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Abstract
In this work a finite element-based model for analyzing incompressible flows in flexible
channels is presented. The model treats the fluid–solid interaction problem in a monolithic
way, where the governing equations for both sub-domains are solved on a single moving
grid taking advantage of an arbitrary Lagrangian/Eulerian framework (ALE). The unified
implementation of the governing equations for both sub-domains is developed, where these
are distinguished only in terms of the mesh-moving strategy and the constitutive equation
coefficients. The unified formulation is derived considering a Newtonian incompressible
fluid and a hypoelastic solid. Hypoelastic constitutive law is based on the strain rate and thus
naturally facilitates employing velocity as a kinematic variable in the solid. Unifying the form
of the governing equations and defining a semi-Lagrangian interfacemesh-motion algorithm,
one obtains the coupled problem formulated in termsof a unique kinematic variable.Resulting
monolithic system is characterized by reduced variable heterogeneity resembling that of a
single-media problem. The model used in conjunction with algebraic multigrid linear solver
exhibits attractive convergence rates. The model is tested using a 2D and a 3D example.

Keywords Flow in pipes · Monolithic · ALE · FSI · Multigrid · Computational efficiency

1 Introduction

Fluid–structure interaction (FSI) modeling is an important area of research. FSI problems are
found in nature (e.g. flow of biological fluids in different organs, particularly cardiovascular
system) and engineering practice (e.g. interaction of vehicles, aircraft, spacecrafts, engines
and bridges with surrounding fluids). Even though, FSI study counts with a history of several
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decades, it remains an area of active research to-date. Particularly important issue remains the
balance between the robustness of themodel and the computational efficiency, since formany
practical applications lengthy simulations involving days or even weeks of computational
time are unacceptable. In the present workwe shall concentrate our attention on FSI problems
involving flows in flexible channels, aiming at biomedical applications.

Two types of approaches to FSI modeling exist, namely the partitioned and the mono-
lithic ones [1]. Partitioned approaches rely on solving the solid and the fluid problems using
different solvers that are coupled via transferring data at a common interface. In monolithic
approaches coupling conditions at interface are implicit to the solution procedure as they
are included together with the governing equations of the sub-domains in a single discrete
system. In spite of their robustness monolithic approaches generally result in poor condition-
ing of the linearized system describing the coupled problem due to different scaling of the
variables entering the monolithic system. Solids are usually described in terms of displace-
ments, incompressible fluid formulations are typically velocity-pressure-based and interface
compatibility is enforced by Lagrange multipliers technique. This leads to a very large differ-
ence in the magnitude of coefficients entering different blocks of the monolithic generalized
stiffness matrix (left-hand-side of the equation).

One way of tackling this challenge consists in developing or applying sophisticated linear
solvers and/or pre-conditioners capable of dealing with given large and poorly conditioned
systems. This approach was followed by various researchers in the field of monolithic FSI
[2–7]. In this case computational efficiency of the model is determined predominantly by the
selected linear solver.

A different approach to the efficiency problem relies on manipulating the monolithic
system prior to passing it to the linear solver. Reducing variable heterogeneity and facili-
tating the FSI coupling can be achieved, among other techniques, by the so-called “unified
approaches” proposed originally in [8]. Unified approaches [9–12] describe the entire FSI
problem on a single mesh and define a unique kinematic degree of freedom for the entire
domain, including the nodes where fluid and the solid are in contact . All the mentioned mod-
els rely on Lagrangian description of the entire problem and are advantageous for analyzing
FSI problems involving free surface flows.

The use of unifiedLagrangian approaches in 3D is rather limited due to their high computa-
tional cost associated to continuous re-meshing and time step size restrictions [13]Moreover,
for modeling flow in flexible channels, Lagrangian approaches are not optimal as such prob-
lems involve flow continuously passing through a fixed control volume. Application of inlet
and outlet boundary conditions in thus inconvenient as it requires injecting nodes at the
inlet and erasing them at the outlet [14], which may cause additional computational difficul-
ties. Clearly, for such problems, using non-Lagrangian frameworks is more convenient for
describing not only the inlets and outlets (as proposed e.g. in [15]), but also the major part
of the fluid domain.

In 2000s Turek and Hron [2,16] advocated the use of the Arbitrary Lagrangian/Eulerian
(ALE) framework for FSI problems involving channel flows, particularly for biological sys-
tems (flow in blood vessels). They took advantage of using using different mesh-motion
strategies in different sub-domains. Similar ideas have been later used for developing mod-
els for various flow problems in flexible channels in [17–21]. The above-mentioned setting
allows treating the solid in a Lagrangian way, while modeling the major portion of the fluid
in an ALE fashion, keeping the mesh fixed at the inlet/outlet boundaries.

In the present work we inherit the idea of using different mesh motion strategies for
different parts of the domain and combine it with a unified approach (in the sense of both
using single mesh and single kinematic variable) to the coupled problem. While commonly
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one uses an interface equation for ensuring compatibility between the displacement-based
solid and the velocity-based fluid, we choose a single kinematic variable (velocity) for both
sub-domains, thus naturally ensuring the kinematic and continuity of the velocity field across
the interface. Unification also reduces the variable heterogeneity, which is beneficial for the
computational efficiency of the model.

We strive to obtain a method that is characterized by good computational efficiency,
due to reduced variable heterogeneity and reduced size of the coupled system, facilitating
improved linear solver convergence. Thus, our approach may be viewed as an alternative
to the monolithic FSI approaches where the efficiency improvement is obtained exclusively
at the level of the linear solver. The developed approach has an additional benefit from the
implementation point of view: a single code encompassing both fluid and solid elements (by
varying materials coefficients) allows implementing the monolithic solver in a very similar
way to that of a single-material problem (fluid-only or solid-only), using a standard finite
element assembly procedure and other standard routines.

The paper is organized as follows. In Sect. 2 the rationale of the method is explained.
Section 3 is devoted to the governing equations of the fluid–structure interaction system.
Unified constitutive equation is presented and a unified form of the discrete monolithic FSI
system is derived. Corresponding solution algorithm is presented with a certain emphasis
given to the decoupled mesh smoothing step. In Sect. 4 numerical examples are solved. The
model is validated by means of comparison with several references in 2D and 3D. In Sect. 5
concluding remarks are drawn.

2 Rationale of theModel

The fluid and the solid are discretized here using a unique mesh and are integrated in time
as a single entity. In order to avoid the necessity of introducing the interface governing
equations (ensuring continuity of the kinematic variables and normal stresses across the
fluid–solid boundary), same kinematic variable for the fluid and the solid domains. During
themonolithic stepwe propose not to solve any additional equation for defining the fluidmesh
motion. These two features distinguish the present approach from [2] and other similar ALE
models mentioned in the introduction, where difference in the kinematic variables between
the solid and the fluid domain as well as the presence of ALE mesh velocity variable oblige
introducing additional interface equations.

In order to illustrate the proposed mesh-moving strategy of the model, let us consider an
example involving flow in a flexible pipe. The undeformed configuration is depicted in Fig. 1.
The domain consists of a flexible solid (gray outer walls) and the fluid inside. A constant
flux is prescribed on the left (inlet), the solid is fixed at its left and right extremes. The fluid
flow deforms the solid, resulting in the configuration depicted in Fig. 1. One can see that
the domain boundaries at the inlet and the outlet remain unchanged, while elsewhere the
solid deforms in the direction predominantly orthogonal to the direction of the flow. Thus the
fluid–solid interface can be tracked by a mobile mesh simply stretching the corresponding
fluid elements. Once the monolithic FSI system (where mesh motion is completely defined
by the deformation of the solid) is solved, a mesh smoothing step can be performed leading
to an improved quality of the fluid mesh. This is indicated in Fig. 1.

The following combination ofmesh-moving strategies is usedwhen solving themonolithic
FSI system:
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• Solid sub-domain: Lagrangian fashion (obtained in ALE model by setting the mesh
velocity to be equal to the material velocity). Gray in Fig. 1.

• Fluid sub-domain, except for those fluid elements that are encountered in contact with
the solid: Eulerian fashion (fixed grid). White in Fig. 1.

• Interface fluid elements (fluid elements in contact with the solid): the nodes shared with
the solid move according to their convective velocity (“Lagrangian nodes”), while the
rest of the nodes are maintained fixed (“Eulerian nodes”). Dashed in Fig. 1.

It is worth emphasizing that in the above-described basic mesh moving strategy employed
at the monolithic solution step (Fig. 1b), there exist either “Eulerian” or “Lagrangian” nodes,
meaning that the mesh velocity does not constitute an additional unknown.

During the separate mesh smoothing stage (Fig. 1c), position of the fluid nodes (nodes of
“white elements”) is updated by solving smoothing equation.

In the following the governing equations of the FSI problem are presented. As already
mentioned, in order to facilitate monolithic coupling without additional interface equations
the solid model is written adopting velocity as the kinematic variable so as to match the
degrees of freedom of the fluid. Adopting hypoelastic model for the solid allows obtaining
a unified FSI model where the fluid and the solid differ only in terms of the constitutive
relation.

3 Governing Equations

3.1 Conservation Equations

Let � be a bounded domain containing a viscous incompressible fluid and a flexible solid.
The evolution of the velocity v = v(x, t) and the pressure p = p(x, t) (the latter being
defined only in the fluid sub-domain) is governed by momentum and mass conservation:

ρ
∂v
∂t

|x + ρ v · ∇v = ∇ · σ + ρb (1)

∇ · v = 0 (2)

where σ is the Cauchy stress, and, ρ and v are the density and the velocity vector, respectively
and b is the body force. The |x symbol stands for the derivative with respect to the room-fixed
coordinate system.

The ALE differential form of the momentum equation is readily obtained from Eq. (1)
replacing in the convective term the material velocity v with the convective velocity c =
v − vm , where vm is the velocity of the moving mesh [22]. This results in

ρ
∂v
∂t

|χ + ρ c · ∇v = ∇ · σ + ρb (3)

where χ is the coordinate associated to the ALE reference system. Note that the right-hand
side of the above equations is written in classical Eulerian form, while the arbitrary motion
of the computational mesh is only reflected in the left-hand side [22,23].

Equations (2), (3) are completed with standard Dirichlet and Neumann boundary condi-
tions (see Fig. 2). On the external boundary

v = vpr on �D (4)

σ · n = σ
pr
n on �N (5)
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Fig. 1 Different sub-domains of the unified monolithic fluid–structure interaction model and mesh movement
steps
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Fig. 2 Nomenclature used for
sub-domains and boundaries

where vpr is the prescribed velocity, n is the outer unit normal to �N , σ
pr
n is the prescribed

traction vector. On the internal interfaces �I , the coupling conditions are

[[v]] = 0 on�I (6)

[[σ ]] · n = 0 on �I (7)

with n being the unit normal to �int , and [[φ]] represents the jump of a quantity φ across
the interface. Note that adopting a monolithic formulation in a single variable the interface
conditions Eqs. (6), (7) are satisfied automatically.

The momentum Eq. (3) is independent of the material (i.e. it holds for both the fluid and
the solid sub-domains), so we need to incorporate the information of the specific material to
be modeled. This is done by means of specifying the material’s constitutive equation, which
links the stress tensor to the deformation. In the context of the present paper we treat the
problems involving two materials: incompressible Newtonian fluid and isotropic hypoelastic
solids. Accordingly, in the next section we discuss their respective constitutive equations.

3.2 Constitutive Equations

Constitutive equation for incompressible Newtonian fluids
The constitutive equation of a Newtonian fluid is a linear relationship between the Cauchy

stress σ and the deformation rate tensor D:

σ = −pI − λ f tr(D)I + 2μ fD (8)

where μ f and λ f are the Lamé coefficients and p is the thermodynamic (or hydrostatic)
pressure of the fluid. By definition D = 1

2 (L + LT ) is the symmetric part of the velocity
gradient tensor L = ∇v. Note that tr(D) = ∇ · v = εv = 0 for incompressible fluids.

Constitutive equation for hypoelastic solids
An isotropic hypoelastic solid is characterized by a constitutive equation where a linear

isotropic relationship between the stress rate and the deformation rate are defined as [24]:

�
τ = 2μsD + λs tr(D)I (9)

where
�
τ is the Truesdell rate. This is evaluated as

�
τ = FṠFT (10)

where τ = Jσ and Ṡ are the Kirchhoff stress tensor and the material time-derivative of the
second Piola–Kirchhoff stress. The latter is defined as S = F−1 · P = JF−1 · σ · F−T . F is
the deformation gradient and J is its Jacobian.

Time-integrated constitutive equations
An implicit time discretization of the fluid’s constitutive Eq. (8) can written as:

σ (n+1) = −p(n+1)I + λ f tr(D(n+1)) + 2μ fD(n+1) (11)
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where superindex n + 1 indicates the current time step.
Time-discretization of the constitutive equation of an hypoelastic solid An implicit

integration of Eq. (9) can be written as

�
τ

(n+1)
= 2μsD(n+1) + λs tr(D(n+1))I (12)

Replacing
�
τ

(n+1)
by Eq. (10) into Eq. (9), the constitutive equation reads

F(n+1) · Ṡ(n+1) · FT (n+1) = 2μsD(n+1)+
λs tr(D(n+1))I

(13)

Equation (14) is obtained by applying the generalized midpoint rule for Ṡ
(n+1)

and replac-
ing S by its definition.

J (n+1)F−1(n+1) · σ (n+1) · F−T (n+1)

− J (n)F−1(n) · σ (n) · F−T (n) = 2μs
tD(n+1)

+ 
tλs tr(D(n+1))I

(14)

The above equation introducing the so-called incremental deformation f(n+1) defined as
f(n+1) · F(n) = F(n+1) can be written as follows

σ (n+1) = − J (n)

J (n+1)
f(n+1) · σ (n) · fT (n+1)

2μs
t

J (n+1)
D(n+1) + λs
t

J (n+1)
tr(D(n+1))I

(15)

which provides the final form of the time-integrated constitutive equation for the solid.
As mentioned in the Introduction, in the present work the solid will be described in the

updated Lagrangian reference frame (as a limiting case of ALE).
In what follows the governing equations will be discretized. Depending on the reference

configuration chosen for solving the discrete governing equations two options exist within
the Updated Lagrangian framework. First one relies on choosing the known configuration
corresponding to the time tn . In this case one obtains the unknowns solving the governing
equations on a “frozen” domain of tn . Thus, the unknown and the reference configurations
are linked via the deformation gradient (reflecting deformation undergone by the continuum
during one time step, i.e. from tn to tn+1). The non-linear iterations in this case involves
re-computation of the deformation gradient F and its functions. Another option, followed in
the present work is to choose the unknown end-of-step (tn+1) configuration as the reference
configuration, iterative approximating it.

Remark 1 Note that for the finite element implementation choosing current configuration as
a reference implies the necessity to iteratively recompute the finite element matrices which
change at each non-linear iteration due to the fact that the end-of-step domain configuration
is not known apriori. Instead, the current-reference configuration is iterative updated until
convergence is achieved, providing the true end-of-step configuration.

Remark 2 A similar idea of a unified constitutive equation has been proposed in [25] consid-
ering hyperelastic constitutive equation in the context of a fully Eulerian FSI method.
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Table 1 Material constants for
the fluid and the solid in a unified
constitutive law

μ(n+1) μs�t Solid

μ
(n+1)
f Fluid

λ(n+1) λs�t Solid

λ f Fluid

σ (n) − J (n)

J (n+1) f
(n+1) · σ (n) · fT (n+1) Solid

−p(n+1)I Fluid

Taking the above into account and re-defining the Lamé constants as μ̄
(n+1)
s = μs�t and

λ̄
(n+1)
s = λs�t , the former equation can be written as

σ (n+1) = σ
(n)
h + λ̄(n+1)

s tr(D(n+1))I + 2μ̄(n+1)
s D(n+1) (16)

A unified constitutive formulation for a Newtonian fluid and a hypoelastic solid
Now we make use of the similarity between the constitutive equation of the hypoelastic

solid (16) and the constitutive equation of a Newtonian fluid (8) so as to write a unique
constitutive equation for both materials following the idea presented in [26]. The difference
between the two constitutive equations is restricted to the fact that the Lame coefficients
of the hypoelastic solid are not constant. Consequently, we can write the following general
expressions for both materials:

σ (n+1) = σ (n) + λ(n+1)εv
(n+1)I + 2μ(n+1)D(n+1) (17)

where the terms are defined as shown in Table 1.

3.3 Governing Equations at Discrete Level

Next, the steps to be performed in order to obtain the discrete version of the problem in
time and space are presented. For the sake of simplicity time integration is illustrated using
the Backward Euler scheme. Nevertheless, in the implementation of the present method a
version of Newmark–Bossak scheme was used [27]. Spatial discretization was done using
mixed linear velocity-pressure finite elements.

Note that in order to simplify the notation, the superindex n+1 will be neglected. Multi-
plying Eq. (3) and the natural boundary condition by a linear finite element test function N
(note that N is the vector of shape functions) and integrating over the domain � the weak
form of the governing equations can be written as∫

�

N · ρ
v − vn


t
|χd� +

∫
�

N · ρc · ∇vd�

−
∫

�

N · (∇ · σ )d� −
∫

�

N · ρbd�

+
∫

�N

N · (σ · n − σ n) d� = 0 (18)

∫
�

N∇ · vd� = 0 (19)

Applying the divergence theorem to the stress terms allows us to write the previous equa-
tion as
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∫
�

N · ρ
v − vn


t
|χd� +

∫
�

N · ρc · ∇vd�

+
∫

�

∇N : σd� −
∫

�

N · ρbd�

−
∫

�N

N · σ nd� = 0

(20)

Introducing the unified constitutive Eq. (17) into momentum conservation Eq. (20) gives
∫

�

N · ρ
v − vn


t
|χd� +

∫
�

N · ρc · ∇vd�

+
∫

�

∇N : σ (n)d� +
∫

�

∇N : λεvId�

+
∫

�

∇N : 2μDd� −
∫

�

N · ρbd�

−
∫

�N

N · σ nd� = 0

(21)

Considering linear finite element linear approximations for the velocity and the pressure
unknowns p (x) = NT (x) p̄ and vi (x) = NT (x) v̄i where p̄ and v̄ are the nodal values, leads
to the following discrete form of the governing equations (note that for the sake of clarity of
presentation an overbar indicating the nodal quantities will be omitted in the text below, i.e.
instead of p̄ and v̄ we will write p and v)

[
ρM

t + γ (ρC + SK ) + μK + λK̃ γ (G + SG)

γ (GT + SD) γSp

] [
v
p

]

=
[
ρ
M

t

vn + f + (1 − γ )F

0

]
(22)

The discrete governing system defined by Eq. (22) holds for both the fluid and the solid,
with γ = 0 in �s and γ = 1 in � f .

The matrices and vectors presented above are defined as

Mab
I J = δI J

∫
�

NaNbd� (23)

Cab
I J =

∫
�

Nac · ∇Nbd� (24)

Kab
I J =

∫
�

δI J
∂Na

∂x j

∂Nb

∂x j
+ ∂Na

∂xI

∂Nb

∂xJ
d� (25)

K̃ ab
I J =

∫
�

∂Na

∂xI

∂Nb

∂xJ
d� (26)

f aI = ρ

∫
�

NabI d� +
∫

�N

NaσI d� (27)

Fa
I =

∫
�

∂Na

∂x j
σ j I d� (28)

Gab
I =

∫
�

∂Na

∂xI
Nbd� (29)
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The discrete system Eq. (22) for the fluid is stabilized using the algebraic sub-grid scale
method [28]. For the sake of simplicity, stabilization terms (SK , SG , SD , Sp) are denoted
here symbolically. Their definition can be consulted in [29] where the stabilization used here
is described in detail.

Remark 3 Note moreover that unifying the formulation prior to discretization has an addi-
tional benefit in comparison with the approaches that obtain a single kinematic variable
posteriorly. By “posterior unification” we mean replacing displacements by velocity at the
level of the discrete system. This latter option requires linearizing the stress tensor expressed
in terms of displacements with respect to velocity (see e.g. [30], p. 931), which is not trivial.
Even when expressing acceleration in terms of velocity in a displacement-based solid, one
must take special care to ensure that the used relation is compatible with the employed time
integration scheme. In case of using a solid formulation expressed in terms of velocity, these
issues do not arise.

3.3.1 Solution Algorithm

Given the solution at tn , vn and pn , at the known configuration X , the procedure to find the
solution v and p at time tn+1 using the proposed unifiedmodel is summarized in Algorithm 1.

Algorithm1: Simulation algorithm of an FSI problem using the proposed unifiedmodel.

for t = tn+1 do
for nonlinear iteration k until convergence do

1. Assemble the FSI system (linearized form of Eq. (22));

2. Solve the monolithic FSI system for the velocity vk (at all nodes) and the pressure pk (at fluid
nodes only);
3. Compute the mesh velocity vm at all the nodes;
if solid or interface node then

vkm = vk

end
else

if no mesh smoothing applied then
vkm = 0

end
else

vkm = xnL − xn

end
end
4. Move solid nodes according to: xk = vkm
t ;
5. Update discrete operators according to new mesh configuration;

end
if smoothing then

1. Solve Eq. (30) for mesh displacement increment dm,L ;
2. Move nodes accordingly: xL = dm,L + x;
3. Update according to new mesh configuration;

end
end

For improving themeshquality after eachmonolithic step, amesh smoothing algorithmhas
been implemented. Among the different options available [31–34], the Laplacian smoothing
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technique has been chosen due to its simplicity and efficiency [35–37]. The reader can find
a comprehensive introduction to mesh-smoothing operators in [38] and detailed review in
[33,39].

In the context of the present model, this approach consist in solving the Laplace equation
for the increment of the nodal position after solving the conservation equations [Eq. (22)].
Introducing the mesh displacement variable dm,L = xL − x (where xL is the unknown
improved position at tn+1 and x is the position obtained by solving Eq. (22)) the Laplacian
smoothing equation can be written as:

Ldm,L = L(x − xnL) (30)

with the following boundary conditions:

dm,L = x − xn in �s, �I (31)

dm,L = 0 on �D (32)

where sub-index L stands for the position obtained after applying the “Laplacian-smoothing”.

Remark 4 Solving the mesh-update equation in a separate step has several benefits. First of
all, including the mesh update equation inside the monolithic system requires introducing
an additional degree of freedom (mesh displacement/velocity), resulting in an increased
monolithic system size and variable heterogeneity. Moreover, in this case the left-hand-side
of themonolithic system ismore difficult to construct, as the linearization in this casemust also
include the derivatives of the governing equations with respect to these additional variables.
Consequently, these linearization terms introduce new coupling blocks in the left-hand-side
matrix. All the issues mentioned-above contribute to an increase of the computational cost
of the solution of monolithic system. Some of these aspects are discussed in detail on p. 218
in [40].

Having said this, inclusion of the mesh-motion inside the monolithic system (sometimes
called the “direct-coupling”) may be beneficial from the point of view of capability to handle
larger domain distortions. However, from the point of view of computational efficiency it
increases the computational cost. Since ourmethod aims at solving flows in flexible channels,
the expected domain deformations are moderate. This justifies our selection of decoupling
the mesh-update step.

Remark 5 In general, the “price to be paid” for the above-explained mesh motion decoupling
is the necessity of estimating the “safe” time step to avoid excessive contraction of the fluid
elements adjacent to the solid during the Lagrangianmotion step. For such cases in the present
work an estimator (that ensures that an interface node does not surpass a distance larger
than the characteristic size of the corresponding adjacent fluid element) was implemented
following the scheme described in [13]. It can be simplified to the following expression:


t ≤ 0.5 hel

vnormint
, where h is the characteristic element size and vnormint is the velocity of

the interface nodes in the direction normal to the interface). We note, however, that in the
numerical examples presented in the following section no time step adjustmentwas performed
as the time steps of the benchmarks were sufficiently small so as not to lead to element
degradation for the faced interface velocities.
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Fig. 3 Cavity with a flexible
bottom wall. Geometry and
boundary conditions

4 Numerical Examples

The present model was implemented by the authors in the ULF Application branch of Kratos
MultiPhysics code, an academic Open Source software [41,42]. For the solution of the linear
system two solvers are used: the algebraic multigrid solver (AMGCL library [43]) and a
biconjugate gradient solver (BiCG).

In the following, three numerical examples are solved. First one is a 2D FSI benchmark
dealing with a flow in a cavity with a flexible bottom. This test is often used for the validation
ofALEmodels.We also use this example for getting an insight of the computational efficiency
of the model. Second example is another commonly used benchmark, a 3D test case dealing
with a pressure propagation in a flexible pipe (its more complex version is solved in [44]).

4.1 Fluid–Structure Interaction in Driven Cavity with Flexible Bottom

To test the method and to get the insight of its computational efficiency, a two-dimensional
lid driven cavity with flexible bottom is simulated. This example (with slight variations in
geometry/boundary conditions) was previously used for testing partitioned and monolithic
FSI by various authors ([19,45–47] among others). In this benchmark an incompressible
fluid enters at the top of a square cavity. The bottom of the cavity is flexible. Due to the
fluid motion, the flexible bottom moves until reaching an approximate arch shape entering a
periodic oscillation mode. The material properties are summarized below:

• Fluid
Density ρ f = 1 kg/m3

Kinematic viscosity ν f = 0.01 m2/s
• Solid

Density ρs = 500 kg/m3

Young’s modulus E = 250 Pa
Poisson’s ratio ν = 0.0

The details of the geometry, dimensions and boundary conditions are presented in Fig. 3.
Three different meshes were used for the domain discretization: Mesh1 (32 × 32 elements
in the fluid domain and 1 × 32 elements in the solid domain), Mesh2 (64 × 64 elements in
the fluid domain and 2 × 64 elements in the solid), Mesh3 (128 × 128 elements in the fluid
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Fig. 4 Cavity with a flexible
bottom wall. Velocity distribution
at different time steps

domain and 2 × 128 elements in the solid). The example was simulated over a time span of
50 s.

The velocity field as well as the domain configurations at 3 time instances obtained using
Mesh1 are shown in Fig. 4. One can see that at 19 s the domain undergoes considerable
deformation: the channel is contracting nearly by 1/3 of its original width.
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(a)

(b)

Fig. 5 Cavity with a flexible bottom wall. Displacement of the solid at (0.5, 0.002)

Vertical displacement at the middle of the flexible bottom was recorded (x = 0.5 m, y =
0.002 m in undeformed configuration). The comparison of the results obtained here using
different meshes specified above are shown in Fig. 5a. One can see that the three results are
nearly identical.

Next, we compare present results with the results found in literature: the partitioned
strongly coupled FSI solution of Valdes [46]. In the reference the example was solved on a
mesh consisting of 32 × 32 quad elements in the fluid domain. Figure 5b shows the com-
parison. The average displacement at the periodic state is estimated in [46] as approximately
0.235m, while present work estimates it as 0.25m, which corresponds to a discrepancy of∼5
%. The amplitude is estimated by both models as approximately 0.032 m. Present results are
also found to agree well with the very recent work [47] (partitioned scheme, solid modeled
using membrane theory).

Computational efficiency Cavity example was used for estimating the computational effi-
ciency of the monolithic ALE solver in [19], where the number of linear solver iterations was
recorded for differentmesh resolutions. In the afore-mentioned reference theALEmonolithic
system included the governing equations for the fluid and the solid as well as the interface
equations. The kinematic variables of the solid and the fluid are the displacement and the
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(a)

(b)

Fig. 6 Cavity with a flexible bottom wall. Linear solver iterations history. Comparison of the present results
with the ones of [19]. All shown results were obtained using algebraic multigrid linear solver

velocity, respectively. For solving the linearized system the authors of [19] employed alge-
braic multigrid (AM) solver. The Krylov space dimension was set to 50, GMRES solvers
were used in conjunction with the ILU(0) pre-conditioner for each field. Convergence toler-
ance was set to ||r||

||r0|| < 10−5 (where r is the residual). These settings were reproduced in the
AM solver used in the present work. Additionally, we tested the model in conjunction with
a simpler solver, namely the stabilized bi-conjugate gradient (BiCG) solver equipped with a
diagonal pre-conditioner.

The non-linear solver stopped as soon as the velocity and the pressure fields in L2 norms
were below 10−8.

Figure 6 shows the evolution of iterations number over time obtained using presentmethod
in conjuction with an AM linear solver. One can see that for both Mesh3 and Mesh3 our
approach converges 2–3 times faster than that of [19]. It is particularly pronounced in case
of Mesh3, where present method takes 200–250 iterations to converge, while the non-unified
ALE model of [19] required around 800 iterations.
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Table 2 Cavity with a flexible
bottom wall

Mesh AMGCL BiCG AM [19]

Mesh1 (C = 0.675) ∼ 100 ∼ 160 N/A

Mesh2 (C = 1.35) ∼ 110 ∼ 260 ∼ 270

Mesh3 (C = 2.7) ∼ 220 ∼ 800 ∼ 800

Linear solver iterations history. Average number of linear solvers itera-
tion per solution step for different meshes: dt = 0.01

The results of the tests performed using BiCG and AM solvers are summarized in Table 2.
One can see that when using the unifiedmodel in conjunction with a BiCG solver, one obtains
similar convergence rates to the ones obtained by a non-unified model with an AM solver.
In fact, the number of linear iterations appear to grow as the Courant number of the problem
grows (considering the mesh sizes used and the maximum velocity of the flow (2 m/s) it is
simple to compute Courant number C for each case analyzed) . Independent of the mesh
size, all the solvers show acceptable convergence rates for small Courant number (C < 1)
considerably growing forC > 2. However, the present unifiedmodel exhibits a much smaller
growth as C increases. It is well-known that for small Courant number the influence of the
mass matrix term (which is a diagonal matrix) becomes stronger (in comparison with the
convective and viscous matrices), which improves the conditioning of the linear system and
facilitates convergence of iterative solvers.

Another interesting observation is that the convergence of the linear solver is clearly
affected by the mesh distortion. It reaches maximum at the moment of maximum channel
contraction, which results in elements with impoverished aspect ratio.

4.2 A Pressure Pulse Propagating in a Flexible Pipe

This benchmark deals with a propagation of a pressure wave in a viscous incompressible fluid
enclosed into a flexible 3D pipe. The pipe geometry is as follows: length of 0.05 m, inner
diameter of 0.01 m and wall thickness of 0.001 m. The geometry and material properties are
taken from [20,21]. The material properties are summarized below:

• Fluid
Density ρ f = 1000 kg/m3

Kinematic viscosity ν f = 0.00003 m2/s
• Solid

Density ρs = 1200 kg/m3

Young’s modulus E = 0.3 MPa
Poisson’s ratio ν = 0.3

The pipe is fixed at both ends. At the inlet an external pressure pext of 1333 Pa is prescribed
during a time span from 0 till 0.003 s. At the outlet zero pressure is prescribed. The overall
simulation time is set to 0.02 s. The model was discretized using ∼300.000 tetrahedral
elements and the time step was set to 0.0001 s. Linear solver convergence tolerance were set
identical to those of the previous test example (Sect. 4.1).

Results
Figure 7 shows the pressure wave propagation and the corresponding deformation of the

solid in the longitudinal cross-section at t = 0.004 and t = 0.1 s. Figure 7 also displays the
corresponding results presented in [20]. Figure 8 displays the pressure distribution and the
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domain configuration at t = 0.02 s. The domain displacement is magnified by a factor of 10
for clarity. The results are also nearly identical to those of [21]). For the sake of brevity the
snapshots of the latter reference are not reproduced here.

Figure 9 shows the comparison of the the present simulation results with the ones of
[20,21]. Axial and radial displacements weremeasured at the inner tubewall at half the length
of the pipe (x = 0.025 m). In order to perform a fair comparison the mesh was constructed
ensuring existence of the nodes exactly at x = 0.025 m.

The linear solver iterations history is shown in Fig. 10. One can see that for the time step
originally employed (dt = 0.0001 s) BiCG solver converged in less than 100 iterations per
step, while AM solver takes around 40 iterations. We note that the Courant number in this
case approximately equals C = 0.1.Number of non-linear solver iterations varied between
2 and 3.

To test the solver at larger Courant number, the time step was increased to 0.002 (cor-
responding to C = 2). In this case BiCG solver iterations increase to 800 iterations per
step in average. However, when using the algebraic multigrid solver the number of iterations
grows much less, reaching 200 iterations per step only. This behavior is very similar to the
convergence behavior observed in the previous example.

5 Summary and Conclusions

In the present paper a unifiedmonolithicmethodwas proposed formodeling flows in channels
with flexible walls with small-to-moderate deformations. Different sub-domains of the cou-
pled problem were treated using different mesh motion strategies according to the setting of
the problem at hand within a unique framework. The unification we proposed had three main
ingredients: (i) a single deforming boundary-conforming mesh for the entire FSI problem ii)
a single kinematic variable in the model already at the continuum level iii) unified implemen-
tation (solid and fluid elements are implemented in a single generalized formulation, with the
corresponding contributions distinguished by variable coefficients). This allowed reducing
the variable heterogeneity in the monolithic system and permitted solving the coupled prob-
lems without defining any interface equation. Moreover, our approach allows for a simple
implementation where a unique code can be used for the fluid and the solid elements with
variable materials coefficients and the global system of equations can be build using standard
finite element assembly procedure treating the fluid and the solid elements without any dis-
tinction. The basic mesh-moving strategy proposed here consisted in moving the solid and
interface nodes following their material velocity, while keeping the rest of the nodes fixed,
defining a “semi-Lagrangian” step. Mesh smoothing was applied in a separate step, posterior
to solving the monolithic system.

Themodelwas comparedwith the results of 2D and 3D test cases from the literature. It was
confirmed that the use of the unified formulation based on a single kinematic variable facil-
itates convergence of the iterative linear solvers and results in a feasible easy-to-implement
monolithic approach.

While the use of the model in conjunction with conventional Bi-conjugate gradient lin-
ear solver provided acceptable convergence rates only for time step sizes corresponding to
Courant number C ≤ 1, the use of the model in conjunction with the algebraic multigrid
solver led to attractive convergence rates even for larger time steps.
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Fig. 7 Pressure propagation in an flexible pipe. Longitudinal cross-section (a–c) Domain deformation mag-
nified by the factor of 10
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Fig. 8 Pressure propagation in an
flexible pipe. 3D view at t = 0.02
s

(a)

(b)

Fig. 9 Axial and radial displacements at the inner wall of the pipe at x = 0.025 m. Comparison with the results
of Eken [21] and Lozovskiy [20]
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(a)

(b)

Fig. 10 Number of linear solver iterations for different time steps. Pressure propagation in a 3D pipe example
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