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Abstract. Sentinel lymph node status is a crucial prognosis factor for
melanomas; nonetheless, the invasive surgery required to obtain it always
puts the patient at risk. In this study, we develop a Deep Learning-based
approach to predict lymph node metastasis from Whole Slide Images of
primary tumours. Albeit very informative, these images come with com-
plexities that hamper their use in machine learning applications, namely
their large size and limited datasets. We propose a pre-training strat-
egy based on self-supervised contrastive learning to extract better image
feature representations and an attention-based Multiple Instance Learn-
ing approach to enhance the model’s performance. With this work, we
quantitatively demonstrate that combining both methods improves vari-
ous classification metrics and qualitatively show that contrastive learning
encourages the network to output higher attention scores to tumour tis-
sue and lower scores to image artifacts.

Keywords: Whole Slide Image · Contrastive learning · Attention-based
Multiple Instance Learning · Early detection.

1 Introduction

Skin cancer incidence has increased in the last decade worldwide [1], and it’s
the fourth leading cause of cancer-related mortality [16]. Melanoma constitutes
the leading cause of death due to skin cancer when considering its incidence
and mortality. Therefore, there is a need for early detection of melanoma: the
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five-year survival rate of melanoma rapidly decreases as its stage advances, from
97% for stage I to only 15-20% for stage IV.

The result of a sentinel lymph node biopsy (SLNB) is a key early prognosis
factor for melanoma patients. An SLNB is a procedure in which the sentinel
lymph node is identified, removed, and examined to determine whether cancer
cells are present. Only patients that have already been diagnosed with cancer
undergo this surgery. A negative SLNB result suggests that cancer has not yet
spread to nearby lymph nodes or other organs. However, 80% of patients do
not benefit from this intervention because they have unaffected lymph nodes
[7]. Thus, it would be desirable to determine the likelihood of a positive SLNB
in advance to reduce the number of unnecessary surgeries and their associated
morbidities.

Artificial intelligence and, especially, Convolutional Neural Networks (CNN)
[8] have proved to be state-of-the-art methods for medical imagining analysis
[15, 18–20]. In recent years, the value of deep learning empowered computer-
assisted diagnosis has been established in dermatological imaging-based decision-
making models [5]. It has been successfully implemented in a variety of use
cases, from finding skin lesion biomarkers [6] to identifying tumour tissue in
Whole Slide Images (WSI) [13]. Unfortunately, the literature on the prediction
of SLNB positivity from WSI of primary cutaneous melanoma tumours is scarce.
To our knowledge, the only work that addresses this problem is Brinker et al.
[3] where they use a Multiple Instance Learning (MIL) framework combining
clinical data, cell features, and the slide feature vectors with a squeeze and
excitation block before classification. Our approach tackles the same problem
by combining self-supervised contrastive learning [11] to improve the quality
of the extracted features and an attention-based MIL strategy to improve the
model’s classification capabilities. Additionally, the attention mechanism allows
the visualization of the relative patch importance for the final model’s prediction.

2 Materials and methods

In this section, we first present the dataset and briefly discuss the usage of MIL
in our work. Afterwards, we describe the details of our proposed model, and,
finally, we present a primer on contrastive learning and how we apply it to WSI
analysis.

2.1 Dataset

Ethics approval was obtained from the ethics committee of Hospital Clinic de
Barcelona before the study was initiated. A total of 195 digitised WSIs were
used, each coming from a different patient. WSIs were obtained from a cutaneous
biopsy of a primary melanoma tumour, while the target variable was obtained
after analyzing an SLNB (107 SN negative and 88 SN positive). Both biopsies
were performed, at most, within a year. Available clinical data included the
patient’s age, tumour thickness, and ulceration, presented in Table 1.
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Table 1. Clinical data. Mean and standard deviation computed for the age and tumour
thickness.

Clinical variable SLN+ SLN- All

Age (years) 54.2 ± 14.6 58.1 ± 14.6 56.3 ± 14.7
Ulceration (yes/no) 43/45 64/43 107/88
Tumour thickness (mm) 1.12 ± 0.69 1.26 ± 0.65 1.2 ± 0.68

SLN status 88 107 195

Patch extraction: The tissue was segmented from the background through
Otsu’s thresholding method [14]. Afterwards, patches of 256x256 pixels were
cropped without any overlap. Then, patches containing a small tissue area were
regarded as non-informative and discarded from the dataset. The average number
of extracted patches per slide was 488.

2.2 Multiple instance learning

Since only labels at the WSI level are available (the positivity of the SLNB),
we used a weakly supervised architecture based on Multiple Instance Learning.
MIL is a family of weakly-supervised learning algorithms in which the learner
receives a set of labeled bags where each contains an unconstrained number of
unlabeled instances. In our case, bags are slides, S, and instances are patches,
X . An assumption needs to be made regarding the relationship between a bag,
its instances, and the class label of the bag. Two main assumptions are tested
in this work:

The standard assumption: each patch x ∈ X has an associated label y ∈ {0, 1}
which is hidden to the learner. If at least one of them has a positive label, the
whole slide is considered to be positive. Formally, let S = {(x1, y1), . . . , (xK , yK)}
be a slide represented as a set of patches with their labels. The label of S is then

c(S) = 1−
K∏
i=1

(1− yk).

Attention-based MIL pooling: In contrast to the previous assumption, at-
tention mechanisms allow for a more flexible and adaptive MIL pooling [10]
through their ability to adjust to a task and data by having trainable parame-
ters. Let H = {h1, ..., hK} be a slide represented with a set of K patch feature
embeddings, being hi = e(xi) where e is any encoder; then a MIL pooling can
be expressed as:

r =

K∑
k=1

akhk; a = {a1, ..., aK};
K∑

k=1

ak = 1 (1)
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Where ak is the attention weight for the k-th patch and r is the aggregated patch
features for the slide. Let The label of S is c(S) = m(r), where m(·) is typically
a multilayer perceptron (MLP).

2.3 Proposed model

Our proposed method expands the work by Ming Y. Lu et al. [13] and consists of
two steps: a feature extractor and a classification module, as shown in Figure 1.
The feature extractor uses the convolutional layers of a ResNet50 model to ex-
tract features from the patches, reducing the dimensionality of the data. This, in
turn, enables the classification module to fit all the slide’s info into a single com-
mercial GPU. During classification, for both training and inference, the model
examines and ranks all patches in the tissue regions of a WSI, assigning an at-
tention score to each patch, which informs its contribution or importance to the
collective slide-level representation for each class. Attention scores are obtained
with a gated attention mechanism [10]. Next, each feature vector is forwarded
through its respective class branch consisting of an MLP with a single neuron
as an output. Finally, both branch outputs are forwarded together through a
softmax layer. The maximum of the two values is taken as the prediction for the
WSI.

Clinical data is added through an additional input head with two linear layers
and non-linearities. The resulting vector and the aggregated patch features are
normalized before concatenation. The combined feature vector is then forwarded
through each class branch.

Fig. 1. Model’s feature extractor a) and classification module b).

Patch importance visualization: The extracted patches’ relative importance
can be computed by transforming the attention scores for the model’s predicted
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class into percentiles and mapping them to their corresponding spatial location
in the WSI. These scores are the output of the gated attention unit shown in
Figure 1. The result is presented in the form of an overlapping heatmap.

2.4 Self-supervised contrastive learning:

Contrastive learning schemes have being applied in previous skin cancer related
studies to learn effective visual representations without the need for data labels
[2,12,17]. In this work, we use Google’s Simple framework for Contrastive Learn-
ing of visual Representations (SimCLR)[4]. This framework is composed of four
major components:

– From a batch of size N, data augmentation is performed twice to generate,
from each patch x, two patches x̃i and x̃j . The result is a set of 2N patches
with correlated views of the same examples. The data augmentations used
are: vertical and horizontal flip with 50% probability each, random cropping
with a resizing of the resulting image to the original size. Color distortions
such as small changes in the image’s hue or conversion to grayscale are ap-
plied with a probability of 80% and 20%, respectively. At the end of the data
augmentation pipeline, all channel values were normalized using ImageNet’s
mean and variance.

– A base encoder f(·), the convolutional layers of a CNN, used to extract
feature vectors hi from each cropped patch hi = f(x̃i).

– A small projection head g(·) in the form of an MLP with one hidden layer
which maps hi to zi the space where contrastive loss is applied. That is,
zi = g(hi) where zi ∈ Rj , and hi ∈ Rd, and j < d.

– A contrastive loss function that encourages the clustering of zi and zj from
the same original image together while separating them from the rest of the
2(N-1) patches.

The loss function is:

Li,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
(2)

where sim(zi, zj) = zTi zj/||zi||||zj ||, measures the similarity between zi and
zj . 1[k ̸=i] is 1 if k ̸= i, and 0 otherwise. τ denotes a temperature parameter. The
total loss is computed across all pairs in a mini batch. A visual example can be
found in Figure 2, for a more detailed explanation, refer to [4].

3 Experimental set-up and results

This section explains the two different sets of WSI features used and the exper-
iments performed with them. Results are shown in Table 2 and Figure 3.
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Fig. 2. Self-supervised contrastive learning framework. Each original patch x, is aug-
mented twice and forwarded through a CNN. The features obtained after the projection
head are compared using the cosine similarity. This loss function reinforces the cluster-
ing of vectors zi and zj while penalizing the similarity with the other 2(N-1) inputs.

3.1 Feature extraction

Two ResNet50 [9] architectures were used to extract features from the cropped
patches. Their pre-training scheme differed: the first CNN was pre-trained on
ImageNet while the second was additionally fine-tuned using the SimCLR frame-
work with a batch size of 64 patches. We denote the first set of features FIm and
the second FCLR. The dimension of each embeddding is hk ∈ R2048.

3.2 Experiments

We trained six models to test the different methods presented in section 2. We
compare the standard, and the attention-based MIL assumptions explained in
2.2 with and without contrastive pre-training of the feature extractor. We also
trained two more attention-based MIL models using clinical data. Additionally,
we analyzed the relative importance given to each patch by the attention model
when using FIm versus FCLR. The results are shown in Table 2 and Figure 3
respectively.

We used a learning rate of 10−5 and L2 regularization (5×10−3) with stochas-
tic gradient descent as an optimizer. The specific values for learning rate, regular-
ization, dropout probabilities, and the number of hidden layers for the clinical
data input head and the classification MLPs were all selected using bayesian
hyperparameter optimization. Cross entropy was used as a loss function when
training the classifier. For testing, we chose the model weights with the best
F1-score found in validation. Ten different random splits were used with a pro-
portion of 80%, 10%, 10% for training, validation, and testing to obtain mean
and variance.

4 Discussion

Table 2 shows that the standard MIL assumption did not yield better than
random results in most computed metrics. The attention-based classifiers trained
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Fig. 3. Patch importance map. Original image (left), patch importance of the classifier
trained on FIm (center), and a second classifier trained on FCLR (right).
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Table 2. Quantitative comparison between the proposed models and results extracted
from [3] (using a different dataset). Mean and standard deviation computed over 10
different splits.

Pre-training F1-score AUC Bal. acc Sensitivity Specificity Precision

Sta. MIL FIm
0.51 0.53 0.50 0.71 0.29 0.51
±0.10 ±0.13 ±0.08 ±0.26 ±0.28 ±0.22

Sta. MIL FCLR
0.47 0.53 0.54 0.49 0.59 0.50
±0.11 ±0.12 ±0.10 ±0.17 ±0.18 ±0.14

Att. MIL FIm
0.52 0.55 0.55 0.60 0.5 0.51
±0.14 ±0.12 ±0.13 ±0.22 ±0.19 ±0.10

Att. MIL FCLR
0.57 0.57 0.60 0.69 0.513 0.53
±0.18 ±0.23 ±0.14 ±0.26 ±0.25 ±0.18

Att. MIL FIm & clinic
0.5 0.56 0.55 0.67 0.65 0.50
±0.14 ±0.17 ±0.13 ±0.21 ±0.27 ±0.06

Att. MIL FCLR & clinic
0.58 0.58 0.58 0.65 0.52 0.56
±0.15 ±0.17 ±0.13 ±0.25 ±0.28 ±0.15

Brinker et al.
Not 0.62 0.56 0.48 0.65 0.44
reported ±0.02 ±0.02 ±0.14 ±0.11 ±0.01

on FCLR Original WSI performed better than their FIm counterpart. Finally,
the addition of metadata also improved the results. Even though most reported
metrics are slightly above random choice, each proposed method improved the
classification capabilities of our model.

FCLR also provided the classification module the capability of distinguishing
between tumour and adjacent normal tissue. It also prevented the model from
focalizing on artifacts of the dataset, such as pen marks drawn on the slides
by the clinical practitioners. Comparing the center and right columns of Figure
3, it is clear that the attention scores on the right column are more focused
on tumoural areas, while the attention scores on the center column tend to
spread the patch importance across the slide or on image artifacts. This finding
shows that pre-training a feature extractor with SimCLR has the potential to be
used for meaningful feature extractions even in the presence of artifacts without
needing manual annotation by trained dermatologists.

5 Conclusions

Our study has shown that CNN-based image classification of primary tumours
to detect lymph node positivity is possible under a MIL framework. Moreover,
the use of FSimCLR over FIm, self-attention, and clinical information allowed the
model to improve all the considered metrics. The classifier trained on FSimCLR

has shown a qualitative improvement in the model’s capability to focus on clin-
ically relevant areas and avoid image artifacts. However, the results are still not
good enough to justify using deep learning systems as a selection method for
SLNBs. Further studies with more WSIs are needed to validate and increase the
efficacy of the presented methods.
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