
Automatic privacy and utility evaluation of 

anonymized documents via deep learning 

Author: Benet Manzanares Salor a 

Supervisor: David Sánchez Ruenes a 

Internal examiner: Antonio Moreno Ribas a  

Thesis defense date: 23/01/2023 

 

Master’s degree in Artificial Intelligence 

Barcelona School of Informatics (FIB) 

School of Engineering (URV) 

Faculty of Mathematics and Informatics (UB) 

 

a Universitat Rovira i Virgili, Departament of Computer Engineering and Mathematics 

Avda. Països Catalans, 26, 43007 Tarragona (Spain)



 



iii 

 

 

 

Abstract 

Text anonymization methods are evaluated by comparing their outputs with human-based anonymizations 

through standard information retrieval (IR) metrics. On the one hand, the residual disclosure risk is 

quantified with the recall metric, which gives the proportion of re-identifying terms successfully detected 

by the anonymization algorithm. On the other hand, the preserved utility is measured with the precision 

metric, which accounts the proportion of masked terms that were also annotated by the human experts. 

Nevertheless, because these evaluation metrics were meant for information retrieval rather than privacy-

oriented tasks, they suffer from several drawbacks. First, they assume a unique ground truth, and this does 

not hold for text anonymization, where several masking choices could be equally valid to prevent re-

identification. Second, annotation-based evaluation relies on human judgements, which are inherently 

subjective and may be prone to errors. Finally, both metrics weight terms uniformly, thereby ignoring the 

fact that the influence on the disclosure risk or on utility preservation of some terms may be much larger 

than of others. To overcome these drawbacks, in this thesis we propose two novel methods to evaluate 

both the disclosure risk and the utility preserved in anonymized texts. Our approach leverages deep 

learning methods to perform this evaluation automatically, thereby not requiring human annotations. For 

assessing disclosure risks, we propose using a re-identification attack, which we define as a multi-class 

classification task built on top of state-of-the art language models. To make it feasible, the attack has been 

designed to capture the means and computational resources expected to be available at the attacker’s end. 

For utility assessment, we propose a method that measures the information loss incurred during the 

anonymization process, which relies on a neural masked language modeling. We illustrate the 

effectiveness of our methods by evaluating the disclosure risk and retained utility of several well-known 

techniques and tools for text anonymization on a common dataset. Empirical results show significant 

privacy risks for all of them (including manual anonymization) and consistently proportional utility 

preservation.  
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Chapter 1 - Introduction 

Text is a ubiquitous mean of sharing information among humans, and defines the standard encoding for 

most unstructured or semi-structured knowledge sources. The availability of text data is therefore crucial 

for many tasks related to scientific research and analysis. Examples of textual sources employed for 

research include medical reports used in pharmacological studies [1], social networks publications 

employed in contextual analysis [2], and reviews or comments leveraged for customer satisfaction 

analysis [3]. 

Textual data, however, often convey personal information. To comply with the European General Data 

Protection Regulation (GDPR) [4], privacy protection measures should be undertaken prior to releasing 

personal data or sharing them with third parties. These measures consist on either obtaining the informed 

consent of the individuals the data refer to (which may be infeasible), or anonymize the data, a process by 

which the data should no longer be attributed to concrete subjects. The latter makes the data no longer 

personal and, therefore, outside the scope of the GDPR. 

Methods for data anonymization have been extensively employed to conceal personal information in 

structured datasets consisting of records describing individuals by means of predefined attributes. Well-

stablished anonymization methods and privacy models for this framework include k-anonymity and its 

extensions [5-7], and ε-differential privacy [8]. Nonetheless, anonymization of unstructured data such as 

plain text is significantly more challenging [9, 10]. Difficulties arise because re-identifying attributes 

appearing in textual resources are unbounded and, usually, not obviously associated to the corresponding 

subject. Due to these difficulties, text anonymization in real world applications is still mainly performed 

by human experts, who use their broad language understanding and contextual knowledge to identify and 

mask the information that may lead to re-identification [11]. 

The vast majority of automatic text anonymization methods use natural language processing (NLP) 

techniques to find and mask terms belonging to potentially re-identifying categories [1, 12-26], such as 

names or addresses. Named entity recognition (NER) techniques are employed to this end. However, 

because these techniques limit masking to a reduced set of predefined semantic categories -whereas re-

identification can be caused by a large variety of entity types-, they offer poor privacy protection. In fact, 

as introduced above, it is well acknowledged in the data privacy literature that the types of information 

that may lead to re-identification are unbounded [9, 27]. On the other hand, methods proposed in the area 
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of privacy preserving data publishing (PPDP) [27-33] consider any information that jeopardizes subject’s 

anonymity. However, the distortion added by some of these methods and several scalability issues make 

them unfeasible in real-world scenarios [9]. 

In any case, since the majority of text anonymization techniques (and all NLP-based in particular) do not 

provide formal privacy guarantees, the level of protection attained should be evaluated ex post. In this 

respect, the de facto way to evaluate anonymization methods is to compare them with manual 

anonymizations [1, 12, 14, 16, 18-21, 23, 25, 28]. Particularly, the IR-based metrics precision and recall 

are employed for measuring the performance of anonymization approaches. Whereas a drop in precision 

indicates that terms were unnecessarily masked (which would negatively affect the utility and readability 

of the anonymized outcomes), recall, which provides the proportion of re-identifying terms that were 

correctly detected, is inversely related to the re-identification risk. Both metrics, however, are severely 

limited as evaluation means for anonymization methods because i) several masking choices -each one 

involving a different combination of terms- could be equally be considered as valid by the annotators to 

prevent re-identification, ii)  assessment relies on manual anonymization, which is prone to various errors, 

omissions and inconsistencies, and iii) not all (missed) terms contribute equally to re-identification risk 

[9, 34] and utility loss [1, 12, 14, 16, 18-21, 23, 25, 28]. 

In contrast, the standard evaluation method in the statistical disclosure control (SDC) [35] consists of 

empirically measuring the residual disclosure risk and the utility preserved of the anonymized data. On 

the one hand, the privacy assessment is done by subjecting the anonymized data to re-identification 

attacks, more specifically, record linkage attacks [36-39]. Record linkage methods, which strictly focus 

on structured databases, match records in the anonymized database with background data containing 

publicly available identified information of the protected individuals. Since each successful match 

between the two data sources results in unequivocal re-identification, the proportion of correctly linked 

records provides an empirical measurement of the re-identification risk. On the other hand, the preserved 

utility (or, inversely, the information loss) resulting from data anonymization is standardly measured by 

comparing the original data with their anonymized versions [40]. In particular, the difference (or error) 

between original and anonymized versions of individual records, or among some relevant statistical 

features of the dataset (such as attribute means, variances or covariances) are used as metrics for utility. 
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1.1 Contributions and plan 

To tackle the limitations of human-dependent evaluation and IR-based metrics, in this work we propose 

two automatic metrics for text anonymization. On the one hand, disclosure risk assessment is made via a 

Text Re-Identification Attack (TRIA) we designed according to the formal principles of the record linkage 

technique. From this, we propose TRIR, a Text Re-Identification Risk metric based on the re-identification 

accuracy of TRIA. On the other hand, utility preservation assessment is based on a Text Information 

Content (TIC) measure we designed to quantify the semantics encompassed by (original or masked) text. 

On this basis, we propose TPI, a Text Preserved Information metric based on the difference between the 

TIC of the original and anonymized documents.  

We define TRIA as a (highly dimensional) multiclass classification task, where anonymized texts must be 

associated to individuals (classes) known by the attacker. For maximizing its re-identification capabilities, 

TRIA leverages state-of-the-art neural language models [41] to aggregate and characterize the data 

sources that attackers may use as background knowledge to conduct re-identifications. These models have 

been shown to achieve human or above human proficiency in many language-related tasks, thus making 

our approach a realistic depiction of an ideal human attacker work. However, because the unconstrained 

use of large language models can be computationally expensive, we have carefully considered the means 

and computational resources expected to be available at the attacker’s end in order to simulate a feasible 

re-identification attack. A preliminary version of TRIA and TRIR has been presented in a conference 

paper [42]. The full version described in this work has been submitted to the Applied Intelligence journal 

(JCR indexed) and is currently under review. See Section 6.1 for more details on these papers. 

On the other hand, we defined TIC as the sum of the information content (IC) [43] of all the terms 

appearing in a (plain or anonymized) document. The IC of textual terms, which is the inverse of their 

probability of occurrence, has been extensively employed in the area of computational linguistics as a 

measure of the semantics conveyed by those terms, being semantics the most relevant dimension of 

textual data utility [44, 45]. To gather robust term probabilities in an efficient way, we employ a neural 

language model trained to predict the probability of appearance of any term at any position of the 

document. 

We illustrate the effectiveness of our proposal by evaluating the level of privacy protection and utility 

preservation attained by a variety of widely used and state-of-the-art text anonymization methods and 

tools, along with a sample of human-based anonymization defined in a previous work as gold standard 
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[27] on a common dataset. The empirical results we report depict the limitations of NER-based 

anonymization (already discussed at a theoretical level in [9, 27]) and even of human-based 

anonymization.  

The rest of this thesis is organized as follows: 

• Chapter 2 provides background on (text) anonymization methods, discusses related work on 

empirical privacy and utility evaluation and provides background on neural language modeling. 

• Chapter 3 presents and formalizes TRIA and TRIR, discusses the NLP techniques that are best 

suited to maximize TRIA’s performance and provides additional implementation details.  

• Chapter 4 defines TIC and TPI metrics and discusses their implementation details.  

• Chapter 5 reports and discusses empirical results obtained by applying TRIA and TIC on a 

variety of automated and human-based anonymization methods, compares TRIR to the standard 

recall metric, compares TPI to the standard precision metric, analyzes the influence of multiple 

hyperparameters and compares the standard F1-score with a new one based on TRIR and TPI.  

• Chapter 6 gathers the conclusions and depicts several lines of future work. 
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Chapter 2 - Background 

2.1 The anonymization task 

Anonymization is defined as the complete and irreversible removal from a dataset of all information that 

could enable, directly or indirectly, the re-identification of the referred individuals [46]. Through this 

process, the goal is to protect the confidential attributes that may also appear in the dataset (such as 

incomes, diagnoses or sexual orientations), by preventing its association to the corresponding individuals. 

Re-identifying attributes can be classified into identifiers or quasi-identifiers. Identifiers are unique and 

publicly known values of an individual (such as complete names or passport numbers) and, therefore, 

enable re-identification in isolation. Quasi-identifiers are also publicly known attributes (such as the 

individual’s gender, zip code or birth date) that, even though do not enable re-identification when 

considered in isolation, may do so when combined with other quasi-identifiers appearing in the same 

dataset. The quasi-identifiers that can be known on a particular individual, and which can be exploited by 

attackers to re-identify the subject, are called background knowledge. Whereas identifying attributes are 

limited, any publicly known information on the individual may act as quasi-identifier and, therefore, 

quasi-identifying attributes are considered to be unbounded [35]. 

Anonymization, as it is defined in the GDPR, must therefore remove all identifiers and either remove or 

mask quasi-identifiers to truly prevent re-identification. On the other hand, removing just identifying 

attributes (and, at most, a limited set of pre-defined quasi-identifier types, such as those considered in the 

Health Insurance Portability and Accountability Act (HIPAA) [47], should not qualify as anonymization 

(because it does effectively prevent re-identification), and goes under the term of de-identification [9, 48]. 

The anonymization process varies significantly depending on whether it is applied to structured or 

unstructured data. In the context of structured databases, individuals are described as records, each on 

containing a fixed (and usually reduced) set of attributes. This structure makes it relatively 

straightforward for a human expert to classify the attributes into identifiers, quasi-identifiers and 

confidential attributes. Anonymization methods are then applied on the basis of this manual classification 

of attributes, and their goal is to produce the masking that best preserves the utility of the data while 

enforcing a certain level of privacy protection.  
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In unstructured text data, however, (quasi-)identifiers are not explicitly defined. In fact, almost every 

word appearing in a text related to an individual may act as a quasi-identifier [49]. On this basis, the main 

challenge of unstructured text anonymization is the detection of re-identifying attributes rather than the 

choice of masking strategy [9, 10]. Even though this detection task is still performed manually in many 

practical applications [11], it is a costly process that usually involves several human experts, it is prone to 

errors and omissions and it is often approached as a de-identification -rather than anonymization- task [9, 

34].  

To alleviate this burden, several automatic methods to detect (and mask) quasi-identifiers have been 

proposed. As introduced in the previous section, NLP-oriented methods [1, 12-26] rely on sequence 

labeling to detect text spans belonging to pre-defined categories (typically named entities such as names 

or addresses) that may enable re-identification. Detection is based on handcrafted rules or machine 

learning models trained to identify the occurrence of those specific categories. After that, the detected 

entities are either removed or masked by replacing them by their categories. Because the types of entities 

that can be supported by NER models are limited (whereas quasi-identifiers are unbounded), the type of 

protection offered by these methods is closer to de-identification than to actual anonymization [9]. On the 

other hand, PPDP methods operate with an explicit account of disclosure risk and anonymize documents 

by enforcing a privacy model. As a result, they do not limit the types of information that may act as 

(quasi-)identifier. However, many of these methods are only applicable in restricted text domains [30, 32, 

33], suffer from scalability issues due to their dependency on external resources (such as web search 

engines) [28, 50, 51], or produce distorted word distributions, rather than actual documents, thereby 

severely hampering the readability and utility of the anonymized outcomes [29, 31]. An exception to the 

aforementioned methods is [27], which proposes a practical PPDP-oriented approach that does not rely on 

external resources and retains the structure of the document. For this, it leverages word embeddings 

models [52] to efficiently detect text spans that are semantically close to the individual to be protected; 

those are considered (quasi-)identifying attributes and are subjected to masking via ontology-based 

generalizations. 

2.2 Related work on privacy evaluation 

The vast majority of text anonymization methods proposed in the literature do not offer formal privacy 

guarantees [34]. Consequently, the level of privacy protection attained should be evaluated ex post, that is, 

through empirical evaluations of the disclosure risk of the protected outcomes. In text anonymization, the 
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recall metric is used as standard for privacy protection evaluation [1, 12, 14, 16, 18-21, 23, 25, 28]. Recall 

is an IR-based completeness metric, defined as the proportion of elements that were correctly detected by 

the system to be evaluated: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
#𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

#𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+#𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                   ( 1 ) 

where #TruePositives is the number of elements detected by the system and #FalseNegatives is the 

number of missed ones. In text anonymization, these elements correspond to (quasi-)identifying words or 

text spans that should be masked according to the manual annotation of human experts, which is 

considered the ground truth.  

Because IR-based metrics constitute the standard approach to evaluate many sequence labelling tasks 

(and NER in particular), and NER models are the most common methods employed to tackle text 

anonymization, most existing techniques rely on the recall metric to evaluate the attained privacy. 

However, this has several drawbacks [34, 53]. Specifically, recall does not assess the residual disclosure 

risk of anonymized texts, but only compares the anonymized outcomes against manual annotations. These 

annotations are subjective, and may be prone to errors and omissions [9, 34]. Moreover, manual 

annotation is time consuming, and necessarily involves several human experts, whose annotations should 

be integrated through a non-trivial and non-univocal process [34]. Another drawback of IR-based metrics 

is that they assume the existence of a single gold standard annotation. Even though this assumption may 

be reasonable for NER or other NLP-oriented tasks, it does not hold for text anonymization, where 

several masking choices (each one encompassing a different combination of quasi-identifying terms) 

could be equally valid to prevent re-identification [9]. Finally, recall-based evaluation assumes that all 

identified/missed elements contribute equally to mitigate/increase re-identification risk, which is rarely 

the case [34]. Indeed, failing to mask an identifier (such as the family name of an individual) is much 

more disclosive than just missing the job or whereabouts.   

In contrast, in SDC, privacy risks on structured databases are measured according to the success of a re-

identification attack that a hypothetical attacker may execute on the anonymized outputs, i.e., a record 

linkage attack [36-39, 54, 55]). Record linkage seeks to re-identify anonymized records by linking the 

masked quasi-identifying attributes in the protected database with the personal attributes appearing in 

publicly available identified sources encompassing a superset of the individuals in the anonymized 

database. Because the public sources are identified, if the linkage is successful, the anonymized record 

would be unequivocally associated with the actual identity of the individual or entity to protect. 
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Therefore, the re-identification risk of an anonymized dataset is defined as the proportion of correctly 

linked records: 

𝑅𝑒-𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 =
#𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝐿𝑖𝑛𝑘𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑𝑠

#𝑅𝑒𝑐𝑜𝑟𝑑𝑠
        ( 2 ) 

Linkage between masked and public attributes may be based on different criteria, their similarity being 

the most common one [35]. Compared to recall-based evaluation, record linkage provides an automatic 

and objective means to evaluate the attained privacy that does not require manual annotations. 

There have been relatively few existing works employing attack-based re-identification risk assessments 

as a means to evaluate the privacy protection of text anonymization methods. In [53] the authors propose 

human evaluation studies with participants tasked to re-identify the individuals referred in a collection of 

anonymized documents. The anonymization of a document is considered to be unsuccessful if any 

participant succeeds in re-identifying the individual(s). Although this can provide a more realistic 

measure of disclosure risk than recall, it shares the same underlying issue regarding the costs and 

shortcomings of human interventions. Some automatic methods for text re-identification can be found in 

literature on authorship attribution/protection [56-60]. Nonetheless, this task aims to identify/hide the 

author of a document, rather than the individuals referred into the text. Therefore, the techniques 

employed in those works for both masking the author’s traits and disclosing the document’s authorship 

significantly differ from those used in the text anonymization task defined above. 

2.3 Related work on utility evaluation 

Similarly to the disclosure risk assessment, utility evaluation of anonymized texts has been is standardly 

performed on the same basis as it is done for NER tasks. In particular, the degree of utility preserved in 

the anonymized document is measured by using the precision metric [1, 12, 14, 16, 18-21, 23, 25, 28], 

which is defined as the ratio of correctly masked terms by the anonymization method: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
#𝑻𝒓𝒖𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

#𝑻𝒓𝒖𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔+#𝑭𝒂𝒍𝒔𝒆𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔
          ( 3 ) 

where #TruePositives represents the amount of text spans that were masked in the manual annotations 

used as reference, and #FalsePositives is the number of terms masked by the anonymization method but 

preserved by the human annotators. 

Most of the criticisms raised against recall-based risk evaluation also apply to precision-based utility 

assessment. First, precision does not explicitly measure text utility, but just counts the number of 
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correctly and unnecessarily masked terms. This assumes that every unnecessarily masked term 

contributes equally to utility loss when, in fact, the utility and readability of an anonymized document can 

be more or less impaired depending on the semantics conveyed by each masked term and the context in 

which it appeared. Moreover, the assessment is done against human annotations that, in the best case, 

represents a possible (but not unique) ground truth [9, 34]. Finally, precision does not provide a figure of 

the actual utility retained in the anonymized document, because (the semantics of) correctly masked 

terms, even though being either removed or generalized in the anonymized outcome, are not considered in 

the utility assessment. 

In contrast, in SDC [40], data utility (or, inversely, information loss) assessment accounts for the actual 

analytical utility (loss) one can expect from the anonymized output, and it is approached by measuring the 

differences between the original and anonymized datasets. These differences can be computed at record 

level or by using abstract characterizations of the datasets. In the first case, the original attribute values of 

each record are individually contrasted with their anonymized versions, thereby measuring the 

information loss incurred by each modification made by the anonymization method (e.g., generalization 

or suppression). On the other hand, considering abstract characterizations include measuring how data 

distributions and their properties (e.g., attribute means or variances, covariances, etc.) have been modified 

as a result of the anonymization process. To measure the divergence between original and anonymized 

attribute values, a variety of dissimilarity metrics can be employed according to the attribute data types. 

Numeric values can be compared with the well-known mean square error, the mean absolute error or 

mean variation metrics. Categorical values require more complex methods such as contingency tables, 

Shannon’s entropy [39, 61] or ontology-based metrics [62-64]. 

2.4 Neural language modeling 

Our methods extensively leverage state-of-the-art neural language models, which have recently 

revolutionized the NLP field. In the following we provide background on these models that is needed to 

understand the choices made in our proposals. 

Nowadays, NLP models are rarely built from scratch. Instead, it is common to employ a pre-trained 

language model and fine-tune it to the specific task to be solved. A language model aims to learn how a 

language functions, modeling the words meaning and sentences/documents structures. To this end, 

language models are pre-trained in an unsupervised fashion based on a large corpus of documents (from 

e.g., Wikipedia and other online sources), thereby capturing a broad range of text types and linguistic 
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constructions. The resulting language models are assumed to encapsulate general knowledge, being 

suitable for transfer learning. Particularly, the language model can be subsequently adapted to a particular 

task (e.g., classification or question answering) through a fine-tuning process consisting of a supervised 

learning step on a task-specific corpus. Thanks to the general linguistic knowledge acquired during pre-

training, satisfactory results can be achieved even if the amount of labeled data available for fine-tuning is 

small. In addition, results can be improved if, previously to fine-tuning, the language model is 

additionally pre-trained using the task data. This process, which is conducted with the same training 

method employed to general pre-training, adapts the model to the specific task domain. Even though 

building these large pre-training models is costly, they can be fine-tuned multiple times, and are usually 

freely available for research, industrial or personal use [65]. 

Language models are typically based on the Transformer architecture [41, 66-69]. Compared to previous 

neural architectures based on recurrent layers [70, 71], Transformer models can handle long-range 

dependencies between tokens while simultaneously allowing tokens to be processed in parallel (which is 

crucial when handling longer texts). This is achieved in practice through a self-attention mechanism by 

which the vector representation produced by a given layer is a weighted sum of the vectors from the 

preceding layer. The weights of this sum correspond to attention scores expressing the relevance of each 

token in the surrounding context for the representation of the currently processed token. This makes it 

possible to efficiently derive contextualized vector representations (contextual word embeddings) for each 

token of a given sequence. Those contextual word embeddings are computed through multiple neural 

layers, each being represented by its own set of parameters. The model parameters are optimized in an 

unsupervised fashion (what is called pre-training) from tasks such as masking a randomly selected word 

and subsequently predicting its value (Masked Language Modelling), predicting the next word in a 

sequence (Causal Language Modelling) or determining whether two sentences follow each other in a 

document (Next Sentence Prediction). 

As is usual in NLP, language models receive the input text as a list of tokens. Each token represents a pre-

defined text span, such as a word (e.g., “looking”) or a word piece (e.g., the suffix “ing”). We called 

vocabulary to the set of tokens used by the language model. The vocabulary design is critical for the 

model, defining a trade-off between completeness and size which influence model’s performance and 

dimension, respectively. For instance, some vocabularies define an “UNKNOWN” token for all those 

Out-Of-Vocabulary (OOV) text spans. A lack of vocabulary completeness causes that model’s input to 

contain many of these “UNKNOWN” tokens, which do not provide useful information. Nonetheless, 

improving completeness usually requires to incrementing the number of tokens, what directly increases 
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the model’s size. Nowadays, vocabulary definition is based on methods such as the WordPiece subword 

segmentation algorithm [72], which defines tokens for subwords down to the scale of characters. This 

ensures that any words can be tokenized at least as characters tokens, not requiring the “UNKNOWN” 

token. Tokens are also defined for prefixes (e.g., “un#”), suffixes (e.g., “#ed”) and full words (“trust”). 

The most popular and well-established transformer-based language model is BERT (Bidirectional 

Encoder Representations from Transformers) [41]. After fine-tuning, BERT has been shown to reach or 

surpass human-level performance in multiple language-related tasks. Many variations of BERT have been 

proposed, which either improve its performance [73] or reduce the model’s size and, therefore, its 

computational requirements [74]. All these language models are freely available at Hugging Face’s 

transformers library [65] with pre-trained weights and an easy-to-use implementation. 
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Chapter 3 - Re-identification attack and 

disclosure risk metric for anonymized text 

In the following we present TRIA, a Text Re-Identification Attack for (anonymized) texts based on large 

neural language models, and TRIR, a Text Re-Identification Risk metric based on TRIA’s accuracy. TRIA 

and TRIR aim to provide a practical solution to evaluate the actual privacy protection offered by 

anonymization methods for textual data. Compared to the standard approach for text anonymization 

evaluation, our approach directly measures the actual re-identification risk rather than inferring it from 

human annotations and IR metrics. In addition, our method is fully automatic and does not require human 

participants for re-identification or a manually anonymized corpus of documents as ground truth, thus 

avoiding the subsequent cost, errors and bias. 

TRIA aims to re-identify the subjects referred in a collection of anonymized texts via a (highly 

dimensional) multiclass classifier, with one class for each individual known by the attacker. A set of 

identified and publicly available texts is employed for training the classifier. These texts encompass a 

population of known subjects in which the individuals referred in the anonymized set are expected to be 

contained. For instance, to re-identify anonymized medical reports from a city hospital, the attacker may 

use publicly available social networks posts from the residents of that city. The set of known individuals 

should therefore be a superset of the anonymized subjects. The anonymized documents would contain 

masked quasi-identifiers (e.g., age interval) and confidential attributes (e.g., diagnoses) from unidentified 

individuals, whereas the public texts would contain identifiers (e.g., name and surname/s) and clear quasi-

identifiers (e.g., specific age) from known individuals. Deficiencies in anonymization would enable 

unequivocal matchings of the (quasi-)identifiers of both types of documents, allowing to re-identify the 

subjects in the protected documents and, subsequently, disclose their confidential information. 

According to the above, our approach can be defined as an adaptation of the record linkage attack from 

structured databases to textual data, where words or text spans correspond to attribute values, documents 

correspond to records, and the classifier performs the linkage between the anonymized and public data. 

TRIA is designed to recreate as realistically as possible what a potential attacker could do to re-identify 

the protected subjects. This means considering the resources (i.e., background data and available 
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computational resources) that attackers may reasonably devote. This is in line with the GDPR1, which 

states that, to assess the residual risk of anonymized data, one should account the reasonable means that 

can be employed to achieve re-identifications. This design choice enhances the realism of TRIA and of 

the derived TRIR metric as, with infinite time, resources and knowledge, any anonymization may be 

eventually compromised. 

3.1 Formalization 

Let AD be the set of anonymized (i.e., non-identified) documents and BD the set of identified public 

documents (i.e., background knowledge). Each document refers to a specific subject (e.g., if the text is a 

biography, the subject would be the biographee), thereby defining the sets of individuals AI and BI, and 

the mapping functions FA: AD → AI and FB: BD → BI. 

As in the original record linkage attack, we assume that AI ⊆ BI, which means that a re-identification 

function FC: AD→ BI exists, which matches protected documents with the corresponding known 

individuals. From the attacker’s point of view, AD, BD, BI and FB are known, and AI, FA and FC are 

unknown. Consequently, the goal of the attack is to exploit the similarities between AD and BD to obtain 

FC’, an approximation of FC. Figure 1 depicts a graphical representation of this setting. 

Our proposal is formalized in  

, which provides the number of correct re-identifications achieved by TRIA for a collection of 

anonymized documents. First, a multiclass classifier is built and trained to predict FC (line 1, see Sections 

3.2 and 3.3). Following the formal notation above, the classifier would implement FC’ by learning which 

individuals from BI correspond to the documents in BD based on the knowledge (i.e., data sources) 

available to the attacker. Afterwards, the classifier is tested on the anonymized set of documents AD (line 

4). A correct re-identification would happen if the prediction (i.e., FC’) matches FC (lines 5-6). The total 

number of re-identifications is finally returned in line 9. 

 

 
1 Extract from the GDPR’s Recital 26: “[…] To determine whether a natural person is identifiable, account should be taken of all 

the means reasonably likely to be used, such as singling out, either by the controller or by another person to identify the natural 

person directly or indirectly. To ascertain whether means are reasonably likely to be used to identify the natural person, 

account should be taken of all objective factors, such as the costs of and the amount of time required for identification, taking 

into consideration the available technology at the time of the processing and technological developments. […]” 



15 

 

 

 

 

Figure 1: TRIA scenario 

 

Algorithm 1: Re-identification risk assessment for anonymized text documents 

 

As in the record linkage method (Eq. 2), we assess the TRIR of AD as the accuracy of TRIA: 

𝑇𝑅𝐼𝑅 =
𝑛𝑢𝑚𝑅𝑒𝐼𝑑𝑠

|𝐴𝐼|
         ( 4 ) 

where numReIds is the number of correct re-identifications achieved by  

, and |AI| is the number of protected individuals from the AI set. 
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It is important to note that the AI ⊆ BI assumption may not hold in practice, because AI would be usually 

unknown to the attacker. In this case, the re-identification risk is limited by the proportion of overlap 

between AI and BI. Furthermore, the difficulty of the re-identification task would depend on the number of 

individuals and the intra-class similarity of both AI and BI. On the one hand, the larger the size of AI is, the 

more challenging the re-identification becomes, since there are more individuals (classes) to distinguish. 

This behavior is inherent to any multi-class classification task. Increasing the size of BI would have the 

similar effect but, in addition, the more individuals in BI not present in AI the more prone to false positives 

the classifier would be; this increases the cost of the attack (because more classes must be learned) with 

no observable benefits. On this basis, the goal of an attacker would be to define a BI set with a size as 

close as possible to that of AI while trying to fulfill AI ⊆ BI. On the other hand, a high intra-similarity 

between the individuals in AI also hinders re-identification, because the documents in AD become harder 

to differentiate. Regarding BI, the intra-similarity between the individuals in BI not present in AI doesn’t 

affect the accuracy of the attack since there are no instances for these individuals in AD. Finally, regarding 

the intra-similarity between the individuals in BI also present in AI, and those not present in AI, the lower 

the better, since we don’t want the classifier to get confused by individuals outside AI. The experiments 

we report in Section 5.2 are defined so that the influence of these aspects in the TRIA’s accuracy can be 

observed in practice. 

3.2 Constructing the classifier  

In the following we describe how the internals of the build_classifier method work (line 1 of  

). Its target is to reproduce as realistically as possible the methods that attackers may employ to perform 

re-identifications. The approach relies on state-of-the-art NLP classification models optimized from data 

representing the background knowledge expected to be available to the attackers. In the following we 

refer to these models in general terms. A discussion of the best suited model and of its implementation 

details are provided in Section 3.3. 

As explained in Section 2.4, the fine-tuning of pre-trained language models is a standard and effective 

approach for many NLP tasks. In addition, most language models are freely available at Hugging Face’s 

transformers library [65] with pre-trained weights and an easy-to-use implementation. Subsequently, we 

expect attackers to also take advantage of such existing pre-trained language models, and devise a re-

identification attack by additionally pre-training and fine-tuning them. 
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As is typically the case in machine learning, the hyperparameters of the model are selected empirically 

based on a separate development set. To this end, multiple trainings with different hyperparameters are 

performed, searching for the best combination. A fixed number of epochs is defined for additional pre-

training, and fine-tuning is run until a pre-defined maximum number of epochs is achieved or 

development accuracy stops improving (early stopping). 

Regarding the data employed to build the classifier and the development set, it should be stressed that the 

attackers’ knowledge is limited to BD, BI and FB. Documents in BD provide knowledge of the individuals’ 

specific vocabulary, which improves understanding of domain-specific words. Additionally, BD can be 

labeled on BI by using FB, thereby providing useful information about the relationship between the 

publicly available information and the individuals’ identity. This can lead to the detection of (quasi-

)identifying attributes (e.g., the person’s name or demographic attributes), which form the basis of the re-

identification attack. 

An intuitive approach would be to perform additional pre-training using BD and fine-tuning with BD 

labeled on BI. This results in a domain-specific model capable of mapping documents to BI, as it is needed 

for the attack. However, it is important to note that the goal of the attack is to correctly classify 

documents from AD, which stem from a different data distribution than BD documents. In particular, BD 

are clear texts (e.g., identified publications in social networks) whereas AD are anonymized documents 

(e.g., non-identified medical reports with sensitive terms masked via suppression or generalization). This 

could impair the re-identification accuracy, since machine learning algorithms are sensitive to differences 

between training and test data distributions. 

Our solution is to create BD’, an anonymized version of BD, by using any practical text anonymizer that 

attackers may have at their reach. Using the same method employed for AD would be the ideal but, since 

such method would be rarely known, a standard NER-based approach (given that NER is the most used 

technique for text anonymization) may be employed instead. Because the resulting document set BD’ is 

more similar to AD, it will provide a better approximation of how data is (typically) anonymized. 

Moreover, BD’ can be labeled on BI (given that BD’ → BD is known), which facilitates discovering the 

identities associated to the masked documents; for example, by discovering identifying words neglected 

by the anonymization method (e.g., a specific location) that also appear in AD documents. Under these 

considerations, we propose using BD and BD’ for additional pre-training, and the union of BD and BD’ 

labeled on BI for fine-tuning, thereby obtaining a classifier model better adapted to expected the 

anonymized documents. 
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As development set, we create a random subset from the documents in BD, which we call CD, and 

transform it to be as similar as possible as the data distribution of AD. For this, a straightforward approach 

would be to anonymize CD; nevertheless, this would result into identical texts to those in BD’, which are 

present in training data. Thereupon, a previous step is required aiming to differentiate CD texts from BD 

ones and, if possible, to assimilate them to those in AD prior anonymization. We propose to apply a 

summarization-like procedure on documents from CD, which we call ÇD. To this end, abstractive or 

hybrid summarization methods are preferred to extractive ones [75], so the resulting summarizations do 

not include sentences identical to those present in BD. After summarization, documents in ÇD are 

anonymized (ÇD’) as done for BD’. The resulting ÇD’ is used as the development set of the classifier. 

3.3 Choosing and implementing the classifier model 

The classifier model is a fundamental element of the presented approach because it determines the 

accuracy of the attack and the resources needed to execute it. Even though TRIA is general and may use 

any machine learning model capable of classifying documents, in this section we present the specific 

design choices and implementation details adopted for the experimental evaluation. 

3.3.1 Language model 

As mentioned in Section 2.4, neural language models have been shown to yield impressive performance 

on a wide range of NLP tasks, and in particular for text classification problems [41, 67-69]. This ability to 

uncover complex patterns associating the words occurring in a given text to the corresponding output 

class is likely to also be beneficial for TRIA.  

Neural language models require large training corpora in order to build general and robust word 

representations. This has led to the popularization of pre-trained models [41, 52], which are optimized 

based on very large collections of documents collected online, such as Wikipedia and the BookCorpus 

[76]. These pre-trained models can be adapted for a variety of problems with additionally pre-training 

and/or fine-tuning with the task’s specific corpus. As introduced in Section 3.2, we expect attackers to 

also rely on such fine-tuning strategies, which provides high quality results while significantly reducing 

cost of training models from scratch. 

The popular and well-established transformed-based BERT language model [41] has been shown to reach 

or surpass human-level performance in multiple language-related tasks, including document 
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classification. Moreover, multiple variations of BERT have been proposed [73, 74], allowing the attacker 

to select the version which better fits their requirements. On this basis, we consider BERT (or its 

variations) an ideal language model for our attack, since it can obtain human-level results with neither a 

huge cost nor unfeasible knowledge assumptions from the attacker. 

3.3.2 Classifier 

To adapt the general BERT language model to the classification task, we apply the procedure described in 

[41], which consists of appending a fully connected classification layer to the language model. The 

classification layer takes as input the output vector corresponding to a special classification token named 

[CLS] that is prepended to the input sequence [41]. The classification layer then produces a logits vector 

with one value per class (which, in our case, corresponds to an individual from BI). By applying the 

normalization SoftMax activation to the logits, the final probability for each class is obtained. 

Transformer-based models such as BERT have a limited input length. In the case of BERT (and its 

variations) this limit is 512 tokens, which is shorter than the length of many documents in our 

experiments. To address this limitation, we split each document into acceptable-length chunks, process 

each split using the BERT-based classifier and aggregate the classification output of each split to obtain 

the final prediction. Details of the splitting criterion are provided in the next section. The same splitting is 

also performed during the training step, in which the BERT-based classifier is fine-tuned to classify 

document splits individually (see Section 3.3.4). Finally, the aggregation of the split predictions for a 

certain document is only needed during the final classification step. More details on this are provided in 

Section 3.3.5. 

3.3.3 From documents to model input 

For each input document (in BD, BD’, ĈD’ and AD sets) we first perform a pre-processing step in order to 

unify semantically equivalent text spans and remove non-meaningful ones. Concretely, we apply 

lemmatization and we remove special characters (e.g., the “#” of a hashtag) and stop words (e.g., “the” or 

“that”). On the one hand, lemmatization gets rid of morphological variations of words, making the 

classification less dependent on the text syntax and more focused on the ((quasi-)identifying) facts 

conveyed by the document. On the other hand, the removal of special characters and stop words brings 

three benefits. First, it discards non-meaningful (and, therefore, non-identifying) information that may 

confuse the model. Second, since the classifiers’ input length is limited, removing those elements 
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increases the density of quasi-identifiers at each split/input, which should be beneficial for re-

identification. Finally, it reduces the number of splits generated per document that, in turn, decreases the 

training and prediction runtimes. 

Moreover, if the input document is already anonymized (as it is the case of those in BD’, ÇD’ and AD), an 

optional pre-processing operation can be performed. This is relevant when the anonymization algorithm 

has masked re-identifying terms with fixed generalizations (as it is the case of NER-based methods, 

which usually employ NE categories such as PERSON, LOCATION or ORGANIZATION as masks), or 

when terms are systematically blacked-out with special characters or tags (e.g., “***”). These non-

meaningful or very general masks, which would frequently appear in the anonymized documents, may 

bias the model at training and hamper its accuracy at prediction. Therefore, it could be beneficial to 

remove these masks. Because masks are fixed, they can be straightforwardly detected and removed by 

using regular expressions. This step may not be needed when masks consist of fine-grained 

generalizations, as it is the case for anonymization methods employing ontologies for masking [27]. The 

reason is that ontology-based generalizations are on the meaningful side (they convey a subset of the 

semantics of the original words) and, therefore, would affect less (or nothing at all) the trained model. 

Moreover, the detection of these generalizations is challenging because, in many cases, they would be 

indistinguishable from the original terms. Subsequently to pre-processing, the document is tokenized 

using the WordPiece subword segmentation algorithm, which BERT relies upon [41]. 

To accommodate BERT’s input length limitations (512 tokens), documents sometimes need to be split 

into smaller chunks. Inspired by [77], we split documents by using a sliding window with a length of N 

tokens (being N smaller or equal than the model’s limit), and an overlap of M tokens with the previous 

window (equivalent to a stride of N-M). The overlap enables the model to never lose the context of 

consecutive tokens, that is, it ensures that the model can observe the previous and following M tokens for 

every token (except the document’s first and last) in at least one split. Setting an appropriate N and M is 

crucial, since they determine how long the detected long-term dependencies can be (which affects the 

model’s accuracy), and the number of text splits generated (that influences training and prediction 

runtimes, which depend on the number of inputs rather than their length). These parameters can be 

empirically adjusted through hyperparameters search.  
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3.3.4 Training 

As introduced in Section 2.4, training state-of-the-art NLP models often involves additional pre-training 

and/or fine-tuning steps on task data. We apply these steps to our BERT-based model following [78], a 

method for fine-tuning BERT for corpus-specific classification. The training set of both steps consists of 

BD and BD’ documents labeled on BI. The procedures defined in Section 3.3.3 are applied to all documents 

identically with the exception of splitting, which varies between additional pre-training and fine-tuning.  

In the additional pre-training step, the BERT model is further optimized on a masked language modelling 

objective. In this step, increasing the window size and overlap of the sliding window splitting should be 

beneficial, so that the context available for each token is maximized. For the fine-tuning step, the 

language model obtained after additional pre-training is further optimized on labelled data. More 

specifically, the language model and its classification layer are trained with a cross-entropy loss to predict 

the person being referred to in each document split. For this step, increasing the size of the sliding 

window may not be beneficial: whereas a longer window provides more information to assist the 

classification, it can also be too specific to the document. Moreover, for a fixed overlap ratio, the longer 

the window, the fewer splits are created for each document, thus reducing the variability of the samples 

per individual. As a result, a too large window may lead to overfitting, and make the model focus on 

document-specific (sub)sentences rather than on more general (quasi-)identifying words or text spans. 

The same sliding window configuration selected for fine-tuning will be used at the final classification step 

(see Section 3.3.5). 

Hyperparameters such as the learning rate, batch size, sliding window length and overlap are all selected 

empirically based on re-identification accuracy on the development set.  

3.3.5 Document classification prediction 

After training, the model can be employed to predict the individual from BI corresponding an anonymized 

document from AD or ÇD’ sets. This final classification step is depicted in Figure 2. First, the pre-

processed and tokenized document is split by using the same sliding window configuration employed for 

fine-tuning (see Section 3.3.4). Afterwards, each split is processed by the trained BERT-based classifier 

(one at a time) and the results are aggregated into a single global prediction using the element-wise sum 

of all the logits vectors. The distribution of class probabilities is finally obtained by applying a SoftMax 
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function to those results. Finally, the class with the maximum probability is chosen as the predicted 

individual for the document. 

We favored the sum of logits instead of the most frequent prediction or the sum of the classes’ 

probabilities (i.e., logits after SoftMax) to account for the magnitude of the output. If the model is able to 

clearly identify an individual based on one text split, this prominent output would be reflected in the sum 

of logits. The motivation for this design is to mimic human reasoning for re-identification, which gives 

larger weight to parts of the text with clear re-identification clues (such as (part of) the person’s name left 

unmasked), than to those with less clear evidences. This is also in line with [5, 53], which point out that 

missing a single identifying attribute during anonymization may be enough to reveal an individual’s 

identity. 

 

Figure 2: Classification workflow of a pre-processed and tokenized long document using a BERT-based 

classifier 

  



23 

 

 

 

Chapter 4 - Text information content and 

utility metric for anonymized text 

In the following we present TIC, a Text Information Content measure based on large neural language 

models that quantifies the semantics conveyed by (anonymized) texts; and TPI, a Text Preserved 

Information metric that quantifies the utility preserved in an anonymized document according to the 

difference between its TIC and that of the original text. As for our risk metric, TIC and TPI aim to 

provide a practical evaluation of the ability of anonymization methods to preserve text utility/semantics, 

and do so without requiring manual annotations.  

The information content (IC) of textual terms, which is defined as the inverse of their probability of 

occurrence, is commonly employed in the area of computational linguistics as indicator of the semantics 

the terms convey [44]. Specifically, terms with low probability (therefore high IC) are the least 

predictable, therefore providing the most significant information in the context they appear. Recent works 

have focused on defining accurate and efficient methods for estimating the term probabilities required for 

IC computation [28, 34, 79].  

TIC aims to obtain a precise calculation of IC for original or anonymized documents as the sum of their 

terms’ IC. In our case, the term probabilities required for IC calculation are obtained by leveraging a 

neural language model for the masked terms prediction task, similarly as done in [34]. Concretely, each 

term is masked and the language model is asked to predict it based on the neighboring terms. This 

prediction probability is considered as the term’s probability of occurrence in the document. Details on 

the probability estimation method are provided in Section 4.2. 

As for the risk metric, our approach can be considered an adaptation of that employed for utility 

evaluation in SDC, where documents correspond to records, TIC can be considered as an abstract 

characterization of the utility they convey, and TPI computes the dissimilarity between the TIC of the 

original and anonymized documents. 
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4.1 Formalization 

Let O be the original and unmodified document to be protected. This document is composed by a list of N 

terms, O = [t1, …, tN]. Let P be the protected version of O. The document also consists of a list of M 

terms, P = [k1, …, kM]. Note that the terms contained in P might differ from those in O due to term 

suppressions performed by the anonymization method. 

As mentioned above, the information content (IC) [43] metric is leveraged to measure the terms’ 

semantics/utility: 

𝐼𝐶(𝑡) =  − log( 𝑝𝑟𝑜𝑏(𝑡) ) ( 5 ) 

Details on the probability calculus will be provided in Section 4.2. 

To measure the utility of a document D, either original or anonymized, we propose Text Information 

Content (TIC) as the sum of its terms’ IC: 

𝑇𝐼𝐶(𝐷) = ∑ 𝐼𝐶(𝑡)𝑡 ∈ 𝐷  ( 6 ) 

To measure the utility of O that has been preserved in P after the anonymization process, we propose the 

Text Preserved Information (TPI) metric, which is computed as the ratio of their respective TICs: 

𝑇𝑃𝐼(𝑃, 𝑂) =
TIC(P)

TIC(O)
  ( 7 ) 

TPI provides an intuitive metric of the utility preserved in P, which ranges from 0 (P has no utility) to 1 

(the utility of P is the same as that of O). Consistently with the masking operations performed by the 

anonymization method (suppression or generalization), TPI will never be greater than 1 because P's utility 

is necessarily lower than that of O. TPI’s range allows a direct comparison with the standard (utility) 

precision metric (Eq. 3) and the calculation of an F1 score when combined with the privacy metric. The 

latter will enable to assess the global performance of an anonymization method. We propose the division 

operation for TPI rather than subtraction (which is typical used to measure information loss and that 

provides non-normalized values), precisely because of the intuitiveness and comparability of the result.  
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4.2 Probability calculus 

Gathering accurate term probabilities is crucial for the IC calculation (Eq. 5) and, subsequently, for the 

TIC (Eq. 6) and TPI (Eq. 7) metrics, which are based on it. In the following we discuss a variety of 

approaches for calculating this probability [28, 34, 44, 79, 80]. 

Classically, the probability of a term has been empirically measured as its relative frequency in a corpus 

[44]. This approach requires from a well-designed strategy for correctly counting the occurrences of 

terms, which involves manually disambiguating polysemous words and aggregating occurrences of 

synonyms. Moreover, a suitable corpus is needed to accurately capture the distribution of terms as they 

are used in society. This is challenging, especially considering the number of rare words that should be 

properly represented, and whose omission would significantly impar probability calculation. In order to 

address this data sparseness issue, some authors have used the Web as corpus [80]. To gather term 

probabilities efficiently, terms are queried into a web search engine, and the number of hits relative to the 

number of webs indexed by the engine is interpreted as the terms’ probability. The most significant 

drawback of this approach is scalability and cost, because the number of queries to be performed to a web 

search engine and the time required to obtain the hit counts could be very large for long documents.  

In contrast to corpus-based approaches, other authors rely on the so-called intrinsic IC calculation models, 

which derive the likelihood of terms’ occurrence from their specificity, which is estimated from their 

number of hyponyms and/or hypernyms in an ontology [44, 81]. Intrinsic IC models assume that the less 

hyponyms and the more hypernyms a term has, the more specific (and less probable) the term is. The 

shortcoming of this approach is its dependency of the availability of a large enough ontology that should 

cover (ideally all) the terms present in the documents to assess.  

More recent works [34] leverage the advances of neural language models to efficiently obtain 

contextualized term probabilities. As mentioned in Section 2.4, language models pre-trained on huge 

corpus contain general linguistic knowledge, which include the distribution of terms within sentences. 

Specifically, models pre-trained on the Masked Language Modeling (MLM) task learn to predict masked 

terms based on their context. For instance, for the input sentence “I drink orange [MASK].” the model 

learns to predict the word “juice” that corresponds to the “[MASK]” text span. As a result, the model 

outputs the probability of each vocabulary token to be placed at the “[MASK]” position that, in this 

example, is expected to be maximum for the token “juice”. In [34], the authors propose to replace each 

term for which probabilities are needed by the “[MASK]” mark, input the masked text to the MLM model 
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and use the model’s probability of predicting these terms as their occurrence likelihood. A high 

probability value indicates that the token is predictable from the document context and, therefore, has a 

low information content. Conversely, a low probability value indicates that a token that can hardly be 

inferred from the remainder of the document, and has therefore a high information content.  

As a result, this method can provide context-aware probability estimations based on general knowledge, 

which contrasts with the limited corpus-based and ontology-based methods, which neglect context. This 

should result in more accurate IC calculations, because the probability of a term is not independent of the 

rest of the document. For example, the probability of the noun “penguin” is higher in the sentence “I saw 

a penguin in Antartica” than in “There is a penguin in my room”. Moreover, this method is more 

practically feasible than the aforementioned approaches, because it does not need from manually-

engineered resources such as ontologies or costly web queries. In this respect, a wide variety of language 

models pre-trained on the MLM task are freely available in [65], such as the BERT [41] model we 

employ. 

Under these premises, we base our probability estimation method on the context-aware approach 

presented in [34]. The base method was used to define a weighted version of the standard precision metric 

for text anonymization evaluation, so that the contribution to precision of unnecessarily masked terms is 

weighted by their IC. This differs from our work, which aims at measuring and comparing the IC of all 

the terms of the original and protected documents. In the following, the application of this method to our 

approach is described. 

First, we require a proper definition of what is a term. In [34] the considered terms were the text spans 

protected by the anonymization method, but we need a deterministic technique to split the document into 

individual pieces. A straight-forward approach would be to use the individual words as terms, but that 

ignores the nature of text chunks (e.g., noun phrases such as “New York”), whose meaning may be quite 

different from the sum of the meanings of the component words. Moreover, words belonging to a chunk 

would be unfairly easy to predict, since the model can leverage the other component words of the chunk 

as context. For example, for the chunk “New York” it would be easy for the model to predict the word 

“New” having “York” in the context. This results in the probability of the text span “New York” being 

overestimated. On this basis, we propose to use words as terms except for those belonging to a chunk, that 

will be interpreted as a single term. For instance, in the “I was in New York” sentence, the corresponding 

terms will be: “I”, “was”, “in” and “New York”. From the point of view of the language model, this 

approach may result in terms that will be tokenized into more than one token. For instance, if the 
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WordPiece tokenization [72] which BERT relies on is employed, terms such as “New York” or “looking” 

would be split into two tokens: “New”+”York” and “look”+”#ing”, respectively. For these multi-token 

terms, we take the minimum probability of the term’s tokens as the term probability. The intuition is that 

the probability of the term (chunk) as a whole cannot be higher than the probability of the least probable 

component token. 

For our method to be able to compute the IC all the terms in a document, we also need to redefine the 

masking strategy employed in [34]. Specifically, we cannot just simultaneously replace all the terms by 

the “[MASK]” token, because the model will have no context to perform the predictions. Instead, we 

propose masking terms iteratively, that is, masking just a subset of the terms at each iteration (leaving the 

rest as context) to get the probabilities of those terms, and repeat the process focusing on other terms until 

all terms have been assessed. We propose two strategies to this end: Sentence-Term Alternating (S-TA) 

and N-Term Alternating (N-TA). In S-TA, only one term per sentence is masked at each iteration, leaving 

the rest of sentence as context. In this way, the model receives one sentence with only a single term 

masked at a time. On the other hand, in N-TA, one term of each N is masked, leaving the rest (including 

surrounding terms and terms from other sentences) as context. In this case, the model receives the 

maximum number of tokens possible (e.g., 512 for BERT), with ≈1/N of those terms uniformly masked. 

The document is split according to this maximum number of supported tokens. Notice that this splitting is 

not usually required for S-TA, because sentences rarely reach the maximum length. Intuitively, S-TA is 

expected to provide more reliable probabilities than N-TA, because it better retains the immediate context 

of the masked terms, that is, the sentence in which it appears. At best, N-TA can be equivalent to S-TA if 

N corresponds to the number of sentence terms. However, N-TA has its advantages, because it can 

estimate the probabilities of all terms with fewer iterations, and this results in less model predictions, 

which are the costlier operation of the process. More specifically, whereas S-TA predictions scale with 

the number of terms per sentence and the number of sentences, the number of predictions required for N-

TA depends on N and the amount of document splits needed. For instance, in a best case for S-TA, where 

there is a single sentence as long as a partition (i.e., 512 tokens for BERT), S-TA will require as many 

predictions as sentence terms, while N-TA will need N predictions. Subsequently, N-TA with an N lower 

than the average number of sentences’ terms will be faster than S-TA. The behavior of both strategies is 

depicted in Figure 3. 
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Figure 3: Comparison between N-TA and S-TA on an example sentence 

By employing any of these two strategies, the probability of all terms in the original document O can be 

obtained. Nonetheless, if the same approach is applied to the protected document P, the probabilities of 

the masks that replace the protected terms will probably be overestimated, thereby resulting in a TIC 

value even greater than the TIC of O. This is because masking marks employed by anonymization 

methods are typically non-meaningful terms such as suppression tags (e.g., “***”) or generic 

generalizations (e.g., NER classes names such as “PERSON” or “LOCATION”). From the point of view 

of the language model, these terms are outliers and their assessment would result in a too low probability 

(and subsequent too high IC). For instance, because a language model trained on regular clear texts does 

not expect the word “PERSON” in the sentence “PERSON is an actor.”, it will likely consider that term 

less probable than the original actor’s name, thereby resulting in an inconsistent IC assessment. To 
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circumvent this issue, we consider masking marks as non-informative terms with a fixed probability of 1 

(therefore zero IC). This assumes that the masking operation applied on the sensitive terms was 

suppression, which is the most common strategy in the literature due to the difficulty of obtaining suitable 

and utility-preserving generalizations to replace sensitive terms [27]. Because of this assumption, the 

terms of the protected document P can be defined as a strict subset of the terms in the original document 

O, which does not contain the protected sensitive terms. Subsequently, we can compute the TIC of P 

according to the term probabilities computed for O, that is, we subtract the IC of the protected terms from 

TIC(O) to get TIC(P). 
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Chapter 5 - Evaluation results 

In the following we report empirical results on using TRIA, TRIR, TIC and TPI to evaluate several text 

anonymization methods on a common corpus of textual documents. To offer a broad comparison we 

considered both NLP and PPDP methods. We also tested the risk and the utility resulting from a manual 

anonymization effort that was used in a previous work as ground truth to evaluate automated algorithms. 

We also compare TRIR to the standard recall evaluation metric and TPI to the standard precision metric. 

A comprehensive analysis of the influence of different hyperparameters is also reported. Finally, we 

compare the F1-score using TRIR and TPI with that obtained with recall and precision. Experiments’ data 

is based on the Wikipedia articles dataset presented in [27]. Different subsets of the data are employed for 

the TRIR and TPI evaluation (see Section 5.2.1 and Section ¡Error! No se encuentra el origen de la 

referencia., respectively). All the code, data and results of the risk assessment method are available on: 

https://github.com/BenetManzanaresSalor/TextRe-Identification  

5.1 Evaluated methods 

As stated in Section 2.1, NLP-based methods [1, 12-26] usually approach anonymization as a NER task, 

in which words belonging to allegedly re-identifying categories (e.g., locations, names, dates, etc.) are 

masked. In this case, masking consists of replacing the detected entities by their semantic categories. We 

evaluated the following tools for NER-based text anonymization [9]: 

• Stanford NER [82]: offers three pre-trained NER models: NER3, which is able to detect 

LOCATION, ORGANIZATION and PERSON types; NER4, which detects LOCATION, 

ORGANIZATION, PERSON and MISC (miscellaneous) types; and NER7, which detects 

ORGANIZATION, MONEY, DATE, PERCENT, PERSON and TIME. 

• Microsoft Presidio2: an anonymization-specific tool based on NER. Among the diversity of entity 

types supported by Presidio, we enabled those corresponding to quasi-identifying information: 

LOCATION, NRP -person’s nationality, religious or political group-, PERSON and 

DATE_TIME. 

 
2 https://github.com/microsoft/presidio 

https://github.com/BenetManzanaresSalor/TextRe-Identification
https://github.com/microsoft/presidio
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• spaCy NER3:  we employed the en_core_web_lg, neural model trained on the Ontonotes v5 

corpus [83], which is capable of detecting named entities of DATE, CARDINAL, EVENT (e.g., 

wars), GPE (e.g., countries, cities), FAC (e.g., buildings), LANGUAGE, LAW (named 

documents made into laws), MONEY, LOC (non-GPE locations such as mountain ranges), 

NORP (nationalities or religious or political group), ORDINAL, PERCENT, ORG, PERSON, 

PRODUCT (e.g., vehicles), TIME (times smaller than a day), QUANTITY and 

WORK_OF_ART (e.g., books titles, songs). 

For PPDP-grounded text anonymization methods, as discussed in Section 2.1, the only practical method 

we found is [27], which is based on word embedding models. This method will be subsequently referred 

to as Word2Vec, this being the backbone neural model employed by this work. 

In addition to the methods listed above, we also considered the manual anonymization effort conducted in 

[27], which was based on sound anonymization-oriented annotation guidelines. This enables us to 

evaluate the TRIR and TPI of the human annotations, but also makes it possible to compute the recall and 

precision of the above-described methods – by considering the manual anonymization as the ground truth-

, and compare this metric against our risk and utility assessment.  

We also report the TRIR for the non-anonymized versions of the documents in AD (see Section 5.2.3). 

This defines the baseline risk that anonymization methods should (substantially) reduce. 

5.2 Risk assessment 

In the following, we provide details on the evaluation corpus, testing environment and results of the 

documents’ risk evaluation based on TRIA and TRIR. Experiments include comparison with the standard 

recall metric and depict the effect of using different background knowledge sets, splitting settings, 

preprocessing steps and language models. 

5.2.1 Evaluation corpus and background documents 

The corpus described in [27] was employed as evaluation data. It consists of 18,672 Wikipedia articles 

corresponding to the “20th century actors” Wikipedia category, each one providing biographical details of 

a movie actor. To simulate the scenario depicted in Figure 1, we considered the article abstracts as the 

 
3 https://spacy.io/api/entityrecognizer 

https://spacy.io/api/entityrecognizer


33 

 

 

 

texts to be anonymized, and the article bodies (which provide extended details on the abstract’s 

information) as the identified publicly available documents on the individuals to be protected. A subset of 

50 article abstracts corresponding to 50 contemporary, popular and English speaking actors was selected 

from this corpus (as done in [27]). We considered them the set of documents to be anonymized. 

In attack’s notation the 50 extracted actors constitute AI, the 50 abstracts anonymized with a specific 

method m define AD
m, and the article bodies in the corpus define BD with a population of BI actors. 

As discussed in Section 3.1, the accuracy of TRIA may vary depending on the overlap between BI 

(complete set of potential individuals known from background knowledge) and AI (set of actual 

individuals that were referred to in the anonymized documents, and which is unknown to the attacker) and 

the relative size and similarity of those two sets. To this end, we defined several well-differentiated 

scenarios by setting increasingly larger BDs and corresponding BIs with varying distributions: 

• 50_eval: this is a synthetic worst-case scenario for privacy, in which BI exactly matches AI. This 

constitutes the easiest re-identification setting because there are no individuals in BI absent from 

AI. In this scenario, BD comprises the 50 article bodies from Wikipedia corresponding to the 50 

anonymized abstracts from those same articles. 

• 500_random: a synthetic scenario consisting of 500 article bodies randomly extracted from the 

full corpus plus those corresponding to the 50 actors in AI that were not included in the random 

selection (thereby ensuring that AI ⊆ BI). Compared to the 50_eval scenario, BI is larger, with 

most of its individuals absent from AI. Nevertheless, the similarity between the randomly selected 

individuals not present in AI and the popular English-speaking actors of AI is expected to be low, 

facilitating re-identification. 

• 500_filtered: a more realistic scenario with 581 article bodies obtained by filtering the full dataset 

of 18,672 articles according to several attack-oriented criteria. The criteria aim at maximizing the 

number of individuals in AI present in BI, even without knowing AI, as it would happen in 

practice. In particular, the filtering discarded article bodies corresponding to non-native English 

speakers, dead individuals, non-actors (e.g., directors or producers), subjects born before 1950 or 

after 1995 (latter included) and those whose article included less than 100 links and was available 

in less than 40 languages (the latter two criteria being related to the ‘popularity’ of the actor). As 

a result, only 40 out of the 50 actors in AI appeared in BI, thereby limiting re-identification 
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accuracy to 80%. Higher intra-similarity than for the 500_random scenario is expected due to the 

tailored (i.e., non-random) filtering. 

• 2000_filtered: a scenario with 1,952 article bodies selected by using the same filtering as in 

500_filtered but omitting the criterion related to the number of languages per article. As a result, 

41 out of the 50 actors in AI appeared in BI, thereby limiting re-identification accuracy to 82%. 

This scenario is a superset of 500_filtered, with 1,371 new individuals added due to the less strict 

filtering, most of them not present in AI. The intra-similarity is expected to be slightly lower than 

between the 581 individuals of 500_filtered, but still significantly higher than for 500_random. 

As we latter report, for larger cardinalities of BD the training time of the model is likely to take longer 

than 12 hours with the (reasonably powerful) hardware configuration we employed, therefore making the 

attack less feasible and attractive. Ten fine-tuning epochs using the whole 18,672 articles takes 

approximately 21 hours. In such cases in which the population of individuals associated to the 

background documents available for the attacker outweigh the attacker’s resources to train and conduct an 

exhaustive attack (and provided that the attacker does not know AI), a strategy such as 500_filtered and 

2000_filtered would be the most reasonable choices. This makes the 500_filtered and 2000_filtered 

scenarios reasonably realistic, whereas the 50_eval and 500_random scenarios are worst-case (from a 

privacy perspective) but ideal (from the perspective of the attack) scenarios. 

After defining BD for each scenario, the corresponding BD’, CD, ÇD and ÇD’ sets needed to define the 

training and development sets should be created as detailed in Section 3.2. For BD’, the documents in BD 

are anonymized using spaCy NER. After that, ÇD is defined as a subset of the abstracts corresponding to 

the bodies in BD. Since the abstracts are summaries of the article bodies, this procedure can be considered 

equivalent to the summarization-based approach proposed in Section 3.2, which means that CD does not 

need to be explicitly built. Finally, the same method employed for creating BD’ is applied to the 

documents in ÇD. This results in the ÇD’ set that defines the development set. The size of ÇD’ was set to 

30% for 50_eval and 10% for the 2000_filtered, 500_filtered and 500_random scenarios. 

5.2.2 Testing environment 

To simulate the implementation of TRIA by attacker, we considered the resources they would reasonably 

devote. This is line with the Recital 26 of the GDPR [4] discussed in Chapter 3. In particular, we selected 
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Google Colaboratory4 -a web-based IDE for interactive Python programming on the cloud- as execution 

environment.  

Google Colaboratory offers a powerful free platform for building and running machine learning models. 

Nonetheless, the free tier they offer limits the maximum duration of a session to 12 hours. In addition, the 

hardware available at each session varies depending on the current demand. To avoid this variability, we 

defined 12 hours as upper limit for training times, ensuring that all the tests are performed in the same 

environment without interruptions. As discussed in the previous section, this requirement discarded 

scenarios using the whole 18,672 articles as BD. In particular, our experiments were executed in an stable 

environment consisting of an Intel Xeon CPU, 12GB of RAM and an Nvidia Tesla K80 GPU with 16GB 

of VRAM. 

As discussed in Section 3.3, a BERT-based classifier constitutes a sensible choice to conduct the attack. 

We took into consideration pre-trained models based on BERT that stand out either for their accuracy or 

their efficiency, and that can be fine-tuned within the constraints of our execution environment (i.e., GPU 

memory). In particular, we selected DistilBERT5 [74] -a distilled version of the original BERT which 

reduces a 40% the model’s size while keeping a 97% of its performance in multiple tasks-, which 

provides an outstanding trade-off between accuracy and computational cost. Being this a very active 

research field, other language models also exist [73, 84, 85] providing different trade-offs between 

efficiency and accuracy, which could be also employed to conduct the attack according to the available 

means. In this respect, one of the tests we report evaluates the influence of the chosen model in the 

accuracy of TRIA.  

Document pre-processing was performed as described at Section 3.3.3, excluding the optional step of 

removing the masking replacements from the anonymized documents. The influence of this optional step 

is analyzed in a separate test. 

The model training followed the process depicted in Section 3.3.4, by using masked language modelling 

(MLM) for additional pre-training and fine-tuning the split classifier. Hyperparameters search was 

performed using re-identification accuracy at the development set as selection criteria. Ideally, this search 

should be performed independently for each BD defined in the previous section. Nevertheless, given the 

number of tests to be conducted, their runtime and the similarities of the scenarios, we only applied it to 

 
4 https://colab.research.google.com/ 
5 We specifically relied upon the distilbert-base-uncased pre-trained model available on HuggingFace 

(https://huggingface.co/docs/transformers). 

https://colab.research.google.com/
https://huggingface.co/docs/transformers
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the 50_eval scenario and then applied the obtained parameters for all the scenarios. Concretely, the best 

accuracy at the development set was provided by the following hyperparameters: learning rate set to 5e-5 

(for both additional pre-training and fine-tuning), a masking probability of 15%, batch size for MLM set 

to 8, batch size for classification set to 16, sliding window length/overlap for MLM set to 512/128 and 

sliding window length/overlap for classification set 100/25. Training relied on an Adam optimizer with 

betas set to 0.9 and 0.999. The MLM pre-training was performed for 3 epochs and the fine-tuning for a 

maximum of 20 epochs. Using early stopping with a patience of 5 epochs and the accuracy on the 

development set as criteria, fine-tuning was run for ~20 epochs for the 50_eval, 500_random and 

500_filtered scenarios and for ~10 epochs for the 2000_filtered scenario. 

5.2.3 TRIA results 

The first results, depicted in Figure 4, show the influence of the different sets of background documents 

(BDs, described in Section 5.2.1) in the re-identification of the anonymized documents (AD) resulting from 

the methods introduced in Section 5.1. Notice that the “average” column in this and the forthcoming 

figures has been computed without considering the results for AD
Clear text. 

 

Figure 4: TRIR using different background knowledge sets against a variety of anonymization approaches. 
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We note that the TRIR of AD
Clear text (i.e., non-anonymized documents) is very close to the maximum risk 

of each scenario, being 100% for 50_eval and 500_random, and 80% (orange line) and 82% (blue line) 

for 500_filtered and 2000_filtered, respectively. This demonstrates the capability of the additionally pre-

trained and fine-tuned DistilBERT model as classifier for the re-identification task. For anonymized 

documents, TRIA was able to re-identify individuals even from AD
Manual, obtaining accuracies 

significantly greater than the random guess, which is 2% for 50_eval, 0.2% for 500_random, 0.17% for 

500_filtered and 0.05% for 2000_filtered. This reveals the fact that human annotations are prone to 

omissions and errors. 

The average re-identification risk also illustrates how the choice of BD influences the results, which is in 

line with the discussion in Section 3.1. Specifically, the 500_random scenario, despite having a BI set 

much larger than AI, has just slightly less re-identification risk than 50_eval, because the similarity 

between the randomly selected individuals and the 50 protected ones is low, which makes the latter easily 

distinguishable within the random set. In comparison, the risk of the filtered BDs (500_filtered and 

2000_filtered) is significantly lower due to i) not all the protected subjects are present in BD and ii) those 

present are closer to the other individuals in BD, thereby being more difficult to differentiate. The lower 

re-identification risk of 2000_filtered compared to the 500_filtered scenario is caused by the significantly 

larger size of BI of the former. 

Methods based on NER present significant shortcomings, obtaining re-identification risks greater than 

50% for the 50_eval worst-case scenario and, still, greater than 20% for 2000_filtered. Results for AD
NER7 

are the worst in all cases, probably due to the lack of a LOCATION and MISC categories, which 

encompass a large variety of quasi-identifying information. In contrast, the Word2Vec-based approach 

achieved lowest risks among all automated methods and across all BDs. The risks figures were also quite 

similar to those obtained by the manual anonymization. The outstanding protection of this method is 

probably argued by not limiting masking to a pre-defined set of categories (as NER-based methods do). 

This approach better mimics human-based anonymization and contributes to decrease the disclosure risk. 

The runtime of TRIA mainly depends on the fine-tuning step rather than the unsupervised pre-training. 

Table 1 shows the fine-tuning runtime for different scenarios. Note that the runtime using 500_random BD 

is 2.5 times lower than that of 500_filtered. This is in line with the length of the documents, which is 3 

times larger for 500_filtered than for 500_random, because the popularity filters applied resulted in 

longer articles (i.e., popular actors have longer articles). The time estimate for the whole 18,672 articles 

accounts for this dependency on the document length. 
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Table 1: Fine-tuning runtime for each background knowledge set 

Scenario Runtime 

50_eval (20 epochs) 30’ 

500_random (20 epochs) 1h 40’ 

500_filtered (20 epochs) 4h 10’ 

2000_filtered (10 epochs) 5h 

18,672 bodies (10 epochs) 21h (estimate) 

We next compare TRIR’s assessment in the 50_eval worst-case scenario with the standard recall metric 

(Eq. 1) employed in the literature. To compute the recall for each method, we used the manual 

annotations from [27] as ground truth, and the standard recall implementation available on 

https://github.com/NorskRegnesentral/text-anonymization-benchmark/blob/master/evaluation.py. Given 

that recall measures the inverse of the disclosure risk, Figure 5 reports its complementary (100%-recall) 

to enable a direct comparison with the risk assessment of TRIR.  

 

Figure 5: Comparison between the standard recall metric and TRIR with the 50_eval scenario 

 

As illustrated in the figure, both methods have some degree of correlation, even though not particularly 

high (r=0.68). In fact, both metrics differ in most cases in more than a ten percent and, more specifically, 

https://github.com/NorskRegnesentral/text-anonymization-benchmark/blob/master/evaluation.py
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recall either overestimates or underestimates the empirically observed re-identification risk within a range 

as large as [+23%/-36%], which is equivalent to an uncertainty range of 59%. As discussed in [34] and in 

Section 2.2, this illustrates the shortcomings of standard recall metrics to evaluate the privacy risk. This 

divergence is particularly clear for the case of manual annotations, for which the recall is obviously zero, 

whereas the observed re-identification risk was well-above the random guess. 

The following tests are designed to evaluate the influence on TRIA’s accuracy of several parameters and 

design decisions discussed in Section 3.3. To maximize the observable differences to changes to those 

variables, all tests were conducted on the 50_eval worst case scenario, which is the least affected by the 

size of BI and its divergence with AI. 

The first test investigates the effect of removing the masking replacements from the anonymized 

documents (i.e., AD, BD, BD’ and ÇD’). Notice that, because the document sets BD and BD’ are modified as 

a results of this step, they require retraining the classifier. As shown in Figure 6, we evaluated different 

removal criteria. Remove generic consists of suppressing only general masks, which include named entity 

types for NER systems (e.g., “PERSON”, “ORG”, “TIME”) or fixed black-out masks (i.e., “***”) for the 

Word2Vec and manual anonymizations. On the other hand, remove specific consists of suppressing only 

fine-grained generalizations (e.g., “actor of the 70’s”), which only applies for the ontology-based masking 

implemented by the Word2Vec anonymization method [27]. Notice that this was possible because masks 

for this method were explicitly tagged. 

We can observe from Figure 6 that removing generic masking replacements increased the re-

identification accuracy for AD
NER3, AD

Word2Vec and AD
Manual documents, and decreased or had a null or 

negligible effect for the rest. A factor determining this behavior is the semantics of the masking 

replacements, which is mainly determined by their diversity. For documents with a reduced diversity of 

masking replacements (i.e., AD
NER3 with 3 types of generic replacements and AD

Word2Vec and AD
Manual with 

one), the same replacements will be used for very different (quasi-)identifiers. Subsequently, masks 

become meaningless and confusing for the classifier. In contrast, in documents anonymized using a 

greater diversity of masking replacements (i.e., AD
NER4, AD

NER7, APresidio and AD
spaCy), the masks will provide 

a more fine-grained representation of the original text span, which may be useful for the 

classification/attack. This reasoning also explains the negative effect that the removal of the specific 

generalizations had in the re-identification of AD
Word2Vec abstracts: because specific masking replacements 

are highly diverse and meaningful, the classifier can take advantage of them despite being more general 

than the original (quasi-)identifiers. 
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Figure 6: Comparison between different criteria to deal with masking replacements for the 50_eval scenario 

Figure 7 illustrates the effect of the splitting technique (detailed in Section 3.3.3) during the fine-tuning 

and prediction steps which, as stated in Section 3.3.5, use the same sliding window configuration. 

Sentence-based stands for one split per sentence, which produced splits with an average length of 23.5 

tokens. On the other hand, sliding-window N/M defines a window of length N and overlap M with the 

previous window.  

As shown on Figure 7, there is a general trend whereby smaller split sizes produce better results. This is 

in line with the hypothesis made in Section 3.3.4, which associated longer window sizes with overfitting. 

During the fine-tuning step, using long splits may result in samples too specific to the publicly available 

document of the individual (i.e., the article’s body in BD and its anonymized version in BD’), while 

reducing the number of samples from which learn the class (since, in general, the longer the split, the 

fewer the number of splits available). Subsequently, the model is likely to overfit to the training 

documents rather than learning generalizable (quasi-)identifiers that facilitate re-identification. This 

makes it preferable to use shorter splits, but these would increase training runtime. In fact, training time 

scales almost linearly to the number of splits and, therefore, runtimes are significantly larger for smaller 

split sizes (i.e., 14,265 splits and 2h 30’ for sentence-based, 4,217 splits and 30’ for 100/25 sliding-
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window, and 2,088 and 15’ for 200/50 sliding-window). For this reason, we used the sliding window 

100/25 configuration in all the other tests as a good tradeoff between training time and accuracy. Perhaps 

surprisingly, the re-identification accuracy for AD
Manual seems to benefit from larger splits. This may be 

motivated by i) the similarity between article’s bodies (in BD and BD’) and abstracts (in AD), which 

sometimes share equal or very similar sentences, and ii) the quality of the manual anonymization, which 

would rarely omit (quasi-)identifying information. Specifically, in absence of quasi-identifiers, overfitting 

to similar sentence structures (which are not modified during the manual annotation), could facilitate the 

re-identification. 

 

Figure 7: Comparison between different split sizes at fine-tuning for the 50_eval scenario 

 

Figure 8 presents an ablation study in which the classifier is trained with the raw bodies BD, the 

anonymized bodies BD’, or the combination of both sets. These changes affect both the additional pre-

training and fine-tuning steps. Figure 8 shows that, in most cases, important benefits are obtained by 

using BD’ instead of BD, and that their combination further improves the results. The improvements are 

considered worth the almost doubling of training time (50’ instead of 30’). This is in line with the 

arguments given in Section 3.2, probably with BD’ helping the model to deal with anonymized documents 

and BD providing the information corresponding to the masking replacements. Specifically, documents in 
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BD’ allow the model to adapt to the data distribution of anonymized documents, which differs from that of 

BD due to the masking replacements. Moreover, they allow the model to discover text spans neglected by 

the anonymization method that are also present in documents from AD. When BD and BD’ are combined, 

the model can learn useful information on the process by which documents are anonymized, thereby 

facilitating re-identification. 

 

Figure 8: Ablation study on the inclusion of anonymized bodies in the training set 

Finally, Figure 9 illustrates the effect of the neural language model employed for the re-identification. We 

compare results obtained with DistilBERT (distilbert-base-uncased, with ~67M parameters) with those 

obtained by using the standard BERT model (bert-base-uncased, with ~110M parameters), and RoBERTa 

(roberta-base, with ~124M parameters). RoBERTa [73] is a replication study of BERT pre-training, with 

a careful search of hyperparameters and trained with ten times more data (including also BERT’s training 

set). As a consequence, RoBERTa is proven to provide better results than BERT in multiple tasks 

(including classification) with a similar model size [73]. Fine-tuning runtimes in this experiment were 30’ 

for DistilBERT, 1h for BERT and 1h 15’ for RoBERTa. Figure 9 shows that, in comparison with 

DistilBERT, the improvement provided by BERT is small, whereas RoBERTa performed worse. The 

minor improvement of BERT is in line with the negligible loss of accuracy (~3%) observed by the 

authors of DistilBERT in other tasks [74]. The poor performance of RoBERTa is, on the other hand, 

surprising. One possible explanation might come from the training data employed for its pre-training. All 
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BERT, DistilBERT and RoBERTa use the Wikipedia as training data, which therefore matches our 

evaluation dataset; but, whereas for BERT and DistilBERT this represents 75% of the training data, for 

RoBERTa it is just 7.5%. 

 

Figure 9: Effect of different language models on TRIR 

 

5.3 Utility assessment 

In this subsection, we report the details and evaluation results for the utility assessment of the considered 

anonymization methods based on TIC and TPI. Results include a comparison with the standard precision 

metric and the influence of the masking strategy (S-TA or N-TA). 

As in the former experiments, the same set of 50 article abstracts has been employed as evaluation data. 

According to the notation presented in Section 4.1, each non-modified abstract corresponds to an original 

document O, while its anonymized version with method m is a protected document Pm. 
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5.3.1 Implementation 

TIC and TPI implementation is based on the code available in the GitHub repository associated to [34]. 

Concretely, the evaluation script available at https://github.com/NorskRegnesentral/text-anonymization-

benchmark/blob/master/evaluation.py, which included standard and IC-weighted versions of the precision 

and recall metrics, has been extended for computing the TPI metric. The calculation of both original and 

anonymized documents’ TIC is implemented as described in Section 4.2, including the chunking 

preprocessing and the S-TA and N-TA strategies. TPI is computed according to Eq. 7. Term probabilities 

were obtained by using the same language model employed by the authors of [34], that is, the BERT [41] 

model6 pre-trained for MLM using Wikipedia and the BookCorpus [76]. 

As done for the risk assessment tests, TPI evaluation was performed on the cloud-powered IDE Google 

Colaboratory. The experiments reported in this section were executed in a stable environment consisting 

of an Intel Xeon CPU, 12GB of RAM and an Nvidia Tesla T4 GPU with 16GB of VRAM. This hardware 

is more than enough for the utility assessment of the 50 documents because no (costly) training process is 

needed. 

5.3.2 TPI results 

In the following we report average TPI values for the 50 documents protected with the anonymization 

methods introduced in Section 5.1. Notice that, even though the Word2Vec-based method from [27] 

supports both suppression-based and generalization-based masking (being the latter more utility-

preserving), in this work we evaluated it in its suppression-based version, which is the kind of masking 

supported by TIC.  

Results depicted in Figure 10 compare TPI values with the standard precision metric and the IC-weighted 

precision version presented in [34] (see Section 4.2). In this figure, the TPI based on S-TA strategy has 

been selected because, as we will discuss later, it is able to provide the most accurate IC assessment. Error 

bars correspond to the standard deviation for each metric across the 50 documents. 

 

 
6 They specifically relied upon the bert-base-uncased pre-trained model available on HuggingFace 

(https://huggingface.co/docs/transformers) 

https://github.com/NorskRegnesentral/text-anonymization-benchmark/blob/master/evaluation.py
https://github.com/NorskRegnesentral/text-anonymization-benchmark/blob/master/evaluation.py
https://huggingface.co/docs/transformers
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Figure 10: Comparison of TPI with standard precision and IC-weighted precision 

Results show that the TPI of the protected documents is highly correlated with both precision metrics. 

Concretely, Pearson coefficient is r=0,862 with standard precision and r=0,945 with IC-weighted 

precision (the latter being more accurate than the former, as discussed in [34]). This correlation 

establishes TPI as a reliable method for accurately assessing precision/utility without requiring costly 

human annotations. Moreover, if we analyze the standard deviations of the three metrics, TPI can be 

considered as a finer measure. On one hand, per method standard deviation (indicated by the error bars in 

the figure) is lower for TPI than for the precision-based approaches. This suggests that TPI provides a 

more consistent assessment that is less document-dependent. On the other hand, differences across the 

different automatic methods are more noticeable for TPI, and even more divergent across well-

differentiated methods (e.g., NER-based vs. Word2Vec), which suggests that the utility preserved by each 

method has been better characterized. 

Another advantage of TPI is the possibility of measuring the utility preserved by manual annotations, if 

they are available. Human annotators are assumed to provide the best privacy protection (as it was the 

case for this dataset, as shown in Section 5.2.3) while retaining as most utility as possible. Subsequently, 

their TPI figure can be considered as a reference for automatic anonymization methods. In particular, any 

method with a TPI higher than that of the manual anonymization can be regarded as privacy-lacking, even 
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without measuring its residual re-identification risk. This is because this excess of TPI would necessarily 

come from non-masked (quasi-)identifying terms. This was the case for all the NER-based 

anonymizations, an observation that is consistent with the risk figures reported in the previous 

experiments. On the other hand, the TPI for the Word2Vec method was significantly lower than 

precisions, which suggests that, when considered a pure suppression-based anonymization, it provides the 

best privacy at the expense of overmasking.  

The next tests are designed to evaluate the influence of the masking strategies discussed in Section 4.2. 

This is equivalent to measuring the effect of changing the context used by the language model for 

predicting the terms, which directly influences the TIC and TPI calculation. 

Figure 11 compares TPI values with S-TA against those obtained by using N-TA, with a N=[2,4,6]. 

Increasing the value of N enlarges the context for terms’ prediction. Specifically, 2-TA masks one term of 

every two, while 4-TA masks one term of every four. S-TA is assumed to provide the most consistent 

context, due to working at a sentence-level and masking sentence’s terms one by one. 

 

Figure 11: Comparison of TPI assessment with different masking strategies 
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We can observe that increasing N for the N-TA strategy approximates TPI’s results to those obtained with 

S-TA. In particular, values with 2-TA significantly overestimate the S-TA values up to a 30%, while 6-

TA reduces that overestimation to a maximum of 6%. The fact that TPI values decrease inversely 

proportional to the context length can be argued by the fact that larger contexts enable a more accurate 

characterization of the TIC of terms, being the most informative ones those that have been subjected to 

protection. This is discussed in more detail in Figure 12.  

On the other hand, the runtime required for TIC calculation mainly depends on the masking strategy. 

Table 2 shows the TIC runtime for the 50 documents using different strategies. Notice that the runtimes 

for the N-TA versions follow a linear tendency close to 1,75N + 1,33. On the other hand, TIC runtime 

with S-TA is more than 10 times greater than with 6-TA. Nevertheless, Figure 11 shows that 6-TA 

provides very similar results to S-TA. This is in line with the reasoning made in Section 4.2, that 

postulates N-TA as a lower-cost technique that approximates S-TA results. 

Table 2: TIC runtime for the 50 documents 

Terms alternating Runtime 

2-TA 5’’ 

4-TA 8’’ 

6-TA 12’’ 

S-TA 2’ 17’’ 

To better understand the decrease of the TPI figures reported in Figure 11 as a function of the employed 

strategy, in Figure 12 we depict what we have called IC multiplier of the protected terms. This is the 

result of dividing the mean IC of the protected terms by the mean IC of the non-protected terms, 

computed at document-level. This multiplier depicts the magnitude difference between the IC of both 

types of terms. The values shown in Figure 12 are the mean multipliers across the 50 documents for each 

anonymization approach and masking strategy. A method randomly protecting terms is expected to obtain 

multipliers close to one, since the highly and lowly informative terms would be uniformly distributed 

across protected and non-protected term sets. On the other hand, the mean IC of the protected and non-

protected terms is assumed to be similar to the mean IC of the document’s terms. Similarly, if a poor IC 

calculation technique is used, terms will tend to have similar IC values (that is, they would be not 

properly differentiated), so multipliers closer to one are also expected. 
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Figure 12: Comparison of the IC multiplier of the protected terms for each masking strategy 

Analyzing the multipliers reported in Figure 12, we note that all the methods tend to protect highly 

informative terms, being all the multipliers significantly greater than 1. This is expected, since disclosive 

terms usually (even though not always [28]) correspond to those that provide non-obvious information, 

and so they tend to have higher IC. On the other hand, it is clear that multipliers tend to increase as the 

masking strategy provides better/wider contexts (i.e., worst for 2-TA and best for S-TA). This is because, 

as the context enlarges, the probabilities predicted by the language model become more accurate, and this 

better denotes the difference between easy-to-predict terms (e.g., a determinant) and hard-to-predict terms 

(e.g., a person name). Methods that focus more on hard-to-predict terms (i.e., those with higher IC) obtain 

greater multipliers, since the IC difference between protected and non-protected terms becomes more 

noticeable. As a result, multipliers shown here are inversely proportional the corresponding TPIs, with a 

Pearson correlation coefficient between r=-0,94 and r=-0,99 across anonymization methods. This also 

illustrates how IC values are not necessarily related to term’s disclosure risk. Specifically, the Word2Vec-

based method [27], which is the most focused on highly informative terms (thereby resulting in the 

highest IC multipliers), provides less protection than manual anonymization (as shown Section 5.2.3); the 

latter protects fewer terms that have lower informativeness. Thereupon, we can conclude that the 
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Word2Vec-based method has a tendency to overprotection, by unnecessarily masking non-disclosive, but 

highly informative terms. 

5.4 F1-score 

By aggregating the privacy and utility figures reported in Sections 5.2.3 and 5.3.2, we can compute the 

F1-score, which summarizes the global performance of each method. Notice that, to properly aggregate 

the two figures, we employed 100-TRIR, so that the meaning of the numerical magnitude fits with that of 

the standard recall and precision metrics (i.e., the higher the better). Figure 13 reports F1-scores across 

methods for our metrics and that corresponding to the standard precision and recall. 

 
Figure 13: Comparison of TPI and TRIR-base F1-score with precision and recall-based F1-score 

We observe that our metrics provide notoriously different F1-scores than the standard precision and 

recall, with a Pearson correlation among both approaches as low as r=0.25. This also means that the 

relative ranking of methods, and the conclusions one may extract from this rank, would be significantly 

different when assessing them with one or another metric. Considering that our utility assessment is 

highly correlated with precision (as discussed above), this divergence mainly comes from the privacy 

assessment; and because TRIR provides an actual empirical assessment of risk, which is significantly 

more realistic and accurate than the coarse-grained recall-based assessment, we can conclude that the 
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standard IR-based metrics usually employed in the literature may provide a significantly distorted view of 

the methods’ performance. 
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Chapter 6 - Conclusions and future work 

We have proposed automated privacy and utility evaluation tools for text anonymization: a Text Re-

Identification Attack (TRIA) with an associated Text Re-identification Risk (TRIR) metric, and a Text 

Information Content (TIC) measure with an associated Text Preserved Information (TPI) metric. 

Compared to the standard evaluation based on recall and precision employed by all works in the 

literature, TRIR and TPI provide objective and automated alternatives that do not require time-consuming 

manual annotations.  

Empirical results show that the standard recall metric either overestimates or underestimates the actual re-

identification risk within an uncertainty range greater than the 50%. This is consistent with limitations of 

the use of absolute recall values as a measure of protection/residual risk highlighted in recent studies [9, 

34, 53]. Moreover, we provided additional empirical evidence to the criticisms raised in [9, 27] on the 

drawbacks of using NER methods for text anonymization. Reported results also show that privacy-

grounded methods based on language models (such as the approach in [27]) produce more robust 

anonymizations that better approximate the anonymization criteria employed by human experts. 

However, given that the reported re-identification risks for all methods are still significantly greater than 

the random guess, there is still room for improvement, even for manual anonymization. And, in fact, the 

latter introduces significant compromises when used as evaluation ground truth. 

Experiments on utility assessment depict that TPI is highly correlated with the standard precision metric, 

being therefore a suitable alternative that does not require from the costly manual annotations. Moreover, 

TPI also allows assessing the utility preserved by manual anonymization efforts and compare it against 

that achieved by automatic methods.  

6.1 Publications 

A preliminary version of the proposals introduced in Chapter 3 has been presented in the following 

conference paper: 

• Benet Manzanares-Salor, David Sánchez and Pierre Lison. “Automatic Evaluation of Disclosure 

Risks of Text Anonymization Methods”. In Privacy in Statistical Databases, pp. 157-171. 

Springer, Cham, 2022. CORE ranking: C 
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This contribution, in its current form, has been submitted as an extended paper to the Applied Intelligence 

journal, and it is currently under review. The 2021-2022 Journal's Impact Factor is 5.086 (second 

quartile). 

6.2 Future work 

As future work we plan to leverage explainability techniques [86, 87] on TRIA and TIC. For TRIA, this 

would allow to identify the terms that best contributed to correctly classify/re-identify the documents; and 

these can then be used as feedback to improve the anonymization. This creates a virtuous anonymization 

cycle by which the risk assessment contributes to a gradual and systematic reduction of the privacy risk. 

In the case of TIC, explainability enables the identification of groups of terms that allows predicting each 

other. This defines a dependency graph in which one may identify clusters of terms should be protected at 

once to prevent obvious predictions. Additionally, we plan to use text similarity metrics to estimate the 

utility loss resulting from generalizations used as maskings. The idea is to leverage the similarity between 

each generalization and the original text span to weight the IC loss resulting from the masking. 



53 

 

 

 

References 

1. Meystre S M et al (2010) Automatic de-identification of textual documents in the electronic 

health record: a review of recent research. BMC Medical Research Methodology 10:1-16  

2. Gutiérrez-Batista K, Campaña J R, Vila M-A, Martin-Bautista M J (2018) Building a contextual 

dimension for OLAP using textual data from social networks. Expert Systems with Applications 

93:118-133  

3. Zhao Y, Xu X, Wang M (2019) Predicting overall customer satisfaction: Big data evidence from 

hotel online textual reviews. International Journal of Hospitality Management 76:111-121  

4. (2016) Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April on 

the Protection of Natural Persons with Regard to the Processing of Personal Data and on the 

Free Movement of Such Data and Repealing Directive 95/46/EC.  

5. Li N, Li T, Venkatasubramanian S (2007) t-closeness: Privacy Beyond k-Anonymity and l-

Diversity. IEEE 23rd International Conference on Data Engineering. IEEE, West Lafayette, pp 

106-115 

6. Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M (2007) l-diversity: Privacy 

Beyond k-Anonymity. ACM Transactions on Knowledge Discovery from Data 1:3-es  

7. Sweeney L (2002) k-anonymity: A model for protecting privacy. International Journal of 

Uncertainty, Fuzziness and Knowledge-Based Systems 10:557-570  

8. Dwork C (2006) Differential Privacy. International Colloquium on Automata, Languages and 

Programming. Springer, Riga, pp 1-12 

9. Lison P et al (2021) Anonymisation Models for Text Data: State of the art, Challenges and Future 

Directions. Proceedings of the 59th Annual Meeting of the Association for Computational 

Linguistics and the 11th International Joint Conference on Natural Language Processing 

(Volume 1: Long Papers). Association for Computational Linguistics, Online, pp 4188-4203 

10. Csányi G M et al (2021) Challenges and Open Problems of Legal Document Anonymization. 

Symmetry 13:1490  

11. Bier E et al (2009) The Rules of Redaction: Identify, Protect, Review (and Repeat). IEEE Security 

& Privacy 7:46-53  

12. Aberdeen J et al (2010) The MITRE Identification Scrubber Toolkit: Design, training, and 

assessment. International Journal of Medical Informatics 79:849-859  



54 

 

13. Chen A, Jonnagaddala J, Nekkantti C, Liaw S-T (2019) Generation of Surrogates for De-

Identification of Electronic Health Records. In: MEDINFO 2019: Health and Wellbeing e-

Networks for All. IOS Press, 70-73 

14. Dernoncourt F, Lee J Y, Uzuner O, Szolovits P (2017) De-identification of patient notes with 

recurrent neural networks. Journal of the American Medical Informatics Association 24:596-606  

15. Elazar Y, Goldberg Y (2018) Adversarial Removal of Demographic Attributes from Text Data. 

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 

Association for Computational Linguistics, Brussels, pp 11-21 

16. Hassan F, Domingo-Ferrer J, Soria-Comas J (2018) Anonymization of Unstructured Data Via 

Named-Entity Recognition. International Conference on Modeling Decisions for Artificial 

Intelligence. Springer, Mallorca, pp 296-305 

17. Huang Y et al (2020) TextHide: Tackling Data Privacy in Language Understanding Tasks. 

Findings of the Association for Computational Linguistics: EMNLP 2020. Association for 

Computational Linguistics, Online, pp 1368–1382 

18. Johnson A E, Bulgarelli L, Pollard T J (2020) Deidentification of free-text medical records using 

pre-trained bidirectional transformers. Proceedings of the ACM Conference on Health, 

Inference, and Learning. Association for Computing Machinery, Toronto, pp 214-221 

19. Liu Z, Tang B, Wang X, Chen Q (2017) De-identification of clinical notes via recurrent neural 

network and conditional random field. Journal of Biomedical Informatics 75:S34-S42  

20. Mamede N, Baptista J, Dias F (2016) Automated anonymization of text documents. IEEE 

Congress on Evolutionary Computation. IEEE, Vancouver, pp 1287-1294 

21. Neamatullah I et al (2008) Automated de-identification of free-text medical records. BMC 

Medical Informatics and Decision Making 8:1-17  

22. Reddy S, Knight K (2016) Obfuscating Gender in Social Media Writing. Proceedings of the First 

Workshop on NLP and Computational Social Science. Association for Computational Linguistics, 

Austin, pp 17-26 

23. Szarvas G, Farkas R, Busa-Fekete R (2007) State-of-the-art Anonymization of Medical Records 

Using an Iterative Machine Learning Framework. Journal of the American Medical Informatics 

Association 14:574-580  

24. Xu Q, Qu L, Xu C, Cui R (2019) Privacy-Aware Text Rewriting. Proceedings of the 12th 

International Conference on Natural Language Generation. Association for Computational 

Linguistics, Tokyo, pp 247-257 



55 

 

 

 

25. Yang H, Garibaldi J M (2015) Automatic detection of protected health information from clinic 

narratives. Journal of Biomedical Informatics 58:S30-S38  

26. Yogarajan V, Mayo M, Pfahringer B (2018) A survey of automatic de-identification of 

longitudinal clinical narratives. arXiv preprint arXiv:1810.06765  

27. Hassan F, Sanchez D, Domingo-Ferrer J (2021) Utility-Preserving Privacy Protection of Textual 

Documents via Word Embeddings. IEEE Transactions on Knowledge and Data Engineering  

28. Sánchez D, Batet M (2016) C‐sanitized: A privacy model for document redaction and 

sanitization. Journal of the Association for Information Science and Technology 67:148-163  

29. Mosallanezhad A, Beigi G, Liu H (2019) Deep Reinforcement Learning-based Text 

Anonymization against Private-Attribute Inference. Proceedings of the 2019 Conference on 

Empirical Methods in Natural Language Processing and the 9th International Joint Conference 

on Natural Language Processing. Association for Computational Linguistics, Hong Kong, pp 

2360-2369 

30. Chakaravarthy V T, Gupta H, Roy P, Mohania M K (2008) Efficient Techniques for Document 

Sanitization. Proceedings of the 17th ACM conference on Information and knowledge 

management. Association for Computing Machinery, New York, pp 843-852 

31. Fernandes N, Dras M, McIver A (2019) Generalised Differential Privacy for Text Document 

Processing. International Conference on Principles of Security and Trust. Springer, Prague, pp 

123-148 

32. Cumby C, Ghani R (2011) A Machine Learning Based System for Semi-Automatically Redacting 

Documents. Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, San 

Francisco, pp 1628-1635 

33. Anandan B et al (2012) t-Plausibility: Generalizing Words to Desensitize Text. Transactions on 

Data Privacy 5:505-534  

34. Pilán I et al (2022) The Text Anonymization Benchmark (TAB): A Dedicated Corpus and 

Evaluation Framework for Text Anonymization. Computational Linguistics 1-49 

10.1162/coli_a_00458 

35. Hundepool A et al (2012) Statistical Disclosure Control. Wiley New York, New York 

36. Domingo-Ferrer J, Torra V (2003) Disclosure risk assessment in statistical microdata protection 

via advanced record linkage. Statistics and Computing 13:343-354  

37. Nin Guerrero J, Herranz Sotoca J, Torra i Reventós V (2007) On method-specific record linkage 

for risk assessment. Proceedings of the Joint UNECE/Eurostat Work Session on Statistical Data 

Confidentiality. UNECE, Manchester, pp 1-12 



56 

 

38. Torra V, Abowd J M, Domingo-Ferrer J (2006) Using Mahalanobis Distance-Based Record 

Linkage for Disclosure Risk Assessment. Privacy in Statistical Databases. Springer, Rome, pp 

233-242 

39. Torra V, Stokes K (2012) A formalization of record linkage and its application to data 

protection. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 

20:907-919  

40. Domingo-Ferrer J S, David; Soria-Comas, Jordi (2016) Database Anonymization: Privacy 

Models, Data Utility, and Microaggregation-based Inter-model Connections. Synthesis Lectures 

on Information Security, Privacy, and Trust, Online 

41. Devlin J, Chang M-W, Lee K, Toutanova K (2018) BERT: Pre-training of Deep Bidirectional 

Transformers for Language Understanding. Proceedings of the 2019 Conference of the North 

American Chapter of the Association for Computational Linguistics: Human Language 

Technologies. Association for Computational Linguistics, Minneapolis, pp 4171–4186 

42. Manzanares-Salor B, Sánchez D, Lison P (2022) Automatic Evaluation of Disclosure Risks of 

Text Anonymization Methods. Privacy in Statistical Databases. Springer, París, pp 157-171 

43. Shannon C E (1948) A mathematical theory of communication. The Bell system technical journal 

27:379-423  

44. Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. 448–

453  

45. Rodriguez-Garcia M, Batet M, Sánchez D (2017) A semantic framework for noise addition with 

nominal data. Knowledge-Based Systems 122:103-118  

46. Mackey E, Elliot M, O’Hara K (2016) The Anonymisation Decision-making Framework. UKAN 

Publications, Manchester 

47. HIPAA (2004) The Health Insurance Portability and Accountability Act.  

48. Chevrier R et al (2019) Use and Understanding of Anonymization and De-Identification in the 

Biomedical Literature: Scoping Review. Journal of Medical Internet Research 21:e13484  

49. Batet M, Sánchez D (2018) Semantic Disclosure Control: semantics meets data privacy. Online 

Information Review 42:290-303  

50. Sánchez D, Batet M (2017) Toward sensitive document release with privacy guarantees. 

Engineering Applications of Artificial Intelligence 59:23-34  

51. Staddon J, Golle P, Zimny B (2007) Web-Based Inference Detection. USENIX Security 

Symposium. Association for Computing Machinery, Boston, pp 1-16 



57 

 

 

 

52. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient Estimation of Word Representations in 

Vector Space. arXiv preprint arXiv:1301.3781  

53. Mozes M, Kleinberg B (2021) No intruder, no Validity: Evaluation Criteria for Privacy-

Preserving Text Anonymization. arXiv preprint arXiv:2103.09263  

54. Abril D, Navarro-Arribas G, Torra V (2012) Improving record linkage with supervised learning 

for disclosure risk assessment. Information Fusion 13:274-284  

55. Abril D, Torra V, Navarro-Arribas G (2015) Supervised learning using a symmetric bilinear form 

for record linkage. Information Fusion 26:144-153  

56. Fabien M, Villatoro-Tello E, Motlicek P, Parida S (2020) BertAA: BERT fine-tuning for 

Authorship Attribution. Proceedings of the 17th International Conference on Natural Language 

Processing. NLP Association of India, Patna, pp 127-137 

57. Ruder S, Ghaffari P, Breslin J G (2016) Character-level and Multi-channel Convolutional Neural 

Networks for Large-scale Authorship Attribution. arXiv preprint arXiv:1609.06686  

58. Barlas G, Stamatatos E (2020) Cross-Domain Authorship Attribution Using Pre-trained 

Language Models. IFIP International Conference on Artificial Intelligence Applications and 

Innovations. Springer, Neos Marmaras, pp 255-266 

59. Kurtukova A, Romanov A, Shelupanov A (2020) Source Code Authorship Identification Using 

Deep Neural Networks. Symmetry 12:2044  

60. Bevendorff J, Potthast M, Hagen M, Stein B (2019) Heuristic Authorship Obfuscation.  

Association for Computational Linguistics, Florence, pp 1098-1108 

61. Domingo-Ferrer J T, Vicenç (2001) A quantitative comparison of disclosure control methods for 

microdata. Confidentiality, Disclosure and Data Access: Theory and Practical Applications for 

Statistical Agencies  

62. Domingo-Ferrer J, Sánchez D, Rufian-Torrell G (2013) Anonymization of nominal data based on 

semantic marginality. Information Sciences 242:35-48  

63. Martínez S, Sánchez D, Valls A (2013) A semantic framework to protect the privacy of electronic 

health records with non-numerical attributes. Journal of biomedical informatics 46:294-303  

64. Martínez S, Sánchez D, Valls A (2012) Semantic adaptive microaggregation of categorical 

microdata. Computers & Security 31:653-672  

65. Wolf T et al (2020) Transformers: State-of-the-Art Natural Language Processing. Proceedings of 

the 2020 Conference on Empirical Methods in Natural Language Processing: System 

Demonstrations. Association for Computational Linguistics, Online, pp 38-45 



58 

 

66. Vaswani A et al (2017) Attention Is All You Need. Advances in Neural Information Processing 

Systems. Neural Information Processing Systems Foundation, Long Beach, pp 5998-6008 

67. Raffel C et al (2020) Exploring the limits of transfer learning with a unified text-to-text 

transformer. Journal of Machine Learning Research 21:1-67  

68. Brown T B et al (2020) Language Models are Few-Shot Learners. Advances in Neural 

Information Processing Systems. Neural Information Processing Systems Foundation, Online, pp 

1877-1901 

69. Bommasani R et al (2021) On the opportunities and risks of foundation models. Radiology: 

Artificial Intelligence 4:e220119  

70. Hochreiter S, Schmidhuber J (1997) Long Short-Term Memory. Neural Computation 9:1735-1780  

71. Cho K, Van Merriënboer B, Bahdanau D, Bengio Y (2014) On the Properties of Neural Machine 

Translation: Encoder-decoder Approaches. Proceedings of SSST-8, Eighth Workshop on Syntax, 

Semantics and Structure in Statistical Translation. Association for Computational Linguistics, 

Doha, pp 103–111 

72. Wu Y et al (2016) Google's neural machine translation system: Bridging the gap between human 

and machine translation. arXiv preprint arXiv:1609.08144  

73. Liu Y et al (2019) RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint 

arXiv:1907.11692  

74. Sanh V, Debut L, Chaumond J, Wolf T (2019) DistilBERT, a distilled version of BERT: smaller, 

faster, cheaper and lighter. arXiv preprint arXiv:1910.01108  

75. El-Kassas W S, Salama C R, Rafea A A, Mohamed H K (2021) Automatic text summarization: A 

comprehensive survey. Expert Systems with Applications 165:113679  

76. Zhu Y et al (2015) Aligning Books and Movies: Towards Story-like Visual Explanations by 

Watching Movies and Reading Books. Proceedings of the IEEE International Conference on 

Computer Vision. IEEE, Santiago, Chile, pp 19-27 

77. Pappagari R et al (2019) Hierarchical transformers for long document classification. IEEE 

Automatic Speech Recognition and Understanding Workshop. IEEE, Sentosa, pp 838-844 

78. Sun C, Qiu X, Xu Y, Huang X (2019) How to Fine-Tune BERT for Text Classification? China 

National Conference on Chinese Computational Linguistics. Springer, Kunming, pp 194-206 

79. Batet M, Sánchez D (2020) Leveraging synonymy and polysemy to improve semantic similarity 

assessments based on intrinsic information content. Artificial Intelligence Review 53:2023-2041  

80. Sánchez D, Batet M, Viejo A (2013) Automatic general-purpose sanitization of textual 

documents. IEEE Transactions on Information Forensics and Security 8:853-862  



59 

 

 

 

81. Seco N V, Tony; Hayes, Jer (2004) An Intrinsic Information Content Metric for Semantic 

Similarity in WordNet.  

82. Manning C D et al (2014) The Stanford CoreNLP Natural Language Processing Toolkit. 

Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System 

Demonstrations. Association for Computational Linguistics, Baltimore, pp 55-60 

83. Weischedel R et al (2011) OntoNotes: A large training corpus for enhanced processing. In: Olive 

J, Christianson C, McCary J (ed) Handbook of Natural Language Processing and Machine 

Translation: DARPA Global Autonomous Language Exploitation. Springer, New York, pp 54-63 

84. Jiao X et al (2019) TinyBERT: Distilling BERT for Natural Language Understanding. Findings of 

the Association for Computational Linguistics: EMNLP 2020. Association for Computational 

Linguistics, Online, pp 4163–4174 

85. Wang W et al (2020) MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of 

Pre-Trained Transformers. Advances in Neural Information Processing Systems. Association for 

Computing Machinery, Vancouver pp 5776-5788 

86. Lundberg S M, Lee S-I (2017) A Unified Approach to Interpreting Model Predictions. Advances 

in Neural Information Processing Systems. Association for Computing Machinery, Long Beach, 

pp 4768–4777 

87. Pande M et al (2021) The heads hypothesis: A unifying statistical approach towards 

understanding multi-headed attention in bert. Proceedings of the AAAI Conference on Artificial 

Intelligence. 13613-13621 

 


