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Abstract

This thesis is part of the eProcessor project. Within it, the BSC is developing a RISC-
V based decoupled vector accelerator. This accelerator must support the execution of
vector memory instructions. More specifically, I have worked on the development of a
set of modules oriented to the displacement of data between the vector registers and
the memory hierarchy, as well as their correct mapping. For this task, it is essential to
elaborate a design that is able to meet the requirements faced by the project. This is a
first implementation that may receive updates in the future.
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Resum

Aquesta tesi forma part del projecte eProcessor. Dins d’ell, el BSC està desenvolupant
un accelerador vectorial desacoblat basat en RISC-V. Aquest accelerador ha de suportar
l’execució d’instruccions de memòria vectorial. Més concretament, he treballat en el desen-
volupament d’un conjunt de mòduls orientats al desplaçament de dades entre els registres
vectorials i la jerarquia de memòria, aix́ı com el seu correcte mapeig. Per a aquesta tasca,
és fonamental elaborar un disseny que sigui capaç de satisfer els requisits que afronta el
projecte. Aquesta és una primera implementació que pot rebre actualitzacions en el futur.
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Chapter 1

Contextualization and scope of the
project

1.1 Context

This is a final degree thesis, framed within an extensive project, which is composed of
many sections and implemented with different technologies that are far beyond the scope
of this document and will not be discussed here.
Therefore, it will focused on a subset of the work carried out by the BSC, representative
of my internship in the company.

1.1.1 The whole frame

In recent years, HPC in Europe has become a field with strategic interest. [1] describes how
the development of this technology, which can be achieved thanks to the common efforts of
the members of the union and other private entities, would lead to greater competitiveness
in this industry and many other industries that can benefit from this technology.
Flowing this current of thought, in 2018, The European High Performance Computing
Joint Undertaking (EuroHPC JU) was created [2]. This is an entity which allows the
European Union and participating countries to coordinate their efforts and pool their
resources to develop top-of-the-range exascale supercomputers.
Later, in 2021, eProcessor started as a project co-funded by the European Union under
the EuroHPC JU initiative [3]. eProcessor is led by BSC which contributes to several
work packages (WPs), in providing its knowledge of hardware design, FPGA emulation,
benchmarking, and system simulation tools.
BSC leads WP5 where the target eProcessor RTL design is developed. BSC will design the
RISC-V vector accelerator for HPC workloads for the case studies scoped by eProcessor.
Scoped case studies are: HPC, AI and Bioinformatics. An important requisite is the
exploration of different implementations in order to obtain an optimized design in terms
of energy efficiency.

1.1.2 My perspective

As stated previously, BSC is working on the development of a vector processor unit (VPU)
in eProcessor. This hardware unit works as a co-processor for the out-of-order (OoO) scalar
core of the system, the vector instructions dispatched by the core are executed by this unit
and the result is sent back to the core.
I have been working in this unit for more than a year now and, for this thesis, my scope is
to work on the datapath from the memory accesses of the VPU. More specifically, I have
worked in a set of modules that move and shifts the data (vector elements and indexes)
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between the vector register file (VRF) and the Request Queue (rqueue) which is connected
to Memory Hierarchy through a Network on Chip (NoC).

1.2 Stakeholders

The direct stakeholders of the thesis are the partners of eProcessor. They will get further
steps towards the finalization of the whole project, specially the BSC, which will obtain an
initial implementation of a part of the hardware needed to execute a memory instruction.
Holistically, eProcessor will provide the basis for the development of new technologies;
the software, hardware and other produced material will be reused to reduce the costs in
future projects.
The indirect stakeholders of my thesis are the members of the scientific community and
organizations that will use the future IPs (intellectual properties) developed in eProcessor,
for the shake of solving a wide range of computational problems. My work involves one
small step in the development of this technology.
Finally, I also add myself to the stakeholders list due to the skills that I will learn and
improve during the course of the thesis.

1.3 Justification

1.3.1 Background

”In 1974 Robert Dennard observed that power density was constant for a given area of
silicon even as you increased the number of transistors because of smaller dimensions of
each transistor. Remarkably, transistors could go faster but use less power. Dennard
scalling ended around 2004 because current and voltage could not keep dropping and still
maintain the dependability of integrated circuits. This change forced the microprocessor
industry to use multiple efficient processors or cores instead of a single inefficient proces-
sor. Indeed, in 2004 Intel canceled its high-performance uniprocessor projects and joined
others in declaring that the road to higher performance would be via multiple processors
per chip rather than via faster uniprocessors. This milestone signaled a historic switch
from relying solely on instruction-level parallelism (ILP), to data-level parallelism (DLP)
and thread-level parallelism (TLP)” [4, p. 4].

Under this paradigm, Single instruction stream, multiple data streams (SIMD) and
Multiple instruction streams, multiple data streams (MIMD) become popular.
”SIMD—The same instruction is executed using different data streams” [4, p. 11].
SIMD kind architectures make possible a big exploitation of DLP. [4, p. 282].
”MIMD—Each processor fetches its own instructions and operates its own data” [4, p.
282].
MIMD kind architectures make possible a big exploitation of TLP, and also DLP [4, p.
11].
”Since a MIMD architecture needs to fetch one instruction per data operation, SIMD is
potentially more energy-efficient since a single instruction can launch many data opera-
tions ... over the next decade the potential speedup from SIMD parallelism is twice that
of MIMD parallelism.” [4, p. 283]. These are important aspects in favour of the use of
the VPU, SIMD based, in eProcessor as the desired characteristics and restrictions about
performance and energy can be fulfilled. However, MIMD will also be very important in
further steps on eProcessor, as the plan is to add more processors to the system.
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Also, it is required to take a look at the methods used to obtain even a better perfor-
mance of this vpu accelerator.
I want to focus on one optimization applied to this VPU, which consists in a fully de-
coupled vector architecture, this means that the arithmetic and memory(vstore and vload)
datapaths have different physical structures and no interaction at all (except for chaining).
The idea of having a fully de-coupled architecture is to allow complete independence be-
tween arithmetic and memory operations, reducing the complexity and over-kill control
for datapaths which do not require such restriction/control, e.g. the Finite State Machine
arbiter inside the Vector Lane and the accesses to the Vector Register File. As we can see
in the study [5, p. 9], this can be a good cost/performance optimization for any memory
latency because this technique helps hiding that latency.
This unit is also being implemented with some other optimizations like register renaming
and some capabilities of OoO, such as partial ordering in the execution of vector loads
and stores (out-of-order loads, in-order stores), and will be updated with new ones in the
future, like an upgrade in the chaining mechanism.

1.3.2 Available resources

A big plus for this thesis is that, not only do I have access to material that explains and
justifies the theoretical concepts that underpin the current VPU implementation and will
guide the scoped implementations of this thesis, but also that BSC has useful material to
reuse.
BSC is working on another project called EPI, in which a different VPU is being developed.
I am taking advantage of EPIs IPs in order to carry out the implementation of eProcessor.
For the development of the eProcessor’s base vector processing unit, we took the EPI’s
“Vitruvius” vector processing unit as a baseline, then adapted it to the new architecture
requirements, except for the “vector load store unit” (along some other modules) which
was developed from scratch.
In addition, the BSC has more than enough economical and material resources to take
care of this thesis.

1.4 Scope

1.4.1 Objectives

The main objective of this project is to develop an RTL implementation of the following
modules:

1. Store management unit.

2. Store buffer.

3. Index management unit.

4. Index buffer.

The implementation is done in System Verilog (SV). RTL is an implementation ap-
proach that can be emulated on a field programmable gate array (FPGA) because it takes
into consideration the characteristics of the available hardware. The RTL is also the basis
for obtaining an integrated circuit (IC).
The development process includes design, implementation, testing and documentation.
Material produced may be updated for following versions of the VPU.

The sub-objectives that will be achieved in the process are:
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1. Understand the use of the EDA tools needed in the project. This includes simulation
and linting tools.

2. Understand RISC-V ISA and eProcessor scoped RISC-V extensions.

3. Understand the architecture and functionalities of the current VPU design. This
includes understanding the process of execution of a memory instruction, making
special focus on the modules connected to the focused ones, and its interfaces.

4. Understand differences between EPI architecture and eProcessor, as well as what
can be reused.

1.4.2 Requirements

In order to achieve the specified objectives and obtain a satisfying result, first, it is com-
pulsory to specify the requirements of the interfaces and functionality of those modules.
In order to achieve this, I will proceed according to the specifications that Abraham, the
team lead, is specifying for the current version of the VPU.
What I can really decide is within the modules’ implementation, because the interface is
given to me. Also, I can help to contribute to decision-making about the details of the
memory instruction pipeline.

1.4.3 Obstacles and risks

There are plenty of situations that can affect the progress of a computer science project,
and more specifically, there are setbacks that will probably appear due to the nature of
hardware development. In this section I will present the main ones and suggest a possible
solution or, in its absence, a way to reduce their effect.

• Design errors, this means that a theoretical design is not correct. The implementa-
tion will result incorrect. A deeper look has to be taking in design stage.

• Implementation errors, due to the nature of the hardware, it is possible that a
design that intended to support certain functionality needs a more sophisticated
implementation than what would be done in software. It has to be taken into
account that this is an RTL design.

• Modifications in the VPU during the development, the requisites of these modules
can be modified during the project due to the modification of other related modules.
A good communication between members of the team is key.

• Testing time, the time allocated to testing the modules makes up a significant part of
the total time, and the tests must be sufficiently extensive so as not to lengthen the
future verification stages too much. A brief description of corner cases is interesting
in order to reduce testing time and increase its reliability.

• Lack of resources, I refer to this situation as the lack of the tools, information and
material to proceed to the next iteration of the project. This can happen as a result
of, for example, not having enough licenses, a delay in other members of the team
work, or a power failure. In this case, if a task is not available at a certain moment,
another task of the list will be performed.
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1.5 Methodology and rigour

1.5.1 Project management methodology

Hardware development presents some fundamental differences with respect to software.
Hardware is less flexible and requires a stricter initial design stage. This causes that it
requires a different planning and that it will be more costly to adapt to the specification
changes that may happen [6].
The methodology used will be an agile process, which is based on the principles of scrum
[7]. In this thesis case each week a meeting will be handled, in which the advances on the
current sprint will be reported, which tasks have been done and whose are to do. Also, I
will receive feedback on my reports to know if I can continue advancing or something has
to be modified. Later, the team leaders will plan the next sprint. The sprint will specify
which tasks must be done, the requisites and the time limitation.
To make the design accomplish an acceptable level of quality, each module will move
through the stages of: specification (logical functionality and requisites), design (through
the elaboration of schemes and tables and text), implementation (writing code and linting)
and testing (elaborating a sufficient set of inputs and checking the correctness of outputs
for those entries).

1.5.2 Validation

The following list contains the mechanisms used to verify the correctness of the material
developed and, therefore, the appropriate progress of the project.

• Gitlab. This platform offers an effective way to manage, control and share the code
and joint documents of the project.

• Synchronization meetings. As stated previously, each week there will be a team
meeting in which I will receive feedback about my latest advances. Also, there will
be other individual meetings with Abraham or other members of the team in case it
is necessary.

• Documentation development. Supports used are: schemes, tables and text. The fact
of having a visual or conceptual support of what is being done is really important
in order to obtain a clearer idea of the details of the thesis.

• Testing. Phases of testing will be necessarily executed together with the implemen-
tation process in an iterative and cyclic manner. Testing results are a metric used
to check the advances of the thesis.
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Chapter 2

Time planning

2.1 Time resume

The completion of this work covers the time between 1st of July 2022, when the planning
of the project begins, and January 17, 2023, the deadline for the thesis delivery. The
hours defined below have been drawn up taking into account the time spent during the
internship and at home autonomously. Values in hours have been rounded to the nearest
tenth.
The total time dedicated will be around 595 hours from July to the end of December.

2.2 Tasks definition

In order to be able to prepare an adequate approximation of the time and resources used,
the work will be divided into tasks so that it is possible to define their characteristics
individually.

2.2.1 Project management tasks

I define a set of tasks intended to specify the different chapters related to the organization
and management of the project.

• PM.1: Context and scope. In this chapter, I set the context in which the thesis relies
on, indicate the most relevant objectives and justify choices in the decision-making.
Time spent will be 1 week × 16 h/week = 16h.

• PM.2: Project planning. In this chapter, steps to execute the project are set, aiming
to track the progress and accomplish the deadlines. Time spent will be 1 week × 16
h/week = 16 h.

• PM.3: Budget and sustainability. In this chapter, monetary costs are accounted for.
Also, a sustainability report is made. Time spent will be 1 week × 16 h/week = 16
h.

• PM.4: Final organization and management deliverable. An update of previously
defined chapters is performed. Time spent will be 1 week × 16 h/week = 16 h.

• PM.5: Final Thesis memory deliverable. PM.4 is updated and the whole content
elaborated is added and expanded in the thesis body. Time spent will be 10 week ×
5 h/week = 50 h.
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• PM.6: Meetings. Each week there are meetings scheduled in order to report the
advances, get feedback and guide and plan the next steps. Time spent will be 6
month × 4 weeks/month × 2 h/week = 48 h.

2.2.2 Development tasks

I define a set of tasks intended to specify the processes related to the development of the
project. This group of tasks is divided into theoretical and practical.

Theoretical study:

• THE.1: Understand vector architectures.

i. Understand basic vector architecture.

ii. Understand decoupled vector architectures and other optimized implementa-
tions used in design.

Time spent will be 3 weeks × 7 days/week × 1.5 h/day = 32 h.

• THE.2: Understand ISA.

i. Understand RISC-V ISA basis.

ii. Understand RISC-V extension ”V” ISA basis and take a brief look to other
extensions used in design.

iii. Understand in more detail instructions and parameters involved in memory
instructions in RISC-V ”V” extension.

Time spent will be 3 weeks × 7 days/week × 1.5 h/day = 32 h.

• THE.3: Understand eProcessor’s VPU state.

i. Understand eProcessor’s VPU state.

ii. Understand eProcessor’s VPU pipeline.

iii. Understand eProcessor’s VPU memory access pipeline in detail.

Time spent will be 3 weeks × 7 days/week × 1.5 h/day = 32 h.

• THE.4: Understand EPI’s VPU state.
It isn’t as important as understanding VPU eProcessor architecture, so it will be
done in less detail.

i. Understand EPI’s VPU state and differences with eProcessor’s one.

ii. Understand EPI’s VPU memory access pipeline in detail.

Time spent will be 2 weeks × 7 days/week × 1.5 h/day = 21 h.

Practical work:

Next tasks are closely related to each one of the target modules, each task implies all
modules.

• SPEC: Specification. All details regarding what the design has to accomplish are
defined here. Time spent will be 3 weeks × 7 days/week × 2.5 h/day = 53 h.
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• DES: Design. Specification must be traduced into a format that represents the
hardware that will perform specified functionalities and agreed requirements. This
format includes explanations, diagrams, tables and lists of logic signals. Time spent
will be 4 weeks × 7 days/week × 2.5 h/day = 70 h.

• IMP: Implementation. The design will be used to program a SV code. In order to
get a correct code, linting will be used in this stage. Time spent will be 2 weeks ×
7 days/week × 2.5 h/day = 35 h.

• TEST: Testing. The resulting design will be tested with a set of representative
inputs. Time spent will be 4 weeks × 7 days/week × 2.5 h/day = 70 h.

• DOC: Documentation. In order to define the specifications, implementation and
covered tests, a written memory has to be made up for each module. It is very im-
portant at the time of using this code, making updates and teaching other members
of the team about the status of these modules. Time spent will be 5 weeks × 7
days/week × 2.5 h/day = 88 h.

2.3 Resources definition

• ST: Staff. The content of this project has been carried out by the following profes-
sionals.

i. ER: Established researcher, team supervisor.

ii. PSL: Phd student, team lead.

iii. PS: Phd student.

iv. US: Undergraduate student.

It is also worth mentioning that the entire VPU team consists of 3 other members,
and that this number may vary during the different stages of the eProcessor. How-
ever, these details are not relevant for the desired calculation. Also, I have decided
to not taking into account other costs like the place location, water, electricity, etc,
in order to simplify the calculation.

• HDW: Hardware equipment. What is needed is a specific computer equipment. One
remarkable point here is that having at least 8 GB of RAM is a must to get a good
work throughput cause there will be lots of programs working concurrently. Also, it
will be needed access to EPI internal server in order to run some EDA tools with a
good performance.

• SW: Software equipment. This includes:

Programming tools: VS code, vim, bash.

Testing tools: Questasim license.

Linting tools: Verilator.

• DOC: Documentation. Access to EPI and eProcessor documents and code.
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2.4 Task resume table

ID Name Time(h) Dependencies Resources

PM.1 Context and scope 16 ST,HDW,DOC

PM.2 Project planning 16 PM.1 ST,HDW,DOC

PM.3 Budget and sustain-
ability

16 PM.1, PM.2 ST,HDW,DOC

PM.4 Final organization
and management
deliverable

16 PM.1, PM.2,
PM.3

ST,HDW,DOC

PM.5 Final thesis deliver-
able

50 PM.1, PM.2,
PM.3, PM.4

ST,HDW,DOC

PM.6 Meetings 48 ST,HDW,DOC

PM Project management 162

THE.1 Understand vector
architectures

32 HDW,DOC

THE.2 Understand ISA 32 ST,HDW,DOC

THE.3 Understand eProces-
sor’s VPU state

32 THE.1, THE.2 ST,HDW,DOC

THE.4 Understand EPI’s
VPU state

21 THE.1, THE.2 ST,HDW,DOC

THE Theoretical work 117

SPEC Specification 53 THE ST,HDW,DOC

DES Design 70 SPEC ST,HDW,SW,DOC

IMP Implementation 35 DES HDW,SW

TEST Testing 70 IMP HDW,SW

DOC documentation 88 TEST ST,HDW

PRA Practical work 316

Total Total time 595

Table 2.1: Summary of tasks information. [Own creation].

The gray rows show the group of tasks that contains the ones shown above
inside the same group.

2.5 Gantt diagram

This graphic representation makes it easier to visualize the time planning and sets the
workload for each week.
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Figure 2.1: Gantt diagram showing. [Own creation]
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2.6 Flexibility

In order to adapt to the dynamism of the project, I must take into account that difficulties
may arise, modifications with respect to the original plan. So, it will be necessary to review
the actions to be carried out.

2.6.1 Risk Management

Given that the planning used is based on an agile methodology, the different stages of the
project progress in such a way that certain unexpected events may occur. In those cases,
measures have to be adopted.

• Inability to access BSC files. This isn’t a usual problem. But, if this happens,
documentation files will be stored in local folders to be able to continue with docu-
mentation and memory writing while other tasks are delayed.

• Long dependence in work. If I have to wait for another team member to continue
with the development of the modules, because my work depends on theirs, I will
have no choice but to focus on other tasks.

• Deadlock in design. If I reach a point where I cannot move forward, I can turn to
my colleagues and superiors, even, if necessary, I could turn to people from other
related projects in the company.

• Deadlock in implementation. If I reach a point where I cannot move forward, I’ll
have to look for more information about SV, and in the case of RTL implementation,
I should take a look into computer architecture structures.

• Deadlock in testing. If I reach a point where I cannot move forward, I will have to
take a deeper look into the design to obtain corner cases and to check the aimed
functionality. Also, I’ll probably have to look for more information about testing
tools and how to build proper scripts.

• Deadlock in documentation writing. If I reach a point where I cannot move forward,
I will have to ask for more information to the other members of the team, to get
more ideas or to solve doubts that are slowing me down.
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Chapter 3

Budget and sustainability

3.1 Budget

In this section, a budget calculation is performed, tasks and resources identified in chapter
2 will be analyzed in this estimation. The total estimated cost of the project is 15904.01
e. Values in euros have been rounded up.

3.1.1 Tasks cost

The cost of the tasks is the cost of the salaries of the people who perform them. The
developed roles and salaries are the following:

• ER: Manager, team supervisor. Salary = 21.25 × 1.3 = 27.63 e/h.

• PSL: Phd student, team lead. Salary = 12.93 × 1.3 = 16.81 e/h.

• PS: Phd student. Salary = 12.93 × 1.3 = 16.81 e/h.

• US: Undergraduate student. Salary = 9.83 × 1.3 = 12.78 e/h.

Salary costs are extracted from [8]. Taking into account the roles for salary calculation:
US will be considered as newly qualified, PSL and PS junior, and ER senior.

Values have been multiplied by 1.3 to add the costs of social security and other taxes.
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ID Name ER
(h)

PSL
(h)

PS
(h)

US
(h)

Cost
(e)

PM.1 Context and scope 0 2 0 16 238.1

PM.2 Project planning 3 3 3 16 388.23

PM.3 Budget and sustain-
ability

0 0 0 16 204.48

PM.4 Final organization
and management
deliverable

0 0 0 16 204.48

PM.5 Final thesis deliver-
able

8 8 8 50 1129

PM.6 Meetings 48 48 48 48 3553.44

PM Project management 59 61 59 162 5717.73

THE.1 Understand vector
architectures

1 4 4 32 571.07

THE.2 Understand ISA 1 2 2 32 503.83

THE.3 Understand eProces-
sor’s VPU state

1 4 4 32 571.07

THE.4 Understand EPI’s
VPU state

1 1 1 21 122.83

THE Theoretical work 4 11 11 117 1768.27

SPEC Specification 1 4 2 53 118.97

DES Design 1 2 8 70 121.88

IMP Implementation 1 1 1 35 508.55

TEST Testing 1 1 2 70 949.75

DOC Documentation 1 4 8 88 1353.99

PRA Practical work 5 12 21 316 3053.14

TC Tasks cost 68 84 91 595 10539.14

Table 3.1: Tasks cost. [Own creation]

The gray rows show the group of tasks that contains the ones shown above
inside the same group.

3.1.2 Resources cost

• HDW: Hardware equipment. The computer is valued around 1200 eand the server
maintenance is around 200 eper month. What is accounted for here is the computer
plus the access to the server.

• SW: Software equipment. What is accounted for here is the Questasim license it is
997.51 e[9].
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• DOC: Documentation. This is reused material, so it doesn’t add another cost.

ID Name Cost (e)

HDW Hardware equipment 1200 + 200 × 6 months = 2400

SW Software equipment 997.51

DOC Documentation 0

RC Resources cost 2703.51

Table 3.2: Resources cost. [Own creation]

The gray rows show the group of tasks that contains the ones shown above
inside the same group.

3.1.3 Other costs

• Contingencies
Calculated budget is increased to cover unexpected events. A margin of 15% is
applied to the tasks and resources cost for these emergency cases.
Contingencies cost: (10539.14 + 2703.51) × 0.15 = 1986.4 e.

• Incidental
Another important aspect to take into consideration is the cost of risk events. Those
were specified in section 2.5.

– Inability to access BSC files. This is a low risk incident, the probability is 15%
and its cost is 20 h of US, 255.6 e.

– Long dependence in work. This is a mid risk incident, the probability is 30%
and its cost is 20 h of US, 255.6 e.

– Deadlock in design. This is a high risk incident, the probability is 60% and its
cost is 10 h of US and 4 h of PSL, 195.04 e.

– Deadlock in implementation. This is a mid risk incident, the probability is 30%
and its cost is 5 h of US, 63.9 e.

– Deadlock in testing. This is a high risk incident, the probability is 60% and its
cost is 20 h of US, 255.6 e.

– Deadlock in documentation writing. This is a high risk incident, the probability
is 60% and its cost is 30 h of US and 4 h of PSL, 450.64 e.

Estimated incidental cost = (255.6 × 0.15) + (255.6 × 0.3) + (195.04 × 0.6) + (63.9
× 0.3) + (255.6 × 0.6) + (450.64 × 0.6) = 674.96 e.

3.1.4 Total cost

Total: Tasks costs + resources costs + contingencies + incidental = 10539.14 + 2703.51
+ 1986.4 + 674.96 = 15904.01 e.
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3.1.5 Management control

In a big project, it is very difficult to make an exact estimation of the total costs. For
this reason, it is interesting to define some margins in which these costs will end up moving.

HR Deviation = Cost Per Hour × (Estimated Hours Of Dedication - Real Hours Of
Dedication).
Since most of the costs come from salaries, it is important to take into account the actual
hours spent. These can vary due to unforeseen events, so it is important to make a good
approximation.

Contingencies cost deviation = (Estimated Contingencies Cost - Real Contingencies
Cost).
In the contingency cost, a representative percentage of the variability of the project costs
due to unexpected factors is chosen. Therefore, this cost can vary greatly.

Incidental costs deviation = (Estimated incidental hours - Real incidental hours) ×
Total incidental hours.
Because there are multiple risk factors in the project, the costs due to incidents can vary
widely due to initially unknown factors. What we try to do is to establish a probability
for each type of expected incident in order to make a better approximation.

3.2 Sustainability

This section covers aspects of the project’s impact, in economic, environmental and social
terms.

3.2.1 Economy

Have you estimated the cost of carrying out the project?
The cost of the project is detailed in section 3.1. The main human and material resources
involved in the project have been taken into account. Possible deviations and risks have
also been added.

How is the problem you want to address currently being solved? How will your solution
economically improve with respect to other existing ones?
The solution I am working on will give a first implementation to a segment of code not
yet written, so that it will enable the execution of the first memory instructions.

The hardware development is oriented to perform, in the most optimal way possible
and with the available resources, the execution of applications in the target areas.

3.2.2 Environment

Have you estimated the environmental impact that the project will have? Have you con-
sidered minimizing the impact, for example, by reusing resources?
The impact of the project is that of the resources used in it, a tiny part of all the resources
allocated to eProcessor. These resources are leveraged because segments of EPI code and
documentation, as well as other modules, are reused.

How is the problem you want to address currently being solved? How will your solution
environmentally improve with respect to other existing ones?
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The solution I am working on will give a first implementation to a segment of code not
yet written, so that it will enable the execution of the first memory instructions.

Regarding eProcessor, the fruits of this project will form part of the network of IPs
intended to offer low-consumption processors.

3.2.3 Society

What do you think the realization of this project will bring you on a personal level?
This project will improve my skills in the field of computer architecture. It will provide
me with a theoretical and practical basis on topics such as RISC-V, vector architectures.
Furthermore, I will improve other very important skills through the different phases of
development, such as the creation of schematics and documentation, team working, and
improving my English. In general, I will become a better professional.

How is the problem you want to address currently being solved? How will your solution
socially improve with respect to other existing ones?
The solution I am working on will give a first implementation to a segment of code not
yet written, so that it will enable the execution of the first memory instructions.

eProcessor is one of the pieces that is being placed in order to develop an European
supercomputing infrastructure and to achieve technological independence. Therefore, it is
an interesting project for the entire territory and related sectors.

Is there a real need for the project?
This project is part of the eProcessor project and is necessary for its progress, specific
hardware is required and tested following the requirements of the project so that it is ad-
equate. eProcessor is receiving European funding and involves multiple companies united
by an ambitious project, aimed at developing computing technology in Europe.

23



Chapter 4

Architecture

4.1 Introduction

To present the content of the project, it will start with the different architectures involved.
The architecture is defined by the ISA, whereas the microarchitecture is composed by a
specific implementation. The main pieces of the following architecture are RISC-V and
the RISC-V extensions used, with particular emphasis on ”V”, Vector Extension.

4.2 What is the ISA?

”An Instruction Set Architecture (ISA) is part of the abstract model of a computer that
defines how the CPU is controlled by the software. The ISA acts as an interface between
the hardware and the software, specifying both what the processor is capable of doing as
well as how it gets done.
The ISA provides the only way through which a user is able to interact with the hardware.
It can be viewed as a programmer’s manual because it’s the portion of the machine that’s
visible to the assembly language programmer, the compiler writer, and the application
programmer.
The ISA defines the supported data types, the registers, how the hardware manages main
memory, key features (such as virtual memory), which instructions a microprocessor can
execute, and the input/output model of multiple ISA implementations. The ISA can be
extended by adding instructions or other capabilities, or by adding support for larger ad-
dresses and data values.” [10].

4.3 RISC-V

4.3.1 RISC-V History

Pronounced ”risk-five”, this is the fifth reduced instruction set computer (RISC) architec-
ture developed at the University of California, Berkeley since 1981.
In fact, RISC was the name coined by Berkeley to refer to its first project aiming to de-
velop an architecture, based on the idea of using simpler instructions than the ones widely
used by the industry at that moment, complex instruction set computer (CISC), with the
objective of obtaining a more efficient architecture in terms of power, consumption and
area.
RISC-V was developed to cover Berkeley needs in research and education. It was inter-
ested in the development of new hardware architecture implementations for industry and
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to provide students with real implementations to explore in classes.
The current proprietary ISAs suffer from a number of limitations to meet the needs ex-
posed: The lack of transparency in their implementations, the lack of detail in documen-
tation and their reliance on outdated concepts, were barriers in favor of developing a new
ISA. [11, chapter 28].
In 2010 RISC-V instruction set was started. Later, in 2015 RISC-V Foundation was
founded to build an open and collaborative community of software and hardware innova-
tors based on RISC-V ISA [12].

4.3.2 Why RISC-V?

There are some interesting facts about this ISA which made it suitable for this project:

• Free use license in academy and industry.

• Modular design. It counts with standard extensions that can be added to the design
to extend the functionalities. Furthermore, personalized extensions can be added.

• Support. RISC-V International is a nonprofit corporation made up of members
within the sector, such as the BSC, which work together to update its features
and encourage its use. The community can also interact with RISC-V members
via public discussion lists, in order to share their concerns and advises about the
development in order to assist in different development fields which include ISA
update and extension, software tools development and hardware development.

• Flexibility and suitability. An ISA that avoids “over-architecting” for a particular
microarchitecture style (e.g., mi-crocoded, in-order, decoupled, out-of-order) or im-
plementation technology (e.g., full-custom, ASIC, FPGA), but which allows efficient
implementation in any of these.

• Renewal. This ISA is based on the existing alternatives on the market. It has
learned from their mistakes as it isn’t dependable on any obsolete elements due
to retro-compatibility with binaries for old instructions, that existing architectures
must comply with.

Cortus RVOOO (RISC-V Out Of Order) will be a 64 bit RISC-V processor which
integrates the RV64GCV ISA.

4.3.3 RISC-V Unprivileged

For the purposes of this thesis, only the unprivileged ISA volume will be discussed. Un-
privileged instructions are those that are generally usable in all privilege modes in all
privileged architectures.

RV64GCV is composed of a combination of a base 64 bit ISA (RV64I) plus standard
extensions IMAFD, Zicsr, Zifencei, ”C” and vectorial.

4.3.4 Scalar Extensions

RV64I

RV64I is the 64 bit base integer instruction set. Some characteristic features are:

• XLEN = 64
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• The address space is indexed with XLEN bits and is byte addressed. Memory system
can be little-endian or big-endian.

• Large number of Integer logical registers: 32, XLEN bits wide.
From those, x0 is hardcoded to 0 and x1-x31 are general purpose.
Also there’s one extra register, pc, which holds the address of the current instruction.

• Reduced number of instructions: 40, 32 bit wide.

Decoding register specifiers, the source (rs1 and rs2) and destination (rd), is usually
on the critical paths in implementations, and so the instruction format was chosen
to keep all register specifiers at the same position in all formats. Another design
decision was that immediates (imm) are sign extended. The sign bit for all imm is
always held in bit 31 of the instruction to allow sign-extension to proceed in parallel
with instruction decoding.

• The base set of instructions includes: computational instructions(e.g. ADDI, SLLI,
NOP), control transfer instructions (e.g. JAL, BEQ), memory instructions(e.g.
LHU, SW) memory ordering instructions(e.g. FENCE), environment call and break-
points(e.g. ECALL and EBREAK).

IMAFD

This extension is a combination of: Integer multiplication and division (M), Atomic in-
structions (A), Single-Precision Floating-Point (F) and Double-Precision Floating-Point
(D).

Zicsr

Control and Status Register (CSR) Instructions. There’s a separate address space of 4096
Control and Status registers associated with each hart. This extension defines the full set
of CSR instructions that operate on these CSRs.

Zifencei

Instruction-Fetch Fence. This extension includes the FENCE.I instruction that provides
explicit synchronization between writes to instruction memory and instruction fetches on
the same hart, only. Currently, this instruction is the only standard mechanism to ensure
that stores visible to a hart will also be visible to its instruction fetches.

”C” extension

Compressed Instructions. RVC instructions includes a set of short 16-bit instruction en-
codings for common operations. Typically, 50%–60% of the RISC-V instructions in a
program can be replaced with RVC instructions, resulting in a 25%–30% code-size reduc-
tion.

4.3.5 Vector extension

RISC-V base vector extension release v0.7 [13]. Since this is a base expansion, it can
be expanded with more specialized vector instructions such as cryptography or machine
learning.
The most relevant parts of the documentation will be explored:
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Implementation-defined Constant Parameters

Each hart defines the following parameters.

• ELEN. The maximum size of a single vector element, in bits, must be a power of 2.

• VLEN. The number of bits in a vector register, must satisfy V LEN ≥ ELEN and
to be a power of 2.

Miscellany

32 vectorial registers VLEN bit wide are added.

Control and Status Registers (CSRs)

Address Privilege Name Description

0x008 URW vstart Vector start position

0xC20 URO vl Vector length

0xC21 URO vtype Vector data type register

Table 4.1: Vector CSRs subset. [13, p. 7]

The vstart CSR specifies the index of the first element to be executed by a vector instruc-
tion. All vector instructions begin its execution with the element number given in vstart,
leaving earlier elements in the destination vector undisturbed, and to reset vstart to zero
at the end of execution.

Normally, vstart is only written by hardware on a trap on a vector instruction, with the
vstart value representing the element on which the trap was taken (either a synchronous
exception or an asynchronous interrupt), and at which execution should resume after a
resumable trap is handled. Furthermore, the value of vstart can also be modified by the
instructions defined in the extension Zicsr. However, for some instructions there are vstart
values that may raise an illegal instruction exception.

The vl CSR holds an unsigned integer specifying the number of elements to be updated
by a vector instruction. Elements in any destination vector register group with indices ≥
vl are zeroed during execution of a vector instruction. The vl CSR can only be updated
by vsetvli and vsetvl instructions.

Figure 4.1: Vector vsetvl{i} Instruction Set. [13, p. 25]

In 4.1 we can see how vtype value is set, but not only that, this function also serves
to obtain the size of the vector and save the previous configuration. AVL stands for ap-
plication vector length. One possible vsetvl configuration will be explored later.
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The vtype CSR provides the default type used to interpret the contents of the vector
register file. The vtype CSR can only be updated by vsetvli and vsetvl instructions. The
following table describes its fields:

Bits Name Description

XLEN-1 vill Illegal value if set

XLEN-2:7 Reserved (write 0)

6:5 vediv[1:0] Used by EDIV extension

4:2 vsew[2:0] Standard element width (SEW) setting

1:0 vlmul[1:0] Vector register group multiplier (LMUL) setting

Table 4.2: vtype register layout. [13, p. 25]

The vector type illegal (vill) is used to encode that a previous vsetvli instruction at-
tempted to write an unsupported value to vtype. If the vill bit is set, then any attempt
to execute a vector instruction (other than a vector configuration instruction) will raise
an illegal instruction exception. When the vill bit is set, the other XLEN-1 bits in vtype
shall be zero.

EDIV extension is not used. So, vediv value has no purpose and is not implemented.

The vector standard element with (vsew) sets dynamically the SEW of the vector in-
struction. The elements of a vector register are calculated as VLEN / SEW. In current
eProcessor VPU implementation, MAX SEW is equal XLEN.

The vector register grouping (vlmul) is used to execute one vector instruction on mul-
tiple vector registers. In current eProcessor VPU implementation, vlmul is always set to
1.

Vector Loads and Stores

Vector loads and stores move values between vector registers and memory. Vector loads
and stores are masked and do not raise exceptions on inactive elements. Masked vector
loads do not update inactive elements in the destination vector register group. Masked
vector stores only update active memory elements.

Vector loads and stores are encoded within the scalar floating-point load and store
major opcodes (LOAD-FP/STORE-FP).
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Figure 4.2: vector memory instructions format. [13, p. 29]

Field Description

rs1[4:0] specifies x register holding base address

rs2[4:0] specifies x register holding stride

vs2[4:0] specifies v register holding address offsets

vs3[4:0] specifies v register holding store data

vd[4:0] specifies v register destination of load

vm specifies vector mask

width[2:0] specifies size of memory elements, and distinguishes from FP scalar

mop[2:0] specifies memory addressing mode

nf[2:0] specifies the number of fields in each segment, for segment load/stores

lumop[4:0]/
sumop[4:0]

are additional fields encoding variants of unit-stride instructions

Table 4.3: vector memory instructions format fields. [13, p. 29]

As we will see below, there are memory accesses at byte, half, word and SEW levels
depending on width value. For a memory instruction, in the register banks part, the num-
ber of bits accessed is vl × SEW, while in the memory part, the number of bits accessed
is vl × width. So, in a load, if SEW > width, the elements are extended before being
written in the register. Depending on mop value, the space will be filled with 0s or the
bit sign value.
Also, in a memory instruction, if SEW < width, an illegal instruction exception is raised.

Another interesting point here is that stride is given in bytes and can be a 0 or un-
aligned value. For now, those are not supported in eProcessor.

Vector Load/Store Addressing Modes
The base vector extension supports unit-stride, strided, and indexed (scatter/gather)

addressing modes. The base effective address for all vector accesses is given by the con-
tents of the x register named in rs1.
Vector unit-stride operations access elements stored contiguously in memory starting from
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the base effective address.
Vector strided operations access the first memory element at the base effective address,
and then access subsequent elements at address increments given by the byte offset con-
tained in the x register specified by rs2.
Vector indexed operations add the contents of each element of the vector offset operand
specified by vs2 to the base effective address to give the effective address of each element.
The vector offset operand is treated as a vector of byte offsets, those offsets have the same
size as data elements, SEW defined in vsew CSR field. If the vector offset elements are
narrower than XLEN, they are sign-extended to XLEN before adding to the base effective
address. If the vector offset elements are wider than XLEN, the least-significant XLEN
bits are used in the address calculation.

Vector Unit-Stride Instructions

Figure 4.3: Vector Unit-Stride Instruction Set. [13, p. 32]

Vector Strided Instructions

Figure 4.4: Vector Strided Instruction Set. [13, p. 32]

Vector Indexed Instructions
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Figure 4.5: Vector Indexed Instruction Set. [13, p. 33]

Graphical representation

Figure 4.6: ISA graphical example 1, vload strided. [Own creation]

In 4.6, in green we have valid element values, in blue element extend, in gray
invalid elements. Each block is 16 bits width, for this reason, addresses shown
in memory grown by 2 for each block as memory is indexed by bytes.
As this is a vload, values are moved from memory to the registers. As we can
see, elements can be mapped in memory depending on base address and stride,
whereas SEW width elements are placed contiguously in destination register
file.
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Figure 4.7: ISA graphical example 2, vstore indexed. [Own creation]

In 4.7, in green we have valid element values, in blue element extend, in gray
invalid elements and in purple we have the elements which were computed
before the trap that has modified vstart value.
As this is a vstore, values are moved from registers to memory. As we can
see, elements can be mapped in memory depending on base address and index
vector.

Consistency Model

A memory consistency model is a set of rules specifying the values that can be returned
by loads of memory.
RISC-V uses a memory model called “RVWMO” (RISC-V Weak Memory Ordering) which
is designed to provide flexibility for architects.
Like other architectures(x86, ARM, MIPS), code running on a single hart appears to
execute in order from the perspective of other memory instructions in the same hart.
But, as it is using a weak model and as a consequence of the implementation functionality,
memory instructions from another hart may observe the memory instructions from the first
hart being executed in a different order in many cases. Therefore, multithreaded code may
require explicit synchronization to guarantee ordering between memory instructions from
different harts when this is needed.
Unfortunately, those rules are only for scalar instructions. For now there’s no support
such as a Vector extension Consistency Model, one of the causes is that topics related
such as memory overlapping caused by memory accesses of different type, are still under
research by academic community.

Code example

This is a simple code example, a memcpy implementation, where we can see CSR config-
uration and vectorial memory operations.

# void *memcpy(void* dest, const void* src, size_t n)

# a0=dest, a1=src, a2=n

#

memcpy:

mv a3, a0 # Copy destination

loop:

vsetvli t0, a2, e8,m8 # Vectors of 8b

vlb.v v0, (a1)

# Load bytes
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add a1, a1, t0

# Bump pointer

sub a2, a2, t0

# Decrement count

vsb.v v0, (a3)

# Store bytes

add a3, a3, t0

# Bump pointer

bnez a2, loop

# Any more?

ret

# Return

As we can see in this example, each iteration of the loop works in the following way:
vsetvl sets SEW 8(e8) and LMUL 8(m8), then executes a vload and updates the vload
pointer and byte counter, later it executes a store to previously copied destination address
and checks counter. As vsetvli sets vl according to the remaining n, this code covers all
possible values of n.
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Chapter 5

eProcessor

5.1 eProcessor VPU

Figure 5.1: eProcessor VPU scheme. [Abraham’s creation]

All starts inside the core: When the vector instruction is dispatched by the core, the in-
struction reaches the First Stage Decode through Vector Instruction Interface. Inside this
module the fields of the instruction are decoded: The operands are extracted and the kind
of vector instruction is identified.

The instruction is then bypassed to the Pre-Issue Queue. There, it will remain until
it is issued to the Unpacker. Scalar operands are received from the Scalar Core in the
Waiting Queue and sent to the corresponding slot of the Arithmetic or Address Queue.

If the Unpacker is not stalled, the instruction is sent from the Pre-Issue Queue The
Unpacker is in charge of the fine-grained decoding of the instructions. The Unpacker
accepts the request coming from the Pre-Issue Queue, decodes this instruction figuring
out the opcode, type of instruction, if it’s masked, function6, function3, etc. but more
importantly, since some instructions require the generation of auxiliary operations to be
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RISC-V compliant (according to the current microarchitecture), e.g. masked loads, the
Unpacker is in charge of generating these auxiliary instructions. The Unpacker is also in
charge of detecting illegal instructions, overall regarding illegal configurations (e.g. widen-
ing operations when LMUL > 4).

Instruction joins then the Renaming Unit. The goal of the renaming is to resolve the
false dependencies in order to exploit the available ILP. 40 physical registers are imple-
mented for renaming. In this process, the architectural vector registers defined by the
RISC-V V-extension are mapped, according to the state of the vector engine, to a certain
physical register. Furthermore, the VPU makes use of physical Mask Registers, and for
that reason, extending the renaming support for the mask registers will lead to obtain
more ILP. The vector engine implements 4 renamed mask registers for renaming purposes.

Queue Demux is a simple demultiplexer that sends the output of the Renaming Unit
to one of the issue queues.

From now on, focus will be on memory path. Therefore, Address Queue and following
modules will be explored. Address Queue is in charge of receiving the vector memory
instructions from the Front-End and issuing the required instruction information to the
Vector Load Store Unit. SMU, Store Buffer, MMU, Mask Buffer, IMU, Index Buffer units
require synchronization signals as input requests.

Inside the VLSU, instructions are divided in pieces called memory requests and ex-
ecuted individually. The granularity or size of a request is the size of every individual
cache line that will be read or written to memory hierarchy in that memory instruction,
depending on either it is anstore or load instruction.

The AGU is in charge of generating the necessary memory requests to satisfy any
load or store vector instruction coming from the Address Queue, whichever the addressing
mode (unit-stride, strided and indexed) and if it happens to be a masked or unmasked
operation. In case it is a Masked Instruction, it also converts the masks coming from the
MMU into the masks required for each request and, in case it is a Indexed instruction, it
uses the Indexes from the IMU into the indexes required in each request. After computing
this information, the request is sent to the Request Queue.

Request Queue is in charge of allocating and managing the memory access requests
to the CHI Request Node. A distinction must be made: In a load data is sent from the
Request Node to the LMU, in a store, data is received from the SMU to the Request
Node. Disambiguation is also performed in this module, it checks if there’s a dependency
between accessed area of a vector request and a scalar memory operation, the mechanism
checks the elements masked in each vector request.

With regard to memory management units, those are in charge of rearranging the
elements in order to be correctly placed in its new location. And in respect of memory
buffers are used to move elements between registers and and memory management units.

For a store instruction, once the last request transaction is finished by the CHI Request
Node, a commit message is sent to the Reorder Buffer in order to clean its structures and
communicate the finalization of the instruction to the OoO Core. For a load, the same
happens when all values get finally stored inside VRF.
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Each Vector Lane contains a group of relevant modules in the execution of a Vec-
tor Memory Instruction: Finite State Machine (FSM), Mask register file (MRF), Ready
Bits(RB) and Element Tracker. Vector Lane is connected to the other lanes via the ring
index and data interfaces
VRF: each lane contains a subset of a complete vector register (vector slice), allowing
that all the lanes works simultaneously on the same vector. The VRF is implemented
on five memory banks to let the VRF work as it was a 5-port memory, by using a group
of buffers. VRF Arbiter: This module arbitrates the access to the VRF ports, setting
access priorities. MRF: Mask registers are kept in a separated structure to avoid requiring
an additional read to the VRF for Masked Instructions. RB: tracks the availability of
groups of values of the physical registers and has to be checked in order to access to a
VRF element. Element Tracker: The Element Tracker provides support for chaining. The
main idea of chaining is to start executing an arithmetic instruction that depends on a
load while this load is still receiving data. This element modifies RB value.

The Vector ReOrder Buffer (VROB) is in charge of keeping the ordering between the in-
flight vector instructions that are in the VPU’s pipeline. It is implemented a lightweight
in-order/out-of-order execution mechanism by splitting CSR, arithmetic, and memory
operations into different queues. This feature allows parallel execution of these different
types of instructions in the corresponding functional units to sustain high performance.
To keep track of the instruction, each instruction is assigned an entry in the VROB upon
being decoded, and as long as it flows through the VPU pipeline, it will add information
on its status accessing the corresponding VROB entry. On instruction commit, the VROB
will notify the scalar core by driving the corresponding ports of the interface.
In case an instruction kill has to be performed, VROB contains the information needed to
perform the rollback of that instruction and younger ones. This module stores the state of
the instructions in its different stages of the pipeline in order to recover it if it is necessary.

5.2 EPI differences

The main differences to take into account between eProcessor and EPI are:

• eProcessor supports any stride multiple of SEW. This functionality has been added
in eProcessor because this is required for a HPC aimed implementation, which isn’t
needed in EPI, where strides supported are one SEW × 1, 2 and 4, because this
design would consume more area than available.

• Direct memory access. As it can be seen in 5.1, eProcessor has direct access to
memory hierarchy via a request node, compliant to AMBA5-CHI protocol (RNI). In
EPI, accesses to memory are managed by the core so it has an extra interface with
the VPU for these purposes.

• Modified FSM in lanes. In eProcessor the access to VRFs in lanes is managed by the
buffers whereas. So, inside the lanes, the FSM has been replaced by a VRF arbiter.
EPI, uses FSM inside the lanes, which manages the accesses to the VRF resources
in all kinds of instruction execution.

• Modified exception handle. In EPI exceptions are handled by the core, whereas in
eProcessor the Request queue is the main agent in charge of managing traps related
to memory accesses, this module reports this events to the Reorder buffer in order
to use instruction stages information to recover previous stable VPU state.
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Chapter 6

Modules

6.1 Introduction

For the interface subsection, signals named x i are input signals, which are the ones that
receive a value outside the module and are used inside. At the same time, signals named
y o are output signals, which are the ones whose value is set inside the module and is
used outside. This code convention can be found in the System Verilog Guidelines used
in eProcessor VPU [14].

These modules have been tested with a testbench [15]. The testbench architecture 6.1,
consists of a buffer for each one of the input channels. In parallel, the output channels are
connected to the logic that control input buffers in order to synchronize the data flow of
the testbench. Module state (i.e. internal signal values and its evolution through time) is
checked at the end of the simulation.
For each one of the modules, the circumstances to be tested will be shown, as well as
the reason for them. However, it is important to find different sets of value inputs that
generate these states within the modules.
Furthermore, the modules have been tested individually and in pairs, IMU + Index Buffers,
SMU + Store Buffers.
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Figure 6.1: Testbench Architecture. [own creation]

6.2 Store Management Unit

This module provides support to vstore instructions. Its main functionality consists of to
generate the l2 cache lines that will be stored in the Memory Hierarchy in vstore requests.
This process involves the rearranging of elements coming from the Store Buffers, according
to 2 kinds of data related to the vstore operation being executed: vstore instruction and
vstore request information.

6.2.1 Interface

SMU is instantiated inside Vector Load Store Unit and is connected to Address Queue,
Request Queue and Store Buffer.

Top: Vector Load Store Unit (vlane)

• clock and reset signals.

Signal Type Description

clk i logic clock signal

rsn i logic reset signal (active low)

Table 6.1: SMU VLSU interface. [Own creation]
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Address Queue (mqueue)

• vstore instruction information.
Synchronization is implicit, so mqueue sync start i is only asserted when SMU is
available.

Signal Type Description

mqueue sync start i logic start store instruc-
tion

mqueue info i mqueue2smu t store instruction info

Table 6.2: SMU Address queue interface. [Own creation]

Request Queue (rqueue)

• vstore request information.
Synchronization is explicit via a handshake protocol.

Signal Type Description

rqueue req valid i logic store request valid

rqueue req ack o logic store request ac-
knowledged

rqueue req info i rqueue smu info t store request info

Table 6.3: SMU request-queue request interface. [Own creation]

• vstore response information. This channel includes the Cache Line assembled.
Synchronization is explicit via a handshake protocol.

Signal Type Description

rqueue resp valid o logic store response
valid

rqueue resp ack i logic store response ac-
knowledged

rqueue resp info o smu rqueue resp t store response
info

Table 6.4: SMU request-queue response interface. [Own creation]

Store Buffer

• Buffer data elements coming in order.
Synchronization is explicit via a handshake protocol.
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Signal Type Description

stbf valid i logic store buffer data
package valid

stbf ack o logic store buffer data
package acknowl-
edged

stbf data i buffers data t store buffer data
package

Table 6.5: SMU store-buffer data interface. [Own creation]

• End vstore instruction signal.
Synchronization is implicit, so stbf sync end o is only asserted when SMU has fin-
ished computing a vstore instruction but it is still in flight.

Signal Type Description

stbf sync end o logic reset signal for
store buffers (ac-
tive high)

Table 6.6: SMU store-buffer reset interface. [Own creation]

6.2.2 Data Types

Signal Type Description

row logic [$clog2(N LANES
× N BANKS × ELEN /
MIN SEW)]

row offset

Table 6.7: mqueue2smu t elements. [Own creation]

row value consists on the row offset of a vector instruction extracted from vstart value.
Indicates which is the first valid element in the first Buffer Data line for the first request
in a certain vstore instruction.
Buffer data treatment will be shown below. So, this signal usage will be clarified.
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Signal Type Description

opmode mem op mode e Instruction valid sig-
nal

stride xlen t Request stride value

vsew vsew t Request vsew value

last logic Instruction’s last Re-
quest signal

elem id elem id t Request first element

elem cnt elem count t Request amount of
elements

elem offset elem offset t Request first element
offset

vmot id t vmot id t Vector load store
unit id

kill logic Indicates if the re-
quest must be killed

tag rqueue id t Request tag

line mask l2 cache line mask t l2 cache line mask

Table 6.8: rqueue smu info t elements. [Own creation]

Signal Type Description

vmot id vmot id t vector load store unit id

kill logic Indicates if the request
has been killed

tag rqueue id t Request tag

line mask l2 cache line mask t l2 cache line mask

data l2 cache line t l2 cache line data

Table 6.9: smu rqueue resp t elements. [Own creation]

buffers data t is a logic [N LANES × ELEN].

6.2.3 Architecture

The SMU consists of a design which consists of 5 components: Instruction and Request
info logic, an internal buffer, a combinatorial logic path, store data response and reset logic.
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Instruction and Request info logic

This information indicates whether instruction and request information has to be used in
that cycle on other parts of the architecture or not.

• Instruction info logic

Signal Type Description

op valid q logic Instruction valid
signal

mqueue op info q mqueue2smu t Instruction info

Table 6.10: SMU Instruction info logic signals. [Own creation]

mqueue op info q.row is used for 3 purposes:
Discard invalid Store buffer data packages.
Discard invalid elements from a valid Store buffer data package.
Initialize sb wr pt offset q and sb rd pt offset q.

• Request info logic

Signal Type Description

req valid q logic Request valid sig-
nal

rqueue req info q rqueue smu info t Request info

Table 6.11: SMU Request info logic signals. [Own creation]

rqueue req info q is mainly used for 2 reasons:
Checking whether the Instruction must be finished in this request or not.
Setting the parameters to construct request’s l2 cache line.

Internal Buffer

• Buffer State Logic Buffer size is the same as a l2 cache line. This is the case because
rearranging logic uses the Buffer Data state as its source data elements.
Furthermore, Buffer is composed of 2 entries of 256 bits. This is the case because
data packages are 256 bits long (ELEN × N LANES).
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Signal Type Description

sb full logic Buffer full occupation

sb depth q elem count t Buffer occupation
counting in bytes

sb free elem count t Buffer emptiness count-
ing in bytes

Table 6.12: SMU Buffer state signals. [Own creation]

• Write Buffer Operation

Signal Type Description

sb wr logic Buffer writing

sb wr pt q stage offset t Buffer entry writing
pointer

sb wr pt offset q all lanes bytes idx t Buffer offset entry
writing pointer in
bytes

sb wr remaining cnt q all lanes bytes num t Current data pack-
age remaining writ-
ing bytes

sb wr current cnt all lanes bytes num t Current writing
bytes

sb wr mask all lanes bytes t Writing mask, byte
granularity

Table 6.13: SMU Buffer write signals. [Own creation]

Only valid data packages are written to the Buffer.

When a whole invalid data package has to be discarded, stbf ack o is asserted
without asserting sb wr, this happens when mqueue op info q.row ≥ data package.
mqueue op info q.row is reduced by data package size in Bytes when a package is
discarded.
In a write operation, sb wr pt q indicates the correct entry of the buffer,
sb wr pt offset q indicates the pointer inside the chosen vector entry, sb free and
sb wr remaining cnt q are used to set both sb wr mask and sb wr current cnt.
Finally, stbf ack o is only asserted when writing last elements of a data package.

Example 1:
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Figure 6.2: SMU write operation example 1. [own creation]

In the data package stbf data i we can see invalid elements in red and
valid in green. Other colours are, in green sb wr pt q entry and in blue
sb wr mask valid elements.

Example 2:
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Figure 6.3: SMU write operation example 2. [own creation]

In green sb wr pt q entry, in blue sb wr mask valid elements. As sb free
< sb wr remaining cnt q, sb wr current cnt is set equals sb free.

• Read Buffer Operation

Signal Type Description

sb rd logic Buffer Reading

sb rd pt offset q l2 cache line idx t Buffer offset reading
pointer

rqueue rd byte cnt elem count t Reading bytes, specified
by Store Request

Table 6.14: SMU Buffer read signals. [Own creation]

In a read operation, sb rd pt offset q indicates the first element to be read.
Read condition is rqueue rd byte cnt ≥ sb depth q.

Example:
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Figure 6.4: SMU read operation example 1. [own creation]

In green valid elements, in red invalid elements.

Combinatorial logic path

This logic conforms a datapath which is combinatorial and have 4 stages, this is the rear-
ranging logic. Each stage generates a l2 cache line size output according to Store Request
Parameters.

• Barrel shifter

The Barrel shifter input is the state of the Internal Buffer. Data elements are
circular shifted to the right according to sb rd pt offset q. This stage makes possible
to rearrange the data according to the rqueue req info q.elem id.

Example:
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Figure 6.5: SMU Barrel Shifter example. [own creation]

RTL circuit:
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Figure 6.6: SMU Barrel Shifter RTL. [own creation]

This implementation is an example in which the width of the structure is
composed of only 16 elements of undefined size. Design can also be found
in [16].

• Strider

Circular shifted elements are strided to the left according to rqueue req info q.vsew
and the absolute value of rqueue req info q.stride.

Example:
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Figure 6.7: SMU Strider example. [own creation]

As it can be seen in 6.7, stride sign is not used in this phase.

RTL circuit:

Figure 6.8: SMU Strider RTL. [own creation]

As stated previously, this implementation makes possible to use the scoped
stride values, this is a important functionality for HPC applications. When
stride ≥ 64, the stride index value is set to 64. Also, stride 0 and non-
multiple strides of vsew are not supported.

• Shifter

Strided elements are shifted to the left according to rqueue req info q.elem offset.
Example:
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Figure 6.9: SMU Shifter example. [own creation]

• Inverter

Shifted elements are order inverted if (rqueue req info q.stride < 0), taking into ac-
count rqueue req info q.vsew.
Example:

Figure 6.10: SMU Inverter example. [own creation]

Store Data Response

A Store response is served if a Buffer Read Operation is successfully performed or
rqueue req info q.kill is asserted (i.e. that request has been computed). In the second
case, rqueue resp info o.data is not valid.
When a Store data response is served, rqueue req info q is discarded and if
rqueue req info q.kill or rqueue req info q.last is asserted, mqueue op info q.row is
also discarded. This is because either of those 2 signals indicates the last request and
instruction information has to be cleared as well.
Signal value assignation: rqueue resp info o.vmot id, rqueue resp info o.kill,
rqueue resp info o.tag, rqueue resp info o.line mask are bypassed from rqueue req info q.
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rqueue resp info o.data is obtained from combinatorial logic path.

Reset logic

When a Store instruction has been finished (i.e. all requests have been computed) Internal
Buffer state signals are cleared and stbf sync end o is asserted. This signal commands store
buffers that vstore instruction computation has finished.
The SMU asserts this signal as this is the module has to notify the Store Buffers that the
vstore has finished.

6.2.4 Testing

The tests include:

1. vstores that fill the buffer at distinct sb depth q values. This allows to check the
correctness of the internal buffer.

2. Different requests values: strided and indexed instructions, all supported vsew val-
ues, distinct stride values including stride values over 64 bytes(Cache line size),
negative stride values. This allows to check the correctness of the combinatorial
path.

3. Distinct aqueue cnt row q values. this allows to check the use of masks, the mapping
of the combinational path and the mechanisms of the Internal Buffer.
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6.3 Store Buffer

This module is in charge of managing the data values flow from the VRF to the SMU in
a store operation. Its main function is the serialization of this data flow. This is needed
because data values are read from the 5 ports of the VRF inside the VPU Lane.

6.3.1 Interface

Store Buffer is instantiated inside Vector Lane and is connected to Address Queue, Vector
Register File and Store Management Unit.

Top: Vector Lane (vlane)

• clock and reset signals.

Signal Type Description

clk i logic clock signal

rsn i logic reset signal (ac-
tive low)

Table 6.15: STBF Vector lane interface. [Own creation]

Address Queue (mqueue)

• vstore instruction information.
Synchronization is implicit, so mqueue sync start i is only asserted when SMU is
available.

Signal Type Description

mqueue sync start i logic start store in-
struction

mqueue info i mqueue2stbf t store instruction
info

Table 6.16: STBF Vector lane interface. [Own creation]

Vector Register File (VRF)

• Vector Register File line data source.
Synchronization is explicit via a handshake protocol, but data is delivered with 1
cycle of delay.
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Signal Type Description

vrf req o logic data request sig-
nal

vrf resp i logic request accepted
signal

vrf info o stbf2vrf t data request ad-
dress info

vrf data i logic [N LANES × N BANKS] delayed vector
register data

Table 6.17: STBF VRF interface. [Own creation]

Store Management Unit (SMU)

• Data packages send in order.
Synchronization is explicit via a handshake protocol.

Signal Type Description

smu valid o logic SMU data valid

smu ack i logic SMU data ac-
knowledgment

smu data o logic [ELEN] SMU data

Table 6.18: STBF SMU data interface. [Own creation]

• End vstore instruction signal.
Synchronization is implicit, so smu sync end i is only asserted when Store Buffer has
finished computing a vstore instruction but it is still in flight.

Signal Type Description

smu sync end i logic reset signal (ac-
tive high)

Table 6.19: STBF SMU reset interface. [Own creation]

6.3.2 Data Types

Signal Type Description

line offset logic [$clog2(N LANES
× N BANKS × ELEN /
MIN SEW)]

line offset

preg preg t physical register

Table 6.20: mqueue2stbf t elements. [Own creation]
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line offset value consists on the line offset of a vector instruction extracted from vstart
value. Indicates which is the first Buffer Data line for the first request in a certain vstore
instruction.
Buffer data treatment will be shown below. So, this signal usage will be clarified.

Signal Type Description

saddr vrf addr t [N BANKS] VRF access ad-
dress

preg preg t physical register

Table 6.21: stbf2vrf t elements. [Own creation]

6.3.3 Architecture

This module is a pipelined design which consists of 3 stages: Combinatorial, VRF and
Buffer.
Besides pipeline path, there are two extra components which are SMU Data set and Reset
logic.

Combinatorial stage

This stage holds the data that will be used in following stages.

Signal Type Description

comb valid q logic valid comb stage
signal

comb line offset q logic [VEC LINES OFFSET-1:0] comb stage line
offset

comb phy reg q preg t comb stage physi-
cal register

Table 6.22: STBF comb stage signals. [Own creation]

Control logic cases:

• invalid: This is the invalid instruction condition, in which comb valid q is asserted
to 0.

• new: New instruction condition, comb valid q is asserted to 1. Also,
comb line offset q and comb phy reg q are initilased with mqueue info i.line offset
and mqueue info i.preg respectively.

• hold: Stall condition.

• next: Next instruction condition, comb line offset q is increased by one, in order to
access the consecutive line of the VRF.

The stall condition occurs when comb or VRF stage gets into hold condition. Comb
hold condition happens when vrf req o is asserted but vrf resp i is not.
The invalid condition occurs when there’s no valid data in the pipeline.
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Vector Register File stage

This stage generates the address used to access the VRF and performs the access.

Signal Type Description

vrf line offset logic [VEC LINES OFFSET-1:0] VRF source line
offset, equals
comb phy reg q

vrf phy reg preg t VRF source
physical reg-
ister, equals
comb phy reg q

vrf addr calc logic [N BANKS-1 : 0][VRF ADDR-1 : 0] VRF source ad-
dress

Table 6.23: STBF VRF stage signals 1. [Own creation]

In previous stage VRF access was requested (vrf req o). As VRF is implemented
with RAM, if the access was granted (vrf resp i), vrf data is obtained in this stage.

vrf addr calc is an address array which contains an independent value for each bank.
To calculate vrf addr calc, vrf mapping and vrf line offset are added vectorially.

vrf req o is set with comb valid q, vrf info o.saddr is set with vrf addr calc and
vrf info o.preg is set with vrf phy reg.

Vector Register File example:

Figure 6.11: STBF VRF SET example. [own creation]

In this representation of a parameterized VRF, we can see how, in registers
with an id multiple of N BANKS, lines are found in a single row, while in those
that doesn’t, lines are spread in 2 rows.

VRF data shuffle mechanism example: Using previous VRF representation example
for Lane 0:
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Figure 6.12: STBF VRF shuffle example. [own creation]

It’s remarkable that accesses realised to registers with an id that is not multiple
of N BANKS, must be shuffled in order to order them. This functionality is
included inside the VRF.

Data access example: Using previous VRF representation example for Lane 0:

Figure 6.13: STBF VRF access example. [own creation]

6.13 shows vrf addr calc value and the accessed values inside the VRF.

Signal Type Description

vrf valid q logic valid VRF stage
signal

vrf data st buff data t VRF stage data

Table 6.24: STBF VRF stage signals 2. [Own creation]

Control logic cases:

• invalid: This is the invalid VRF data condition, in which vrf valid q is asserted to
0.

• new: Valid VRF data condition, vrf valid q is asserted to 1. Also, vrf data takes
value vrf data i.

• hold: Stall condition.

The stall condition occurs when VRF stage gets into hold condition. VRF hold con-
dition happens when vrf valid q and sb full are asserted.
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The invalid condition occurs when a comb stall condition occurs and there’s no VRF
stall condition, or there’s no valid data in the pipeline.

Buffer stage

This stage stores data inside Internal Buffer.

Buffer entry size is the same as a data packages read from the VRF.
The number of entries is ST BF SIZE (2).

Signal Type Description

sb full logic Buffer full occu-
pation

sb empty logic Buffer zero occu-
pation

sb depth q st bf elen num t Buffer occupation
counting value

Table 6.25: STBF buffer state signals. [Own creation]

• Write Buffer Operation

Signal Type Description

sb wr logic Buffer writing

sb wr pt q st bf pt t Buffer entry writ-
ing pointer

buffer valid logic buffer data valid

buffer data st buff data t buffer data

Table 6.26: STBF buffer write signals. [Own creation]

buffer valid is set with vrf valid q and buffer data with vrf data.
In a write operation, sb wr pt q indicates the correct entry of the buffer.
Write granularity is st buff data t.
Example:
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Figure 6.14: STBF write operation example. [own creation]

In green sb wr pt q entry.

• Read Buffer Operation

Signal Type Description

sb rd logic Buffer Reading

sb rd pt q st bf pt t Buffer offset entry
reading pointer

sb rd pt offset q n banks id t Buffer entry read-
ing pointer

Table 6.27: STBF buffer read signals. [Own creation]

In a read operation, sb rd pt q indicates the correct entry of the buffer,
sb wr pt offset q indicates the pointer inside the chosen vector entry.
Read granularity is elen t.

Example:
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Figure 6.15: STBF read operation example. [own creation]

In green valid elements, in red invalid elements.

SMU Data

Data read from Buffer Stage is used unmodified in SMU Interface.

smu data o is set with st buffer[sb rd pt q][sb rd pt offset q].
smu valid o is set with !sb empty.

Reset logic

When smu sync end i is asserted, comb and VRF stage control signals are set to invalid
and buffer stage signals are cleared.
The SMU asserts this signal as that is the module has to notify the Store Buffers that the
vstore has finished.

6.3.4 Testing

The tests include:

1. Vector Memory Indexed instruction that fill the buffer at distinct sb depth q values.
This allows to check the correctness of the internal buffer.

2. Vector Memory Indexed instruction with different vsew values. This allows to check
the correctness of the combinatorial path.

3. Distinct vrf line offset and vrf phy reg values. this allows to check the correct access
to the VRF and address calculation.

4. Cover the possible states of the pipeline.
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6.4 Index Management Unit

This module provides support to Vector Memory Indexed instructions. Its main function-
ality is to move elements from the Index Buffers to the Address Generation Unit using
instruction vsew value.

6.4.1 Interface

IMU is instantiated inside Vector Load Store Unit and is connected to Address Queue,
Address Generation Unit and Index Buffer.

Top: Vector Load Store Unit

• clock and reset signals.

Signal Type Description

clk i logic clock signal

rsn i logic reset signal (ac-
tive low)

Table 6.28: IMU VLSU interface. [Own creation]

Address Queue

• Vector Memory Indexed instruction information.
Synchronization is implicit, so mqueue sync start i is only asserted when IMU is
available.

Signal Type Description

mqueue sync start i logic start memory in-
dexed instruction

mqueue info i mqueue2imu t memory indexed
instruction info

Table 6.29: IMU Address queue information interface. [Own creation]

• End Vector Memory Indexed instruction.
Synchronization is implicit, so mqueue sync end i is only asserted when IMU has
finished computing a Vector Memory Indexed instruction but it is still in flight.

Signal Type Description

mqueue sync end i logic reset signal (ac-
tive high)

Table 6.30: IMU Address queue reset interface. [Own creation]
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Address Generation Unit

• Vector Memory Indexed information.
Synchronization is explicit via a handshake protocol.

Signal Type Description

agu index valid o logic index element
valid

agu index ack i logic index element ac-
knowledged

agu index o logic[ELEN] index element
info

Table 6.31: IMU Address Generation Unit interface. [Own creation]

Index Buffer

• Buffer index elements coming in order.
Synchronization is explicit via a handshake protocol.

Signal Type Description

idxbf valid i logic clock signal

idxbf ack o logic reset signal (ac-
tive low)

idxbf data i buffers data t reset signal (ac-
tive low)

Table 6.32: IMU Index Buffer data interface. [Own creation]

6.4.2 Data Types

Signal Type Description

row logic [$clog2(N LANES
× N BANKS × ELEN /
MIN SEW)]

row offset

vsew vsew t vsew value

Table 6.33: mqueue2imu t elements. [Own creation]

buffers data t is a logic [N LANES × ELEN].

6.4.3 Architecture

The IMU consists of a design which consists of 5 components: Instruction info logic, an
internal buffer, a combinatorial logic path, AGU data and reset logic.
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Instruction info logic

Signal Type Description

op valid q logic Instruction valid
signal

mqueue cnt row q logic [ELEMENTS WIDTH LANE-1:0] Auxiliary Instruc-
tion info

mqueue vsew q vsew t Instruction
VSEW

Table 6.34: IMU AGU info logic signals. [Own creation]

mqueue cnt row q is a special signal, used for 3 reasons:

• Discard invalid Index Buffer data packages.

• Discard invalid elements from a valid Index Buffer data package.

• Initialize ib wr pt offset q and ib rd pt offset q.

Internal Buffer

This phase is the same as the used in the SMU, with an appropriate change of the names
of the signals.

Combinatorial logic path

This logic conforms a datapath which is combinatorial and have 2 stages, this logic selects
the correct element and sign extends it to elen t.

• Shifter
Internal Buffer elements are shifted to the left according to ib rd pt offset q.
Example:

Figure 6.16: IMU shifter example. [own creation]
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• Extend Sign
imu b data out is sign extended depending on SEW, up to 64 bits.
Example:

Figure 6.17: IMU extend sign example. [own creation]

Sign extend for all SEW. In blue, valid bytes.

AGU Data

imu data o is set with Combinatorial logic path data.
agu index valid o is set with op valid q && (ib depth q ≥ vsew bytes(mqueue vsew q)).

Reset logic

When mqueue sync end i is asserted, comb and VRF stage control signals are set to invalid
and buffer stage signals are cleared. The Address Queue asserts this signal as that is the
module that communicates with the AGU and knows when the computation of the indexes
has finished.

6.4.4 Testing

The tests include:

1. Vector Memory Indexed instruction that fill the buffer at distinct sb depth q values.
This allows to check the correctness of the internal buffer.

2. Different vsew values. This allows to check the correctness of the combinatorial path.

3. Distinct aqueue cnt row q values. this allows to check the use of masks, the mapping
of the combinational path and the mechanisms of the Internal Buffer.
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6.5 Index Buffer

This module is in charge of managing the index values flow from the VRF to IMU in a
memory index operation.
Its main function is the serialization of this data. This is needed because data values are
read from the 5 ports of the VPU lane.

6.5.1 Interface

Index Buffer is instantiated inside Vector Lane and is connected to Address Queue, Vector
Register File and Index Management Unit.

Top: Vector Lane

• clock and reset signals.

Signal Type Description

clk i logic clock signal

rsn i logic reset signal (ac-
tive low)

Table 6.35: IDXBF Vector lane interface. [Own creation]

Address Queue

• Vector Memory Indexed instruction information.
Synchronization is implicit, so mqueue sync start i is only asserted when SMU is
available.

Signal Type Description

mqueue sync start i logic start memory in-
dexed instruction

mqueue info i mqueue2idxbf t memory indexed
instruction info

Table 6.36: IDXBF Vector lane interface. [Own creation]

• End Vector Memory Indexed instruction.
Synchronization is implicit, so mqueue sync end i is only asserted when Index Buffer
has finished computing a Vector Memory Indexed instruction but it is still in flight.

Signal Type Description

mqueue sync end i logic reset signal (ac-
tive high)

Table 6.37: IMU Address queue reset interface. [Own creation]

64



Vector Register File (VRF)

• Vector Register File line data source.
Synchronization is explicit via a handshake protocol, but data is delivered with 1
cycle of delay.

Signal Type Description

vrf req o logic data request sig-
nal

vrf resp i logic request accepted
signal

vrf info o idxbf2vrf t data request ad-
dress info

vrf data i logic [N LANES × N BANKS] delayed vector
register data

Table 6.38: STBF VRF interface. [Own creation]

Index Management Unit (IMU)

• Index elements send in order.
Synchronization is explicit via a handshake protocol.

Signal Type Description

imu valid o logic IMU data valid

imu ack i logic IMU data ac-
knowledgment

imu data o elen t IMU data

Table 6.39: IDXBF IMU data interface. [Own creation]

6.5.2 Data Types

In this section, the data types used are the same as in the SMU, with an appropriate
change of the names of the signals.

6.5.3 Architecture

In this section, the architecture used is the same as in the SMU, with an appropriate
change of the names of the signals.

6.5.4 Testing

In this section, the tests used are the same as in the SMU, with an appropriate change of
the names of the signals.
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su sueldo. url: https://www.uax.com/blog/ingenieria/cuanto-cobra-un-
ingeniero-informatico. (accessed: 11.10.2022).

[9] Intel Programmable Solutions.Questa*-Intel® FPGA Edition Software. url: https:
//www.intel.com/content/www/us/en/software/programmable/quartus-

prime/questa-edition.html?wapkw=questa. (accessed: 20.10.2022).

[10] arm glossary. INSTRUCTION SET ARCHITECTURE (ISA). url: https://www.
arm.com/glossary/isa. (accessed: 15.11.2022).

[11] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual, Vol-
ume I: User-Level ISA. English. Version 20191213. RISC-V Foundation. (accessed:
16.11.2022).

[12] RISC-V International. History of RISC-V. url: https://www.riscv.org/about/
history. (accessed: 20.11.2022).

[13] RISC-V ”V” Vector Extension. English. Version 0.7.1-20190610-Workshop-Release.
RISC-V Foundation. (accessed: 21.11.2022).

[14] lowRISC. lowRISC Verilog Coding Style Guide. url: https://github.com/lowRISC/
style-guides/blob/master/VerilogCodingStyle.md. (accessed: 22.11.2022).

[15] chipverify. SystemVerilog TestBench. url: https://www.chipverify.com/systemverilog/
systemverilog-simple-testbench. (accessed: 27.11.2022).

66



[16] Neeta Pandey and Saurabh Gupta. “Design and Implementation of Novel Multiplier
using Barrel Shifters”. In: International Journal of Image, Graphics and Signal Pro-
cessing 7 (July 2015), pp. 28–34. doi: 10.5815/ijigsp.2015.08.03. (accessed:
3.12.2022).

67


