
UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC) - BarcelonaTech
FACULTAT D’INFORMÀTICA DE BARCELONA (FIB)

Integration of a parallel efficiency
monitoring tool into an HPC production

system
Computer Engineering speciality - Grau en Enginyeria Informàtica

Bachelor thesis

Author:
Helena Vela Beltran

Co-directors:
David Vicente Dorca (BSC), Marta García Gasulla (BSC)

Ponent:
Víctor López Herrero (BSC - AC department)

GEP Tutor:
Paola Lorenza Pinto

January 24, 2023

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Table of Contents

1 Context and scope 9
1.1 Introduction . 9
1.2 Terms and concepts . 9

1.2.1 High-Performance Computing (HPC) . 9
1.2.2 Programming model . 10
1.2.3 Message Passing Interface (MPI) . 10
1.2.4 Performance Application Programming Interface (PAPI) 11
1.2.5 TALP . 11
1.2.6 UserPortal . 11

1.3 Motivation . 13
1.3.1 Problem to be resolved . 13
1.3.2 Justification . 13

2 Project planning 13
2.1 Scope . 14

2.1.1 Requirements . 14
2.1.2 Objectives . 14

2.2 Stakeholders . 16
2.2.1 Marenostrum Users . 16
2.2.2 Operations department . 16
2.2.3 Scientific community . 16
2.2.4 University students . 16

2.3 Methodology and rigour . 16
2.3.1 Kanban . 16
2.3.2 Git . 17
2.3.3 Test environment . 18
2.3.4 CI/CD . 18
2.3.5 Group meetings . 18

2.4 Tasks and planning . 19
2.4.1 Project definition . 19
2.4.2 Project planning . 19
2.4.3 Project development . 19
2.4.4 Project documentation . 21
2.4.5 Estimates and the Gantt . 23

2.5 Resources . 24
2.5.1 Human resources . 24
2.5.2 Hardware resources . 24
2.5.3 Software resources . 24
2.5.4 Material resources . 25

2.6 Budget - Identification of costs . 25
2.6.1 Human costs . 26
2.6.2 Material costs . 27
2.6.3 Other costs . 29

1

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

2.6.4 Total cost . 30
2.7 Risk management: alternative plans and obstacles . 30
2.8 Management control . 31
2.9 Sustainability . 32

2.9.1 Self-assessment . 32
2.9.2 Economical dimension . 32
2.9.3 Environmental dimension . 33
2.9.4 Social dimension . 33

3 UserPortal’s integration 34
3.1 Actual system design . 34
3.2 Design decisions . 35
3.3 Requirements . 36
3.4 Backend development . 36

3.4.1 Wrapper . 36
3.4.2 Gathering Script . 39
3.4.3 Parsing-Injecting Script . 39
3.4.4 Module and cron . 40

3.5 Database Adaptation . 40
3.6 Web development . 41
3.7 CI/CD . 42
3.8 Testing . 43

4 TALP - PAPI extension 44
4.1 Understanding how TALP works . 44
4.2 Autoconf . 46
4.3 Implementation . 46
4.4 Testing . 48

4.4.1 Data correctness and validation . 49
4.5 Overhead evaluation . 49

5 Making the new information meaningful 52

6 Future development 52

7 Conclusions 53

A Glossary 54

B GANTT diagram 56

C TALP execution diagram 57

D TALP execution diagram with PAPI 58

2

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

List of Figures

1 Visual reference of point-to-point inter-processor communication. Source: https://hpc.nmsu.edu/discovery/mpi/introduction/ 11
2 UserPortal main page, where all the user’s jobs are listed. Users can also search and filter

them. Source: Own . 12
3 UserPortal’s job detail page. Even though the screenshot only reaches to CPU usage graph,

various metrics are displayed, including memory usage, and power monitoring graphs.
Source: Own . 12

4 Kanboard page for my user. Source: Own . 17
5 Usual git branching workflow. Source: https://www.nobledesktop.com/learn/git/git-branches 18
6 Diagram summing up each machine service execution. Source: Own 35
7 Location and moving pipeline of TALP-generated files. Source: own 38
8 Jobs and PopMetrics table in the UserPortal database. Source: DataGrip-generated . . . 41
9 Screenshot of a job webpage where it shows the TALP report with the POPMetrics. Source:

Own . 42
10 Screenshot of a job webpage where it shows the TALP report with the POP Metrics and

more than one monitoring region. Source: own . 42
11 Visual representation of connections made by GitLab runners. Source: own 43
12 DLB-TALP own data structures. Source: own . 44
13 TALP workflow simplified chart. Source: own . 45
14 TALP workflow simplified chart with PAPI integration. Source: own 48
15 LINPACK performance in GFLOPs in different scenarios and number of nodes used in the

execution. Source: own . 50
16 PILS execution time in seconds in different scenarios and number of nodes used in the

execution. Source: own . 51
17 HPCG performance in GFLOPs in seconds in different scenarios and number of nodes used

in the execution. Source: own . 51
18 Gantt diagram for my project. Source: own . 56
19 TALP execution diagram I have made for myself to have a better understanding of the

application. Source: own . 57
20 TALP execution diagram from before with the altered functions marked with purple Source:

own . 58

List of Tables

1 Tasks hour estimation and resources needed. Source: own 23
2 Estimated cost per role, price per hour is calculated taking into account that the BSC

agreement stipulates 1792 working hours per year. Source: Own calculations and BSC
agreement . 26

3 Table summarizing task cost estimation. Source: Own calculations 27
4 Table with amortization costs. *MareNostrum4’s amortization has been divided by 3456,

the total number of nodes, because I am only using a node or even less during the develop-
ment stages. Source: Own calculations . 28

5 Total cost of the project. Source: Own calculations . 30

3

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

6 Summary of the key concepts in the design . 36

4

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Abstract

This thesis presents the design, implementation, and evaluation of an extension of a library called
TALP for tracing useful computation and performance metrics in MPI-based applications (Message
Passing Interface). The extension also integrates the tool with a web portal called UserPortal. They
are both developed at the Barcelona Supercomputing Center (BSC). The library captures information
about communication patterns and computation performed by MPI applications, and makes this in-
formation available to users. The extension developed in this project adds the functionality of reading
PAPI (Performance Application Programming Interface) counters, allowing users to know the instruc-
tions per cycle of their application and identify bottlenecks in their code.

UserPortal provides an easy-to-use interface for visualizing and analyzing the captured information
and allows users to easily monitor the status of their jobs, such as memory usage, CPU usage, and their
evolution over time. The integration of the library with the BSC system involves several stages of design
and development, including a software wrapper, a modulefile, scripts for retrieving and processing data,
and web development to display the data on the UserPortal.

However, users must be educated in performance analysis in order to effectively make a good reading
and interpretation of the reported metrics and optimize their codes. A public documentation has been
developed as well as a reference on how to use these tools on BSC machines, along with links to
educational resources on related topics. Overall, this work provides a valuable tool for developers and
researchers working with MPI-based applications, making performance optimization more approachable
and efficient.

5

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Resumen

Esta tesis presenta el diseño, implementación y evaluación de una extensión de una libreria llamada
TALP para rastrear cálculos útiles y métricas de rendimiento en aplicaciones basadas en MPI ((Message
Programming Interface por sus siglas en inglés en inglés). La extensión también integra la herramienta
con un portal web llamado UserPortal. Ambos son desarrollados en el Barcelona Supercomputing
Center (BSC). La librería captura información sobre patrones de comunicación y cálculo realizados por
aplicaciones MPI y hace esta información disponible para los usuarios. La extensión desarrollada en este
proyecto agrega la funcionalidad de leer los contadores PAPI (Performance Application Programming
Interface), permitiendo a los usuarios conocer las instrucciones por ciclo de su aplicación e identificar
cuellos de botella en su código.

UserPortal ofrece una interfaz fácil de usar para visualizar y analizar la información capturada y
permite a los usuarios monitorizar fácilmente el estado de sus trabajos, como el uso de la memoria, el
uso de CPU y su evolución en el tiempo. La integración de la librería con el sistema del BSC implica
varias etapas de diseño y desarrollo, incluyendo un wrapper de software, un modulefile, scripts para
recuperar y procesar datos y desarrollo web para mostrar los datos en UserPortal.

Aún así, los usuarios deben ser educados en análisis de rendimiento para poder hacer una buena
lectura e interpretación de las métricas. Una documentación pública se ha desarrollado también para
tener una referencia sobre como utilizar estas herramientas en las máquinas del BSC, junto con links
a páginas que ofrecen recursos educacionales en temas relacionados. Finalmente, este proyecto provee
una herramienta valiosa para desarrolladores e investigadores trabajando en aplicaciones basadas en
MPI, haciendo la optimización de rendimiento más accesible y eficiente.

6

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Resum

Aquesta tesi presenta el disseny, la implementació i l’avaluació d’una extensió d’una llibreria ano-
menada TALP per traçar el càlcul útil i les mètriques de rendiment en aplicacions basades en MPI
(Message Programming Interface por les seves sigles en anglès). L’extensió també integra l’eina amb
un portal web anomenat UserPortal. Tots dos són desenvolupats al Barcelona Supercomputing Center
(BSC). La llibreria captura informació sobre patrons de comunicació i càlcul realitzat per aplicacions
MPI i posa aquesta informació a disposició dels usuaris. L’extensió desenvolupada en aquest projecte
afegeix la funcionalitat de llegir comptadors PAPI (Performance Application Programming Interface),
permetent als usuaris saber les instruccions per cicle de la seva aplicació i identificar colls d’ampolla
en el seu codi.

UserPortal proporciona una interfície fàcil d’utilitzar per visualitzar i analitzar la informació captu-
rada i permet als usuaris monitoritzar fàcilment l’estat dels seus treballs, com ara l’ús de la memòria,
l’ús de la CPU i la seva evolució en el temps. La integració de la llibreria amb el sistema del BSC impli-
ca diverses etapes de disseny i desenvolupament, incloent un envolupador de programari, un modulefile,
scripts per recuperar i processar dades i desenvolupament web per mostrar les dades en el UserPortal.

No obstant, els usuaris han de ser educats en l’anàlisi de rendiment per tal de fer una lectura
i interpretació efectiva de les mètriques reportades i ser capaços d’optimitzar els seus codis. S’ha
desenvolupat una documentació pública així com una referència sobre com utilitzar aquestes eines en
les màquines BSC, juntament amb enllaços a recursos educatius sobre temes relacionats. En general,
aquest treball proporciona una eina valuosa per als desenvolupadors i investigadors que treballen amb
aplicacions basades en MPI, fent que l’optimització del rendiment sigui més accessible i eficient.

7

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Acknowledgement

I cannot express enough gratitude to my co-directors and ponent for their unwavering support and guid-
ance throughout the conception, design, and implementation of this project. Their expertise is invaluable
and I am deeply grateful for the opportunity to work with such talented people.

I am also deeply grateful to the User Support Team for their constant support and motivation since
the beginning of my journey, long before this project even existed. I am truly blessed to have such a
supportive and loving team, who I consider to be my own teeny tiny family. My heartfelt thanks also go
out to my friends within the BePPP group, who have brought me so much joy and support throughout
this years.

I am filled with gratitude for all the amazing people I have met during my undergraduate studies and
the impact they have had on my life. None of this would have been possible without the friendships and
camaraderie I have formed inside and outside the classroom, and the Omega building on campus will
always hold a special place in my heart.

Special thanks to my beloved significant other for all the amazing dinners he made to me when I was
drowning in work.

8

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

1. Context and scope

1.1. Introduction

This project has been born in my current workplace, as a collaboration of me, a member of the User
Support at the Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS)
with the Best Practices for Performance and Programmability group (BePPP), in the Computer Sciences
department inside BSC-CNS as well.

My group, the User Support Team inside the Operations department, led by David Vicente, focuses on
helping and managing the users of the BSC clusters with their issues and guaranteeing an appropriate
and efficient usage of the resources. Our main tasks include solving the request of researchers using
the BSC HPC-Resources, installation and debugging of applications, enabling and porting codes to the
MareNostrum architecture, optimization and scalability studies, parallelization assistance, benchmarking
of applications, manage accounting information and users accounts.

The BePPP group, led by Marta García, quoting their team webpage 1: ”[...] Aims to be the bridge
between scientific domain researchers and computer scientists researchers. Promoting best practices for
programmers to productively (re)structure their codes in ways that can result in high efficiency and
portability”.

They achieve that by promoting the use of BSC tools and methodologies, providing hints on how ap-
plications performance can be improved through analysis or proof-of-concept studies, also on improving
programming models to address real applications issues/needs, and much more.

The project is to integrate the library developed and maintained by BePPP group, TALP, into the User
Support Team web page UserPortal. Also, extending its functionalities to obtain hardware counter metrics
as well.

1.2. Terms and concepts

In this section, I will briefly describe and explain some of the terms and concepts necessary to understand
the context of this project. Also, a Glossary is added in the Appendix (A) for short definitions.

1.2.1. High-Performance Computing (HPC)

High-Performance Computing can be defined as ”the ability to process data and perform complex calcu-
lations at high speeds” [5]. Supercomputers are developed to perform this task. Supercomputers work
as a large number of computers executing parallel code, the most powerful ones reaching a quintillion of

1https://www.bsc.es/discover-bsc/organisation/research-departments/best-practices-performance-and-programmability

9

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

calculations per second [3]. In the context of this project, we will focus on MareNostrum4 2, the most
important supercomputer at the BSC. Even though the project can and it will be adapted to other BSC
machines easily, the first stages of the development and tests will be performed in that cluster.

Normally, we refer to a program execution as a ”job”. As you do not execute the program directly, but
send it to a batch queue where the queue manager puts it in execution as soon as the resources are
available.

1.2.2. Programming model

A parallel programming model is a layer that isolates the programmer from the parallel architecture, the
same way the operating system abstracts the user from the hardware architecture.

A parallel programming model allows the developer to exploit parallelism within its code abstracting it
from the hardware features.

There are an extensive number of parallel programming models, but we can divide them into two main
categories depending on the hardware platform they target: Distributed memory and shared memory
parallelism.

The most widely used are respectively: MPI and OpenMP, we focus on MPI because is the one that
TALP traces to detect load imbalances and excessive communication times.

In the ecosystem of parallel software in which we move, a programming model is often called using an
API to expose hardware features and exploit this to achieve high performance. Many parallel architec-
tures exist, so it would be impractical to have a programming language for each of them. Examples of
programming models in the BSC are DLB 3 and COMPSs 4.

1.2.3. Message Passing Interface (MPI)

MPI is a programming model based on a standard API definition. [7]. It has several implementations,
some open-source as OpenMPI [9] and MPICH [8], or even proprietary ones like IntelMPI. It is used in
almost all the used programming languages and applications as well, and it is the main standard used in
HPC.

In general terms, the user explicits the communication between a set of processes from an API that imple-
ments an MPI library. This includes sbarrier operations (synchronizations, ..), point-to-point operations
(synchronous and asynchronous), collective operations (gather, reduce, etc.). ll of this maintaining a
coherent state among processes.

2https://www.bsc.es/es/marenostrum/marenostrum
3https://www.bsc.es/research-and-development/software-and-apps/software-list/dlb-library-dynamic-load-balancing
4https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

10

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Figure 1
Visual reference of point-to-point inter-processor communication.
Source: https://hpc.nmsu.edu/discovery/mpi/introduction/

1.2.4. Performance Application Programming Interface (PAPI)

PAPI 5 is a programming interface to see processor events. Events are occurrences of specific signals
related to a processor’s function. Hardware performance counters exist as a small set of registers that
count events, such as cache misses and floating point operations while the program executes on the
processor. These events are dependent on the processor architecture.

Quoting their documentation [4]: ”PAPI provides [...] a consistent interface and methodology for the use
of low-level performance counter hardware found across the entire computing system (i.e. CPUs, GPUs,
on/off-chip memory, interconnects, I/O system, energy/power, etc.). PAPI enables users to see, in near
real time, the relations between software performance and hardware events across the entire computer
system.” Both hardware and software performance events are monitored through one interface.

1.2.5. TALP

TALP, the tool we will integrate and expand, is a part of the DLB project, developed by the BePPP
group. TALP is a ”lightweight, portable, extensible, and scalable tool for online parallel performance
measurement”[6]. It reports metrics to better understand the parallel efficiency of an application, by
analyzing an MPI region and seeing if the execution time is meaningful or if too much time is lost in
MPI communication. It can be linked against the program or use an API to define different regions and
analyze them at runtime. It generates a report with the collected metrics, it can also collect metrics per
node, per process, or all at once. It is lightweight as it barely introduces overhead to the applications’
execution time.

1.2.6. UserPortal

UserPortal 6is a Web Portal developed and maintained by the User Support Team since 2018, in which
users with access can take easily a look at their jobs and their metrics in a unified way, regardless of

5https://icl.utk.edu/papi/
6https://userportal.bsc.es/

11

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

whether they have various accounts or different allocations in more than one cluster. Also, the nodes’
state and the clusters’ queues are shown.

Figure 2
UserPortal main page, where all the user’s jobs are listed. Users can also search and filter them.
Source: Own

Figure 3
UserPortal’s job detail page. Even though the screenshot only reaches to CPU usage graph, various metrics are
displayed, including memory usage, and power monitoring graphs.
Source: Own

12

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

1.3. Motivation

1.3.1. Problem to be resolved

HPC is expensive. The cost of each machine reaches up to millions of euros[1], usually coming from public
funding (at least in BSC’s case[2]), having to cover not only the hardware, but the resources needed and
the operations team in charge to maintain it. Poorly programmed parallel code, which is more frequent
than you would expect in scientific applications since parallel programming requires technical knowledge
and training, leads to loss of computing power and a waste of resources, usually cores in an idle state,
consuming electricity and blocking other users from executing their programs in them. Performance
analysis tools are developed in order to help programmers identify issues with their codes. Still, most of
the time these are not friendly at all for people without a computing or hardware background because of
the metrics they represent and the usability of these softwares.

1.3.2. Justification

The aim of this project is to make performance analysis with TALP more easy and reachable for researchers
without a programming or computing background. Also, to expand it to obtain other meaningful metrics
from hardware counters. This way, better usage of the cluster and a less waste of resources (and in
consequence, money) will be gradually obtained.

Since the two parts (integration and expansion) of this project have been born and it will be developed
entirely in the BSC environment, considering the particular architectural traits of its infrastructure, and
it will not include third parties, no other previous similar problems or solutions exist in the BSC scope.

User Portal was developed in 2018 and its constant expansion to make BSC’s researchers’ life easier
embraced this collaboration with the Computer Sciences department, its development has been always a
User Support Teams task. Some functionalities of it have been improved over time (like the accuracy of
the CPU load, to mention one), but an integration of this kind has never been performed. It is also the
first time working with hardware counters inside TALP since these might introduce extra overhead to the
execution.

2. Project planning

The project should take approximately 540 hours. It starts in September 2022 and should end by January
of 2023. By week, part of my work hours and extra off-work hours are dedicated to this, on average, 30
hours per week are solely committed to the project.

The task description and the planning of these will be covered in this section. In general terms, we can
divide the tasks into general sections. We will have a first ”Project conception” task, to see if this project

13

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

is feasible. Then, comes the ”Project planning” itself, after that, the ”Project development”, and finally,
”Project documentation”. Even though I mentioned these in order, they might not have been executed
in that particular order, even though they might overlap in time. These general tasks are divided into
smaller sub-tasks.

2.1. Scope

The objectives and sub-objectives will be defined in this section, as well as requirements, possible risks,
and obstacles.

2.1.1. Requirements

Before starting to define the project, we need to make clear its requirements. These are what the project
must have by the end of the development. As explained, the main objective is to integrate TALP into
UserPortal, and add PAPI counters into TALP to calculate the applications’ IPC. Thus, the requirements
are:

• Make TALP usage transparent for MareNostrum 4 users. This way is as easy as loading some
environment to use it.

• Be able to see TALP reports from UserPortal.

• Find the calculated IPC in TALP’s report. Also raw metrics as the traced number of cycles and
instructions, respectively.

• Write documentation for users to be educated in performance analysis so they can understand the
reports and improve their codes.

2.1.2. Objectives

For this project, the main objectives are established for each of the two parts. Some extras have been
defined having in mind further development and continuity, but since the limited time of this project, it
might be out of the scope.

The objectives and steps for each part are:

• Integration with UserPortal. These steps have not necessarily been followed in this particular
order.

– Understand the UserPortal backend. UserPortal backend is actually a system called Monitoring
Service, developed entirely by Carlos Tripiana, a former User Support Team member. It
generates, transports, process, and inserts in our databases files containing information about
the jobs in our clusters, regardless of their state.

14

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

– Test and investigate how TALP works and how it is invoked when launching an application
that we want to trace.

– Development and testing of a command acting as a wrapper for launching applications with
TALP tracing enabled. Since the idea is to make this as easy and transparent as possible for
the user, it will be launched with the mpirun command, present in the Intel implementation of
MPI 7 and the OpenMPI one 8, and it will work exactly the same as them, but making all the
exports and setting all the configurations required for enabling TALP and saving the report
file.

– Development and testing of a script in charge of fetching all the TALP files stored in the
clusters, bringing them to the VM where UserPortal runs, and deleting them from the original
location to not overload the filesystem with redundant information.

– Design and creation of a new table in the UserPortal database, with all the necessary columns
and restrictions to fulfil the integrity of the possibly fetched TALP metrics.

– Development and testing of a script in charge of parsing, processing, and inserting data to the
previously mentioned table. Having in mind all types of error control to reassure the whole
database’s security and integrity.

– Understand the UserPortal frontend with all of its layers, especially how data is retrieved from
the database and displayed in the web portal.

– Add all the necessary code to the UserPortal frontend to display the desired data.

– Test the whole system to detect and correct possible bugs, failures, and areas to improve.

• TALP expansion to collect hardware counters metrics. Since I am not familiar with TALP’s
implementation or PAPI, the specification of the tasks is more generic.

– Agree with group leaders on which data we want to trace exactly.

– Explore PAPI and how it is used.

– Understand TALP’s inner implementation and how it works.

– Investigate and implement the usage of hardware counters inside TALP.

– Test the correctness and good performance in terms of reliability of the new implementation.

– Perform benchmarks to determine how much overhead is introduced with the usage of hardware
counters.

7https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/command-
reference/mpirun.html

8https://www.open-mpi.org/doc/current/man1/mpirun.1.php

15

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

2.2. Stakeholders

The following communities could benefit from this project.

2.2.1. Marenostrum Users

One of the main purposes of the project is to make using TALP easier and almost transparent for the
users, therefore they will be more encouraged to use performance analysis tools to trace their applications.
Thus, the BSC researchers are the stakeholders for who we designed the integration part.

2.2.2. Operations department

If executions consume less computation time, the Operations Department will be able to offer more
compute hours to users who need it. Thus, more projects could be allocated in MareNostrum 4.

2.2.3. Scientific community

The TALP expansion will benefit people from the scientific community (mainly developers of scientific
applications and computer scientists), who want to obtain hardware counter metrics from their application
execution in addition to the parallel efficiency, so they can identify better the issues within their codes.

2.2.4. University students

As TALP is under a GPL license, students who want to investigate and start to introduce themselves to
the world of performance analysis and parallel computing will be able to use this tool and, as the scientific
community, start to trace applications for a better understanding of them.

2.3. Methodology and rigour

This section will explain all the tools that we used to track the management and the process of the project,
and also for putting into work a best practices workflow for programmers.

2.3.1. Kanban

Internally, the User Support Team uses the Kanban agile methodology for tracking week to week our
tasks. It consists of a visual board, containing various columns and tasks displayed as cards. Each
column represents the task’s state, in our case, the work is divided into these 6 stages:

16

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

• Backlog - for tasks that have not been started or do not even have an owner.

• Work in progress - for tasks with an owner who is working on it.

• Testing - when the main development is made and in the testing phase.

• Ready - for tasks that passed all the tests and are ready to be deployed in a production system.

• Documentation - the documentation process for that task.

• Done - completed tasks.

This method provides an easy-to-understand way to track your tasks and perfect visualization of the
worker’s workflow, reduces waste and inefficiency, and increases team focus by limiting work in progress.
It is different from Scrum in the way that Kanban is more flexible, and is not based on sprints, ceremonies,
and roles.[10] In our team, we use Kanboard 9, which is a free and open-source Kanban project management
software.

Figure 4
Kanboard page for my user. Source: Own

Inside each card, you can add comments, pictures, sub-tasks, documents, and much more to keep a better
track of what are you doing and relevant information you might need, also for other team members
interested in seeing what are you doing or in helping you.

2.3.2. Git

Git 10 is a well-known open-source software for distributed version control. When collaborating on a big
project, it is easy to mess up your work with your companions if any kind of control nor communication is
present. At BSC (both the Support team and BePPP group) we use Git for better control and management
of our repositories. In the Support team, we have our own private GitLab domain for internal projects,
and the BePPP group shares DLB under a GitHub repository 11.

9https://kanboard.org/
10https://git-scm.com/
11https://github.com/bsc-pm/dlb

17

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

The usual workflow is that for each new feature, a development branch is created, thus we can be sure
that any production environment has not been compromised until the development has finished and all
the required tests have been performed. Once we are sure that the feature is ready to be in the production
system, the development branch is merged with the main one.

Figure 5
Usual git branching workflow.
Source: https://www.nobledesktop.com/learn/git/git-branches

2.3.3. Test environment

In addition to Git for version control and testing, in the User Support Team, we usually have a separate
environment, identical to the production one to test repositories with a webpage involved, like UserPortal.
Inside the same VM, two separate repositories, one for test and the production one, are hosted and point
to different URLs (userportal-test.bsc.es in this case), this way we can experiment with the user interface
with total freedom and see the results instantly.

Once the development has finished, the test repository is merged into the production one.

2.3.4. CI/CD

Both the BePPP and the Operations Team, make use of CI/CD (see definition in the Glossary A). On
one hand, to perform tests to ensure that with each commit everything still works as expected, and on
the other, to make deployments easier for the simultaneous environments.

2.3.5. Group meetings

Every two weeks, a group meeting is scheduled. In this one, we meet me and David Vicente (User
Support) with Marta Garcia-Gasulla and Víctor López (BePPP) to check my updates on the project. We
also discuss improvements that can be done or design features for the upcoming tasks, also as the next
steps. For the more User Support-exclusive topics, I normally consult directly with David, or I comment
it in the User Support Team weekly meetings, which are more generic to the whole group projects and
tasks.

18

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

2.4. Tasks and planning

During the following sub-sections, the tasks of the project are described.

2.4.1. Project definition

The objective of this phase is to study and determine the main requirements of the system.

• PI1 - System viability: In this stage, a preliminary study had to be made to determine if the
project was feasible and useful. Here we analyzed the main goal and different ways to implement it,
and the best way to do it was decided as well. This took about 1 hour with the project directors.
Since it is the prerequisite to all the tasks in the project, this is omitted in the table.

2.4.2. Project planning

A big part of the project is about planning the project itself, only the team members, a computer, and
maybe a notebook to take notes.

• PP1 - Context and Scope of the project: A study to define the context and the scope is
performed. This takes about 25 hours and the text processor Overleaf. 12

• PP2 - Planning: Once we have the PP1, tasks need to be specified and scheduled, with a Gantt
diagram for better visualization. Also resources specification. This takes about 20 hours, and again,
Overleaf is the text editor.

• PP3 - Budget and sustainability: After the tasks are concertized, a budget will be provided
considering the number of tasks and resources needed. This will take 25 hours and working with
Overleaf as the text editor.

• PP4 - Integration in final document: Once we have all the previous documents, they will be
joined in a project definition file. This takes up to 15 hours considering modifications that may need
to be made. Again, the Overleaf text editor will be used.

• PP5 - Biweekly meetings: An hour every two weeks is dedicated to joining the two groups and
talking about the project’s progress. This makes 12 hours in average.

2.4.3. Project development

Most of these tasks were already explained in the objectives part of the previous deliverable. These form
the core of the project.

User Support Tasks
12https://www.overleaf.com

19

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

• US1 - System concretization Study existing structures (Database, filesystems, UserPortal’s
structure) and see how the new data will be fitted into it. I include the understanding of TALP in
this section as well to learn about the metrics it produces and how they will fit in our system. 20
hours will be needed for this since the coherence of the system must respect the present structures
and these have to be discussed with the directors.

• US2 - Command development Develop a new command for activating TALP, loading the
required modules, and making the necessary exports. Also configuring the metrics to collect and
the output file. This will take about 10 hours because bash scripting needs to be recalled since I do
not have any experience, and will require Vim 13 as the text editor.

• US3 - Database adaptation Creating the new table with the required rows where the collected
metrics will be placed. This task will take about 15 hours because I am not familiar with the
technology used for UserPortal’s databases. The software Datagrip connects to and modifies the
database.

• US4 - Development of a script for retrieving and deleting files This script will fetch and
gather the TALP generated files from the /tmp filesystems across the machine, following a particular
pattern for the name in order to recognize them. Once gathered, they will be deleted not to fill the
filesystem with redundant information. This will take about 15 hours, and only the text editor Vim
will be needed.

• US5 - Development of a module for users to use the command A module is created, acting
as a wrapper of the wrapper command, exporting the necessary paths for users to use the developed
command. This will take an hour approximately and only Vim again is required as a text editor.

• US6 - Development of a JSON parser script For parsing the TALP generated files and inserting
the collected metrics into UserPortal’s databases. This takes about 25 hours and Vim as the used
text editor. As well as Datagrip to check the inserted data into the databases.

• US7 - Modify UserPortal’s code to display the new information Web development in all
of UserPortal’s layers to show the new data. PHPStorm’s14 software is needed to modify the code
and this will take about 40 hours due to the complexity of the code and my inexperience in web
development.

• US8 - Test each of the components individually Exhaustive test is needed to guarantee that
all bugs will be corrected when all of this software is deployed into production and users start to
use it. This will take about 40 hours.

• US9 - Test the system as a whole Same as the previous task but with the closest production
environment possible. This will take 5 hours since mostly all bugs would have been corrected already.

• US10 - Deploying everything into a production environment Everything has been developed
13https://www.vim.org/
14https://www.jetbrains.com/es-es/phpstorm/

20

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

in a test environment and needs to be moved to the production webpage and database. This will
take about two hours. PHPStorm and Datagrip software, and git to manage the repositories.

TALP Tasks

• TT1 - Study TALP’s code TALP’s particular structures and algorithms must be studied in
order to make a good and respectful implementation of the hardware counters. This should take
about 18 hours.

• TT2 - Read documentation about PAPI As a person who never used PAPI before, documen-
tation and some practice must be absorbed. This will take about 16 hours.

• TT3 - Study which counters to implement Once I have knowledge about PAPI, we must see
which counters better fit the code’s purpose without perverting it too much since the idea is to
keep it lightweight. This will take about 10 hours including discussions with directors about this
decision.

• TT4 - Implement PAPI counters support Now the actual implementation starts. TALP’s
code will be modified to support PAPI counters being really careful about their activation to not
introduce much overhead. This will take about 45 hours. Only Vim is needed as a text editor.

• TT5 - Modify command line arguments Since users may not always want to use PAPI counters,
command line arguments when enabling TALP must be modified to alter their behaviour depending
on the options. This should take about 10 hours depending on the counters implemented. Only
Vim is needed as a text editor.

• TT6 - Perform tests to detect bugs and errors Once everything is implemented, executions
to test the code robustness are required. This will take about 40 hours to be sure about everything
is alright.

• TT7 - Perform benchmarks to test introduced overhead As soon as we can be sure that
the implementation is solid and alright, benchmarks to test the overhead introduced by hardware
counters tracing will be launched. This includes posterior analysis and maybe corrections on the
code. This will take about 30 hours.

• TT8 - Deploy into production environment This code implementation and development will
be made into a separate branch to not alter the production software. A delicate final merge in git
will be performed, and the related public/private repositories and documentation must be updated.
This will take about 6 hours and includes checking that everything is alright.

2.4.4. Project documentation

• PD1 - Write support’s internal documentation Document inside User Supports internal doc-
umentation as an annex to UserPortal section. This will take about 5 hours and draw.io15 as the

15https://app.diagrams.net/

21

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

software to generate charts to explain the new system.

• PD2 - Write support’s external documentation For users to know how to use it, also inte-
grating it in a new Performance Analysis new section inside our tools documentation. This will take
about 10 hours and Vim as the text editor.

• PD3 - Write documentation on the new TALP features for BePPP Write the documen-
tation about the newly implemented part inside TALP for CS people. This will take about 10
hours.

• PD4 - Revise all documentation Revision to check that all the documentation is alright. This
will take about 3 hours.

• PD5 - Write the project’s technical report Project’s development technical report writing.
This is a tedious task of about 50 hours and only needs Overleaf as the text processor.

• PD6- Thesis preparation The preparation of the presentation itself, will require about 20 hours
having in mind that a presentation and a script must be crafted. Only Overleaf will be needed for
this.

22

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

2.4.5. Estimates and the Gantt

ID Name Duration(h) Predecessors Resources
Project inception 1

PI1 System viability 1
Project planning 97

PP1 Context and Scope of the project 25 Overleaf
PP2 Planning 20 PP1 Overleaf
PP3 Budget and sustainability 25 PP2 Overleaf
PP4 Integration in final document 15 PP3 Overleaf
PP5 Weekly meetings 12

Project development 351
User Support tasks 176

US1 System concretization 20 Datagrip, draw.io
US2 Command development 10 US1 Vim
US3 Database adaptation 15 Datagrip
US4 Development of a script for retrieving and deleting files 15 US1 Vim
US5 Development of a module for users to use the command 1 US1 Vim
US6 Development of a json parser script 25 US1,US3 Vim, Datagrip
US7 Modify UserPortal’s code to display the new information 40 US3, US6 PHPStorm

US8 Test each of the components individually 40 US2,US3,US4,
US5,US6,US7

US9 Test the system as a whole 5 US8
US10 Deploy everything into a production environment 5 US9 PHPStorm, Datgrip, Git

TALP Tasks 175
TT1 Study TALP’s code 18
TT2 Read documentation about PAPI 16
TT3 Study which counters to implement 10 TT2
TT4 Implement PAPI counters support 45 TT3 Vim
TT5 Modify command line arguments 10 TT4 Vim
TT6 Perform test to detect bugs and errors 40 TT5
TT7 Perform benchmarks to test introduced overhead 30 TT6
TT8 Deploy into production environment 6 TT7 Git

Project documentation 98
PD1 Write support’s internal documentation 5 US10
PD2 Write support’s external documentation 10 US10 Vim
PD3 Write TALP’s new features documentation 10 TT8
PD4 Revise all documentation 3 PD3
PD5 Write the project’s technical report 50 Overleaf
PD6 Thesis preparation 20 PD5 Overleaf
TOTAL 547

Table 1
Tasks hour estimation and resources needed. Source: own

Because of the huge size of the Gantt diagram, it can be found in the Appendix. 18

23

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

2.5. Resources

Every project relies on a set of resources in order to be conceived, developed, tested, deployed, and
documented. In this project, I categorize the resources needed into these four groups: Human resources,
Hardware resources, Software resources, and Material resources.

2.5.1. Human resources

Mainly, 5 humans are involved in this project. First of all, I, the developer, will be in charge to bring
the project to life. Then, the 2 co-Directors and the Ponent, will assist me in the decisions involved in
the project and assess me during the development. Finally, my GEP tutor, will help me as well with the
Project planning tasks during the first month of the project.

2.5.2. Hardware resources

The essential hardware resources for this project are computers. We differentiate two main computers
involved and needed:

• My work laptop: Dell latitude 7490 16. This is from where I connect to the required clusters and/or
servers, and also make development in my local machine.

• Marenostrum 4: The cluster from where all the User Support-related scripts will be developed
having in mind the filesystem.

It is important to have into consideration the router which allows me to connect to the network and the
physical machine where UserPortal is deployed, both for test and production environments.

2.5.3. Software resources

Various software is needed. For communication through me and the co-Directors+Ponent, we use Thun-
derbird 17 as the mail client, we also have a channel in RocketChat 18 for more informal and quick
communications compared to email ones. And in case it is required, Zoom meetings 19 would be used for
group meetings, but we normally meet in person. This software are enforced by the BSC to support the
use of Open Source software. Also, lmod 20 is the software used for creating a module environment.

16https://www.dell.com/support/kbdoc/es-es/000132081/gu%C3%ADa-visual-de-dell-latitude-7490
17https://www.thunderbird.net/es-ES/
18https://www.rocket.chat/
19https://zoom.us/
20https://lmod.readthedocs.io/en/latest/

24

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Git is used for version control, and programming languages as Python 21, PHP 22, C 23 and Bash 24 will
form the project’s technology base.

For documentation and text processing, I personally use Overleaf as my favorite text processor and Vim
as my preferred text editor for scripting in the clusters. For this report, the Gantt chart generator 25 has
been used.

I benefit from a free student license for the JetBrains 26suite, which allows me to use PHPStorm for
coding in big and complex PHP projects. Also, I enjoy Datagrip for database connection, consulting, and
modification.

2.5.4. Material resources

This includes all sorts of documentation and papers that I devoured to gain the necessary knowledge in
the making of the project.

2.6. Budget - Identification of costs

The elements mentioned in the following sub-sections are the ones being taken into account for the budget
calculation. In addition, a management control mechanism is defined for surpassing deviations that might
appear during the making of this project.

Calculating this project’s expenses is a bit more difficult because I work from home for 2 of the 5 working
days, so bills related to work that I have to pay are involved in the calculation of the costs. I estimate,
for 5 months of project duration, approximately 22 weeks. Which make:

• Worked days in Barcelona = 22 weeks * 5 days a week * 3/5 days of the week worked in BCN = 66
days

• Worked days from home = 22 weeks * 5 days a week * 2/5 days of the week working from home =
44 days

That will be crucial to calculate the proportional part of a cost depending on the location. Also, I estimate
around 4.5 daily hours of dedication to the project on average.

21https://www.python.org/
22https://www.php.net/manual/es/intro-whatis.php
23https://en.cppreference.com/w/c/language
24https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html
25https://www.onlinegantt.com/
26https://www.jetbrains.com/

25

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

2.6.1. Human costs

Even though it can sound a bit obnoxious, people is what makes this project possible. Human resources
are needed in every step of it. We can differentiate 4 roles involved with tasks during the course of the
project are:

• Developer - Programmer and tester of all the code. I will be the main and only developer in this
project. This role is manifested inside our project in the tasks inside User Support tasks (US{1-10})
and TALP tasks (TT{1-8}, excluding TT7).

• Technical writer - Person who documents every existing phase of the project and also writes any
kind of documentation or report. I will be again, the one and only person assuming this role. This
role will be executed in all the PDX tasks of this project (PD1,PD2,PD3,PD4,PD5,PD6).

• Researcher - Role that will be in charge of experimenting with the code in order to analyze results
and draw conclusions. I, as well, will entirely execute this role. This applies only for task TT7.

• Project manager - Responsible for the planning, supervision, and correct development of the
project. We can find here the two co-directors of the project, the ponent, and the GEP tutor. This
only applies for task PP5, but involves 4 people in it.

For calculating the cost of the tasks (Costs per Activity (CPA)), roles are assigned to each task. For each
task, the total cost will be:

Task cost = cost of the role * assigned hours to task

Estimated role costs, based on salary ranges of the BSC for students and Glassdoor for Project leader
references, with the added 35% of the Social Security tribute, added to calculate the cost per year are:

Role Gross Salary per year (€) Cost per year (€) Price per hour (€) Played by
Developer 14.300 22.000 12,75 Me
Technical writer 14.300 22.000 12,75 Me
Researcher 14.300 22.000 12,75 Me
Project manager 32.500 50.000 27,90 GEP tutor, co-directors, and ponent

Table 2
Estimated cost per role, price per hour is calculated taking into account that the BSC agreement stipulates 1792
working hours per year. Source: Own calculations and BSC agreement

With this information, we can now calculate the cost per task:

26

https://www.glassdoor.es/

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

ID Name Duration(h) Hours Total cost (€)
Project inception 1 Developer Technical writer Researcher Project manager

PI1 System viability 1 1 1 12,76
Project planning 97

PP1 Context and Scope of the project 25 25 319
PP2 Planning 20 20 255,2
PP3 Budget and sustainability 25 25 319
PP4 Integration in final document 15 15 191,3
PP5 Weekly meetings 12 12 12 (x4 persons) 2.831,52

Project development 351
User Support tasks 176

US1 System concretization 20 20 255,2
US2 Command development 10 10 127,6
US3 Database adaptation 15 15 191,3
US4 Development of a script for retrieving and deleting files 15 15 191,3
US5 Development of a module for users to use the command 1 1 12,76
US6 Development of a json parser script 25 25 319
US7 Modify UserPortal’s code to display the new information 40 40 510,4
US8 Test each of the components individually 40 40 510,4
US9 Test the system as a whole 5 5 63,8
US10 Deploy everything into a production environment 5 5 63,8

TALP Tasks 175
TT1 Study TALP’s code 18 18 229,68
TT2 Read documentation about PAPI 16 16 204,16
TT3 Study which counters to implement 10 10 127,6
TT4 Implement PAPI counters support 45 45 574,2
TT5 Modify command line arguments 10 10 127,6
TT6 Perform test to detect bugs and errors 40 40 510,4
TT7 Perform benchmarks to test introduced overhead 30 30 382,8
TT8 Deploy into production environment 6 6 76,56

Project documentation 98
PD1 Write support’s internal documentation 5 5 63,8
PD2 Write support’s external documentation 10 10 127,6
PD3 Write TALP’s new features documentation 10 10 127,6
PD4 Revise all documentation 3 3 63,8
PD5 Write the project’s technical report 50 50 638
PD6 Thesis preparation 20 20 255,2
TOTAL 547 10,285.14

Table 3
Table summarizing task cost estimation. Source: Own calculations

2.6.2. Material costs

Software is not considered for the material costs because all the software I am using is free for me, either
because it is Open Source or I have a free student license.

Amortization

The amortization of the material resources used in the project. This includes every material being that
has been used. From hardware to my office furniture. The following table down below summarizes every
amortization I have considered. I obtained the prices by personally asking each Team Manager inside the
Operations department.

The formula used to calculate amortization is:

27

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Amortization (e) = Resource price × (1 / Amortization years) × (1 / Project duration (547 h)) × hours
used

Item Price (€) Amortization years Time used (h) Amortization (€)
Dell latitude 7490 1500 5 297 162.88
Dell monitor 190 5 297 20.63
Logitech keyboard 15 5 297 1.62
Logitech mouse 7 5 297 0.76
Office desk 240 20 297 6.51
Office chair 200 20 297 5.42
Chest of drawers 110 20 297 2.98
MareNostrum4 34 million 5 317 1140.26*
At home chair (Ikea) 49 20 198 0.88
At home desk (Ikea) 119 20 198 2.15
Total 1344.09

Table 4
Table with amortization costs. *MareNostrum4’s amortization has been divided by 3456, the total number of nodes,
because I am only using a node or even less during the development stages. Source: Own calculations

For office furniture, I applied a 20 years amortization, as suggested in an article from El País 27. For the
rest of the hardware material, I fixed it to 5 years, because this is the amount of years we have a warranty
and/or support with the providers. The time used is based in tasks duration among the project where
this material is used.

Electricity cost

I utilize the same laptop plus screen in both of my office and at-home setups. Reviews 28 reported
approximately 40W29 at maximum power consumption. And according to Energy Star 30, the monitor
consumes 10.9W when powered on.

Assuming the same price (0.43473 €/kWh 31 at this moment) for both sites. We can estimate my own
electricity cost:

Own electric cost = 0.43473 €/kWh * 4.5 hours a day * (40W + 10.9W)/1000 kW conversion * 110
days

This makes 10.95€ of electricity cost for my equipment.
27https://cincodias.elpais.com/
28https://www.notebookcheck.net/Dell-Latitude-7490-i5-8350U-FHD-Laptop-Review.309000.0.htmlDell webpage
29I estimate a bit more because my laptop has a more modern processor. I could not find any official data on power

consumption
30https://www.energystar.gov/productfinder/product/certified-displays/details/2345453
31https://tarifaluzhora.es/

28

https://cincodias.elpais.com/cincodias/2020/09/10/autonomos/1599765249_696384.html

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Furthermore, the project is developed for MareNostrum4, which consumes a frightening amount of 1.2
million euros worth of electricity a year. 32 Calculating the machine’s consumption per hour is extremely
difficult because of the difference in power usage among executions. Even though, we can approximate
it since my project, except for testing parts, only uses one CPU for development stages. For the rest of
MareNostrum’s usage, we will assume a whole node.

We know that each CPU consumes 150W 33 when powered. Then we calculate:

Watts per hour consumed = (1 CPU usage hours * 150W) + (Full node usage hours * 350W) 49050
W/h = (152h * 150W) + (75h* 350W)

That makes 49.05 kW/h, assuming the same kW/h price as before, the electrical cost for MareNostrum4
reaches up to 21€. Making a total of 31.95€ in this category.

Internet cost

My proportional part of the internet bill at home is 15€. A month contains 420 hours. Considering 4.5h
of work in the project a day, for the days worked at home, we can conclude:

Internet cost = (15€ monthly bill / 420 hours in a month) * 4.5 daily hours of work * 66 days of work
at home

In total, it takes 10.60€ worth of internet during the whole project, when working from home. I do not
consider the BSC’s internet cost because the company does not pay for the internet, it is supported inside
the RedIRIS 34 network.

Work space
I pay 330€ monthly for my flat rental in my village (already divided the whole flat rent by the roomates).
I use the equivalent of 1/3 of the space as a workspace (it is teeny tiny). This makes 110 euros a month
for my at-home workspace. During the scope of the project, it will entail 550 euros. I do not consider the
BSC’s building rental because my office placement is already a property of the company.

2.6.3. Other costs

Contingencies

Considering a fund of contingency is a good practice in the case of unforeseen incidences that might take
place and a must for most projects. This will be calculated by adding an extra 15% of the contingency
margin to our total costs. We have our Generic Cost, 2241.79€, plus 10,285.14€ of the tasks cost. This
generates a contingency fund of 15% of (2,241.79 + 10,285.14) = 1879.03€.

32All of this information has been extracted from the Operations department
33https://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%208160.html
34https://www.rediris.es/

29

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Incidental costs

As explained in previous sections, risks and obstacles might appear. But they are already contemplating
adding hours to some tasks, to compensate for possible delays or my inexperience with some technologies,
as explained in the Risks 2.7 section.

2.6.4. Total cost

All the previously explained costs are joined in the next table, concluding with the total cost of the project.
Adding the general costs, calculated with the formula:

Activity Cost (€)
Cost per Activity 10,285.14
Amortization 1344.09
Electric cost 31.95
Internet cost 10.60
Work space 550
Contingency 1879.03
Total Generic Cost 14103.85

Table 5
Total cost of the project. Source: Own calculations

2.7. Risk management: alternative plans and obstacles

The normal progression of the project might be affected by obstacles. The risks were introduced in the
last deliverable, in this one I will explain how these can be surpassed. A level of risk is added for having
an idea of how critical these are.

• High workloads [High risk]. Delays would be easy to foresee since every X weeks, decided by
my team leader, I am the supporter on duty in charge to answer all the tickets sent by the BSC
users in help. Also, I have other Support tasks to develop that may be urgent. The only solution to
this is to make extra hours on my own outside my workday (maybe even in weekends) depending
on the week.

• Inexperience with some technologies and systems [Mid risk]. Most of the systems and
technologies used in this project are unfamiliar to me. This requires a lot of time to read the
documentation and inspect the code. This is easily solved by contemplating all this time as project
tasks (TT1,TT2,TT3, and intrinsically in US7). It is important to have in mind that it will create
dependencies between other tasks.

30

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

• Testing and debugging [Mid risk] The testing for seeking bugs and the correction of them
actually consumes more time than the main implementation of the code. This is, as before, contem-
plated in the project’s tasks. I estimated each testing task’s (US8,US9 and TT6) duration twice as
much as I think it would take to me.

• Good documentation [Mid risk] Creating documentation for this project can be a bit over-
whelming since many different documentations must be redacted for different publics. Again, this
is contemplated when specifying the project’s tasks by adding 2 extra hours to each project docu-
mentation task (except PD5 and PD6) to what I consider I would normally need for them .

2.8. Management control

Obstacles and unforeseen events are actually an ”expected” part of a project. Because of this, after
finishing a task, we will compute the deviation of all the involved costs. For each section, the following
formulas have been proposed for each category.

• Human resources deviation: Not all days or hours, we as humans perform the same. This
formula estimates the deviation in human resources efficiency for each task.

Human resources deviation = (Estimated cost per hour - Real cost per hour) * Total hours
consumed

• Amortization deviation: Each item can be used more or less depending on the task. Also, its
value can vary depending on external economic factors.

Amortization Deviation = (Estimated usage hours - Real usage hours) * Price per hour

• Electricity cost deviation: We know, this year more than ever in Spain, that electricity price
changes even during the same day. Thankfully, this does not apply to water. Electricity deviation
is calculated with the following formula.

Electricity cost deviation = (Estimated usage hours - Real usage hours) * Price per hour

• Transport deviation: The same reasoning from the previous bullet point but with gas prices
this year. This should be calculated every day when a journey takes place, using the gas price for
that day in particular.

Transport deviation = (Estimated gas price - Real gas price) * Gas consumption in liters

• Total cost deviation: Groups all deviations in the different tasks. It does not take into account
contingencies nor incidents.

Total costs deviation = Human resources deviation + Amortization Deviation + Electricity cost
deviation + Transport cost deviation

31

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

With these indicators, we will know where the deviations in the budget are. To get an overview of the
project budget we can compare if the total cost of the project is greater than the total estimated cost and
see if the contingency margin was estimated correctly.

2.9. Sustainability

2.9.1. Self-assessment

The social and environmental dimensions of ICT always have been a concern of mine. The huge pollution
of electronic waste and the immense and profound impact of technology in our lives are problems rooted
in our society that seem so far away to be solved.

By doing the self-assessment survey provided by the UPC, I noticed that I actually might not know as
much about these aspects as I thought, plus I am barely aware of the economic dimension of it. First of
all, doing the budget for this project, there are so many factors that I did not even bear in mind at first,
like my in-home expenses from when I work from home, which is as valid as the ”real” office expenses, of
which I shall appreciate some expenses that I normally I do not consider (I.e the desk where I sit). In
summary, the fact that I do not personally pay for some of the equipment that I daily use obviously has
a cost that must be taken into account. Also, I became interested in all the different economic indicators
of a project and learned to understand and to develop an economic viability report, so I can do better
with my future projects.

For the environmental dimension, even though I am conscious of the huge repercussions of technology
in our world, I realized that I do not know as much as I would about reducing pollution and electric
consumption apart from the basic advice such as taking your electronic garbage to a green point and
make better codes.

2.9.2. Economical dimension

Regarding PPP: Reflection on the cost you have estimated for the completion of the project:
The reflection of the cost I estimated can be found in the Budget 2.6 section. It considers the human
and material costs, as well as other costs that do not fit into these two categories. The salaries and the
cost of the material have been asked to the personnel involved. The amortization and the other costs are
an estimation since there is not a 100% accurate way to calculate them. I tried to make the budget as
realistic as I could to have a real reference of what this project implies.

Regarding Useful Life: How are currently solved economic issues (costs...) related to the
problem that you want to address (state-of-the-art)? The funding for this project comes exclusively
from the BSC, so if any issue occurs or some extra resource is needed (time included), it is possible to
talk to Project Managers and see if it is possible to achieve that required resource. This type of cost falls
within the field of unforeseen costs.

32

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Regarding Useful Life: How will your solution improve economic issues (costs ...) with
respect to other existing solutions? Other performance analysis tools are developed by many large
developer Teams. This whole project is conceived for being developed by only one person, this implies
that is cheaper and has the optimization and light overhead design as a starting point, which translates
into much less costs for energy and resources.

2.9.3. Environmental dimension

Regarding PPP: Have you estimated the project’s environmental impact? We have an idea
of the resources that are needed to carry on my project, but we cannot estimate with total accuracy and
security how it will affect the environment, there are factors that we have no way to estimate, or the
impact might be deeper than we expected. P.e, we know how much electricity MareNostrum4 consumes,
but we cannot know exactly the electricity ”greenness” and the environmental impact that causes in its
generation. What we can assure is that if execution times are reduced, more hours could be given to other
projects that will be allocated in MareNostrum4.

Regarding PPP: Did you plan to minimize its impact, for example, by reusing resources?
The whole project has been conceived to follow the best practices for performance, so that not that much
electricity is wasted. This also applies to my personal laptop and work equipment, trying to save as
much energy as possible by shutting down electronic devices when not needed or decreasing my screen’s
brightness. Other physical resources for this project are not used.

Regarding Useful Life: How is currently solved the problem that you want to address (state
of the art)? How will your solution improve the environment with respect to other existing
solutions? Our project will help programmers with identifying issues within their codes so they can
improve their performance. Thus, their codes will become more efficient and more energy is saved.

2.9.4. Social dimension

Regarding PPP: What do you think you will achieve -in terms of personal growth- from
doing this project? I personally love from my day-to-day job the idea of helping researchers to do their
science and being part in some way of new discoveries. With this project, this aspect will acquire a new
dimension by helping researchers to make better codes. I will learn technologies that are not familiar to
me and reinforce my skills with the ones I already know. I am grateful for all of these parts of the project
and I feel more mature as an engineer for every step that I take forward.

Regarding Useful Life: How is currently solved the problem that you want to address (state
of the art)? How will your solution improve the quality of life (social dimension) with respect
to other existing solutions? I hope that my project removes a bit of conscience inside researchers to
start being more conscious of their codes and the impact of resource waste. Other performance analysis

33

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

tools might exist, but this integration and expansion are very particular inside the BSC ecosystem, where
I think the most impact will generate.

Regarding Useful Life: Is there a real need for the project? I do believe in the necessity of this
project. TALP is a reference and a pioneer for lightweight analysis tools. No other analysis tools can
be really compared because of the usability and the barely introduced overhead, and contributing to it
and making it more accessible will surely help people concerned about their codes. Nonetheless, resource
waste is a big problem in this digital era that must be solved, or at least, reduced as much as we can.

3. UserPortal’s integration

In this section, I will explain the development of the User Support part.

3.1. Actual system design

UserPortal’s actual back end involves a set of projects, services and systems that work across machines
and nodes inside them to generate, gather and process information. It is essential to consider this as a
guide on what can or cannot be done, to not redo mistakes and to improve the service.

There are, in general terms, three machines implied:

• UserPortal’s Virtual Machine - Virtual machine only accessible by the Operations Team which
contains all the services required for running UserPortal: SQL Server, Apache Server, InfluxDB,
daemons and a specific Python environment.

• Cluster’s head - Separated node (definition found in Glossary A)from each cluster, accessible only
by the Operations Team, which serves for OS management purposes, monitoring services and as an
access point to the rest of the nodes. 35

• Data Storage Machine - Cluster at the BSC intended for data storage and data moving. In this
situation, it is used as an access point for the UserPortal’s virtual machine because it has no direct
access to MareNostrum’s head.

The following diagram synthesizes the structure and the execution done by the services:
35In the BSC machines, you cannot access a compute node directly from a login node. A request for an allocation is needed

first.

34

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Figure 6
Diagram summing up each machine service execution. Source: Own

3.2. Design decisions

The original idea was to integrate the whole system into the existing back end, but some issues influenced
the decision of making it a separate system.

• The actual backend is written in Python 2.736 (plus old dependencies) - As developers, we have the
responsibility of not perpetuating the use of deprecated software as it may lead to malfunction of
the system or make it vulnerable. The Python part of the actual project will be written in Python
3 and if someday the backend gets ported to Python 3 I will consider to integrate it.

• The backend is very complex and designed for running every 30 seconds with a heavy payload of
data to process. What we need is more lightweight and simple.

• File ownership - TALP generated files are owned by the users in compute nodes once the execution of
their programs finishes, they are generated by the backend. UserPortal generates all the information
by calling the SLURM API, and stores it in files in the shared filesystem in a field where only
Operations has writing permissions. This is a huge change of approach. In the wrapper (3.4.1)
subsection, this problem is explained in detail.

• Portable and independent - The actual deployment is manual and tedious, also sysadmin-dependant.
With this implementation, only a few changes have to be made to port it across machines.

36This version of Python has been officially deprecated since 2020 https://www.python.org/doc/sunset-python-2/

35

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

3.3. Requirements

The key concepts that we want to take as a requirement during the whole development can be summed
up in the following table:

Requirement Definition in this context Decisions taken to achieve it

Portable - Easy to install/deploy across machines
- Easy to adapt for each machine

- Using Python and Bash as languages, all machines have them installed
- General scripting - only a few environment variables change across machines
- CI/CD for automated and easy deploy

Secure

- Error-proof
- Will not overflood the system (memory and performance)
- Will not break the system (malfunction, vulnerabilities...)
- Will not corrupt database

- Error control at all levels and secure coding
- Junk collector and proper cleaning of files
- Efficient programming
- Exhaustive testing before production deploy

Scalable - An unexpected increase in the files to process won’t
collapse the system and performance won’t be degraded ”that much”

- Efficient coding and technology
- KISS philosophy

Table 6
Summary of the key concepts in the design

3.4. Backend development

With all these concepts in mind, the actual development can begin. To summarize, a system is needed
that makes it transparent for the users to load TALP and view the results on their UserPortal job page
once their job has completed

TALP generates different reports based on user’s needs. Users can choose between POP metrics, a
summary at the node level, summary per region, raw data or any combination of them. The report of
interest for this project is the pop-metrics report, which provides a summary of the useful computation
time of the application, time spent in MPI communication, and load imbalance. These are the metrics
that we want to focus on and educate developers to understand. Now, following the schema of the actual
UserPortal backend. We will need, at a first glance:

• A wrapper and module for the command mpirun to pre-load the necessary libraries and configure
TALP options.

• A script to gather the data and pre-process it.

• A script to parse the TALP file and inject the data into the DB.

• A cron to execute the services in UserPortal automatically and periodically.

The reason why I decided to separate the gathering of files and the processing of data is that each of them
is written in a different programming language.

3.4.1. Wrapper

The main objective of this wrapper is to make the TALP configuration as transparent as possible for
MareNostrum 4 users. TALP works with MPI, so we will need to make a wrapper for running an

36

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

application with MPI. This command is ”mpirun”, and it is available in all the installed MPI software in
the BSC’s clusters, both the OpenSource implementation (OpenMPI) and the proprietary implementation
from Intel (IntelMPI). We will also implement a wrapper for ”srun”, the SLURM command for executing
jobs.

The wrapper needs to, apart from configuring the arguments and the libraries, generate and place the
generated file to a place where we can retrieve it easily. Compute nodes are very limited in terms of
connection, they have no access to internet and they can only connect with MareNostrum4 login nodes.

This creates a conflict because TALP-generated files are owned by the user who executes the job, so we
need a directory where everyone can write, the disk space won’t run out easily and we can clean once
the files are gathered. The first thought was to copy the files to some location in GPFS (definition can
be found in the Glossary A), like UserPortal does inside the /gpfs/apps partition. This would made the
transfer between compute nodes and login nodes much more easy, but we do not want anyone to be able
to write inside the Operations-protected area nor any particular group’s /gpfs/projects or /gpfs/scratch
files, which store important and voluminous data, apart from being restricted with a disk quota per user.
This paths will be visible from the wrapper so it is not a secure option. Additionally, GPFS is a very
sensitive to high workloads of read/write of files in a same location, as we cannot know how many people
will be using the wrapper it is better to store the files in another place.

The best solution that we found is to store files in the /scratch/tmp partition of each login node. This
partition is already set with the sitcky bit37 so anyone can write inside it, but when we need to do the
cleanup, we won’t be able to delete the files. So, what we did is to create a hidden directory inside
/scratch/tmp called ”.talp”, owned by usertest 38. It is not a problem if somebody inserts junk into the
folder because we will only retrieve files following a certain name pattern, formed by the job ID and the
machine where it has been generated, the rest will be cleared up. The gathering script controls if the
folder is deleted, and creates a new one with the right permissions if it is necessary. This situation might
happen as well after a node reboot.

The process of moving the file from the compute nodes’ storage to the new directory is summed up in the
following diagram:

37This allows any user to write in the directory and own the exclusive permissions for that file, so only the owner can edit
it, rename it or delete it.

38User Support machine user that performs automated tasks and tests, we do not have root

37

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Figure 7
Location and moving pipeline of TALP-generated files. Source: own

Apart from these core functionalities, the wrapper detects which MPI executable has to be executed by
determining the loaded implementation by checking the ”MPI” environment variable. Which can only take
the values ”impi” or ”openmpi”. This environment variable is set inside the module from each software
for all the versions we have installed in MareNostrum. Also if we want to activate PAPI counters.

So, once the execution of a program finishes its execution and the TALP report is generated, it copies39 the
file from the compute node storage to the /scratch/tmp partition of one of the login nodes of MareNostrum.
We have three login nodes, and the decision of going to one or another is taken by performing the modulo
operation with the job ID. This way the storage is fairly shared among the nodes. It might look a bit
scandalous this decision because afterwards there is then the triple of work in performing connections at
the gathering phase, but we considered this the best option because even if we loose efficiency, it is better
to loose more time in connecting to the three nodes than risking to overload one login filesystem and
provoke machine malfunctioning.

Once everything is set, the program is run and the TALP-generated file follows the explained pipeline
until the data is inserted in the UserPortal’s database.

39It is secure copied connecting to the node because compute nodes and login nodes do not share any filesystem.

38

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

3.4.2. Gathering Script

The process of gathering data will utilize system commands for ease and efficiency, using the bash script-
ing language. A script will be created to retrieve TALP-generated files from MareNostrum 4 to the
UserPortal’s virtual machine, and a logfile A will be kept to facilitate the detection of any malfunctioning
or unexpected behaviour.

Firstly, it is important to check if the directory located inside each login node’s /scratch/tmp directory
exists. If it does not exist, it will be created with the necessary permissions, as previously explained. The
core command used for data retrieval is ”rsync”, which will perform the copy from the MareNostrum
folder to a local folder on the virtual machine for temporary storage of gathered files. ”rsync” was chosen
over ”scp”, which was found to be faster, due to its ”–remove-source-files” option, which automatically
deletes the file after it has been copied from the source machine. Additionally, the output of the command
can be stored and formatted for logging, which is not possible with the ”scp” command, as it does not
provide a summary of transferred files.

For the logging aspect, files will be organized on a weekly basis. If the number of users utilizing the
tool increases, a daily log will be considered. Within each log, it will report every time the script is run,
detailing which files were transferred and from which login node. If no files were transferred, this will be
logged as well. Additionally, if the creation of a folder was necessary, it will be noted in the log.

3.4.3. Parsing-Injecting Script

For parsing and injecting the data, the idea is to work with Python because it offers many different
libraries to work with SQL connection and parsing files. In bash there is no easy way to do that.

There are 4 different formats to choose from in TALP to print the output: JSON, XML, CSV or plain
text. The CSV format creates a different file for each report, difficults the previous gathering and parsing.
The plain text format and XML are difficult to parse in Python. So JSON is the best option of format.

After the format was decided, it was relatively easy to implement the script because Python offers a
package to work with JSON files. The script itself it is easy in concept, it opens every file in a folder
whose name matches the known pattern, and parses the JSON fields getting only the parameters we want.
Then those are inserted into the database.

The important thing here was to add security systems to ensure that the database will not be compromised.
This englobes ensuring that data is correct and free of errors, checking the values of variables before they
are used, testing software in edge or corner cases, a try-catch structure to handle errors in a controlled
way, implementing debugging modes to help identify and fix bugs and security vulnerabilities, also with
specific error messages to make it easier to detect bugs and issues. Also, command timeouts in case the
connection with the database hangs, this way we prevent stuck processes left hanged the machine.

When all procedures have been done, we can be sure about injecting valid data into the database. After

39

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

all of it, parsed files are deleted.

3.4.4. Module and cron

For MareNostrum 4, we need a module to make the necessary exports to include the location with the
wrappers in the ”PATH” environment variable. This will be the only environment variable needed because
the rest of the configuration is set up inside the wrapper.

For the cron, I created a crontab that will run every 5 minutes in UserPortal’s VM. Before executing both
the gathering and the parsing-injecting script, it sources the environment to use a Python installation in
version 3.1140 with the packages I require.

3.5. Database Adaptation

UserPortal retrieves data from two main Databases. A MySQL (A) one and an InfluxDB (A) one. The
SQL database stores general data such as the jobs and nodes information, past maintenances, accounts
and machines, etc. InfluxDB stores voluminous and specific data from jobs as all the points to plot the
CPU and Memory usage, so we are not interested in touching this DB at the moment.

If in the future we decide to store TALP bigger amounts of data like the metrics per node, we will revisit
it in the future.

It is important to keep in mind that a user can define various monitoring regions 41 for TALP, because
this influences the design of the table.

With this information, for collecting POP Metrics 42, the best option was to create a new table inside the
SQL database. We decided to be a separate table mainly because of the regions we mentioned before. If
we add the TALP data to the ”jobs” table (which already contains a lot of fields), we will be limited to
only 1 Monitoring Region per job. By creating a Primary Key pair composed of the UserPortal’s job ID
and the Monitoring Region name, the user can define as many regions as it may need. The schema of the
two implied tables in the database is:

40This version is chosen because its the latest stable release which features a huge efficiency improvement in comparison
with previous versions

41Region inside the code whose performance will be traced. The default monitoring region is the MPI monitoring region,
which goes from MPI_Init to MPI_Finalize. The users can define their own monitoring region through the use of the TALP
API

42If you want to learn more about them you can visit https://pop-coe.eu/node/69

40

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Figure 8
Jobs and PopMetrics table in the UserPortal database. Source: DataGrip-generated

3.6. Web development

Understanding UserPortal’s front end has been one of the most arduous tasks for me since I had no
expertise in web development or PHP.

The general structure follows the classic Data - Domain - Presentation layer design. A particularity of
this webpage is that it does not use any framework and everything is coded barehandedly. Each layer
contains at the same time ”microlayers” with controllers, templates and services.

After a lot of time understanding how each layer worked and studying about everything that should
be adapted, changes were made to the internal schematic of the Domain Layer so we could have a new
PopMetrics class. Its main methods consist of searching by the job’s ID since we do not need to operate
with the data.

Finally, inside the job’s view, a new container with TALP data is only shown if it exists at least one entry
in the PopMetrics table with data for that job. It prints the monitoring regions all at once.

41

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Figure 9
Screenshot of a job webpage where it shows the TALP report with the POP Metrics. Source: Own

Figure 10
Screenshot of a job webpage where it shows the TALP report with the POP Metrics and more than one monitoring
region. Source: own

3.7. CI/CD

A concept we had in mind for this part of the project is to make deploys as easy as possible. The scripts
go to different machines, so we would have to pull manually the repository in at least 3 different locations
(UserPortal VM, Marenostrum 4 TALP module directory and DLB module inside MareNostrum 4).

42

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Figure 11
Visual representation of connections made by GitLab runners.
Source: own

The best option is to set up GitLab CI/CD, and work always in a local location, not in any production
environment directly, this will make development and deployment more secure. The workflow of CI/CD
is: everytime there is a push in the repository, to have a deploy stage for each file, which would be copied
to its final location. We do not allow gitlab-runners to run directly into HPC-Machines, so we need to
use an intermediate trusted machine that will copy the files from inside them to the final cluster location.
UserPortal’s VM serves this purposes and also simplifies the number of connections to be made.

3.8. Testing

As explained, exhaustive testing is the minimum required to assure that we are not compromising the
system or database’s integrity. The main issue with the database is that the test database is updated
with new jobs every day at 12 AM, so this delays the testing with recently executed jobs.

With the individual components, I made sure that all methods to make the scripts secure were doing their
job and that all bugs were corrected. I made a test case to find any corner case:

• Run the script and check that the data is correctly inserted into the test database. Verify that the
data inserted is the same as the data in the test file.

• Create a test file with data that is not in the correct format and run the script. Verify that the
script exits gracefully and does not insert any data into the database.

• Create a test file with data that is in the correct format, but contains unexpected fields. Run the
script and check that it only inserts the fields that are expected and does not throw any errors.

43

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

• Create a test file with data that is in the correct format, but contains invalid data. Run the script
and check that it exits gracefully and does not insert any data into the database.

• Create a test file with data that is in the correct format and run the script, check the script exits
gracefully and does not insert any data into the database if the job id is not found in the database.

• Create a test file with a filename which is not in the correct format and run the script, check the
script exits gracefully and does not open nor insert any data into the database.

For the whole system, I not only tested it myself but I asked my colleagues to make a few experiments.
Every bug reported was corrected and I also took suggestions, after guaranteeing that everything worked
fine I proceeded to put everything in production.

4. TALP - PAPI extension

4.1. Understanding how TALP works

In this part of the project, the most arduous part with a difference has been the understanding of the
entangled code of TALP. The main code is found in a single file 43 and it is difficult to trace the execution.
We also need to know about what structures exist, in order to modify them properly, here is a diagram I
made for easy understanding.

Figure 12
DLB-TALP own data structures.
Source: own

As we can see, TALP creates a structure called talp_info_t, which encompasses a structure for the moni-
43Except for the output printing, found completely in another file of the library

44

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

toring region (dlb_monitor_t) and a pointer to one or more structures called samples. Each thread creates
a sample and it is owned and updated exclusively by that thread. The structure talp_macrosample_t
contains the accumulation of metrics from all samples within that Monitoring Region. The structure
dlb_monitor_t contains the metrics from the Monitoring Region, calculated at certain moments of the
execution with the information inside their respective macrosamples.

The workflow for this project is highly complex and involves multiple data structures and processes. To
gain a better understanding, I created a detailed flowchart for myself to visualize the various steps and
components involved. This can be found in the Appendix (19). To further simplify this, I also created a
condensed summary flowchart that provides a succinct overview of the entire workflow.

Figure 13
TALP workflow simplified chart.
Source: own

1. The library and monitoring regions are initialized.

2. MPI Monitoring region is initialized and started once we run into MPI_Init.

3. We run into MPI calls:

(a) If the call is a non-blocking collective, we just modify the thread’s sample, by updating the

45

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

calculation of the useful time / MPI time.

(b) Otherwise, it updates all the monitoring regions. Updates the sample, accumulates all samples
into a macrosample and updates the MPI monitor.

4. We reach into MPI_Finalize

5. A final gathering and update of all data/samples is performed

6. Final calculations for the metrics are made

7. Prints the output

4.2. Autoconf

We do not have to forget that in order to implement PAPI into TALP, first TALP needs to include the
PAPI library and headers. TALP is configured using Autoconf 44, an Open Source project to automatically
configure software source code packages.

The structure is a bit complex requiring a more in-depth study than initially anticipated. Adjustments
had to be made to allow TALP to accept the ”–with-papi” option during configuration. Additionaly, I
defined the necessary macros(definition can be found in the Glossary A) to define region codes that will
only be compiled when the aforementioned option is explicitly specified.

4.3. Implementation

Before beginning the implementation process, a thorough study of PAPI was conducted as I had no prior
experience with it. Through this research, I gained an understanding of the various ways PAPI could be
utilized and the breadth of information it could provide. To further solidify my understanding, I wrote
and executed various test programs in C to gain hands-on experience with the library.

PAPI45 has ben integrated into TALP in the following way:

Firstly, it should be noted that TALP can be used without MPI and users who want to track their
application’s performance in terms of Instructions Per Cycle should be able to use it as well. Therefore,
PAPI is separated from the MPI Monitoring region by default.

Next, it is important to be clear on how we intend to use PAPI. The library offers different levels of
interfaces, a high-level API that is easy to program but not customizable, and a low-level API that is
more difficult to program but allows features such as EventSet 46 creation and thread-level tracing.

44https://www.gnu.org/software/autoconf/
45Version 6.0.0 has been used during the whole project
46Bit mask used internally by PAPI containing the desired counters we want to use

46

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

The main idea is to create an EventSet that will englobe the PAPI_TOT_CYC 47 and PAPI_TOT_INS
48 counters. Additionally, PAPI is activated for thread-level tracing. When an MPI call is encountered
and a sample is updated, we stop reading the counters since we are not in useful time. The values from
the counters are then read and stored inside the ”cycles” and ”instructions” fields, which have already
been created in the talp_sample_t structure. Once this is done, the counter’s value is reset to 0 and
counter tracing is restarted at the end of the function.

It is important to remember to implement the accumulation of metrics from the samples in the macrosam-
ple structure. To do this, we will add two new fields inside the macrosample’s structure for storing the
accumulated cycles and instructions, respectively.

Once the execution is finished and TALP is performing the final gathering of data, we will calculate the
IPC from the accumulated values of macrosamples, being the formula of IPC:

Instructions_per_Cycle =
Instructions

Cycles
(1)

This value is stored inside the dlb_monitor_t structure inside a new field called ”ipc” and later displayed
when output printing.

A significant portion of the implementation process involves the implementation of all possible ways to
print the output and other performance metrics of interest such as the raw data, the plain number of
cycles and instructions. Each type of report can be printed in different formats, JSON, XML, CSV or
plain text, and performs MPI operations for collecting data across nodes or processes, like a reduce 49

operation or a gather 50one. It even defines unique MPI datatypes It is important to test that this part
works correctly because otherwise the traced data can be lost in communication.

It is important to check other functions that can be called by the user using the API as they might require
an extra update or reset of the sample. Additionally, it is essential to remember to properly shut down
PAPI in order to free up any resources it may be using. In total, five files from the project have been
modified in order to properly implement PAPI counters within TALP.

The next diagram synthetizes the PAPI additions to the TALP execution flowchart:
47Total cycles
48Total instructions
49MPI_Reduce is a collective operation in MPI that is used to combine values from different processes into a single value
50The MPI_Gather operation is a collective operation that is used to gather data from all processes and combine them

into a single buffer on one process.

47

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Figure 14
TALP workflow simplified chart with PAPI integration.
Source: own

To be precise on whether functions have been altered with the implementation, in the Appendix 20 can
be found the big chart with the execution edited. The functions with alterations are marked in purple.

4.4. Testing

The most important aspect of integrating PAPI into TALP is ensuring that the counters are being stopped,
read, reset, and started again correctly.

Gradual testing and the use of debugging messages can help to confirm that when an MPI call is encoun-
tered, a meaningful value is read and properly stored and accumulated. Then, ensure that the counters in
the EventSet are reset to 0, and this should be done inside each thread to avoid interference with counters
from other threads. Additionally, it is important to stress the importance of error control to ensure that
nothing is overlooked.

48

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

4.4.1. Data correctness and validation

While PAPI can be used to trace cycles and instructions, it is not possible to confirm their accuracy
independently. However, the in-house tracing software, Extrae, can also be configured to trace PAPI
counters and calculate Instructions Per Cycle (IPC) for useful computation regions.

By performing tests and comparing the outputs of Extrae and TALP, we found that the results were
similar but with slight deviation (not greater than 0.05 points between executions). It should be noted
that Paraver reports an IPC interval rather than a fixed number.

What differs from execution to execution is mainly the cycles number. This teeny tiny difference can be
explained by some factors:

• External factors. Processes running in the system at the same time can interfere with our executions
and affect the number of cycles used by our program.

• Memory access patterns. The way our program accesses memory can have an impact on the number
of cycles. For example, more cache misses imply more time to access memory, and in consequence,
more cycles used.

• Non-deterministic execution. Even if the input is the same, some events can cause the program to
take different paths during execution like branch mispredictions. This may lead to variations in the
number of cycles used.

4.5. Overhead evaluation

It is known that PAPI can introduce overhead to program execution as it uses the syscall read() 51 to read
hardware counters. As TALP is a lightweight tool, it is crucial to evaluate the amount of overhead that
it introduces in order to determine whether or not it is necessary to notify the user about the increase
in execution time. This can be accomplished by measuring the execution time of the program both with
and without PAPI enabled, and comparing the results.

It is also important to note that the overhead introduced by PAPI may vary depending on the specific
counters used, the number of events in the eventset, as well as the architecture and platform on which
the program is running.

To evaluate the overhead introduced by PAPI, we used three benchmarks: PILS (distributed alongside
DLB), Linpack, and HPCG. All experimentation was performed in the same manner for all benchmarks.
They were compiled and executed with the same Intel stack, version 2018, which has been found by
the User Support Team to provide better performance and reliability in MareNostrum452. For each

51https://man7.org/linux/man-pages/man2/read.2.html
52https://www.bsc.es/supportkc/tech-reports/mpi-report

49

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

benchmark, the same exact binary was run on 1, 2, 4, 8, and 16 nodes, starting 48 53 threads per each
MPI task and one MPI task per node.

The results were calculated by performing at least 20 executions of each benchmark and then calculating
the median of the interested metric, with the maximum and minimum times removed from the calculation.
Graphs were generated with the results, making it easy to compare the three execution scenarios of the
benchmark. The plain execution is represented in blue, execution with TALP but without PAPI counters
enabled is represented in red, and execution with both TALP and PAPI enabled is represented in yellow.

Figure 15
LINPACK performance in GFLOPs in different scenarios and number of nodes used in the execution. Source: own

53Note how MareNostrum4 processors have 48 cores per thread

50

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Figure 16
PILS execution time in seconds in different scenarios and number of nodes used in the execution. Source: own

Figure 17
HPCG performance in GFLOPs in seconds in different scenarios and number of nodes used in the execution.
Source: own

Each benchmark represents a different feature. LINPACK is compute-intensive, it makes a low number
of MPI calls for a benchmark. The drop in scalability in the particular case of 8 nodes suggest that there
is something that does not suit well with problem size, but it is not related to TALP execution because
the difference of overhead between a TALP and a non-TALP execution is maintained in the bigger node
cases. HPCG apart from computing it also tests data access patterns. PILS is created to simulate an
imbalance in MPI tasks, but communication is barely significative. Because PAPI counters are read

51

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

with every MPI call, the overhead should be bigger in applications with more communication. For the
tests performed, this theory corresponds to the graphs’ results, HPCG and LINPACK report a drop in
performance palpable in comparison with the other benchmarks, where you can see how they run faster
in plain executions but the difference between plain TALP and TALP with PAPI enabled is pretty low,
even sometimes it gives a better performance the PAPI execution.

The variability in similar executions can be explained with the same reasons than the variability in
measured cycles. Memory accesses, processor pre-fetching and noise from other processes make normal a
variability in a program execution.

Overall, we can conclude that TALP introduces an overhead to a program execution, but that the differ-
ence between TALP with PAPI or without it depends in the communication pattern, making it hardly
noticeable when the application we are running barely uses MPI.

5. Making the new information meaningful

All of these implementations will make it easier for developers and the scientific community to trace their
executions. But they can see the numbers printed and the screen and not understand what that truly
means or what can be going wrong.

A new section has been written and added to the User Support Team official documentation54 called
Performance Analysis Tools. This intends to introduce the user to other in-house tools, explanation of
some metrics and links to webpages of entities dedicated to educating on this topic, where they will find
loads of information, webinars and exercises.

6. Future development

Due to time constraints, certain features that would have been beneficial to implement were not included
in the project. One such example is the ability to print all possible metrics generated by TALP in the
UserPortal. Another feature that could be considered for future development is the use of GPU PAPI
counters. As MareNostrum5 coming soon will feature an accelerated partition, it would be valuable to
develop a tool to monitor and ensure that GPUs are being used efficiently. This would require additional
research and development and may be considered as an extension to the current project.

54https://www.bsc.es/supportkc/

52

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

7. Conclusions

In conclusion, this thesis has presented the design, implementation, and evaluation of a library for tracing
useful computation in MPI applications, which is integrated with a web-based portal for easy visualization
and analysis of the captured information.

The significance of this work lies in the importance of performance analysis in high-performance comput-
ing (HPC) applications. With the increasing demands placed on HPC systems, it is crucial to have tools
available to understand and optimize the performance of these applications. By providing a user-friendly
and easy-to-use interface, the library and web portal developed in this thesis make performance opti-
mization more approachable and efficient. Furthermore, with the growing concern of energy consumption
in HPC, the ability to identify and eliminate unnecessary communication and computation can lead to
significant energy savings, which is important to promote green computing. The library and web portal
introduced in this thesis can be a significant contribution for researchers, developers and users to optimize
their MPI applications, thus, achieving better performance, faster results, and energy efficiency.

The other significant aspect of this work is the dedication, attention to detail and time that went into
creating a polished and professional product. The effort required to understand the subject matter, learn
new technologies, and refine the system structure and code to the best of my abilities was significant.
Many iterations of the scripts were written and improved over time, and extensive testing was conducted
to ensure satisfaction with the final results.

53

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

A. Glossary

This glossary intends to provide definitions of concepts mentioned within the project, that require a
definition for someone not familiar with HPC, an IT environment or the terms used by the software in
this project, but the explanation is not long enough to make it a section inside ”Terms and concepts”.

CI/CD CI/CD stands for Continuous Integration and Continuous Deployment. It is a software de-
velopment practice that aims to automate the process of building, testing, and deploying software. The
goal of CI/CD is to ensure that code changes are integrated and deployed to production as quickly and
smoothly as possible, while also ensuring that the software is stable and reliable.

InfluxDB InfluxDB is an open-source time series database. It is optimized for storing and querying
large amounts of time-stamped data, such as metrics and events.

MySQL MySQL is a widely used open-source relational database management system (RDBMS). It is
used to store and manage large amounts of structured data in a highly-scalable and reliable way

Node Single physical or virtual machine in a networked computing environment. Each node typically
has its own CPU, memory, storage, and networking capabilities. They can be used as a single machine
or as a set of machines that work together to perform a specific task.

GPFS GPFS (General Parallel File System) is a high-performance, parallel file system that allows
multiple clients to simultaneously access and process shared data files. GPFS is designed to handle large-
scale data storage needs and provide fast access to large amounts of data, making it well-suited for use
in high-performance computing (HPC).

Wrapper A wrapper is a script or program that is used to interface with other software. Wrappers are
commonly used to simplify the use of complex software, by providing a more user-friendly interface.

Macros When using the open-source tool Autoconf, a macro is a predefined code snippet that can
be used to perform a specific task or set of tasks. Autoconf macros are typically used to check for the
presence of certain features, libraries, or programs on the system where the software is being built, and
to configure the software accordingly.

Cron Cron is a time-based job scheduler in Unix-like operating systems. It allows users to schedule
scripts or programs to run automatically at specified intervals.

54

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

Module A collection of software that can be loaded and unloaded as needed. It is a way to organize
software, in order to make it easy to manage different versions and dependencies, it allows you to easily
switch between different software packages and versions without affecting other software on the system.

Logfile File that contains a record of events that have occurred in a system, application, or service.

KISS Keep It Simple, Stupid”, is a design principle that emphasizes the importance of simplicity in
software development. The principle is based on the idea that simple solutions are easier to understand,
maintain, and troubleshoot than complex solutions.

55

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

B. GANTT diagram

Figure 18
Gantt diagram for my project. Source: own

56

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

C. TALP execution diagram

Figure 19
TALP execution diagram I have made for myself to have a better understanding of the application. Source: own

57

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

D. TALP execution diagram with PAPI

Figure 20
TALP execution diagram from before with the altered functions marked with purple Source: own

58

UNIVERSITAT POLITÈCNICA DE CATALUNYA
FACULTAT D’INFORMÀTICA DE BARCELONA

References

[1] BSC. Marenostrum 4 begins operation, 2017. https://www.bsc.es/news/bsc-news/marenostrum-4-
begins-operation [Online, Accessed 25-09-2022].

[2] BSC. Bsc transparency portal, 2022. https://www.bsc.es/discover-bsc/transparency [Online, Ac-
cessed 27-09-2022].

[3] Jack Dongarra Horst Simon Martin Meuer Hans Meuer, Erich Strohmaier. Top500 ranking, 2022.
https://www.top500.org/ [Online, Accessed 25-09-2022].

[4] Innovative Computing Laboratory (ICL). Papi’s wiki. https://bitbucket.org/icl/papi/wiki/Home
[Online, Accessed 25-09-2022].

[5] NetApp. What is high performance computing. https://www.netapp.com/data-storage/high-
performance-computing/what-is-hpc/ [Online, Accessed 24-09-2022].

[6] Guillem Ramirez Miranda Victor Lopez and Marta Garcia-Gasulla. Talp: A lightweight tool to
unveil parallel efficiency of large-scale ex-equations.”, 2021. In PERMAVOST ’21. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn [Online, Accessed 23-09-2022].

[7] Wikipedia. Message passing interface. https://en.wikipedia.org/wiki/Message_Passing_Interface
[Online, Accessed 26-09-2022].

[8] Wikipedia. Mpich. https://en.wikipedia.org/wiki/MPICH [Online, Accessed 27-09-2022].

[9] Wikipedia. Openmpi. https://en.wikipedia.org/wiki/Open_MPI [Online, Accessed 27-09-2022].

[10] Wrike. Kanban guide. https://www.wrike.com/kanban-guide/ [Online, Accessed 26-09-2022].

59

	Context and scope
	Introduction
	Terms and concepts
	High-Performance Computing (HPC)
	Programming model
	Message Passing Interface (MPI)
	Performance Application Programming Interface (PAPI)
	TALP
	UserPortal

	Motivation
	Problem to be resolved
	Justification

	Project planning
	Scope
	Requirements
	Objectives

	Stakeholders
	Marenostrum Users
	Operations department
	Scientific community
	University students

	Methodology and rigour
	Kanban
	Git
	Test environment
	CI/CD
	Group meetings

	Tasks and planning
	Project definition
	Project planning
	Project development
	Project documentation
	Estimates and the Gantt

	Resources
	Human resources
	Hardware resources
	Software resources
	Material resources

	Budget - Identification of costs
	Human costs
	Material costs
	Other costs
	Total cost

	Risk management: alternative plans and obstacles
	Management control
	Sustainability
	Self-assessment
	Economical dimension
	Environmental dimension
	Social dimension

	UserPortal's integration
	Actual system design
	Design decisions
	Requirements
	Backend development
	Wrapper
	Gathering Script
	Parsing-Injecting Script
	Module and cron

	Database Adaptation
	Web development
	CI/CD
	Testing

	TALP - PAPI extension
	Understanding how TALP works
	Autoconf
	Implementation
	Testing
	Data correctness and validation

	Overhead evaluation

	Making the new information meaningful
	Future development
	Conclusions
	Glossary
	GANTT diagram
	TALP execution diagram
	TALP execution diagram with PAPI

