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Abstract: Stochastic, as well as fuzzy uncertainty, can be found in most real-world systems. Consider-
ing both types of uncertainties simultaneously makes optimization problems incredibly challenging.
In this paper, we analyze the permutation flow shop problem (PFSP) with both stochastic and fuzzy
processing times. The main goal is to find the solution (permutation of jobs) that minimizes the
expected makespan. However, due to the existence of uncertainty, other characteristics of the solution
are also taken into account. In particular, we illustrate how survival analysis can be employed to en-
rich the probabilistic information given to decision-makers. To solve the aforementioned optimization
problem, we extend the concept of a simheuristic framework so it can also include fuzzy elements.
Hence, both stochastic and fuzzy uncertainty are simultaneously incorporated in the PFSP. In order to
test our approach, classical PFSP instances have been adapted and extended, so that processing times
become either stochastic or fuzzy. The experimental results show the effectiveness of the proposed
approach when compared with more traditional ones.

Keywords: simulation-optimization; simheuristics; fuzzy techniques; stochastic optimization;
permutation flow shop problem

MSC: 68T20; 90-08; 90-10; 90Bxx; 90B36

1. Introduction

In industrial sectors such as manufacturing and production, logistics and transporta-
tion, finance and insurance, or smart cities, real-world systems are modeled to be simulated
and optimized under different working conditions. These models aim to present the main
elements in these systems and their relations [1]. Uncertainty in real-world systems forms
one of its main characteristics and should be included in the employed models when
making decisions on these systems. Uncertainty could be presented using probabilistic
distributions, fuzzy sets, interval models, or convex models [2]. Uncertainty might have
several causes, such as lack of information, complexity, ambiguity, conflicting evidence,
or subjectivity [3]. Accordingly, researchers employ different approaches to deal with
uncertainty in their studies. For instance, random variables and simulation models are
utilized to study stochastic models [4].

Since simulation is not the proper tool to optimize systems, researchers integrated
simulation within metaheuristics to optimize systems under uncertain conditions. As a
result, the simheuristic approach was defined [5]. In this iterative approach, a metaheuris-
tic algorithm constructs solutions that might optimize a real system, and a simulation
component is employed to assess these solutions under stochastic conditions and provide
feedback to the optimization component. The metaheuristic uses this feedback to improve
the search and construct new solutions in subsequent iterations. Examples of simheuristic
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applications to solve stochastic problems can be found in Juan et al. [6] and Caldeira and
Gnanavelbabu [7]. The simheuristic framework described in Rabe et al. [8] handles sys-
tems with moderate stochastic uncertainty. However, as discussed in Zadeh [9], stochastic
uncertainty constitutes a special case of uncertainty. Hence, researchers such as Gojković
et al. [10] have employed fuzzy uncertainty in their models.

In order to combine both types of uncertainty (stochastic and fuzzy), the simheuristic
framework [5] is extended to include fuzzy uncertainty [11]. Like in the simheuristic
framework, a deterministic version of a problem is defined and solved using a metaheuristic
algorithm. The ‘promising’ solutions found in this initial stage are evaluated considering
both a stochastic and fuzzy simulation, and their assessment guides the metaheuristic
algorithm to search for new promising solutions. The construction of solutions and their
evaluations is repeated until a maximum computing time is reached. Afterward, a list of
‘elite’ solutions is constructed. This list of elite solutions is further examined using more
intensive simulations [8].

The permutation flow shop scheduling problem (PFSP) is a manufacturing optimiza-
tion problem that has attracted many researchers because of its high applicability to real
industrial problems [12]. Different researchers have proposed many heuristics and meta-
heuristics to solve the deterministic version of the PFSP [13]. In real industrial problems,
uncertainty characterizes the PFSP. For that reason, we propose a fuzzy simheuristic al-
gorithm to solve this richer variant of the PFSP. Hence, the goal is to find the permutation
of jobs that minimizes the expected makespan, taking into account a scenario in which some
processing times will be stochastic while others cannot be modeled via random variables and
need to be modeled using fuzzy rules provided by experts. To the best of our knowledge, this
is the first time a PFSP with both types of uncertainty (stochastic and fuzzy) is addressed in
the scientific literature. In effect, although both types of uncertainty have been considered in
the past for different PFSP variants, it is not usual to include both of them simultaneously in
a PFSP, probably due to the lack of hybrid simulation-optimization-fuzzy methodologies as
the one introduced here. Figure 1 shows a flow shop process with three machines (M1, M2,
and M3), and four jobs. Notice that the non-deterministic nature of the processing times of job i
on machine j, Oij, transforms the makespan associated with a given solution (permutation of
jobs) into a random variable, which is likely to take different values every time the solution is
put into practice (either in real life or in a simulated environment).

Figure 1. A schematic representation of the main characteristics in our methodology.



Mathematics 2022, 10, 1760 3 of 17

Another major contribution of this manuscript is the introduction of statistical reli-
ability concepts to evaluate the PFSP solutions in a scenario under uncertainty. Hence,
we discuss how to generate a survival function associated with a given solution from
the feedback provided by the simulation component. For each future target time t0, this
survival function offers the probability that the makespan associated with a given solution
exceeds t0. The remaining of the paper is structured as follows. First, Section 2 reviews the
background concepts on which this work is based, while Section 3 presents some of the
related work available in the literature. Our approach to solving the PFSP is described in
Section 4. Section 5 provides more details on how the hybrid fuzzy simheuristic is applied
to solve the PFSP under a scenario with both stochastic and fuzzy uncertainty. A series of
computational experiments are described in Section 6. Section 7 discusses the results, and
deterministic solutions under uncertainty are analyzed and compared to solutions found
using the proposed fuzzy simheuristic approach. Finally, Section 8 highlights the main
outcomes of this work.

2. Background Concepts

This section reviews the background concepts and works related to the methodol-
ogy presented in this paper, starting with the concepts of fuzzy systems (Section 2.1),
and following with simheuristics (Section 2.2).

2.1. Overview of Fuzzy Concepts

Our paper considers uncertainty that forms the main characteristics of real systems.
Uncertainty is a broad concept not limited to stochastic uncertainty represented by probabil-
ity theory [9]. Thus, we also consider the fuzzy theory used to formulate the uncertainty in
systems. The fuzzy logic theory is a mathematical theory based on fuzzy sets that represent
the degree of truth of a particular result, whether it belongs to a specific category or not.
It is not related to the degree of probability that a particular outcome is observed. Instead,
this theory was designed to model the uncertainty and vagueness of human cognitive
processes [14]. Vagueness is a term that arises when an outcome cannot be adequately
observed, color perception being a clear example of vagueness [15].

Fuzzy logic models are characterized by allowing the categorization of things accord-
ing to a human logic that is based on prototypical definitions or characteristics of studied
objects [14]. This categorization defines the membership functions of fuzzy sets. These
functions quantify the membership of elements (objects) and a fuzzy set within a closed
unit interval [16]. Thus, fuzzy logic allows us to represent linguistic constructions such as
‘very high’, ‘very low’, ‘medium’, ‘high’, and ‘low’ that generate a structure of inference
with adequate reasoning. Behind this categorization, it adopts a probability theory to
explain the occurrence of an event. This, in turn, allows us to estimate the probability that
a given event occurs [17].

Accordingly, a fuzzy inference system (FIS) is defined [17]. The FIS represents the
knowledge of an expert in an analyzed topic. This system takes an input value and
transforms it into an output category after applying an inference mechanism based on
fuzzy sets and fuzzy rules. The fuzzy rules in fuzzy logic might be formulated in the form
of if-then statements [3]. As pointed out by Kovac et al. [18], fuzzy knowledge bases can
be formed from the automatic generation of rules based on previously measured data
in a FIS. In general, the knowledge base will always have the same form. For example,
in a system with one input and one output, the knowledge base is a set of n rules like
R = {R1, R2, . . . , Rn}, where each i-th rule has the following form:

∀i ∈ {1, 2, . . . , n}, IF
(

premisei
)

THEN
(
consequenti

)
(1)

In the previous expression, premisei and consequenti have the form X is A and Y is B,
respectively. A and B are linguistic values defined by fuzzy sets in the numerical ranges X
and Y.
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An FIS consists of five components [17]: (i) a fuzzification component, which is
responsible for input processing; (ii) fuzzy sets, which are the membership functions; (iii)
fuzzy rules, which are based on logical operations and if-then-else rules as described by
Equation (1); (iv) a fuzzy inference unit, which makes decisions based on the fuzzy sets and
rules; and (v) a defuzzification component, which takes care of converting the fuzzy sets
into real numbers. Figure 2 presents the components of an FIS and their relations.

Figure 2. Architecture of a fuzzy inference system.

Whenever the processing time of a job in a machine is uncertain but not stochastic,
the selected FIS is used to estimate its value, hence allowing for computing the makespan.
The elements of the FIS for this case are described below:

• Fuzzification is transforming the inputs (crisp values) into fuzzy variables. In the
considered PFSP, the job type and machine type are selected as input variables.

• Fuzzy sets is the database with the membership functions defining the linguistic labels.
In an PFSP instance, the two input variables will have three membership functions: low,
medium, and high. Meanwhile, the output variable representing the processing time
will have five membership functions: very low, low, medium, high, and very high.

• Inference rules are designed by expert criteria. In the considered problem, we employ
rules such as “if a job type is low and a machine type is low, then the processing time
is very low”, as well as “if a job type is medium and a machine type is low, or a job
type is low and a machine type is medium, then the processing time is low”.

• A fuzzy inference engine applies the inference rules to obtain fuzzy results. The fuzzy
sets are combined using logical and relational operators. In the PFSP, the input
variables with membership functions are combined with the operators to produce the
fuzzy output following the inference rules.

• Finally, defuzzification is the process of transforming the fuzzy results into a crisp
value. This transformation can be implemented through different methods, such as
the weighted mean, the mean of maximums, or the center of gravity method, which is
the one employed in our case.

2.2. Overview of Simheuristics

Simulation is a technique that allows mimicking operations in a system during a time
interval, starting from an initial state, depending on input data, and collecting output data
about the system [1]. This technique is characterized by its ability to model complex systems
with static variables and, accordingly, study their behavior, performance, and reliability [19].
In addition, simulation is used to evaluate different scenarios that a system could face
and to foresee possible errors. However, simulation only allows for analyzing a system
and not for optimizing its configuration. Many solutions to system optimization problems
under stochastic uncertainty have been based on hybrid techniques that combine both
tools, optimization, and simulation. These hybrid techniques are known as simulation-
optimization approaches and typically involve the optimization of a stochastic objective
function subject to possible stochastic constraints [20]. To deepen the understanding of this
hybrid methodology, the reader is referred to Amaran et al. [20].

Simheuristics is a simulation-optimization methodology that combines simulation
with metaheuristics [5]. One of the seminal works in the area of combining heuristics
with simulation is that of Glover et al. [21]. Simheuristics have the potential to generate
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several quality solutions starting from well-known or expected values taken initially by
the random variables of a problem. Fuzzy simheuristics extend the simheuristic concept in
order to solve combinatorial optimization problems with random and fuzzy elements in
the objective function or the probabilistic constraints. Hence the type of problems we aim
to solve can be expressed as follows:

optimize f (s) = Φ(s, X, Y) (2)

subject to:

Pr
(

gi(s, X, Y) ≤ li(X, Y)
)
≤ ti ∀i ∈ I (3)

Pr
(

gj(s, X, Y) > lj(X, Y)
)
≤ tj ∀j ∈ J (4)

gk(s) ≤ tk ∀k ∈ K (5)

s ∈ S (6)

where: s is an element of the solution space S, X is a vector of random variables, and Y is a
vector of fuzzy variables. The objective function in Equation (2), Φ(s, X, Y), is a stochastic-
fuzzy measure to be optimized (minimized or maximized). Equations (3) and (4) present
probabilistic constraints. For example, the probability that the time delay in solution s,
gj(s, X, Y), exceeds a certain limit, lj(X, Y), is within a user-defined threshold. Equation (5)
is a typical deterministic constraint.

The ability of simulation to handle uncertainty is used to evaluate the set of different
solutions generated in the iterative process of the metaheuristic algorithm. Thus, each
event is modeled by the probability distribution that best fits it. Then, results generated by
the simulation component are used to provide feedback to the metaheuristic component.
This feedback includes information that can be valuable to enhance the search for better
stochastic solutions. Finally, when a stopping criterion is satisfied, a reduced set of ‘elite’
solutions are intensively simulated to ensure accurate and precise estimates. The simulation
component also provides dispersion measures that allow us to evaluate the risk of the
proposed solutions [5].

3. Related Work

This section offers a brief review of the applications of fuzzy logic and simheuristics to
solve optimization problems with uncertainties. It also presents the PFSP, including some
of the most recent work on the methodologies that have been used to solve it.

3.1. Fuzzy and Simheuristic Approaches in Optimization with Uncertainty

Many combinatorial optimization problems associated with real-life systems and pro-
cesses are NP-hard in nature. The PFSP is proved to be NP-hard for instances with three
or more machines [22]. Two machine instances, and a special case with three machines,
can be solved in polynomial time [23]. In addition, mathematical models associated with
real-life applications usually need to consider certain degrees of uncertainty, which im-
poses additional challenges in their resolution. On the one hand, simheuristics have been
developed to address optimization problems with stochastic uncertainty. Applications
of simheuristics are very wide, especially in the field of logistics and transportation [24].
Recent works on simheuristics have focused on solving different optimization problems
with stochastic uncertainty such as waste collection management [25], stochastic permu-
tation flow shop problems and job shop problems [7], financial problems [26], etc. On
the other hand, fuzzy logic-based systems have been utilized in optimization problems
with uncertain non-probabilistic variables. The fuzzy logic is a technique used under the
criterion of experts and the lack of data to model the probability distribution of variables.
In the optimization of production and distribution processes, for example, a robust model
of the biodiesel system based on fuzzy logic has been developed, which is efficiently op-
timized with a particle swarm algorithm to determine the best operating parameters of
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the system [27]. A similar approach was implemented for the bio-methanol production
process [28]. Khalifehzadeh and Fakhrzad [29] solved a multi-stage production-distribution
planning problem with multiple stakeholders. In their problem, production capacity, and
customer demand were modeled as fuzzy variables and probability distributions. They
used the selective firefly algorithm to solve it. In the transportation sector, the vehicle
routing problem has been solved by considering the customer visit as a fuzzy preference
index. The uncertainty in customer demand in this type of problem has also been modeled
as a fuzzy variable. Tohidifard et al. [30] solved a multi-depot home care routing problem
with time windows and fuzzy demands using a genetic algorithm and particle swarm
optimization. Bahri et al. [31] developed a solution based on a genetic algorithm for a
multi-objective vehicle routing problem with uncertain demands expressed using fuzzy
triangular numbers. Methodologies based on fuzzy logic have also been applied in other
areas such as the optimization of financial processes [32] and logistics operations [33].

Several problems with stochastic and fuzzy variables have been solved with simheuris-
tic techniques. Hussain et al. [34] minimized the waiting time of electric vehicles at public
charging stations modeled as a fuzzy integer linear programming problem combined with
a simulator. Oliva et al. [11] proposed the concept of fuzzy simheuristics, and to illustrate
its applicability, they solved the team orienteering problem under a reward uncertainty sce-
nario. Similarly, Tordecilla et al. [35] presented another simheuristic based on a multi-start
metaheuristic, Monte Carlo simulation, and an FIS to solve the vehicle routing problem
and the team orienteering problem with stochastic and fuzzy variables.

3.2. The Stochastic Permutation Flow Shop Scheduling Problem

The PFSP with stochastic processing times has been addressed with hybrid methods
such as simheuristics. For example, González-Neira et al. [36] efficiently solved a multi-
objective stochastic PFSP with a simheuristic approach based on a tabu search metaheuristic,
an evolutionary strategy, and Monte Carlo simulation. For a bi-objective PFSP, González-
Neira and Montoya-Torres [37] proposed a simheuristic approach based on a multi-objective
greedy randomized adaptive search procedure (GRASP) coupled with Monte Carlo simula-
tion to obtain the expected duration and the expected delay. Similarly, Villarinho et al. [38]
analyzed the PFSP with cumulative delivery dates and stochastic processing times. They
solved the deterministic version of the problem with a biased-randomized (BR) heuris-
tic, and the stochastic version with a simheuristic approach combining a metaheuristic
algorithm that encapsulates the heuristic into a variable neighborhood descent (VND)
framework with Monte Carlo simulation. Their results show the ability of simheuristics
to efficiently address the impact of stochastic processing times on the production process
makespan, which tends to increase as the number of jobs increases.

The fuzzy concept has also been considered in the PFSP to model processing times,
capacity, and workload parameters. Optimization methodologies based on efficient algo-
rithms have been proposed to solve different versions of the fuzzy PFSP. Metaheuristics,
such as the improved artificial bee colony (ABC) algorithm, have been proposed to solve
the PFSP with fuzzy completion time and machine workload [39]. Vela et al. [40] solved
the PFSP with uncertain duration and flexible expiration dates modeled as fuzzy vari-
ables using tabu search. PFSPs with uncertain processing times were solved with hybrid
methods, such as fuzzy ant colony optimization (ACO) incorporated with a fuzzy local
optimization algorithm [41]. The PSFP with fuzzy processing times was also solved with
an ABC algorithm [42].

Table 1 summarizes some of the recent works in the literature that have addressed
the PFSP with deterministic, stochastic, or fuzzy variables, as well as the different solution
methodologies. These papers, in general, show a strong tendency to address PFSP with
fuzzy variables, which have mostly been solved using different metaheuristics. However,
some authors have employed more traditional solution methodologies, such as exact
methods, heuristics, and simulation. According to Pan et al. [43], research on efficient
algorithms for uncertain scheduling problems has been a point of interest in recent years,
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and neglecting uncertainty will limit the practical application of the scheduling results.
Therefore, it is important to design efficient optimization methodologies capable of solving
problems with different types of uncertainty.

Table 1. Recent work on the PFSP with uncertainty available in the literature.

Authors Problem Characteristics Solution Methods
Determ. Stoch. Fuzzy Exact Heuristic Metaheuristic Simulation Simheuristic Hybrid

González-Neira et al. [36] • Tabu search
& PAES

• • •

González-Neira and
Montoya-Torres [37] • GRASP • • •

Villarinho et al. [38] • • • • VND • • •
Gao et al. [39] • ABC
Vela et al. [40] • Tabu search
Jia et al. [41] • ACO
Emin Baysal et al. [42] • ABC

Pan et al. [43] • •
Evolutionary

algorithm
with adaptation

mechanism

Ouchiekh et al. [44] • •
Eagle stratrgy

–
Sine-cosine
algorithm

•

Amirghasemi [45] • LND–VNS
Fathollahi-Fard et al. [46] • •
Parviznejad and
Asgharizadeh [47] • •

Gonzalez-Neira et al. [48] • GRASP–PAES • • •

de Fátima Morais et al. [49] • Discrete
differential
evolution

Engin and İşler [50] • Parallel
greedy

algorithm
Chao [51] • Online bees

algorithm
•

Abtahi and Sahraeian [52] • •
Xu et al. [53] • Genetic

algorithm

4. Extending the Simheuristic Framework with Fuzzy Techniques

This section describes the fuzzy simheuristic framework we employ in this work
(Figure 3). This framework extends the simheuristic approach proposed in Juan et al. [54]
to solve the PFSP with stochastic processing times. The extension considers stochastic and
fuzzy uncertainty altogether. The fuzzy simheuristic framework includes the following
main steps:

Figure 3. Schema of the fuzzy-simheuristic approach.
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1. The deterministic version of the optimization problem is defined. Thus, variables
in the optimization problems are replaced by their expected or most likely values.
The newly defined problem is deterministic since the uncertainty is removed from it.

2. The deterministic version of the problem is solved using a metaheuristic framework.
Several feasible solutions for this version are generated. These solutions are considered
good-quality solutions for the deterministic version of the problem.

3. The deterministic good-quality solutions are examined according to the uncertainty
elements in the problem. In this examination, a relatively small number of simulation
runs are utilized to evaluate the effect of stochastic and fuzzy uncertainty on the
objective value of these solutions; a different value is assigned to random variables or
fuzzy elements in each run according to the probability distribution or fuzzy rules.
In addition, constraints are also evaluated under uncertainty conditions. Finally, de-
scriptive statistics are obtained for each solution, which provides detailed information
on them.

4. The examination of solutions guides the metaheuristic generation of new solutions.
For example, the evaluation of solutions could improve the local search in the heuristic,
or ‘good’ solutions could form the start to generate new solutions in the subsequent
iterations of the metaheuristic. This generation of new solutions continues until a
stopping criterion is met, e.g., reaching a maximum allowed time.

5. After terminating the previous stage, the ‘elite’ solutions are examined further under
uncertainty. More runs are utilized to examine solutions’ quality intensively in this
step compared to the first examination.

6. According to the intensive examination, solutions are ranked, and the best solution is
recommended. Identifying the best solution might take into account measures of interest
other than the expected value, e.g., the variance or the reliability of each solution.

5. Application to the Stochastic and Fuzzy PFSP

In this paper, we consider a set J = {1, 2, . . . , n} of jobs that have to be sequentially
processed by a set M = {1, 2, . . . , m} of machines. All jobs and machines are available at
the starting time, and there is no job preemption. Processing job i on machine j requires
a time Oi,j, which is modeled either as an independent random variable or as a fuzzy
function (∀i ∈ J, ∀j ∈ M). Given a sequence of jobs π = {π1, π2, ..., πn}, let job πi be
the job assigned to position i, and Cπi ,j denote the completion time of job πi on machine
j (∀i ∈ J, ∀j ∈ M). The goal is to find a sequence of jobs that minimizes the expected
value of the total completion time or makespan, Cmax = Cπn ,m [55]. However, since we are
considering uncertainty, other statistical characteristics of the proposed solution –such as
its variability or reliability–, might also be provided to decision-makers. We present the
mathematical model of the PFSP using three terms: decision variables, objective function,
and constraints [13]. Regarding decision variables, they can be represented as follows:

Xπi ,k =

{
1 if job i is assigned to position k in sequence π,
0 otherwise

∀i, k ∈ {1, 2, . . . , n} (7)

Then, our objective function can be expressed as:

Minimize E[Cmax] (8)
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While the following constraints need to be respected:

n

∑
k=1

Xπi ,k = 1 ∀i ∈ {1, 2, . . . , n} (9)

n

∑
i=1

Xπi ,k = 1 ∀k ∈ {1, 2, . . . , n} (10)

Cπ1,1 ≥
n

∑
i=1

Xπi ,1 ×Oπ1,1 (11)

Cπk ,j ≥ Cπk ,j−1 +
n

∑
i=1

Xπi ,k ×Oπk ,j ∀k ∈ {1, 2, . . . , n}; ∀j ∈ {2, 3, . . . , m} (12)

Cπk ,j ≥ Cπk−1,j +
n

∑
i=1

Xπi ,k ×Oπk ,j ∀k ∈ {2, 3, . . . , n}; ∀j ∈ {1, 2, . . . , m} (13)

Cπk ,j ≥ 0 ∀k ∈ {1, 2, . . . , n}; ∀j ∈ {1, 2, . . . , m} (14)

Xπi ,k ∈ {0, 1} ∀i, k ∈ {1, 2, . . . , n} (15)

Hence, our main goal is to minimize the expected makespan, as represented by
Equation (8). Equations (9) and (10) guarantee that each position of the sequence will be
assigned to only one job, and each job can only occupy one position. Equation (11) defines
the completion time of the job at the first position on the first machine. Equation (12)
guarantees that, for a job at position k, the completion time on machine j is greater than
or equal to its completion time on the previous machine, j− 1, plus its processing time
on machine j. Equation (13) ensures that the completion time of the job at position k on
machine j is greater than or equal to the completion time of the job at position k− 1 plus its
processing time on the machine j. Equations (14) and (15) ensure that the completion times
are positive, and also that the assignment of jobs to the positions of the sequence is binary,
respectively. As described in Juan et al. [56], a biased-randomized iterated local search
algorithm can be employed to efficiently solve the deterministic version of the PFSP, using
Taillard’s acceleration matrices to speed up the computation of the makespan associated
with any proposed solution.

6. Details on the Solving Approach and Computational Experiments

To consider stochastic and fuzzy processing times, we have modified the classical
set of PFSP instances proposed by Taillard [57], which can be found at http://mistic.heig-
vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html (accessed on
2 March 2022). These instances are grouped in 12 sets of 10 instances each, depending
on the number of jobs and machines. For each instance, the nomenclature “taia_b_c” is
used, where a, b, and c represent the instance number, the number of jobs, and the number
of machines, respectively. In the stochastic-fuzzy version of the problem, the log-normal
probability distribution is used to model some of the processing times. The log-normal and
the Weibull probability distributions are frequently employed to model positive random
variables, such as processing or failure times in reliability analysis [58]. For modeling the
processing time of job i on machine j, the log-normal distribution parameters are set as
follows: the mean is set to the deterministic processing time (the value provided in the
original instances), while the variance is set as the product of the mean and a constant
k = 0.5. For the fuzzy processing times, we have defined a FIS responsible for estimating
the total makespan obtained after assigning jobs to different machines. The processing
time of each operation is highly uncertain and cannot be modeled using a probability
distribution. The elements of the FIS for this case are described below:

• In the considered PFSP, the job type and machine type are selected as input variables
for the fuzzification.

• The job type and the machine type are expressed as values ranging from 0 to 1,
and are classified as low, medium, and high, following a triangular distribution as

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
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shown in Figure 4. Meanwhile, the output variable represents the processing time
and has five membership functions: very low, low, medium, high, and very high.
The processing time ranges between 0 and the maximum processing time in a specific
instance, and follows a triangular distribution.

Figure 4. Fuzzy sets of the input and output variables used to generate the fuzzy system.

• Inference rules are designed by expert criteria. Figure 5 shows fuzzy rules in the FIS,
where each cell in the grid defines a rule. A total of nine rules are defined. These rules
determine the processing time of a job on a machine based on the job and machine
types. For example, “if a job type is low and a machine type is low, then the processing
time is very low” and “If a job type is medium and a machine type is low, or a job type
is low and a machine type is medium, then the processing time is low”.

Figure 5. A representation of fuzzy rules used to determine the processing times in the fuzzy system.
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• The fuzzy sets are combined using logical and relational operators. In the PFSP,
the input variables with membership functions are combined with the operators to
produce the fuzzy output following the inference rules.

• In this work, the fuzzification process is performed using the center of gravity method [59].

In our experiments, we utilized Monte Carlo simulation and varied the number of
simulation runs in the different phases. To examine solutions during the iterative phase,
we set the number of runs to 100 per solution. During the refinement stage (Figure 3),
the number of simulation runs was increased up to 1000. The length of the list of elite
solutions was set to 3. The fuzzy-simheuristic algorithm has been implemented using
Python 3.9 (Python Software Foundation, https://www.python.org/, accessed on 2 March
2022), and experiments were run on a standard PC with an Intel i5 CPU at 1.60 GHz and
4 GB RAM. Our approach was tested in the following scenarios:

• Deterministic scenario: In this scenario, no uncertainty is considered. Thus, the pro-
cessing time of job i on machine j is constant and known in advance. This time is
provided in the benchmark dataset. The solution to this scenario is found using a
biased-randomized iterated local search (BR-ILS) algorithm [60], which is summarized
in Algorithm 1 (in the algorithm, ‘cost’ refers to the makespan value).

• Stochastic scenario: Processing times of jobs on machines follow log-normal prob-
ability distributions. A pure simheuristic approach, similar to the one proposed in
Ferone et al. [60], is utilized to find solutions in this scenario.

• Stochastic-fuzzy scenario: This scenario introduces fuzzy uncertainty to half of the
processing times. Hence, half of the processing times (randomly selected) are modeled
with the log-normal probability distribution, and the remaining processing times are
modeled as fuzzy elements, as described in the previous section.

• Completely fuzzy scenario: All processing times are modeled as fuzzy elements in
the last scenario. This scenario represents the highest degree of uncertainty in the
processing times.

Algorithm 1 BR-ILS metaheuristic for the deterministic PFSP [60]

1: baseSol← biasedRandNEH(inputs)
2: baseSol← localSearch(baseSol)
3: bestSol← baseSol
4: while (stopping condition not met) do % Iterated local search
5: currentSol← perturbation(baseSol)
6: currentSol← localSearch(currentSol)
7: ∆← cost(currentSol) − cost(baseSol) % Acceptance criterion
8: if (∆ < 0) then % Improvement case
9: credit← (−∆)

10: baseSol← currentSol
11: if (cost(baseSol) < cost(bestSol)) then
12: bestSol← baseSol
13: end if
14: end if
15: if (0 < ∆ ≤ credit) then % Deterioration case
16: credit← 0
17: baseSol← currentSol
18: end if
19: end while
20: return bestSol

7. Results and Discussion

Table 2 shows the obtained results. The first column identifies the instances, while
the rest columns show the makespan under the four considered scenarios. For each sce-
nario with uncertainty, two solution approaches were used. The BR-ILS columns show

https://www.python.org/
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the expected cost obtained when our best deterministic solution is evaluated under a
specific uncertainty scenario, with the corresponding level of uncertainty. To determine
the values in these columns, we have executed the BR-ILS algorithm (with disabled uncer-
tainty components) followed by the ‘intensive’ simulation process to the best deterministic
solution. The main idea behind this process is to assess our best deterministic solution
under different levels of uncertainty. The second approach utilizes the above-mentioned
fuzzy-simheuristic approach (Sim BR-ILS). This approach considers the uncertainty during
the metaheuristic search.

Our best deterministic solutions (Column 2) are compared with the best-known so-
lution (BKS) in the literature (Column 1), which allows us to assess the quality of our
deterministic algorithm. Notice that the BR-ILS algorithm employed to solve the deter-
ministic version of the PFSP is highly competitive: in a few seconds of computation per
instance, it obtains an average gap of 0.55% with respect to the BKS. In the second section of
the table, we present the obtained solutions considering the stochastic scenario. Column 3
displays the expected makespan when the solutions found using the BR-ILS approach
are simulated under the stochastic scenario. Similarly, the next column shows the results
obtained using our Sim BR-ILS approach. The next section of the table offers the obtained
solutions for the fuzzy-stochastic scenario. Column 5 reports the results when the BR-ILS
solutions are simulated under a fuzzy-stochastic scenario. Moreover, the following column
shows the expected makespan obtained using the fuzzy-simheuristic BR-ILS approach.
Similarly, the last section of the table exhibits the solutions obtained for the completely
fuzzy scenario.

Figure 6 depicts an overview of Table 2, where the horizontal and vertical axes rep-
resent the four uncertainty scenarios and the percentage gap with respect to the BKS,
respectively. The deterministic scenario can be considered as an ideal scenario with perfect
information, which is not the case in scenarios with stochastic or fuzzy processing times.
Concerning the uncertainty scenarios, the computed gaps show that the simheuristic BR-ILS
outperforms the BR-ILS algorithm when uncertainty is introduced, i.e., using the BR-ILS
approach for the uncertainty scenarios leads to sub-optimal solutions. This result proves
the importance of integrating fuzzy-simulation methods when dealing with optimization
problems with uncertainty. Another notice is that the expected makespan increases due to
the uncertainty of the processing times and, consequently, increases the completion time
of jobs being processed by the machines. Thus, the search for solutions that minimize the
expected makespan by considering the fuzzy or stochastic processing times gives better
results than only considering the makespan given by the deterministic processing times.

As mentioned before, when working under uncertain conditions, other aspects of the
solution should also be taken into account. Thus, for instance, managers might be interested in
analyzing the reliability or survival function associated with a given permutation of jobs, i.e., the
probability that the random makespan exceeds a given target time. To illustrate these concepts,
the following analysis has been conducted for the tai002_20_5 instance. Monte Carlo simulation
has been used to generate 1000 random observations of the makespan associated with the
proposed solution. As illustrated in Figure 7, this makespan is a random variable that can be fit
by a log-normal probability distribution with estimated parameters: location = 7.22332 and
scale = 0.0162057 (these estimated parameters were obtained using the maximum likelihood
method, with an Anderson-Darling statistic = 0.626).

Based on the fitted probability distribution, Figure 8 shows the ‘survival’ function
associated with the proposed solution. This function also includes the 95% confidence inter-
vals. Notice that the probability that the proposed solution offers a makespan longer than
1356 time units is approximately 0.75. Similarly, the probability that it offers a makespan
above 1371.2 time units is approximately 0.50. Finally, the probability that the makespan
reaches a value above 1, 386 time units is approximately 0.25 (i.e., 75% of the times the
proposed solution will provide a makespan lower than 1386 time units).
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Table 2. Results of the the four considered scenarios of the PFSP.

Deterministic Scenario Stochastic Scenario Stoch-Fuzzy Scenario Fuzzy Scenario

Instance BKS BR-ILS GAP(%) BR-ILS Sim. BR-ILS Sim. BR-ILS Sim.

(1) (2) (1-2) (3) BR-ILS (4) (5) BR-ILS (6) (7) BR-ILS (8)

tai002_20_5 1359 1359 0.00 1371.38 1369.77 1553.77 1548.30 1552.51 1552.51
tai010_20_5 1108 1108 0.00 1133.81 1129.65 1390.46 1338.65 1560.28 1520.87
tai017_20_10 1484 1484 0.00 1517.35 1505.46 1757.69 1623.89 1994.44 1874.61
tai018_20_10 1538 1538 0.00 1576.16 1575.23 1837.13 1708.41 1936.43 1778.29
tai020_20_10 1591 1591 0.00 1636.77 1634.26 1772.16 1730.28 1876.22 1796.11
tai031_50_5 2724 2724 0.00 2746.91 2742.10 3126.52 3112.56 3693.19 3650.43
tai034_50_5 2751 2751 0.00 2797.29 2785.58 3336.54 3336.26 3732.11 3732.11
tai035_50_5 2863 2863 0.00 2888.09 2876.81 3369.97 3368.28 3732.34 3732.34
tai036_50_5 2829 2829 0.00 2865.12 2861.57 3324.02 3313.48 3732.38 3610.18
tai039_50_5 2552 2552 0.00 2589.39 2586.07 3267.29 3194.62 3651.99 3609.64
tai040_50_5 2782 2782 0.00 2814.79 2798.58 3260.32 3228.04 3669.33 3611.01
tai041_50_10 2991 3037 1.54 3103.37 3098.23 3765.06 3517.88 4021.97 3882.23
tai042_50_10 2867 2923 1.95 2993.04 2991.07 3545.02 3461.89 4040.56 4025.21
tai046_50_10 3006 3031 0.83 3100.32 3098.08 3571.18 3443.81 3996.58 3799.48
tai049_50_10 2897 2924 0.93 2986.59 2974.89 3646.91 3466.14 4078.46 4003.57
tai053_50_20 3591 3640 1.36 3714.60 3709.35 4319.35 4310.47 4444.99 4442.28
tai069_100_5 5448 5448 0.00 5492.12 5487.66 6689.11 6576.69 7183.16 7138.34
tai073_100_10 5676 5689 0.23 5774.57 5768.57 6919.97 6739.91 7512.29 7406.61
tai074_100_10 5781 5832 0.88 5939.19 5922.87 6747.73 6709.67 7470.61 7430.16
tai076_100_10 5303 5321 0.34 5402.84 5394.99 6685.58 6609.32 7344.73 7333.26
tai077_100_10 5595 5621 0.46 5707.56 5704.90 6404.91 6393.98 7551.84 7551.84
tai081_100_20 6106 6202 1.57 6297.16 6262.59 7154.82 7035.24 8276.60 8213.53
tai085_100_20 6262 6314 0.83 6406.03 6394.65 7203.21 7142.67 8465.49 8403.16
tai093_200_10 10,922 11,045 1.13 11,115.86 11,102.08 12,984.46 12,945.09 13,954.32 13,823.54
tai103_200_20 11,281 11,411 1.15 11,544.97 11,524.49 13,334.12 13,281.89 14,265.83 14,215.64
tai105_200_20 11,259 11,340 0.72 11,392.55 11,383.12 13,204.56 13,123.23 14,166.19 14,068.98
tai107_200_20 11,337 11,360 0.20 11,437.28 11,423.71 13,273.78 13,198.54 14,198.64 14,164.35
tai108_200_20 11,301 11,455 1.36 11,494.95 11,489.36 13,318.82 13,234.61 14,401.19 14,364.54
tai112_500_20 26,500 26,702 0.76 26,796.92 26,792.43 30,693.94 30,605.16 32,612.91 32,544.43
tai118_500_20 26,560 26,654 0.35 26,752.67 26,745.54 30,543.56 30,458.25 32,593.75 32,468.16

Average: 6275.47 6317.67 0.55 6379.66 6371.12 7400.07 7325.24 8057.04 7991.58

Figure 6. Percentage gaps of our SimBR-ILS approach w.r.t. deterministic BKS (lowerbound).
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Figure 7. Fitting the makespan observations obtained via simulation by a log-normal distribution.

Figure 8. Survival function associated with the proposed solution (includes 95% confidence intervals).

The obtained results illustrate the flexibility of the presented methodology to solve the
PFSP under uncertainty scenarios, both probabilistic and fuzzy. This is something that has
not been fully explored in the existing literature despite being present in many real-life flow
shop systems. Considering stochastic and fuzzy uncertainty is necessary when a subset
of elements can be modeled using probability distributions while another subset requires
fuzzy techniques –due, for instance, to the lack of enough historical data.
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8. Conclusions

This paper analyzes the permutation flow shop problem under both stochastic and
fuzzy uncertainty, which is the case in some real-life systems. In order to solve this
challenging optimization problem, we propose an extended simheuristic algorithm, which
also includes a fuzzy component. The definition of the fuzzy inference system enriches
and extends the simulation-optimization approach. Fuzzy processing times are modeled
based on a job and machine type, and, accordingly, the processing time is determined in a
fuzzy inference system. The approach has been tested on several PFSP instances, and the
results have shown that the approach can handle the problem effectively. Hence, our
fuzzy simheuristic algorithm constitutes a general approach that can be employed to solve
different PFSP variants regardless of the type of uncertainty being considered, and even
those simultaneously combining stochastic and fuzzy uncertainties.

Moreover, the paper discusses the relevance of considering statistical metrics, other
than the expected makespan, when dealing with non-deterministic versions of flow shop
problems. In particular, the manuscript illustrates how reliability concepts can be employed
to provide probabilistic information on the proposed solutions. Thus, the feedback provided
by the simulation component is utilized to fit the probabilistic behavior of the proposed
solution by a theoretical probability distribution (whenever possible) or by an empirical
one. This, in turn, allows us to plot the survival function associated with any given solution
(permutation of jobs in this case), and obtain the probability that it can be completed before
any given target time.

Some open research lines are highlighted next: (i) the incorporation of machine learn-
ing methods inside the fuzzy simheuristic framework to enhance the utility of the feedback
provided by the simulation component, which can be utilized to identify new ‘promising’
solutions as well as to develop surrogate models that contribute to speed up computations;
and (ii) test other fuzzy components based on type-2 fuzzy sets, which can also reduce
computational times even further.
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50. Engin, O.; İşler, M. An Efficient Parallel Greedy Algorithm for Fuzzy Hybrid Flow Shop Scheduling with Setup Time and Lot
Size: A Case Study in Apparel Process. J. Fuzzy Ext. Appl. 2021. [CrossRef]

51. Chao, W. Using Online Bees Algorithm for Real-time Permutation Flow Shop Problem in Car Disassembly Line. Res. Sq. 2021.
[CrossRef]

52. Abtahi, Z.; Sahraeian, R. Robust and Stable Flow Shop Scheduling Problem Under Uncertain Processing Times and Machines
Disruption. Int. J. Eng. Trans. A Basics 2021, 34, 935–947.

53. Xu, W.J.; He, L.J.; Zhu, G.Y. Many-objective flow shop scheduling optimisation with genetic algorithm based on fuzzy sets. Int. J.
Prod. Res. 2021, 59, 702–726. [CrossRef]

54. Juan, A.A.; Barrios, B.B.; Vallada, E.; Riera, D.; Jorba, J. A simheuristic algorithm for solving the permutation flow shop problem
with stochastic processing times. Simul. Model. Pract. Theory 2014, 46, 101–117. [CrossRef]

55. Framinan, J.M.; Gupta, J.N.; Leisten, R. A review and classification of heuristics for permutation flow-shop scheduling with
makespan objective. J. Oper. Res. Soc. 2004, 55, 1243–1255. [CrossRef]

56. Juan, A.A.; Lourenço, H.R.; Mateo, M.; Luo, R.; Castella, Q. Using iterated local search for solving the flow-shop problem:
Parallelization, parametrization, and randomization issues. Int. Trans. Oper. Res. 2014, 21, 103–126. [CrossRef]

57. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
58. Kim, J.S.; Yum, B.J. Selection between Weibull and lognormal distributions: A comparative simulation study. Comput. Stat. Data

Anal. 2008, 53, 477–485. [CrossRef]
59. Bai, Y.; Wang, D. Fundamentals of fuzzy logic control–Fuzzy sets, fuzzy Rules and defuzzifications. In Advanced Fuzzy Logic

Technologies in Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2006; pp. 17–36.
60. Ferone, D.; Hatami, S.; González-Neira, E.M.; Juan, A.A.; Festa, P. A biased-randomized iterated local search for the distributed

assembly permutation flow-shop problem. Int. Trans. Oper. Res. 2020, 27, 1368–1391. [CrossRef]

http://dx.doi.org/10.1016/j.cie.2019.106026
http://dx.doi.org/10.5267/j.jpm.2019.1.003
http://dx.doi.org/10.1111/itor.12862
http://dx.doi.org/10.1016/j.eswa.2016.07.046
http://dx.doi.org/10.1016/j.cor.2020.104931
http://dx.doi.org/10.1016/j.asoc.2018.11.027
http://dx.doi.org/10.1016/j.ifacol.2021.08.138
http://dx.doi.org/10.3390/a14040112
http://dx.doi.org/10.1016/j.jii.2021.100233
http://dx.doi.org/10.3390/a14070210
http://dx.doi.org/10.1016/j.cie.2022.107956
http://dx.doi.org/10.22105/JFEA.2021.314312.1169
http://dx.doi.org/10.21203/rs.3.rs-286326/v1
http://dx.doi.org/10.1080/00207543.2019.1705418
http://dx.doi.org/10.1016/j.simpat.2014.02.005
http://dx.doi.org/10.1057/palgrave.jors.2601784
http://dx.doi.org/10.1111/itor.12028
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1016/j.csda.2008.08.012
http://dx.doi.org/10.1111/itor.12719

	Introduction
	Background Concepts
	Overview of Fuzzy Concepts
	Overview of Simheuristics

	Related Work
	Fuzzy and Simheuristic Approaches in Optimization with Uncertainty
	The Stochastic Permutation Flow Shop Scheduling Problem

	Extending the Simheuristic Framework with Fuzzy Techniques
	Application to the Stochastic and Fuzzy PFSP
	Details on the Solving Approach and Computational Experiments
	Results and Discussion
	Conclusions
	References

