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Abstract—The inverted pendulum is a mechanical system with
a simple configuration that carries a non-linear, unstable nature
widely used in control theory as a benchmark for research. The
current research presents the modeling of a low-cost commer-
cially available inverted pendulum and the design of a robust
state-feedback controller and a robust observer, following the H∞
principle and using a low-cost commercially available inverted
pendulum system as a reference. Simulated results compare the
performance of the designed controller and observer with a
conventional LQR controller and observer.

Index Terms—Inverted pendulum; Cart-pole ; Control; Lya-
punov; Full-state feedback; Robust controller; Robust observer;
H∞ approach.

I. INTRODUCTION

The inverted pendulum is a widespread case of study for
control design due to its simplicity and complex controllability.
It is an unstable, non-linear and fourth-order mechanical sys-
tem that bears several resemblances with other systems, partic-
ularly those involving balancing such as loaders, overhead and
tower cranes, vehicles like the Segway, and the self-balancing
scooter, and even self-balancing and bipedal robotic systems.
The control design strategies for the inverted pendulum often
focus on three main aspects, the swing-up stage, the vertical
stabilization of the pendulum’s rod, and the tracking control
of the pendulum. This paper is centered exclusively on the
second aspect, where the objective is to maintain a vertical
position for the rod on its vertical equilibrium point, known
as the saddle point, by regulating the cart’s movement.

Multiple control strategies are present in the literature to
explain, demonstrate and evaluate the performance of different
control strategies applied to this particular case of study,
serving as a benchmark for researchers. Some studies im-
plement neural networks for various tasks, like in [1] where
they use this approach to ease the tracking problem for

inverted pendulum systems regarding the repeating tasks of
calculating feedforward friction compensations. Similarly, in
[2] a neural network is trained to prevent the need to solve
the nonlinear dynamics of a bipedal walking system from an
inverted pendulum model.

Other approaches involve fuzzy control systems, as in
[3] where an event-triggered fuzzy controller with parallel
distributed compensation is designed and simulated for an
inverted pendulum system to stabilize the generated closed-
loop nonlinear systems. In [4] the author develops a multi-level
fuzzy controller to stabilize the pendulum with the pendulum
bar’s flexibility considered in the closed-loop control system
and proceeds to simulate the performance of this approach, and
in [5] the author designs a fuzzy controller based on Lyapunov
stability criteria for a class of twin arm inverted pendulum
system, with a black box approach that neglects the need for
an accurate mathematical model.

Conventional, model dependent control approaches are also
present, as in [6] where the author designs and simulates an
LQR controller with a Luenberger observer on a linear inverted
pendulum. In [7] a state observer-based linear quadratic Gaus-
sian controller has been designed and simulated, implementing
a state feedback controller with a Kalman filter for when
unmeasurable states or measurement noise are present. Some
articles compare the performance and effectiveness of multiple
different control design approaches, as in [9] the author
contrasts various types of intelligent and adaptive control
techniques, basing the results on computational time, system
parameters, and robustness. In [8] the author compares the per-
formance between a conventional PID controller and a fuzzy
PID controller in a scenario in which the mathematical model
of the system is unknown, all this through the controller’s
physical implementation on a real linear inverted system. As



mentioned, the inverted pendulum system is a benchmark in
control design. Its study allows the analysis and testing of
multiple control strategies that can be expanded into larger,
more complex systems. This paper aims to design a robust
observer-based controller for a low-cost linear inverted pendu-
lum system and contrast its performance with a conventional
LQR observer-based controller.

II. MATHEMATICAL MODELING

The case of study for these developments consists of a
commercial inverted pendulum-cart system, a Wheeltec Mini-
Balance, whose layout is shown in Figure 1 and which can be
represented by the free body diagram displayed in Figure 2.
The physical parameters consist of the mass of the cart M , the
mass of the cylindrical rod m, the distance between the center
of mass of the rod and the rotation axis l, the moment of inertia
of the rod J and both the vertical and horizontal components
of the reaction force on the cart-rod junction represented by
V and H respectively.

Fig. 1. Linear inverted pendulum.

Fig. 2. Model of the linear inverted pendulum.

The system is actuated by the activation of a 12V DC motor
as represented by Figure 3, where there exists a controlled volt-

age ua, the internal resistance of R, a counter-electromotive
force ue and a current ia, all of which yield both a torque Tm

and an angular velocity ωm that is transmitted from the rotor
shaft to a pulley-throttled band mechanism, with rotational
inertia I , a radius r and a resistive torque of Td provided
by the load. The viscous friction’s effect on the cart’s linear
movement and the rod’s angular movement are considered
resistive forces of magnitude bxẋ and bθ θ̇ to obtain a more
accurate representation of the system.

Fig. 3. Model of the DC motor.

The physical constant parameters that were considered for
this paper are those provided by the manufacturer, displayed
in the Table I.

TABLE I
PHYSICAL CONSTANT PARAMETERS OF THE LINEAR PENDULUM MODEL.

Parameter Value
m 0.0923 kg
M 0.2275 kg
l 0.1950m
J 0.0029 kg m2

R 4.29Ω
r 0.018m

Km 0.183 [Dimensionless]
Ke 0.208 [Dimensionless]
bx 0Ns/m
bθ 0Ns/m
I 7.083×10−6 kg m2

Analyzing the momentum balance around the center of mass
of the rod, the first equation obtained

Jθ̈ = V l sin θ −Hl cos θ − bθ θ̇, (1)

and by applying Newton’s Second Law on the cart it is
obtained, for the vertical axis

V −mg = ma = mẍ = m
d2x

dt2
= m

d2 (l cos θ)

dt2
, (2)

and for the horizontal axis,

H = m
d2 (x+ l sin θ)

dt2
. (3)

Then, applying Newton’s Second Law on the cart yields

F −H = M
dx2

dt2
− bxẋ. (4)

From Equations (1), (2), (3) and (4), the nonlinear dynamic
model of the pendulum is obtained as (5a) and (5b):



(m+M) ẍ+mlθ̈ cos θ −mlθ̇2 sin θ + bxẋ− F = 0, (5a)

(
J +ml2

)
θ̈ + bθ θ̇ +mlẍ cos θ −mgl sin θ = 0. (5b)

Considering the state variables [x1, x2, x3, x4] = [x, ẋ, θ, θ̇],
the state-space model is represented by:


ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

sin(x3)α1+F J+cos(x3)α2+α3

α4

x4

− cos(x3)α5−2 sin(x3)α6+α7

2α4

 (6)

where:

α1 =l3 m2 x4
2 + J lmx4

2,

α2 =bθ l mx4 − g l2 m2 sin (x3) ,

α3 =− J bx x2 + F l2 m− bx l
2 mx2,

α4 =l2 m2 sin (x3)
2
+M l2 m+ J m+ J M,

α5 =2F lm− 2 bx l mx2 + 2 l2 m2 x4
2 sin (x3) ,

α6 =g lm2 +M g lm,

α7 =2M bθ x4 + 2 bθ mx4.

The linearization is performed by obtaining the Jacobian
matrixes of (6), obtaining the matrixes shown on (7) and (8),
where the Jacobian matrix A is defined as:

JA =


0 1 0 0
0 c d e
0 0 0 1
0 f g h

 , (7)

where:

c = −
bx

(
ml2 + J

)
σ3

,

d = − sin (x3) β2 − cos (x3) β1 + β5

β3
− β10

β3
2 ,

e =
bθ l m cos (x3) + l m sin (x3) β6

β3
,

f =
bx l m cos (x3)(

1− cos (x3)
2
)
l2 m2 + β4 + J m+ J M

,

g =
l mβ11

β3
+

β12

β3
2 ,

h = −x4 sin (2x3) l
2 m2 + bθ m+M bθ
β3

with:

β1 = l3 m2 x4
2 + J lmx4

2,

β2 = bθ l mx4 − g l2 m2 sin (x3) ,

β3 = l2 m2 sin (x3)
2
+ σ4 + J m+ J M,

β4 = M l2 m,

β5 = g l2 m2 cos (x3)
2
,

β6 = 2mx4 l
2 + 2 J x4,

β7 = sin (x3) β1 + β8,

β8 = cos (x3) β2 + β17

β9 = F sin (x3) + gm cos (x3) + β13,

β10 = 2 l2 m2 cos (x3) sin (x3) β7,

β11 = −l m
(
2 cos (x3)

2 − 1
)
x4

2 + β9,

β12 = l2 m2 cos (x3) sin (x3) β15,

β13 = −bx x2 sin (x3) +M g cos (x3) ,

β14 = l m sin (x3) x4
2 + F − bx x2,

β15 = β16 − 2 g lm sin (x3) (M +m),

β16 = 2M bθ x4 + 2 bθ mx4 + 2 l m cos (x3) β14,

β17 = F J − J bx x2 + F l2 m− bx l
2 mx2,

and then, for the B Jacobian matrix:

JB =


0

ml2+J
l2 m2 sin(x3)

2+M l2 m+J m+J M

0

− lm cos(x3)

l2 m2 sin(x3)
2+M l2 m+J m+J M

 , (8)

The equilibrium point is considered to be when the cart is
at the middle of the rail when x = 0 and when the rod is at the
vertical position when θ = 0. So x0 =

[
x0
1 x0

2 x0
3 x0

4

]
=[

0 0 0 0
]

and F0 = 0. By substitution into (7) and
(8) of the constant parameters presented in Table I and the
equilibrium point states, the linearized matrices A and B of
the dynamic system ẋ = Ax+Bu, as well as the output vector
y = Cx are presented as:

A =


0 1 0 0
0 0 −1.8395 0
0 0 0 1
0 0 32.6837 0

 , B =


0

3.7139
0

−10.4286

 , (9a)

C =

[
1 0 0 0
0 0 1 0

]
, (9b)

Since states x2 and x4 can not be measured directly, an
observer must be designed to implement a controller.

A. Linear controller and observer design for continuous time

Let us consider a dynamic system in the generic form given
by:

ẋ = Ax+Bu, (10)
y = Cx (11)



It is assumed that a number l of sensors provide measurements
for the states, so the C matrix is of dimensions l×n. A state-
feedback controller with gain K is required to stabilize the
system in the vicinity of an equilibrium point by a controlled
input of u = −Kx, so the controlled system can be written
in the generic form of ẋ = (A−BK)x. Using Lyapunov’s
stability principle, a Lyapunov function V (x) = xTPx is
proposed. When performing the derivative of the Lyapunov
function V (ẋ) = xTPẋ + ẋTPx, it can be proven that the
linear controller is computed by solving the resulting linear
matrix inequality (LMI) (12a) and (12b) where Q is a n× n
symmetric matrix and R a m× n matrix, where the gains of
the controller K are given by K = RQ−1.

Q > 0, (12a)

AQT −BR+QAT −RTBT < 0. (12b)

Due to the fact that x2 and x4 are not measured, these
should be estimated by mean of Luenberger observer of the
form:

˙̂x = Ax̂+Bu+ L(y − ŷ), (13)
ŷ = Cx̂, (14)

where x̂ is the estimated state vector, y the estimated output
and L the observer gain to be computed. The estimation error
is computed as e = x− x̂, whose derivative is ė = (A−LC)e;
then by considering a Lyapunov function V (x) = eTPe the
gain matrix can be computed fulfilling asymptotic conver-
gence. The observer gain is computed by solving the LMIs:

P > 0, (15a)

PA−WC +ATP − CTWT < 0. (15b)

where P is a ×n symmetric matrix and W a n× l matrix.
The gains of the state observer L are given by = P−1W .

B. Robust controller and observer design for continuous time

Under disturbances and measurement noise, the system can
be expressed as:

ẋ = Ax+Bu+Rd, (16a)
y = Cx+Gd, (16b)

where R and G are matrices of adequate dimensions, d is
the unknown perturbation and noise vector.

To ensure the controller will reduce the effects of perturba-
tions and maintain stability, a robust controller and observer
are designed following the H∞ approach described in [12]
and [13], which considers the following performance criteria:

V̇ (x) + xTx− γ2dT d < 0 (17)

for the controller, where V (x) = xTPx, with P = PT > 0 is
a quadratic Lyapunov function and γ is the attenuation level
to be computed. Then, by considering the above-mentioned
criteria the Following LMI is obtained:

Q > 0, (18a)

AQ−BW −WTBT +QTAT ∗ ∗
RT −γ2I ∗
QT 0 −I

 < 0,

(18b)
where Q is a n× n matrix and W is a m× n matrix, and R
is a n × 1 matrix that defines how every state is affected by
a disturbance on the input device. γ is known as a damping
factor such that 0 < γ < 1 for the disturbances either in the
measuring devices caused by uncertainties of the model. Every
(∗) corresponds to a corresponding transposed term. The gain
K = WQ−1 of the robust controller is obtained by solving
LMIs (18a) and (18b)

Since the controller K gain given by (18a) and (18b) can
reach high values that may not provide a proper control even
if the poles of the controlled system fall under the negative
semi-plane of the complex axis. A pole placement based on
[10] is performed by using LMI (19) instead of (18b) to force
the poles of the controlled system inside an LMI region shaped
as a circle with radium rσ and displaced from the imaginary
axis a distance dσ as shown on Figure 4.

Fig. 4. Circle LMI region.


E ∗ ∗ ∗

QAT +WTBT + dQ −rσQ ∗ ∗
RT 0 −I ∗

CQ+GW 0 G −γ2I

 < 0 (19)

with E = AQ+QTA+BW +WTBT + 2dσQ.
For the observer, the estimation error is defined by e =

x − x̂. Considering (16) and (13), the dynamic estimation
error is ė = (A − LC)e + (R − LG)d. Here the problem is
reduced to find a Matrix L such the estimation error converges
assyntotically to zero. To achieve this goal the following robust
criteria is considered:

V̇ (e) + eT e− γ2dT d < 0 (20)

where V (e) = eTPe, with P = PT > 0 is a quadratic
Lyapunov function. The solution of this criteria relies to the
following LMI condition:

P > 0, (21a)



[
K PR−QG+ CTG
∗ GTG− γ2I

]
< 0, (21b)

where K = PA − QC + ATP − CTQT + CTC. The LMI
(21b) can be rewritten through the Schur Complement as:PA−QC +ATP − CTQT ∗ ∗

RTP −GTQT −γ2I ∗
C G −I

 < 0. (22)

C. Force to voltage conversion

In order to analyze if the resulting magnitudes of the
system’s force output can be achieved by the commercial
pendulum used in this paper, the model of the motor is used to
perform the force to voltage conversion, in Equations (23a)-
(23c), where Ke is the electromotive force coefficient and Km

is the electromagnetic torque factor.

ua = iaR+ ue, (23a)

ue = Keωm, (23b)

Tm = Kmia. (23c)

On (5a) and (5b) it is possible to express the force F that acts
over the cart in terms of the voltage ua which feeds the DC
motor. It is known that the torque Tm given by a DC motor
can be modelled as (24):

Tm = −KmKe

R
ωm +

Km

R
ua, (24)

while the resistance torque provided by the load at the rotor
shaft is modeled as (25):

Td = 2Fr. (25)

For a DC motor that moves the pulley and the throttled band,
the relation between Tm and Td is given by (26):

Tm − Td = I
dωm

dt
= Iω̇m, (26)

where on (26)

ẋ = ωmr → ωm =
ẋ

r
, (27a)

ẍ = ω̇mr → ω̇m =
ẍ

r
, (27b)

so by substituting (24), (25), (27a) and (27b) into (26), it
can be rewritten as (28)

−KmKe

Rr
ẋ+

Km

R
ua − 2Fr = I

ẍ

r
. (28)

So from (28) ua can be derived as (29)

ua =
2Rr

Km
F +

RI

Kmr
ẍ+

Ke

r
ẋ (29)

III. RESULTS

A. Linear controller and observers in continuous time

In the simulations, the R and G matrixes are each a matrix
of ones of adequate dimensions. Solving LMIs (12a) and (12b)
using Yalmip and SeDuMi on MATLAB the gains of the linear
controller KLyapunov are computed as:

KLyapunov =
[
−0.3564 −0.5897 −7.000 −0.8122

]
.

(30)
Solving LMI (15a) and (15b), the gains of the linear state
observer LLyapunov are computed as:

LLyapunov =


0.8749 −0.6897
1.2916 −2.0693
0.6897 0.8750
0.2299 33.9753

 . (31)

For comparison, a LQR controller similar to the one designed
in [11] was designed, the proposed Qc and Rc matrixes are
shown on (32)

Qc =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , (32)

Rc = 100.

Gains of the KLQR controller are:

KLQR =
[
−9.9999 −6.8802 −26.3294 −4.5398

]
.
(33)

According to the LMIs (18a)-(18b) and (21a)-(21b), the com-
puted values for the robust controller and observer, KH∞ and
LH∞ are:

KH∞ = 1×106
[
−0.6740 −0.5908 −1.9513 −0.2123

]
.

(34a)

LH∞ =


8.8757 −1.3966
8.1681 −4.5419
4.4653 7.0066

−60.5813 70.7792

 . (34b)

B. Simulation results

For continuous time case, the simulations were conducted
using the following gains on the controller and observer:

1) KLyapunov, LLyapunov
2) KLQR, LLyapunov
3) KLQR, LH∞

4) KH∞ , LH∞

For every scenario, the initial state of x3 is 10 deg and the state
of x1 is 0m, at the middle of the rail. Response in continuous
time is presented on Figures 5 and 6. The force F applied to
the cart is graphed as shown on Figure 7.

The voltage V demanded by the motor is derived as stated
by (29) and its evolution through time is shown on Figure 8.

The LQR controller with the LH∞ observer is the most
demanding voltage wise and reaches stability faster than the
other controllers.
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Fig. 5. Displacement of the cart (x1).
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The maximum voltage allowed by the motor is 12 Volts,
and the simulation results in figure 8 indicate that all the
proposed observer-based controllers can operate within the
safe threshold allowed by the motor. However, in the real case,
the total length of the rail is 0.44m, which given the initial
condition of the cart being in the center of the rail, results in
a maximum allowed displacement of 0.22m in any direction,
therefore none of the controllers that use a standard full order
observer can operate under those conditions, as seen in figure
5.
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IV. CONCLUSION

This paper exposed the modelling of the non-linear system
of a linear inverted pendulum. A linear observer and controller
were designed to stabilize the system when the rod is at a ver-
tical position. Both a controller designed through Lyapunov’s
stability principle and a LQR controller were implemented
and compared in a simulation of the system when the initial
state of the angular position of the rod was displaced from
stability position. It was observed that the LQR controller
provided a faster stabilization of the system, and also it took
into account that the input voltage to the DC motor would
not be over 12V, which is the nominal voltage of the system
that was used for this analysis. Further work should focus on
the implementation of the designed controller into a physical
system and compare the results presented in this paper with
real measurements provided from experimentation, as well as
considering into account the effect of viscous frictions for the
linear and angular movements.
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