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ABSTRACT
In this paper, a high-gain interval observer (HGIO) for a class of partially linear continuous-time sys-
tems with sampled measured outputs in the presence of bounded noise and additive disturbances
is proposed. The design of the HGIO is formulated in the Linear Matrix Inequality (LMI) framework.
The gain of the HGIO is designed to satisfy the cooperative property using a time-varying change of
coordinates based on pole placement in separate LMI regions. Moreover, a procedure for designing
the HGIO gain to minimise the effect of the noise and disturbance in the estimation is provided. The
stability of the proposed HGIO is also guaranteed. The proposed approach is assessed in simulation
using a numerical example.
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1. Introduction

High-gain observer (HGO) is an important technique
in non-linear control (Deza et al., 1992; Gauthier
et al., 1992; Khalil, 2017). In Khalil and Praly (2014),
a brief history of this technique is presented sum-
marising the main ideas and results as well as some of
their applications in control. HGOswere introduced in
the context of linear feedback as a tool for the robust
observer design. The use of HGOs in nonlinear feed-
back control started to appear in the late 1980s (Khalil
&Praly, 2014). Since then intense research on this topic
has been developed with the main results summarised
in Khalil and Praly (2014).

As discussed in Khalil (2017), one of the most seri-
ous challenges in implementing HGOs is the effect
of measurement noise and disturbances. One way to
deal with this issue is to estimate these disturbances
as proposed in Yao et al. (2019), where a distur-
bance observer is designed for singular Markovian
jump systems. Another way is to work in a bounded-
error context that assumes unknown but bounded
disturbances as considered in this paper. Therefore,
such an identified challenge will be faced in the
context of an unknown but bounded description of
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noise and disturbances, such that instead of gener-
ating a nominal estimation, an interval that bounds
the set of estimated states is proposed using an inter-
val observer approach. Interval observers were intro-
duced by Gouze et al. (2000) as a robust estimation
approach. Since then it has been a very active area
of research, as, e.g. in Mazenc and Bernard (2011),
a time-varying exponentially stable interval observer
can be constructed using the Jordan canonical form
for a stable linear system with additive disturbances.
In Mazenc and Dinh (2014), a new technique of con-
struction of continuous–discrete interval observers for
continuous-time systems with discrete measurements
and disturbances in themeasurements and the dynam-
ics is introduced.

The principle of interval observers is to provide an
interval for the state estimation bounding the effect
of noise and disturbances that are assumed to be
unknown but bounded with known bounds. There
are two families of approaches for generating such an
interval. The first family is based on an approxima-
tion of the set of states by means of some simple set
(polytope, ellipsoid or zonotope) that is computed iter-
atively from the set obtained in the previous iteration
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(see, e.g. Alamo et al., 2005; Combastel, 2015). The
second approach is to design two observers that pro-
vide, respectively, the upper and lower bounds of the
interval that bounds the set of estimated states taking
into account disturbance and measurement bounds.
These observers are designed to satisfy the coopera-
tivity condition that guarantees that just propagating
the extreme values of uncertainty intervals is enough
to produce the interval bounding the set of estimated
states (Efimov&Raïssi, 2016). In Thabet et al. (2021), a
high-gain interval observer (HGIO) is proposed for a
class of partially linear systems affected by unknown
but bounded additive disturbance terms and mea-
surement noise. The proposed observer was designed
based on a change of coordinates which ensures the
cooperativity of the system and that the state matrix
is Hurwitz stable and C-diagonalisable under some
assumptions. In this last work, there is no construc-
tive method to design the observer gain. It was cho-
sen arbitrarily such that the C-diagonalisation and the
Hurwitz character of the state matrix are satisfied. In
addition, the measurements are considered known at
each continuous-time instant t.

As discussed in Mazenc et al. (2015), in many
real applications, measurements are collected in dis-
crete time. This leads to continuous–discrete-time
systems where the system dynamics evolves in con-
tinuous time while measurements are only available
at discrete-time instants. In the literature, the prob-
lem of observers for continuous–discrete-time sys-
tems has already been investigated as a separate prob-
lem from the continuous-time and discrete-time cases
because of the particular challenges it poses. Some
extensions to continuous–discrete-time systems of
some classical observers can be found for Kalman fil-
ters (Jazwinski, 2007), for HGOs (Deza et al., 1992)
and for non-linear systems (Ahmed-Ali et al., 2009),
among others. The case of interval observers for
continuous–discrete-time systems has also been inves-
tigated in the literature (see, e.g. Goffaux et al., 2009;
Mazenc & Dinh, 2014; Menini et al., 2021). In Mazenc
andDinh (2014), an interval observer approach for lin-
ear continuous–discrete-time systems including dis-
turbances is proposed. This approach uses two copies
of the studied system and a framer, accompanied
by appropriate outputs which give component-wise,
upper and lower bounds for the solutions of the stud-
ied system. Recently, in Menini et al. (2021), a high-
gain practical observer with an interval arithmetic tool

in the case of sampled data measurements is designed.
In this work, two closed-form expressions are pro-
posed in order to compute certified bounds based on
the solution of the single input linear system.An exten-
sion of this method to the case of a nonlinear sys-
tem in an observer normal form is also proposed by
the authors. However, the class of systems treated in
this paper, namely linear systems or nonlinear systems
under the normal form, is quite restrictive. Moreover,
neither the case of bounded noise and additive dis-
turbances nor the continuous–discrete-time aspect is
addressed.

The main contributions of this paper are the
following:

• An HGIO for a class of partially linear continuous-
time systems with sampled measured outputs in
the presence of bounded noise and additive distur-
bances is proposed.

• The design of the HGIO is formulated in the Linear
Matrix Inequality (LMI) framework.

• The gain of the HGIO is designed to satisfy the
cooperative property using a time-varying change
of coordinates based on pole placement in separate
LMI regions.

• Moreover, a procedure for designing theHGIO gain
to minimise the effect of the noise and disturbance
in the estimation is provided.

• The stability of the proposed HGIO is also
guaranteed.

• The proposed approach is assessed in simulation
using a numerical example.

The structure of the paper is the following: Section 2
introduces some preliminary material. Section 3
presents the problem statement. Section 4 introduces
the proposed HGIO. Section 5 illustrates the proposed
approach with a numerical example. Finally, Section 6
draws the main conclusions and presents some future
research paths.

2. Preliminaries

Before introducing the problem statement and the
proposed HGIO for continuous–discrete-time sys-
tems, some preliminaries about complex intervals and
DR-regions are given. Complex intervals are usually
defined by rectangles or disks in the complex plane
(Boche, 1966; Petkovic & Petkovic, 1998). DR-regions



are convex subsets of the complex plane that include
half-planes, conic sectors, disks, and vertical and hori-
zontal strips, among others which can be symmetrical
(Peaucelle et al., 2000) or not (Bosche et al., 2005) with
respect to the real axis.

In the following, centred form concepts are intro-
duced as well as the main notations and the technical
propositions that will be further used to derive the
main results of our work. The interested reader can
refer to Combastel and Raka (2011) for more details
about complex intervals and to Bosche (2003) for a
more complete description of different types of DR-
regions.

The complex intervals used in this work rely on
a partial order defined over C (the field of com-
plex numbers) with three statements: ∀(L,U) ∈ C ×
C, L � U ⇔ (LR � UR) ∧ (LI � UI), where � ∈ {=,<
,>}. LR ∈ R and LI ∈ R denote the real and the
imaginary part of L ∈ C (idem for U), respectively.
Similar statements also hold with � ∈ {≤,≥}. In the
following, this notation will be used to refer to
the real and imaginary parts of scalar, vector or
matrix complex arguments. A complex interval [L,U]
is defined as [L,U] = [LR,UR] + i[LI ,UI] if L ≤ U,
where [LR,UR] = [L,U]R and [LI ,UI] = [L,U]I are
usual real intervals. A centred form can also be intro-
duced using the operator ± which is defined as

± : C × C
+ → IC

(c, r) 	→ c ± r = [c − r, c + r], (1)

where C
+ = {r ∈ C, r ≥ 0} is the set of positive com-

plex numbers and IC is the set of scalar complex inter-
vals. c (resp. r) denotes the centre (resp. the radius) of
the complex interval c ± r. Based on the partial order,
which is previously introduced, it is clear that r ≥ 0
⇔c − r ≤ c + r. The restriction of ± to real numbers
is defined by analogy to (1) with ± : R × R

+ → IR.
Hence, (c ± r)R = cR ± rR and (c ± r)I = cI ± rI .

The sum of two centred complex intervals can be
computed from the sum of the centres and the sum of
the radius:

(c1 ± r1) + (c2 ± r2) = (c1 + c2) ± (r1 + r2). (2)

To compute a(c ± r), two operators namely cabs and
ctimes, defined inCombastel andRaka (2011), are used
in this paper. Their definitions for scalar values are
as follows: cabs:|a| = |aR| + i|aI| and ctimes: a 
 b =
|a||b| + 2|aI||bI|, where i and |.|, respectively, referring

to
√−1 and the absolute value operator. In Combastel

and Raka (2011), the element-by-element extension of
these operators to vectors and matrices can be found.
Then, the linear image of a complex intervalmatrix can
be obtained by applying the following theorem that has
been proved in Combastel and Raka (2011).

Theorem 2.1: ∀ (M,C,R) ∈ C
n×p × C

p×q × C
p×q,

M(C ± R) = (MC) ± (M 
 R) ∈ IC
n×q, where M 


R = |M||R| + 2|MI|RI| ∈ (C+)
p×q

Proposition 2.2: Let z:R+ → C
n, zc : R

+ → C
n and

zr : R
+ → (C+)n be three continuous functions (with

respect to time). If ∀ t ∈ R
+, z(t) ∈ zc(t) ± zr(t)

with zr(t) > 0, then a continuous function σ : R
+ →

[−1,+1]2n returning bounded real vector values exists
and satisfies

∀ t ∈ R
+, z(t) = zc(t) + �(zr(t))σ (t), (3)

where the operator �(.) is defined as

∀ η ∈ C
n, �(η) = [diag(ηR), i.diag(ηI)] ∈ C

n×2n.
(4)

Let AT, A∗ and AH denote, respectively, the trans-
pose of matrixA, the conjugate transpose and the Her-
mitian matrix defined as AH = A + A∗. ⊗ represents
the Kronecker product.

Let R, a 2d × 2d Hermitian matrix, be defined as

R =
[
R00 R10
R∗
10 R11

]
∈ C

2d×2d, R11 ∈ C
d×d ≥ 0. (5)

The subset of the complex plane defined according to

DR = {s ∈ C : R00 + (R10s)H + R11s∗s < 0} (6)

is called DR-region of degree d.
Note that the interior of a disk with centre c = c1 +

c2i and radius r is characterised by a matrix R equal to

R =
[
c21 + c22 − r2 −c1 + c2i
−c1 − c2i 1

]
. (7)

3. Problem statement

In this paper, a class of partially linear continuous-time
systems with sampled measured outputs is consid-
ered in the presence of bounded noise and additive



disturbances. The considered system is described as
follows:{

ẋ(t) = Ax(t) + φ(t, u(t), x(t)) + d(t),
y(tk) = Cx(tk) + V(tk),

(8)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the
input vector and d(t) ∈ R

n is the additive distur-
bance vector. Measured outputs y(tk) ∈ R

s and noises
V(tk) ∈ R

s are available only at each sampling time tk.
Function φ is continuous w.r.t to the time.

Note that system (8) combines a continuous-time
dynamic behaviour for the states and discrete-time
measurements y ∈ R

s which are available only at the
sampling times t = tk. This type of system is known
in the literature as continuous–discrete-time system as
discussed in the introduction.

Assumption 3.1: It is assumed that the additive distur-
bances d ∈ R

n are unknown but bounded with known
elementwise bounds: d ∈ [d, d] = dc ± dr with dc ∈
R
n and dr ∈ R

n being, respectively, the centre and the
radius of the interval.

Assumption 3.2: It is assumed that the measure-
ments noise V(tk) is bounded and |V(t)| ≤ δ with t ∈
[tk, tk+1], where δ ∈ R

s. Therefore, we can assume
that, for ∀ t, the noise is bounded with known elemen-
twise bounds: V(t) ∈ [−δ, δ] = 0 ± δ, where 0 ∈ R

s is
a vector with all elements equal to zero.

Assumption 3.3: It is assumed that the initial system
states are bounded: x(0) ∈ xc(0) ± xr(0) ⊂ R

n, where
xc(0) and xr(0) are known.

Assumption 3.4: It is assumed that the input vector
u(t) is continuous w.r.t time t, known and bounded.

In this paper, an HGIO is proposed for system (8)
that considers the effect of unknown but bounded
noise and additive disturbances providing upper/lower
estimation bounds for states and outputs.

Let us first introduce the HGO structure proposed
by Freidovich andKhalil (2008) for system (8) thatwill
be used along the paper:

˙̂x(t) = Ax̂(t) + φ(t, u(t), x̂(t)) + L1(y(t)

− Cx̂(t)) + d̂(t), (9)

where x̂(t) and d̂(t) represent, respectively, the estima-
tions of the state and the disturbance.

Following Ali et al. (2014), the observer gain L1 ∈
R
n×s is parameterised as follows:

L1 = θ�−1
θ K, (10)

where θ > 1, K ∈ R
n×s and the matrix �θ is a diago-

nal matrix n × n defined by

�θ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0
1
θ

· · · 0

0 0 . . . 0

0 · · · 0
1

θn−1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that the product θ�−1
θ should be under-

stood as an elementwise product. Then, (9) can be
reformulated as

˙̂x(t) = (A − θ�−1
θ KC)x̂(t) + φ(t, u(t), x̂(t))

+ θ�−1
θ Ky(t) + d̂(t). (11)

To implement such an observer, the measurements
are needed at every time instant t. However, the mea-
surements of system (8) are available only at each sam-
pling time tk. To overcome this problem, let us con-
sider the following continuous–discrete time HGO:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂xw(t) = Ax̂w(t) + φ(t, u(t),

x̂w(t)) + d̂(t) + L1(w(t) − ŵ(t)),

ŵ(t) = Cx̂w(t) + V̂(t),

ẇ(t) = C[Ax̂w(t) + φ(t, u(t),

x̂w(t)) + d̂(t)],

with t ∈]tk, tk+1[,

w(tk) = y(tk),

(12a)

(12b)

(12c)

(12d)

where x̂w(t), w(t) and ŵ(t) represent, respectively, the
estimation of the state, the prediction of the output
between two sampling times and the estimation of the
noisy output based on the state estimation x̂w(t). d̂(t)
and V̂(t) are the estimation of the unknown distur-
bances and noise considering that the only knowledge
we have is about the bounds introduced in Assump-
tions 3.1 and 3.2. L1 is the gain of HGIO that will be
designed in Section 4.1. For the implementation of this
observer, two additional assumptions are considered:

Assumption 3.5: It is assumed that the initial system
states of (12a) are bounded: x̂w(0) ∈ x̂cw(0) ± x̂rw(0) ⊂
R
n,with x̂rw(0) ≥ 0,where x̂cw(0) and x̂rw(0) are known.



Assumption 3.6: It is assumed that the estimation of
the disturbances d̂(t) and the estimation of the noise
V̂(t) are unknown but bounded: d̂(t) ∈ dc(t) ± dr(t)
and V̂(t) ∈ 0 ± δ, according to the bounds in Assump-
tions 3.1 and 3.2.

Note that the observer in (12) will not be directly
implemented using this structure. In this work, as a
first step, we are interested in the design of an inter-
val observer providing the lower and upper bounds of
the output estimation for all t. Then, based on (12) and
Assumptions 3.5 and 3.6, a continuous–discrete-time
interval observer will be proposed in a new base intro-
duced in Section 4.2.1 that will provide output bounds
estimation.

Remark 3.1: The idea of designing an observer with a
sampled measured output, where the output between
two sampling periods is predicted, was originally pro-
posed in Karafyllis and Kravaris (2009) using an inter-
sample output predictor. In this paper, this idea is
applied to design the so-called continuous–discrete
HGO in the bounded-error context. In the following
of this paper, a constructive method for designing the
gain observer is given such that the effect of the noise,
which is one of the main issues in the HGIO design,
will be reduced.

Remark 3.2: Note that w(t) is the estimation of the
output without noise.

Remark 3.3: Continuous–discrete observer struc-
ture (12) is different from the one proposed in
Mazenc and Dinh (2014). Indeed, observer (12)
involves an output predictor termw(t)which provides
continuous-time estimation of the system outputs
between two sampling periods. However, in Mazenc
and Dinh (2014), the observer design is based upon a
discrete model of the system using the zero-order hold
approach. As a matter of fact, the update process at
the sampling times tk is performed only on the pre-
diction term w(t) for observer (12), while in Mazenc
and Dinh (2014), this update process affects the whole
system state.

In the next section, as a first step, an HGIO based
on (12) will be proposed to provide the upper and the
lower output bounds estimation at every time t. As a
second step and based on (11), the obtained bounds
will be used in the newHGIO to provide the lower and

the upper bounds for state estimation values of sys-
tem (8). This procedure will be further detailed later
in the paper.

The design of the HGIO, which is a combination of
HGO (9) and the interval observer approach, involves
finding two observers that provide the lower and upper
bounds of the state (resp. the output) estimation guar-
anteeing that the state (resp. the output) of system (8)
satisfies x(t) ∈ [x(t), x(t)] (resp. y(t) ∈ [y(t), y(t)]).

It should be noted that the design of such an
observer requires some properties such as monotonic-
ity (Gouze et al., 2000). Unfortunately, this property
is hard to be satisfied in many cases. To overcome
this difficulty, a time-varying change of coordinates,
which is based upon the diagonalising of the observer
state matrix (A − θ�−1

θ KC = ν−1diag(ρ + iω)ν) and
depends on the parameter θ , has been proposed in
Thabet et al. (2021). In this last work, where the
measurements are considered known at each instant
t, the parameter θ has been arbitrarily selected and
the gain K has been arbitrarily chosen such that the
matrix (A − θ�−1

θ KC) is C-diagonalisable and Hur-
witz stable, which is not always obvious to be satis-
fied. Furthermore, the selection of K becomes more
and more difficult since the sufficient condition, given
by Proposition 4.2 in Thabet et al. (2021) and which
should be verified to ensure the stability of the radius
dynamic of the proposed HGIO, depends on this
gain K.

In this work, on the one hand, in order to overcome
simultaneously the problem of the C-diagonalisation
and the Hurwitz character of the matrix (A −
θ�−1

θ KC) when designing the HGIO, a constructive
LMI design approach will be proposed to design the
observer gain (θ�−1

θ K). On the other hand, in order
to ensure the Metzler character (Smith, 1995) of the
matrix (A − θ�−1

θ KC), a new time-varying change of
coordinates, depending on the parameter θ , will be
proposed. The choice of the parameter will not be
arbitrary as in previous works, but it will be com-
puted based on LMI and verifying some conditions
in order to reduce the effects of the noise and the
additive disturbances. It should be noted that the
proposed methods to compute the parameter θ and
the gain θ�−1

θ K will guarantee the non-divergence
of the bounds dynamics of the proposed observer.
In this way, the sufficient condition, given in Tha-
bet et al. (2021), of non-divergence will not be longer
needed.



4. HGIO design

In the following, the design of the observer gain L1 is
firstly detailed. Secondly, a continuous–discrete-time
HGIO structure for output bounds estimation is pro-
posed and a new LMI procedure for computing the
parameter θ is given. Finally, by using the resulting
bounds of the output, an HGIO structure of state esti-
mation of system (8) is given.

4.1. HGIO gain design

As discussed in the previous section, observer para-
metrisation (10) allows that the HGO state matrix
in (11), (A − θ�−1

θ KC), can be expressed as (A −
L1C). In the following, the LMI approach to design
L1 such that the matrix (A − L1C) is Hurwitz and C-
diagonalisable is given. Note that the condition ensur-
ing the stability of the proposed observers is also taken
into account when designing the gain.

In a previous work (Thabet et al., 2021), this gain
L1 is chosen arbitrarily such that thematrix (A − L1C)

is Hurwitz and C -diagonalisable. Therefore, there is
no systematic design procedure for L1. In this paper,
an LMI design approach is proposed to design the
observer gain L1 which ensures simultaneously the
Hurwitz character and the C-diagonalisation of (A −
L1C). In particular, all the eigenvalues of the matrix
(A − L1C) will be located in pre-defined symmetric
disks. Then, the task is to design the observer gain
L1 such that the eigenvalues of (A − L1C) are inside
given DR-regions (DRj with j = 1, . . . , n). The main
objective of designing L1 usingDR-regions is to ensure
simultaneously theC-diagonalisation and theHurwitz
character of (A − L1C) such that

A − L1C = ν−1
1 diag(ρ1 + iω1)ν1, (13)

where ν1 ∈ C
n×n, ρ1 = [ρ11 · · · ρ1n]T ∈ R

n, ω1 =
[ω11 · · ·ω1n]T ∈ R

n, respectively, denote the eigen-
vector and the vector containing the real and the
imaginary parts of the eigenvalues of (A − L1C). The
function diag returns a diagonal matrix from its input
vector.

In the following, the subsets of the eigenvalues
(A − L1C)will be defined by particular convex regions
called DR-regions (Bosche, 2003), which are charac-
terised by LMIs. Note that, in this paper, the con-
sidered class of DR-regions is a class of open con-
vex subsets of the complex plane defined by disks

which can be symmetrical (Peaucelle et al., 2000) or
not (Bosche et al., 2005) with respect to the real axis.
Each region DRj (j = 1, . . . , n), which in this work is
a disk, with centre cRj = cRj1 + cRj2 i and radius rRj is
characterised by

Rj =
⎡
⎣Rj00 Rj10

R∗
j10 Rj11

⎤
⎦ , (14)

where Rj00 = c2Rj1 + c2Rj2 − r2Rj, Rj10 = −cRj1 + cRj2 i,
R∗
j10 = −cRj1 − cRj2 i and Rj11 = 1. On the one hand, to

ensure the Hurwitz character of (A − L1C), the real
part cRj1 of each defined centre cRj should be cho-
sen in the left half side of the complex plane such
that cRj1 + rRj < 0. On the other hand, to guarantee
theC-diagonalisation of the matrix (A − L1C), at least
one of the defined disks should have a centre with an
imaginary part cRj2 �= 0.

The previously mentioned objectives can be
achieved using the following result:

Theorem 4.1: There exists a gain L̂1j (j = 1, . . . , n)
that assigns the jth eigenvalues of the matrix (A − L1C)

in a given regionDRj of degree 1, if and only if there exist
a positive scalar X̂j and amatrix Ŝj ∈ R

s×1 such that the
following LMI holds:⎡
⎢⎣ Rj00 ⊗ X̂j

+(Rj10 ⊗ (ÂjX̂j − ĈjŜj))H
Z∗
j ⊗

(ÂjX̂j − ĈjŜj)∗

Zj ⊗ (ÂjX̂j − ĈjŜj) −Id ⊗ X̂j

⎤
⎥⎦ < 0

(15)
with Âj = �j, diag([�1 · · ·�j · · ·�n]T) = V−1ATV ,
Ĉj = λjV−1CT, λj is a row vector where the jth position
element is equal to 1 and zero elsewhere (e.g. if j = 1,
then λ1 = [1 01×(n−1)]) and where Zj is deduced from
the Cholesky factorisation Rj11 = Z∗

j Zj, then the gain is
given by

L̂1j = X̂−1
j Ŝj. (16)

Proof: The proof follows in a straightforward man-
ner applying the duality principle between control
and estimation to the result presented in Maamri
et al. (2006) where the state feedback gain was
designed. �

It should be noted that Theorem 4.1 deals with a
partial pole placement. In order to design L1, we have
to achieve a complete pole placement, using n different



subsets of eigenvalues with each subset associated with
a region DRj (j = 1, . . . , n). Therefore, the previous
procedure given in Theorem 4.1 should be repeated
until all the eigenvalues of the matrix (A − L1C) have
been placed using the following algorithm obtained
by applying duality to the one proposed by Maamri
et al. (2006) for the control design:

Remark 4.1: Note that Step 8 in Algorithm 1 is
a preparation step to verify a sufficient condition
given in previous works (Proposition 4.2 in Thabet
et al., 2021) which will be used for ensuring the sta-
bility of the proposed observer.

Therefore, Algorithm 1 allows designing the gain
L1 for ensuring simultaneously the C-diagonalisation
and the Hurwitz stability. As previously mentioned,
in order to design an HGIO, the matrix (A − L1C)

is required to be not only C-diagonalisable and Hur-
witz stable, but also Metzler. In a recent work (Tha-
bet et al., 2021), a time-varying change of coordinates
(T(t) = diag(e(

1
θ
+iω1)t)ν1), depending on the param-

eter �, where � is a column vector with all elements
equal to θ , has been proposed to ensure the Metzler
character of this matrix in a new base. However, in this
reference, θ is chosen arbitrarily and the problem of
minimising the effects of noise and disturbances was
not addressed.

In thiswork, a new time-varyingmatrix for a change
of coordinates (17) is proposed, not only to ensure
the cooperativity of the transformed system, but also
to minimise the effects of both noise and additive
disturbances

T1(t) = diag(e−(�+iω1)t)ν1. (17)

Parameter � will be tuned using an LMI approach
presented in Section 4.2.2.

4.2. Design procedure of the
continuous–discrete-time HGIO

In this section, a procedure for designing an HGIO for
system (8) is presented. Note that themeasurements of
this system are available only at each sampling time tk,
as previously discussed. Then, to compute the upper
and the lower state bounds of system (8), based on the
dynamics given by (12), a continuous–discrete HGIO
will be firstly proposed to estimate the upper and lower
bounds of the output. Based on the obtained output

Algorithm 1
1. Initialise j = 0 and A0 = AT;
2. Actualise j = j + 1;
3. Compute �j−1 and Vj−1 such that Aj−1Vj−1 =
Vj−1�j−1 and rearrange �j−1 in the form

�j−1 =

⎡
⎢⎣

�1
j−1 . . . 0
... �

j
j−1

...
0 . . . �n

j−1

⎤
⎥⎦ ,

where �
j
j−1 is the jth eigenvalue to be shifted to DRj

region. Then, calculate cj−1 as

cj−1 = λjV−1
j−1,

where λj is a row vector where the jth position element
is equal to 1 and zero for the others.
4. Compute Âj−1 = cj−1Aj−1c+j−1 = �

j
j and Ĉj−1 =

cj−1CT

5. Find X̂j > 0 and Ŝj such that (15) holds, with Âj =
Âj−1 and Ĉj = Ĉj−1, then calculate L̂1j = X̂−1

j Ŝj
6. Compute the observer gain L1j at step j as

L1j = L̂1jcj−1

and the matrix Aj at step j as

Aj = Aj−1 − L1Tj C.

7. Compute �′
j and V ′

j such that AjV ′
j = V ′

j�
′
j. Then,

calculate Ṽj as

Ṽj = λjV
′−1
j .

Note that Ṽj represents the eigenvector which corre-
sponds to the desired eigenvalue �′

j(j, j).
8. Let �̃j = Real(�′

j(j, j)). If �̃j + ||ṼjL1Tj CṼ
−1
j || < 0

and if the matrix [�̃j + ||ṼjL1Tj CṼ
−1
j || �̃j; �̃j �̃j +

||ṼjL1Tj CṼ
−1
j ||] is stable, then go to step 9. Else, go to

step 5.
9. If j �= n then go to step 2
10. Compute the observer gain that achieves the
desired pole placement as

L1 =
⎛
⎝ n∑

j=1
L1j

⎞
⎠

T

.



bounds, the bounds of the stateswill be next computed.
Note that the design of such an observer requires sat-
isfying monotony conditions (Gouze et al., 2000). In
the following, the new time-varying matrix for change
of coordinates (17), which depends on the parameter
θ , will be used for both output and state observers.
The design of θ using an LMI approach will be given
in Section 4.2.2, after the continuous–discrete HGIO
structure, in order to show better how with the pro-
posed procedure we can reduce the effects of both
noise and additive disturbances and ensure the non-
diverges of the observer bounds.

4.2.1. Continuous–discrete interval observer
structure for output bounds estimation
Based on (12) and in order to design an HGIO, pro-
viding the lower and the upper bounds [y(t), y(t)] for
output values of the system, the matrix (A − L1C) is
required to be Metzler, C-diagonalisable and Hurwitz
stable. The procedure given in Section 4.1 allows the
design of L1 such that the C-diagonalisation and the
Hurwitz stability of (A − L1C) are satisfied. Further-
more, the proposed time-varying matrix (17) will be
used in the following to ensure the Metzler character
of the state matrix in a new base.

Applying the time-varying change of coordinates (18)
to the observer state equation (12)

zw(t) = T1(t)x̂w(t),

with T1(t) = diag(e−(�+iω1)t)ν1 (18)

and differentiating (18) with respect to time yields

żw(t) = diag(−(� + iω1))diag(e−(�+iω1)t)ν1x̂w(t)

+ diag(e−(�+iω1)t)ν1 ˙̂xw(t). (19)

Replacing ˙̂xw(t) by its expression in (12), the matrix
(A − L1C) by its decomposition (13) and using the
fact that x̂w(t) = T−1

1 (t)zw(t), we derive the following
transformed system:

żw(t) = diag(ρ1 − �)zw(t) + �w(t), (20)

where �w(t) = T1(t)[φ(t, u(t),T−1
1 (t)zw(t)) + d̂(t)

+ L1CT−1
1 (t)zw(t) − L1V̂(t)].

Remark 4.2: Note that the term �w(t), in the new
base zw, depends on φ and the bounding of this term
will be detailed in the proof of the next theorem

using Proposition 2.2 and Theorem 3 in Combastel
and Raka (2011).

Based on new dynamics (20), the upper and the
lower bounds of y(t) can then be computed based on
the results given by the following theorem.

Theorem 4.2: Considering HGO (12) and Assump-
tions 3.1, 3.2, 3.4, 3.5 and 3.6, as well as the fol-
lowing condition, hold: zcw(0) = ν1x̂cw(0), zrw(0) = ν1 

x̂rw(0), zrw(0) ≥ 0. Then,{

żcw(t) = diag(ρ1 − �)zcw(t) + �c
w(t),

żrw(t) = diag(ρ1 − �)zrw(t) + �r
w(t) (21)

is an HGIO for (12) where zcw(t) and zrw(t) represent,
respectively, the state dynamics of both the centre and
the radius in the new base (zw(t)). The terms�c

w(t) and
�r

w(t) are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�c
w(t) = T1(t)φc(t, u(t)) + T1(t)dc(t),

�r
w(t) = |T1(t)Ê(t, zrw(t), zcw(t))|1,

T1(t) = diag(e−(�+iω1)t)ν1,
T−1
1 (t) = ν−1

1 diag(e(�+iω1)t),
Ê(t, zrw(t), zcw(t)) = [φr(t, zcw(t),�(zrw(t))) |dr(t) |
L1CT−1

1 (t)zcw(t)|,
L1CT−1

1 (t)�(zrw(t))| − L1δ].
(22)

In addition, the given HGIO (21) satisfies the inclusion
property in the new base

zrw(t) ≥ 0 ∧ zw(t) ∈ zcw(t) ± zrw(t) ⊂ C
n, ∀ t ∈ R

+,
(23)

and also in the original base

x̂rw(t) ≥ 0 ∧ x̂w(t) ∈ x̂cw(t) ± x̂rw(t) ⊂ C
n, ∀ t ∈ R

+,
(24)

x̂cw(t) = T−1
1 (t)zcw(t), x̂rw(t) = T−1

1 (t) 
 zrw(t).
(25)

Based on (25) and (12b), the bounds of the estimated
output ŵ(t) can be derived:

ŵc(t) = C x̂cw(t), ŵr(t) = |C| x̂rw(t) + δ. (26)

Finally, the bounds of the output y are obtained as
follows:

[y(t), y(t)] = [C x̂cw(t) − |C| x̂rw(t) − δ, C x̂cw(t)

+ |C| x̂rw(t) + δ], ∀ t ∈]tk, tk+1[
(27)



[y(tk), y(tk)] = [C x̂cw(tk) − |C| x̂rw(tk) − δ, C x̂cw(tk)
(28)

+ |C| x̂rw(tk) + δ]

∩ [Cx(tk) − δ, Cx(tk) + δ]. (29)

Proof: The proof of the theorem will be done in two
steps. Firstly, the expressions of both �c

w(t) and �r
w(t)

such that �w(t) ∈ �c
w(t) ± �r

w(t) are obtained using
the time-varying change of coordinates (17). Secondly,
based on the obtained expressions (�c

w(t), �r
w(t)) and

Theorem 3 in Combastel and Raka (2011), the struc-
ture of the proposed observer as well as the inclusion
property can be established. In what follows, we will
derive the upper and lower bounds of the output esti-
mation (w(t)), and then, the bounds of y(t) can be
directly deduced.

Based on (20) and replacing d̂(t) by its bounds (d̂ ∈
dc(t) ± dr(t) = dc(t) + dr(t)(0 ± 1)), we have

żw(t) = diag(ρ1 − �)zw(t) + �w(t) (30)

with �w(t) ∈ (T1(t)[φc(t, u(t)) + dc(t)]) + (T1(t)
[φr(t, zcw(t),�(zrw(t))) + d̂r(t) + L1CT−1

1 (t)zcw(t) +
L1CT−1

1 (t)�(zrw(t)) − L1δ])(0 ± 1).
From Theorem 2.1, �w(t) can be expressed as

�w(t) ∈ �c
w(t) ± �r

w(t), where

�c
w(t) = T1(t)[φc(t, u(t)) + dc(t)]

and

�r
w(t) = |T1(t)Ê(t, zrw(t), zcw(t))|1

with

Ê(t, zrw(t), zcw(t)) = [φr(t, zcw(t),�(zrw(t)))

× | dr(t) | L1CT−1
1 (t)zcw(t) |

× L1CT−1
1 (t)�(zrw(t)) | − L1δ].

Under the assumptions considered inTheorem4.2 and
using Theorem 3 in Combastel and Raka (2011), one
can see that HGIO (21) verifies the inclusion proper-
ties in the new base (23) and in the original base (24).
Now, we just have to prove the expressions of ŵc(t)
and ŵr(t). Since ŵ(t) = Cx̂w(t) + V̂(t), where x̂w(t) ∈
x̂cw(t) ± x̂rw(t), then based on Theorem 2.1 and V̂(t) ∈

0 ± δ, we can show that

ŵ(t) = Cx̂w(t) + V̂(t) ∈ (Cx̂cw(t)) ± (C 
 x̂rw(t) + δ).
(31)

Since C is a real matrix and x̂rw(t) ≥ 0, then
Equation (31) can be rewritten as

ŵ(t) = Cx̂w(t) + V̂(t) ∈ ŵc(t) ± ŵr(t)

with ŵc(t) = Cx̂cw(t) and ŵr(t) = |C|x̂rw(t) + δ. Based
on the expressions of ŵc(t) and ŵr(t), and taking
y(t) = ŵ(t), ∀ t ∈]tk, tk+1[, then the bounds of the
output ∀ t ∈]tk, tk+1[ can be easily deduced as given
in (27). For t = tk, the bounds of the output result
from the intersection between the estimated interval
[C x̂cw(tk) − |C|x̂rw(tk) − δ, Cx̂cw(tk) + |C|x̂rw(tk) + δ]
and the computed bounds based on the real mea-
surements [Cx(tk) − δ, Cx(tk) + δ]. This ends the
theorem proof. �

Remark 4.3: As it can be seen in Equation (27), for
all t ∈]tk tk+1[, the bounds of the output y(t) can be
directly deduced based only on the estimated bounds
of ŵ(t). However, for all t = tk (i.e. at each sampling
time), the only available information that we have of
the output y(tk) is used at instant tk. Indeed, as given
in (28) at t = tk, the bounds of the output are the
results of the intersection of two intervals: the first
one represents the estimated output bounds based on
ŵc and ŵr and the second interval represents the out-
put bounds using the ‘real’ measurements (y(tk) =
Cx(tk) + V(tk)) and taking into account the bounds
of the noise (V(tk) ∈ [−δ, δ]). We shall notice that
this update process at the instants tk is quite differ-
ent from the one adopted in Mazenc and Dinh (2014).
This difference is a direct consequence of employing
the continuous–discrete observer (12). Indeed in our
approach, this update process is performed in one step
in (28), whereas this update is performed in two steps
in Mazenc and Dinh (2014) (see Equation (14) of this
reference).

4.2.2. High-gain parameter design
In this section, based on the designed gain L1, derived
from Algorithm 1 and which is equal to θ�−1

θ K, an
LMI approach presented in Theorem 4.4 is proposed
to compute the parameter θ . Note that the proposed
method of computing this parameter will not only
reduce the effects of both noise and additive distur-
bances, but it will also guarantee the non-divergence of



the radius dynamics of the proposed observer. In this
way, the sufficient condition of non-divergence of the
observer radius dynamics, given by Proposition 4.3 in
Thabet et al. (2021), is no longer needed.

Proposition 4.3 (Thabet et al., 2021): Let P =
‖νθ�−1

θ KCν−1‖ + |α|, whereα ∈ R
∗+. If (ρ − 1

�
) < 0

(M is Hurwitz stable) and if the Metzler matrix [M +
P, P; P,M + P] is Hurwitz stable, then ∀ t, 0 ≤ zr(t) ≤
z̄r(t) < ∞ and z̄r(t) follows a stable dynamics, so is
zr(t).

Note that zr, P and M used in Proposition 4.3 are
replaced, respectively, by zrw, ||ν1L1Cν−1

1 || + αIn and
diag(ρ1 − �) in this paper. As previously mentioned,
this proposition is used in previous work to ensure the
non-divergence of the radius dynamics. In this paper,
an LMI approach will be proposed in Theorem 4.4 to
ensure automatically this condition.

Theorem 4.4: If there exists a symmetric positive defi-
nite matrix Q > 0, QT = Q and a symmetric negative
definite matrix D < 0, DT = D such that the following
LMI is satisfied:

MT
1Q + 2D + QM1 < 0, (32)

where M1 = [diag(ρ1) + P P; P diag(ρ1) + P] with
P = ||ν1L1Cν−1

1 ||, then, the parameter θ is deter-
mined by

θ = α − λmin(M2), (33)

where M2 = DQ−1, λmin(M2) is the minimum eigen-
value ofM2 andα is a scalar which satisfies the following
two conditions:

{||diag(e−(�+iω1))ν1dr|| � αd1,
||diag(e−(�+iω1))ν1L1δ|| � αn1′, (34)

where � is a column vector with all elements equal to
θ = α − λmin(M2). αd and αn are two defined scalars
used to reduce the effects of the additive disturbances as
well as the noise. 1 is a column vector with all elements
equal to 1 and 1′ ∈ R

n×s is a matrix with all elements
equal to 1.

Proof: Based on Proposition 4.3, let us define matrix
Mat as

Mat =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

diag(ρ1 − �)

+||ν1L1Cν−1
1 ||

+αIn
||ν1L1Cν−1

1 || + αIn

||ν1L1Cν−1
1 || + αIn

diag(ρ1 − �)

+||ν1L1Cν−1
1 ||

+αIn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(35)
where α is a positive scalar which will be computed
later satisfying conditions (34). Note that the Hurwitz
character of this Metzler matrix Mat will ensure the
stability of the proposed observers, as it will be fur-
ther discussed in Section 4.2.4. Let us rewrite matrix
Mat (35) in a different manner as follows:

Mat =
[
diag(ρ1) + P1 P1

P1 diag(ρ1) + P1

]

+
[
diag(−�) + αIn αIn

αIn diag(−�) + αIn

]
,

(36)

where P1 = ||ν1L1Cν−1
1 ||. Until this step, ρ1 and P1 are

known. Let us denote by M2 the unknown part of the
matrixMat,

M2 =
[
diag(−�) + αIn αIn

αIn diag(−�) + αIn

]
. (37)

Let us introduce M1 as the known matrix M1 =
[diag(ρ1) + P1 P1; P1 diag(ρ1) + P1]. Until this step,
L1, ρ1, ν1 are known since the value of L1 can be
computed using Theorem 4.1 and Algorithm 1 and
ρ1, ν1 can be deduced based on (13). Then, the only
unknown parameters are θ and α. In the following, the
expression of θ , which depends on α as given in (33),
will be obtained.

It is clear that matrix Mat (36) is Hurwitz stable iff
∃Q > 0 andD<0withQT = Q andDT = D such that

MT
1Q + 2D + QM1 < 0, (38)

where D = M2Q. Then, the unknown matrix M2 can
be deduced by solving LMI (38) as follows:

M2 = DQ−1. (39)

Based on (37) and (39), the following inequality can be
deduced:

− θ + α � λmin(M2), (40)



where λmin(M2) is the minimum eigenvalue of M2.
Then, from (40):

θ � α − λmin(M2), (41)

which allows deducing the expression of θ as follows:
θ = α − λmin(M2).

Then, to compute θ , we have first to solve LMI (32)
in order to compute λmin(M2) and then calculate α

such that the two conditions (34) are verified. Condi-
tions (34) can be rewritten element by element as{

||e−(α−λmin(M2)+iω1j)(ν1dr)j|| � αd,
||e−(α−λmin(M2)+iω1j)(ν1L1δ)ij|| � αn,

(42)

where ω1j is the jth element of the vector ω1, (ν1dr)j
is the jth element of the row vector ν1dr and (ν1L1δ)ij
is element of the matrix ν1L1δ with jth row and ith
column positions.

From (42), we can deduce the expression of α as

α = max(a1, a2) (43)

with a1 = | log((ν1dr)j) − log(αd) + λmin(M2) −
iω1j| and a2 = | log((ν1L1δ)ij) − log(αn) + λmin(M2)

− iω1j|. This completes the proof of Theorem 4.4. �

Remark 4.4: As previously mentioned, one of the
main contributions of the given constructive method
of computing θ is the guarantee of the radius
dynamic (zrw) convergence. Furthermore, looking at
the expressions of T1 and Ê(t, zrw(t), zcw(t)) in (22),
we can easily deduce that �r

w depends on the prod-
ucts diag(e−(�+iω1)t)ν1dr and diag(e−(�+iω1)t)ν1L1δ̄
which are reduced due to parameter�. In fact,� satis-
fies the two conditions given in (34). Then, by reducing
||diag(e−(�+iω1)t)ν1dr|| and ||diag(e−(�+iω1)t)ν1L1δ̄||,
the effects of both noise and additive disturbances will
be minimised as well as the radius, which depends on
�r

w. Note that the choice of αd and αn depends implic-
itly on the following conditionα = max(a1, a2) > 1 +
λmin(M2), since θ should be greater than 1 as known
in the HGO context.

4.2.3. HGIO design for state bounds estimation
In the following, an HGIO structure is given to esti-
mate the bounds of system states (8). As previously
mentioned, the estimated output lower and upper
bounds, given by Theorem 4.2, are used in the pro-
posed structure of the HGIO in order to provide the

two variables evaluating the lower and upper bounds
for state values of system (8).

To guarantee the C-diagonalisation and the Hur-
witz and Metzler properties of the state matrix
(A − θ�−1

θ KC = A − L1C), the gain L1 designed in
Section 4.1 and the proposed change of coordi-
nates (17) are used in the following.

Let us apply the time-varying change of coordi-
nates (17) to the givenHGO (11)where y(t) is assumed
to be unknown but with known bounds (y(t) and y(t)
are obtained from Theorem 4.2):

z(t) = T1(t)x̂(t), with T1(t) = diag(e−(�+iω1)t)ν1.
(44)

Differentiating (44) with respect to time yields

ż(t) = diag(−(� + iω1))diag(e−(�+iω1)t)ν1x̂(t)

+ diag(e−(�+iω1)t)ν1 ˙̂x(t). (45)

Replacing ˙̂x(t) by its expression in (11), the matrix
(A − L1C) by its decomposition (13) and using the fact
that x̂(t) = T−1

1 (t)z(t), we can derive the following
transformed system:

ż(t) = diag(ρ1 − �)z(t) + �(t), (46)

where �(t) = T1(t)[φ(t, u(t),T−1
1 (t)z(t)) + d̂(t)

+ L1y(t)].
Based on the new dynamics (46), the upper and

lower bounds of x(t) can then be computed based on
the results given by the following theorem.

Theorem 4.5: Given the dynamics of system (8) and
considering that Assumptions 3.1–3.4 and 3.6, as well
as the following condition , hold:

zc(0) = ν1x̂c(0), zr(0) = ν1 
 x̂r(0), x̂r(0) ≥ 0,
zr(0) ≥ 0. Then,{

żc(t) = diag(ρ1 − �)zc(t) + �c(t),
żr(t) = diag(ρ1 − �)zr(t) + �r(t) (47)

is an HGIO for system (8) where (zc(t)) and the (zr(t))
represents, respectively, the state dynamics of both the
centre and the radius in the new base (z(t)). The terms
�c(t) and �r(t) are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�c(t) = T1(t)φc(t, u(t)) + T1(t)dc(t)
+T1(t)L1yc(t),
�r(t) = |T1(t)Ê(t, zr(t), zc(t))|1,
T1(t) = diag(e−(�+iω1)t)ν1,
T−1
1 (t) = ν−1

1 diag(e(�+iω1)t),
Ê(t, zr(t), zc(t)) = [φr(t, zc(t),
�(zr(t))) | dr(t) | L1yr(t)].

(48)



In addition, the given HGIO (47) satisfies the inclusion
property in the new base

zr(t) ≥ 0 ∧ z(t) ∈ zc(t) ± zr(t) ⊂ C
n, ∀ t ∈ R

+

(49)
and also in the original base

x̂r(t) ≥ 0 ∧ x̂(t) ∈ x̂c(t) ± x̂r(t) ⊂ C
n, ∀ t ∈ R

+,
(50)

x̂c(t) = T−1
1 (t)zc(t), x̂r(t) = T−1

1 (t) 
 zr(t). (51)

Proof: The proof of Theorem 4.5 is similar to that
of Theorem 4.2, where the only difference is on the
expressions of �c(t) and �r(t), which is related to the
use of the obtained bounds of the output y(t).

Based on (46) and replacing d̂(t) (resp. y(t)) by
its bounds (d̂ ∈ dc(t) ± dr(t) = dc(t) + dr(t)(0 ± 1))
(resp. y(t) ∈ yc(t) ± yr(t) = yc(t) + yr(t)(0 ± 1)), we
have

ż(t) = diag(ρ1 − �)z(t) + �(t) (52)

with �(t) ∈ (T1(t)[φc(t, u(t)) + dc(t) + L1yc(t)]) +
(T1(t)[φr(t, zc(t),�(zr(t))) + d̂r(t) + L1yr(t)])
(0 ± 1).

FromTheorem2.1,�(t) can be expressed as�(t) ∈
�c(t) ± �r(t), where

�c(t) = T1(t)[φc(t, u(t)) + dc(t) + L1yc(t)]

and

�r(t) = |T1(t)Ê(t, zr(t), zc(t))|1
with

Ê(t, zr(t), zc(t))

= [φr(t, zc(t),�(zr(t))) | dr(t) | L1yr(t)].

Under the assumptions considered inTheorem4.5 and
using Theorem 3 in Combastel and Raka (2011), one
can show that HGIO (47) verifies the inclusion prop-
erties in the new base (49) and in the original base (50).
This ends the proof. �

Figure 1 summarises the different main steps to fol-
low to design the HGIO for partially linear system (8)
with discrete-time measurements.

4.2.4. Stability analysis of the proposed HGIO
The stability of the proposed continuous–discrete
HGIO for output bounds estimation, as well as for state

bounds estimation, is derived from the stability of both
centre and radius dynamics defined in (21) and (47),
respectively.

Let us first prove the stability of the centre dynamics
zcw (resp. zc). Since thematrix diag(ρ1 − �) is Hurwitz
stable and both the inputu(t) and the disturbancesd(t)
are assumed to be continuous and bounded, we can
easily derive that �c

w(t) (resp. �c(t)), which depends
only on u(t) and dc(t) that are bounded according
to Assumptions 3.1–3.4, is bounded too. As a conse-
quence, the stability of the centre dynamics of (zcw(t))
(resp. zc(t)) is continuous, bounded and presents a
stable dynamics.

On the other hand, usually, the stability of the
radius dynamics (zrw(t)) (resp. zr(t)) cannot be directly
addressed in the same way as it was addressed for
the centre dynamics zcw(t) (resp. zr(t)). Indeed, the
term �r

w(t) (resp. �r(t)) depends on zrw(t), zcw(t),
dr(t) and δ (resp. zr(t), zc(t), dr(t) and yr(t)) which
can be viewed as a bounded and continuous exoge-
nous term in the second equation of (21) (resp. (47)).
Meanwhile, �r

w(t) (resp. �r(t)) still depends on the
endogenous term zrw(t) (resp. zr(t)), and thus, in previ-
ous works (Thabet et al., 2021), a sufficient condition,
which ensures the stability of the radius dynamics, was
proposed.

In this paper, the stability of the radius dynamics
(zrw(t)) (resp. zr(t)) can be directly deduced because
of the satisfaction of the condition given by step 8 in
Algorithm 1. Indeed, the sufficient condition given in
previous works (Proposition 4.2 in Thabet et al., 2021)
is verified in this paper at each iteration of the observer
gain design (step 8 inAlgorithm1 considering only the
eigenvalues ρ1 without θ), and by Theorem 4.4 which
allows computing θ , based on α, and where the sta-
bility of matrix ‘Mat’ (35) is still ensured in the new
bases zw(t) and z(t). Therefore, the sufficient condition
is no longer needed and the stability of the proposed
continuous–discrete HGIO for output bounds estima-
tion, as well as the HGIO for state bounds estimation,
is directly ensured.

5. Application example

5.1. Example description

To illustrate the efficiency of our proposed HGIO for
the considered class of system (8), let us consider the
same numerical example as in Thabet et al. (2021),



Figure 1. The main steps of the HGIO design.

where the output measurements y are considered in
discrete time in this paper. Then, the system used
for illustrative purposes is described by (8) with the
following particular matrices and functions

A =
⎡
⎣−1 −3 −5

0 1 −3
0 2 −2

⎤
⎦ ,

φ(t, u(t), x(t) =
⎡
⎣ 2u(t) + exp(−|x1|)

u(t) + exp(−|x2|)
−u(t) + exp(−|x3|)

⎤
⎦ ,

C = [1 0 0].

The input is given by

u(t) = 3 sin(t) − 2 sin(3t), (53)

while the output noise, known only at each instant tk,
and the additive disturbances are given,

respectively, by

V(tk) = 0.1 sin(0.1π tk), d(t) =
⎡
⎣ 0.1 sin(t)
sin(0.1π t)
sin(2t)

⎤
⎦ .

(54)
Both the additive disturbances and noise are bounded
with the following bounds: Vc = 0, Vr = δ = 0.1,
dc = [0 0 0]T and dr = [0.1 1 1]T.

5.2. HGIO design

In this section, the constructive method presented in
Section 4.1 is used to design the gain L1 = θ�−1

θ K.
As a first step, the different three regions (or disks)
DRj (j = 1, . . . , 3) should be defined. Let the differ-
ent centres and radius of these regions be, respec-
tively, equal to: cR1 = −0.9, cR2 = −0.6 + 1.8i, cR3 =
−0.6 − 1.8i, rR1 = 0.5, rR2 = 0.2, rR3 = 0.2. Based on
these defined disks, using Algorithm 1 and solving
LMI (15), the observer gain L1 is obtained: L1 =
1e − 3 [0.1111 0.125 0.1]T. As a second step, once
the gain L1 is computed, the matrix A − L1C can



Figure 2. Simulation results for the HGIO applied to the continuous–discrete example. (a) The proposedmethod using the new change
of coordinates (17) and (b) the method given in Thabet et al. (2021) with a continuous output case.



be diagonalised as in (13) where ρ1 = [−1.0003 −
0.4999 − 0.4999]T, ω1 = [0 1.9365 − 1.9365]T, ν1 =[ −0.9999 −1.7500 0.2503

−0.0001+0.0001i 1.1154−0.6992i −0.1596+1.6045i
−0.0001−0.0001i 1.1154+0.6992i −0.1596−1.6045i

]
.

By applying Theorem 4.4 with αd = 0.08, αn =
0.03, dr = [0.1 1 1]T and δ = 0.1, the parameter α,
which satisfies conditions (34), can be directly com-
puted leading to α = 8.7586. Then, θ parameter can
be derived applying (33) leading to θ = 9.7586.

As a third step, by applying Theorem 4.2 with
xcw(0) = [0 3 4]T, xrw(0) = [0.09 0.2 0.6]T, the output
upper and lower bounds can be calculated based on the
change of coordinates (18), where � = [θ θ θ]T. The
numerical simulation was conducted in the time range
from t = 0 to t = 30 s with the Euler algorithm with
a discretisation step h = 0.001 s and where the output
estimation is updated at each instant tk = 0.005 s.

Finally, based on the obtained bounds (27)–(29),
using the change of coordinates (44) with � =
[θ θ θ]T, where θ = 9.7586, and by applying
Theorem 4.5 with xc(0) = [0 3 4]T, xr(0) = [0.09 0.2
0.6]T, state bounds can be computed.

5.3. Simulation results

The numerical simulations of the proposed HGIO
were conducted in the time range from t = 0 to
t = 30 s with a discretisation step h = 0.001 s. The
simulation results are presented in Figure 2.

For comparison, as in a previous work (Thabet
et al., 2021), the parameter θ was chosen arbitrarily
(θ = 1000), as well as the gain K such that the matrix
(A − θ�−1

θ KC) is Hurwitz.
From the results presented in Figure 2, we can

first conclude that the upper and lower state bounds
provided by the proposed HGIO, with the new time-
varying change of coordinates, are stable in spite of
the presence of bounded additive disturbances anddis-
crete noisy measurement. We can also see that the
inclusion property is verified.

Comparing the existing method given in Thabet
et al. (2021), the efficiency of our method is proved in
spite of using the output bounds instead of the real out-
put as was considered in Thabet et al. (2021). This is
due to the constructive method for computing θ , such
that the effects of both noise and additive disturbances
are reduced, and to the new change of coordinates
using T1(t) = diag(e−(�+iω1)t)ν1.

6. Conclusions

In this paper, an HGIO for a class of partially lin-
ear continuous-time systems with sampled measured
outputs in the presence of bounded noise and addi-
tive disturbances has been proposed. The design of the
HGIO has been formulated in the LMI framework.
The gain of the HGIO has been designed to satisfy
the cooperative property using a time-varying change
of coordinates based on pole placement in separate
LMI regions. Moreover, a procedure for designing the
HGIO gain to minimise the effect of the noise and dis-
turbance in the estimation has been provided. The sta-
bility of the proposedHGIO has also been proved. The
proposed approach has been assessed in simulation
using a numerical example.

As future research, the proposed method will be
extended to other classes of continuous–discrete-time
systems more generally than the ones presented in
this paper. The integration of the proposed HGIO in
control applications will also be explored.
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