soil samples were then averaged to provide a
single spectrum for each target. Figure 4 shows the field-derived salt-affected average soil
spectra that have relatively sparse canopies compared to the soil samples and, consequently,
have significant reflectance across the visible, NIR, and SWIR spectra.

3.2. Devolved Linear Regression Model

As shown in Table 3 and Figure 5, the soil salinity values (ECe), seven salinity indices
(including SI 1, SI 2, SI 5, SI 6, SI 7, SI 8, and SI 9), and descriptive statistics that were
generated from Landsat-8 (OLI) images with satisfactory correlations were distinguished
between the salinity measured (ECe) for each soil sample site and the salinity indices.
However, the SI 5 index showed lower correlations with the ECe readings, with a coefficient
R2 value of 0.2688, while the SI 8 index represents negative correlations with the ECe
readings, with an R2 value of 0.6356. The linear regression results for seven different
salinity indices of the year 2021 are illustrated in Table 4.

Table 3. Descriptive statistics of soil salinity indices and soil ECe.

Descriptive Statistics

ID Number of
Soil Samples Minimum Maximum Mean Std.

Deviation

ECe (dS m−1) 100 1.20 39.60 11.53 9.40

SI 1 100 2.74 14.35 7.84 2.98

SI 2 100 2.58 15.77 8.26 3.40

SI 5 100 0.71 2.29 1.07 0.43

SI 6 100 −0.17 0.39 0.00 0.16

SI 7 100 1.60 19.53 9.2 4.77

SI 8 100 2.05 13.39 7.42 2.97

SI 9 100 4.53 12.89 7.76 2.24
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Table 4. Linear regression results for seven different salinity indices of year 2021.

Salinity
Index Index Range Index Ran-

gereference
Date of Satellite

Image
Number of

Samples R2

SI 1
0–1

[1] 8-December-
2021

100

0.6215

SI 2 0.5988

SI 5 0–1.73 0.2688

SI 6

0–1.42

0.2991

SI 7 0.5551

SI 8 0.6356

SI 9 0.5592

3.3. Pearson Correlation Coefficient Analysis

A Pearson correlation analysis was applied to understand the correlation between
the soil ECe and the soil salinity indices, then least-square linear regression analysis was
conducted at the confidence level of the soil ECe measurements in 2021. The correlation
matrix among soil salinity indices and soil ECe results are shown in Table 5 and Figure 6.
The results indicated that there was a significant positive correlation at the p < 0.01 level
between the soil ECe and SI 9 index (r = 0.514), and there was a non-significant correlation
at the p < 0.05 level between soil ECe and (SI 1, SI 2, SI 7, and SI 8) indices (r = 0.495, 0.491,
0.479, and 0.492), respectively.

Table 5. Correlation matrix among soil salinity indices and soil ECe.

Pearson Correlations

ECe (dS m−1) SI 1 SI 2 SI 5 SI 6 SI 7 SI 8 SI 9

ECe (dS m−1) 1

SI 1 0.495 * 1

SI 2 0.491 * 0.998 ** 1

SI 5 −0.308 −0.799 −0.801 1

SI 6 −0.333 −0.833 −0.842 0.988 ** 1

SI 7 0.479 * 0.980 ** 0.991 ** −0.808 −0.862 1

SI 8 0.492 * 0.996 ** 0.990 ** −0.826 −0.857 0.971 ** 1

SI 9 0.514 ** 0.907 ** 0.921 ** −0.686 −0.761 0.943 ** 0.897 ** 1

*. Correlation is significant at p < 0.05 level (2-tailed). **. Correlation is significant at p < 0.01 level (2-tailed).

3.4. Soil Salinity Values Prediction and Assessing Using Root Mean Square Error (RMSE)

The linear regression equations distinguished between the salinity measured in the
laboratory for each soil sample and the salinity indices (SI 1, SI 2, SI 5, SI 6, SI 7, SI 8, and SI
9) have satisfactory correlations; i.e., y = 0.2501x + 4.9542; y = 0.2802x + 5.0286; y = −0.024x
+ 1.3468; y = −0.0093x + 0.1093; y = 0.3779x + 4.9067; y = 0.2514x + 4.5177; and y = 0.178x +
5.7065. Each soil salinity indices, respectively, were used to calculate the corresponding
salinity index (x) values, for ECe measurements of 2, 4, 8, and 16 dS m−1, by inserting these
values (y) in the equation. The calculated (x) values were then used to predict the ECe
salinity values for the study area, as shown in Table 6; then by using 70 soil samples, the
efficiency of the soil salinity generated values was evaluated and assessed by estimated
RMSE to verify the test efficiency depending on the degree of agreement between the
observed and expected values, the obtained results indicated that the best-verified salinity
index is SI 7 that has low estimated RMSE error of 8.58.
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3.5. Tukey’s Range, Significant and Difference Analysis (Model Validation)

Tukey’s test was used to obtain the means (expected normal values and observed
values of ECe (dS m−1) and accepted soil salinity indices (SI 1, SI 2, SI 7, SI 8, and SI 9)
that have significant negative or positive correlations between those that have significantly
different or detect any differences greater than the expected means standard error (R2). For
the examination of the linear regression model validation, 30 similar soil sample points,
including the samples from each category of the five (5) soil salinity classes, were examined,
and the output results for all of the indices of the satellite data and ECe values revealed
almost similar standard error (R2) values ranging from 0.881 to 0.428, as shown in Figure 7A–
F. The total estimated distribution parameters between the observed and expected means
for ECe and soil salinity indices are shown in Table 7.
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Table 6. Soil salinity values prediction and assessment.

Predict ECe (dS m−1) Salinity Values

SI 1 SI 2 SI 5 SI 6 SI 7 SI 8 SI 9

Minimum 5.64 5.75 1.29 0.11 5.51 5.03 6.51

Maximum 8.54 9.45 1.33 0.11 12.29 7.88 8.00

Mean 5.64 5.75 1.29 0.11 5.51 5.03 6.51

Std. deviation 0.75 0.95 0.01 0.00 1.80 0.75 0.40

Number of soil samples 70 70 70 70 70 70 70

RMSE 9.81 9.49 13.75 14.68 8.58 10.07 9.98
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Table 7. Total estimated distribution parameters between observed means and expected means for
ECe and soil salinity indices.

Estimated Distribution Parameters

ECe (dS m−1) SI 1 SI 2 SI 7 SI 8 SI 9

Normal
Distribution

Observed mean 8.123 8.215 9.443 2.121 9.502 11.288

Expected mean 9.735 1.946 3.040 1.110 3.246 4.598

4. Discussion
4.1. Estimation of Soil Salinization

Soil salinity refers to soil salt content, and salinization is a process of salt accumulation
in soil. Salinity can give rise to natural processes, while soil salinization materializes
through synthetic and natural processes, i.e., irrigation and salt tracks in the earth [41]. Soil
salinity maps were generated depending on the OLI-8 image data and soil salinity indices
to identify salt-affected soils based on the reactions of salty soils to different satellite image
spectral bands (visible, NIR, and SWIR spectra). The results showed that by applying each
soil salinity index, various ranges in all image bands were extracted, the corresponding
ECe values were compared with the exact pixel value of the same location, and then the
soil salinity classes were rated in relation to the image band pixel values of the ECe values
of 2, 4, 8, and 16 dS m−1. Furthermore, the degree of salinity was related to the observed
values, which were then used to produce soil salinity maps using GIS software based on
the range of the slicing approach level of diverse soil salinity indices and map integration.
Therefore, Landsat-8 (OLI) images are a better method to produce soil salinity spatially
distributed maps but require further investigative studies of such dependencies.

The method developed and used in this paper depends on image data and soil salinity
indices based on a regression model can be used for other satellite data, such as those
provided by Sentinel 1 and 2, and can be applied in other arid and semi-arid environments,
these results are similar to those in the literature data [42]. Several studies have proved that
the prediction of high soil salinity levels shows several non-linear relationships between
the ground data (ECe values) measured in the field and soil salinity indices’ reflectance
spectra [43].

4.2. Devolved Linear Regression Model

Linear regression tests analyze the relationship between two variables modeled
through the appropriateness of a linear equation of the observed data. This test was
performed to authenticate the relationship between the ECe values and soil data from the
satellite. The data in Tables 4 and 5 show that all of the salinity indices with satisfactory
correlations were distinguished between ECe values and the soil from the satellite, the SI
5 index showed lower correlations with the ECe (R2 = 0.2688), and the SI 8 index exhibited
higher positive correlations (R2 = 0.6356). These results are consistent with another study
conducted in the Yellow River Delta situated on the northeast coast of China [44]; soil salin-
ity was detected by means of a Moderate Resolution Imaging Spectroradiometer (MODIS)
and by utilizing some soil salinity indices. The relationship between the ECe values and
soil reflectance spectra was investigated using the linear regression method [45].

Through the use of multiple regression techniques to estimate soil salinity in China,
where several RS techniques, such as band math, have been conducted to develop uncorre-
lated factors of satellite image bands, the results represented that soil salinity indices data
with ECe measurements by applying multiple regression techniques showed comparatively
accurate predictions [46].

4.3. Pearson Correlation Coefficient Analysis

The Pearson correlation coefficient is a statistical test used to statistically measure the
relationships between some variables and the association between variables of interest
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depending on the covariance method and was applied to understand the correlation
between the soil ECe and different soil salinity indices. The results indicated that there was
a significant positive correlation at the p < 0.01 level between soil ECe and the SI 9 index,
and there was a non-significant correlation at the p < 0.05 level between soil ECe and (SI
1, SI 2, SI 7, and SI 8) indices. This correlation is according to increasing and decreasing
soil salinity ranges; therefore, these changes in salinity levels might be due to soil layer
salt concentration, which refers to different modes of geological sedimentation due to
the effects of different eras and human activities, respectively. Hammam and Mohamed,
2020 [47], used Pearson correlation coefficient analysis in their paper and represented that
there are correlations between NDVI values, soil salinity, and the percentage of total toxic
salts, where negative correlations were distinguished between NDVI and ECe.

4.4. Soil Salinity Assessing Using Root Mean Square Error (RMSE)

The RMSE error is the standard deviation of prediction errors that are computed to
show how far or concentrated the data are around the best regression line and is used
in regression examination to confirm experimental results and test the validity of soil
salinity indices [48]. The results in Table 6 indicate that the efficiency of soil salinity values
generated by using 70 soil samples was evaluated and assessed by estimated RMSE to
verify test efficiency depending on the degree of agreement between the observed and
expected values, and the best-verified salinity index is SI 7, which has a low estimated
RMSE error of 8.58, this result is also similar to [47].

4.5. Model Validation Using Tukey’s Test

Tukey’s statistical test is a single-step multiple comparison procedure used to obtain
means (expected normal values and observed values of ECe and accepted soil salinity
indices) that are significantly different and detect any differences between these means
that is greater than the expected standard error (R2) [39]. According to Table 7, using
30 test soil samples, the obtained results showed that the highest standard error (R2) was
represented by ECe, and the lowest one is SI 9. According to [49–51], cross-validation was
used to find the degree of agreement between the measured and estimated data based
on the expected normal values and observed values of ECe and accepted soil salinity
indices and cross-validation was used for all data to evaluate the autocorrelation model
trend, the results of this study reveal that the model provided reasonable prediction and
calculated statistics diagnose model and its associated parameter values are reasonable in
the study area.

5. Conclusions

Soil salinity assessment is considered to be a keystone for better agriculture man-
agement practices. Soil salinity indices are a good method to produce soil salinity maps
depending on Landsat-8 (OLI) images, RS and GIS techniques that have the best role for
salinity spatial distribution in the investigated area. The obtained results represented that
all salinity indices have satisfactory correlations between ECe values for each soil sample
site and salinity indices (SI 5 index represents non-significant correlations with R2 value
of 0.2688, while the SI 8 index shows a higher negative significant correlation with ECe
readings with R2 value of 0.6356) and there was a significant positive correlation at p < 0.01
level between soil ECe and SI 9 index (r = 0.514). There is a non-significant correlation at
the p < 0.05 level between soil ECe and (SI 1, SI 2, SI 7, and SI 8) indices (r = 0.495, 0.491,
0.479, 0.492, respectively), and the best salinity index is SI 7, showing a low estimated
RMSE error of 8.58. Finally, the highest standard error (R2) was represented by ECe (dS
m−1), with an R2 of 0.881, and the lowest one was for SI 9, with an R2 of 0.428, according to
Tukey test analysis. Therefore, the observation and investigation of soil salinity are essential
requirements for appropriate natural resource management plans in the future. This study
recommended that salinity indices and Landsat-8 images should be used (soil salinity
studies) and represent better methods to produce spatial distribution maps. However, they
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require further investigative studies of their dependencies and whether they are valid for
use in other studies under arid regions with the same conditions, i.e., climate conditions,
precipitation, evaporation rate, drainage or waterlogging (a raised water table), irrigation
water, vegetation cover, leakage from geological deposits and penetration into groundwa-
ter, sea-level rise when sea salts seep into lower lands and inappropriate application of
fertilizers when excess nitrification accelerates soil salinization.
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