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Abstract: This work presents an analytical formulation to assess the six-degrees-of-freedom-motion-
induced error in floating Doppler wind LiDARs (FDWLs). The error products derive from the
horizontal wind speed bias and apparent turbulence intensity. Departing from a geometrical formula-
tion of the FDWL attitude and of the LiDAR retrieval algorithm, the contributions of the rotational
and translational motion to the FDWL-measured total error are computed. Central to this process is
the interpretation of the velocity–azimuth display retrieval algorithm in terms of a first-order Fourier
series. The obtained 6 DoF formulation is validated numerically by means of a floating LiDAR motion
simulator and experimentally in nearshore and open-sea scenarios in the framework of the Pont
del Petroli and IJmuiden campaigns, respectively. Both measurement campaigns involved a fixed
and a floating ZephIRTM 300 LiDAR. The proposed formulation proved capable of estimating the
motion-induced FDWL horizontal wind speed bias and returned similar percentiles when comparing
the FDWL with the fixed LiDAR. The estimations of the turbulence intensity increment statistically
matched the FDWL measurements under all motional and wind scenarios when clustering the data
as a function of the buoy’s mean tilt amplitude, mean translational-velocity amplitude, and mean
horizontal wind speed.

Keywords: Doppler wind LiDAR; floating LiDAR system; turbulence intensity; motion-induced
error; six degrees of freedom; wind energy

1. Introduction

The more homogeneous and stronger wind fields found on open-sea environments
make offshore wind energy a dependable source of electricity generation [1,2]. In the last
few decades, the wind energy industry has made important investments in offshore wind
energy [3]. Specifically, a cumulative offshore wind capacity of 35 GW was deployed around
the world in 2020, with Europe and China standing out in the market [4]. However, it is still
one of the most expensive sources of renewable energy [5], and cost reduction is the main
goal of the industry [6,7]. One of the main considerations is to obtain reliable data to assess
the viability of a future wind farm based on the location. Usually, offshore wind farms are
deployed in shallow waters, but there is a tendency to go further offshore and to deeper
waters [8], where a higher wind capacity can be obtained. At those locations, the traditional
technology used for atmospheric assessment, namely meteorological masts planted on
the seabed, is no longer an option. This motivates the use of alternative remote sensing
sensors such as satellites [9,10], radars [11], sodars [12,13], and combined methods [14,15].
Nevertheless, due to the high requirements of the industry in terms of the measurement
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accuracy, temporal and spatial resolution, and data availability, Doppler Wind LiDARs
(DWLs) have become the most trusted devices for wind remote sensing [7].

In general, two types of DWLs are used for wind remote sensing: pulsed and focusable
continuous-wave (CW) DWLs [16]. Pulsed DWLs use the time of flight to build up a vertically
resolved wind profile, whereas focusable CW DWLs achieve the same by focusing the
emitted beam on a particular height by changing its optics. Among pulsed DWLs, two main
detection techniques are used: direct detection and heterodyne detection. Direct detection
utilizes an optical frequency analyzer, typically an interferometer, and the receiver directly
measures the signal photoelectrons [17], whereas in heterodyne detection, the backscattered
signal is mixed with the frequency-offset version of the beam of a local oscillator laser, and
the receiver measures the resultant beating frequency [18].

When placed over floating platforms or buoys, DWLs are able to measure the wind
profile in a cost-effective way [7,19,20]. Moreover, in contrast to metmasts, they can easily
be redeployed and thus cover large areas [21]. On the other hand, FDWLs suffer 6 degrees
of freedom (DoF) motion, induced by the waves [22–24], which increases the variance on
the reconstructed wind vector by the LiDAR [25,26]. However, in wind energy standard
averaging periods, typically 10 or 30 min, the motion-induced error on the retrieved mean
wind vector can be neglected, as it is averaged out [25,27–29].

The motion-induced variance in FDWL measurements is encountered at higher wind
statistical moments, such as the turbulence intensity (TI) [28]. The TI is defined as the ratio
between the standard deviation of the horizontal wind speed (HWS) and the mean HWS.
In the presence of the wave motion, FDWLs measure an apparent added turbulence due to
the motion-induced variance, which corrupts the TI measurements [25,26]. TI is one of the
parameters of main importance for wind farm design and operation, as wrong estimates of
TI could lead to turbine overdesign or malfunctioning [30] and thus higher costs.

In the state of the art, the study of the motion-induced error on FDWLs is twofold:
error estimation and error compensation. This paper addresses the former topic, specif-
ically, error estimation in focusable CW FDWLs, which is carried out using a thorough
analytical formulation of the system mechanics and the wind vector retrieval algorithm.
The error estimation in pulsed FDWLs has been addressed elsewhere [31,32]. The latter
topic, i.e., error compensation, using either mechanical [27] or signal processing techniques
[25,28,33,34] is outside the scope of the present work.

So far, multiple studies have addressed the study of the motion-induced error on
focusable CW FDWLs on both the scan-time and 10 min levels:

On the scan-time level, Tiana-Alsina et al. [35] proposed a basic CW FDWL motion
simulator, in which the roll and pitch motions were simulated by means of Euler’s rotation
matrices. This simulator provided insights on the HWS error in relation to the wind
direction (WD) and the buoy tilt but was unable to simulate the effects of the translational
motion on the HWS error. Bischoff et al. [36] presented a simulation environment to
estimate the uncertainties in the measurements by CW FDWLs using a simplified buoy
model. However, the error estimates could not match the measurements for the high-
resolution (1 Hz) data. Kelberlau et al. [28] provided a thorough geometrical description
of the FDWL dynamics taking into account the 6 DoF motion of the FDWL buoy and
provided a method for compensating the apparent TI measured by the SEAWATCH CW
FDWL buoy by FugroTM. This geometrical description permitted a preliminary study of
the 6-DoF-motion-induced error in a LiDAR scan but was limited by the oversimplification
of assuming a constant value for the initial scan phase. Departing from this geometrical
description, Salcedo et al. numerically simulated the 6 DoF CW DWL measurement
error [37] and provided a first 6 DoF motion correction algorithm using an unscented
Kalman filter [33]. The simulator [37] modeled each of the six DoF as a sinusoidal signal
with a given amplitude, frequency, and phase and enabled full understanding of the motion-
induced error in a LiDAR scan through the principle of error superposition. Most of the
CW FDWL motion-related error studies in the literature resorted to numerical simulations
due to the inherent complexity of the velocity–azimuth display (VAD) algorithm, because it
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involves a least squares fit as a nonlinear operation. These simulations are computationally
expensive and difficult to implement [35–38].

On the 10 min level, Kelberlau et al. [38] recently presented a study on the motion-
induced error in the measurement of the mean HWS using a motion simulator. The study
theoretically proved the reduced sensitivity of the mean HWS error to the LiDAR motion
and its relation to the buoy motion frequency. However, the study was limited to the mean
HWS and provided error values up to one order of magnitude smaller than the typically
measured values. The study by Bischoff et al. [36] was also limited to studying the bias in
the HWS mean, and difficulties in validating the estimated values with the experimental
data were encountered. Gutiérrez-Antuñano et al. [25] presented a method to estimate
the TI measurement error based on a 2 DoF (roll and pitch) motion simulator as a way
to compensate for this error. Overall, it showed good estimation of the motion-induced
error, but the performance of the method largely depended on the motion scenario because
only two DoF were taken into account. In addition, the simulation was computationally
demanding.

The above considerations motivate the study of a unified 6 DoF (rotational and trans-
lational) method to quantify the motion-induced error in focusable CW FDWLs: In this
work, we provide, for the first time, a complete analytical formulation and calculus of the
6-DoF-motion-induced error on the HWS retrieved by the focusable CW FDWL in a scan.
The formulation relies on the VAD LiDAR wind retrieval algorithm and motion parame-
terization using the characteristic amplitude, frequency, and phase of each of the six DoF
(i.e., three rotational and three translational components). Methods to statistically quantify
the 10 min HWS bias and the TI increment in response to the floating LiDAR motion are
also derived. The framework is the focusable continuous-wave ZephIRTM 300 LiDAR,
using experimental data gathered during the “Pont del Petroli” and IJmuiden measurement
campaigns.

This paper is structured as follows: Section 2 presents the “Pont del Petroli” and
IJmuiden measurement campaigns and describes the instrumentation used; Section 3
describes the analytical motion model of the FDWL and presents the motion estimation
method; Section 4 validates the analytical model by means of the simulation [37] and the
experimental measurements from the “Pont del Petroli” and IJmuiden campaigns; Section 5
gives some concluding remarks.

2. Materials
2.1. Pont del Petroli Campaign

The Pont-del-Petroli (PdP) campaign took place in June 2013 at the “Pont del Petroli”
pier (Badalona, Barcelona, Spain) [39]. It aimed to assess the wind measurement capabilities
of a proof-of-concept FDWL buoy in the context of the NEPTUNE project by comparing
its performance against a fixed LiDAR [27]. Both the fixed and the FDWL were ZephIR
300 focusable continuous-wave DWLs. The fixed LiDAR was situated at the PdP pier in
a standstill configuration. The FDWL was deployed offshore 50 m away from the fixed
LiDAR. Both ZephIR 300s were identical instruments and were calibrated onshore one
beside the other for a period of 3 h. They were configured to measure the wind at a height
of 100 m above sea level (a.s.l.), and the calibration ensured identical measurements at
1 s and 10 min intervals. The experiment surroundings were dominated by an open-sea
topology in the south and east directions and an urban topology in the west and north
directions. The coastline followed the southwestern to northeastern direction.

ZephIR 300 DWL. The ZephIR 300 is a continuous-wave focusable Doppler LiDAR
specially conceived for offshore operation [40]. It is able to measure the wind at user-
defined heights from 10 m up to 200 m in steps of 1 m [41]. In order to retrieve the wind
vector for a particular measurement height, the ZephIR 300 measures the Doppler radial
speed along 50 lines of sight (LoSs) every second over a scanning cone of a 30 deg aperture
from the zenith. A wedge prism rotating with a uniform circular motion of one revolution
per second is used to steer the laser beam in the directions of the 50 LoSs. In uniform wind,
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the projection of the wind vector along the 50 LoSs, as a function of the azimuth scanning
angle (i.e., the so called VAD function), takes the shape of a cosine. The LiDAR uses the VAD
algorithm to retrieve the wind vector from the LoSs by fitting a cosine function to the LoS
measurements [16]. The ZephIR 300 is a homodyne detection LiDAR, which means that it
cannot discern the sign of the Doppler shift. As a result, the VAD function takes the form of
a rectified cosine wave, creating an ambiguity of ±180 deg for the WD measurement [42].
The ZephIR 300 is equipped with a wind vane to disambiguate the WD.

FDWL buoy. The FDWL buoy is a proof-of-concept experimental buoy specially
conceived to host a ZephIR 300 LiDAR in an offshore operation [43,44]. It weighs 3 tons
and has a width of 3.77 m. It consists of a four-floater structure designed to conform with
the wind energy measurement requirements as well as to monitor multiple sea-related
parameters. Apart from the ZephIR 300, it hosts a MicroStrain 3DM-GX3-45 inertial
measurement unit (IMU) that was used to monitor the 6 DoF motion of the lidar.

3DM-GX3-45 IMU. The IMU consists of a GPS unit, an accelerometer, a magnetometer,
and a gyro [45], measuring the LiDAR’s tilt and velocity at a 10 Hz sampling frequency. The
IMU was located on the bottom of the FDWL buoy structure. We defined, at the location of
this FDWL buoy bottom, an inertial right-handed clockwise north–east–down (NED) frame
of reference. The gyro separately measured the angular accelerations around the north, east,
and down axes, and the accelerometer measured the translational accelerations along these
axes. In order to avoid incurring an accumulated error when integrating the accelerations,
the 3DM-GX3-45 uses an extended Kalman filter, which permits the monitoring of the
buoy’s attitude by considering the GPS and magnetometer measurements. The 3DM-
GX3-45 is able to measure the buoy’s velocity and tilt with an accuracy of ±0.1 m/s and
±0.35 deg, respectively.

2.2. IJmuiden Campaign

The IJmuiden campaign took place between 1 April and 1 June 2015 at the IJmuiden
metmast test facilities (North Sea, 85 km offshore of the Netherlands coast). The goal of the
campaign was to validate the precommercial FDWL buoy EOLOSTM against the reference
IJmuiden metmast, located 300 m apart. The EOLOSTM FDWL was similar to the FDWL
used in the PdP campaign but prepared for harsher scenarios and higher endurance. The
FDWL buoy hosted a ZephIRTM 300 DWL and a 3DM-GX3-45 IMU as well. The FDWL
was configured to sense the wind profile at four different heights (25, 38, 56, and 83 m)
coincidental with the measurement heights of the metmast anemometers. An identical
ZephIRTM 300 DWL was installed on the metmast platform (21 m) sensing the wind above
the metmast top from 90 m up to 315 m every 25 m.

3. Methods
3.1. Basic Definitions

The instantaneous wind vector ~u (~u = ~U + ~u′, where ~U denotes the mean wind and ~u′
the turbulent component) is defined as the three-dimensional vector (u1, u2, u3) computed
here from the HWS, WD, and vertical wind speed (VWS) as

~u = [HWS · cos (WD), HWS · sin (WD), VWS]. (1)

In wind energy, the 10 min mean wind vector is the usual standard, and hereafter, HWS ,
WD, and VWS refer to the 10 min mean values unless otherwise indicated.

The TI is indicative of the HWS variations with respect to the mean HWS, and it is
computed as

TI =
σHWS
HWS

, (2)

where σHWS is the 10 min HWS standard deviation.
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Instantaneous error. To study the motion-induced FDWL measurement error in the
retrieved HWS at the i-th lidar scan, we defined the “instantaneous” error (in practice, the
1 s error considering a scan rate of 1 scan/s) as

εHWS,i = ˆHWSi − HWSi, (3)

where ˆHWS denotes the HWS “estimated” by the VAD algorithm, and HWSi denotes the
“true” HWS at the i-th scan.

10 min error. The wind energy industry is interested in quantifying both the HWS
measurement bias and the TI increment due to the wave-induced motion on FDWLs at a
10 min level.

The bias during a sequence of N measurement scans (i.e., the sample statistical interval;
usually N = 600 for 10 min measurements when measuring at a single height) is defined
as the difference between the mean HWS measured by the FDWL and the mean HWS
measured by the reference fixed LiDAR. Formally,

biasmeas =
1
N

N

∑
i=1

ˆHWSi −
1
N

N

∑
i=1

HWSi =
1
N

N

∑
i=1

εHWS,i. (4)

Statistically, it can be expressed as

biasest = E[ ˆHWS]− HWS = E[εHWS,i], (5)

where E[·] denotes the expectation operator, ˆHWS is the 10 min horizontal wind speed
estimated by the FDWL, and HWS is the “true” 10 min horizontal wind speed.

The TI increment, ∆TImeas, is defined as the TI measured by the FDWL minus the TI
measured by the reference fixed LiDAR. Formally,

∆TImeas =
σHWSFDWL

HWSFDWL

∣∣∣∣∣
bin

−
σHWS f ixed

HWS f ixed

∣∣∣∣∣
bin

, (6)

where the overbar denotes the “mean” over the 10 min HWS samples in the calculus bin.
On the other hand, the TI increment can be estimated as

∆TIest =
σεHWS,i

HWS
, (7)

where σεHWS,i is the standard deviation of the instantaneous error (Equation (3)).

3.2. Reconciling the Estimated and the Measured TI

Next, we related Equation (7) to Equation (6) from a statistical and probabilistic
theoretical perspective. Toward this goal and in order to aid the mathematical notation, we
introduce the short-hand notation F-R-W as follows: we changed the mnemonics “FDWL”
into “F” and “fixed” into “R” (representing “reference” fixed LiDAR). We also introduce the
subscript “W” to denote the wind that a nonmoving DWL would measure at the same place as
the moving FDWL. In other words, subscript “W” denotes the “true” wind measurement
but includes the 1 s average and spatial smoothing inherent to the DWL scanning procedure.
To simplify the notation, the “true” wind HWS, HWSW , is simply denoted as HWS.

3.2.1. On the Estimated TI

According to probability theory, the variance in the difference of two random variables
(i.e., εF,W = HWSF − HWSW , which reproduces Equation (3)) is equal to the sum of each
of their variances minus twice their covariance [46],

σ2
εF,W

= σ2
F + σ2

W − 2ρσFσW , (8)
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where ρ is the correlation coefficient between the “F” and “W” variables, and cov(F, W) =
ρF,WσFσW .

At this point, we introduce the assumption that the FDWL-measured and the “true”
HWS (subscripts “F” and “W”, respectively) are linearly correlated so that ρF,W ≈ 1.
By experiment, Tiana-Alsina et al. [35] reported correlation coefficients of ρF,R = 0.9,
ρF,R = 0.86, and ρF,R = 0.66 between the co-located moving and reference DWLs in a
controlled-motion experiment for tilt motion amplitudes of 10, 16, and 25 deg, respectively.
In past experimental campaigns involving different FDWL buoy topologies [23,25,28,38],
the most frequent buoy tilts were reported to range from 0 up to 10 deg. These low tilts
are also supportive of high F-to-W correlation coefficients, ρF,W ≈ 1, at the FDWL location.
Inserting ρF,W = 1 in Equation (8) above and rearranging the terms, we obtain

σ2
εF,W
' (σF − σW)2. (9)

By taking the square root of Equation (9) above and substituting it into Equation (7), the
estimated turbulence intensity can be written as

∆TIest '
σF − σW

HWS
. (10)

3.2.2. On the Measured TI

As in the preceding subsection, one can assume that the 10 min FDWL- and the
reference-LiDAR-measured HWS are virtually identical so that HWSFDWL ≈ HWS f ixed ≈
HWS [20,29]. Introducing this approximation into Equation (6) and using the shorthand
notation F-R-W introduced above, it can be rewritten as

∆TImeas =
σF − σR
HWS

. (11)

If the FDWL and the fixed LiDAR carried out exactly co-located measurements, the
estimated TI (Equation (10)) and the measured TI (Equation (11)) would be identical (i.e.,
σR = σW). In practice, the fixed and the FDWL were located 50 m apart in the PdP campaign
and 300 m apart in the IJmuiden campaign (see Section 2); therefore, small differences up
to 1% [33] were expected to arise between the estimated and the measured TI increment
when different wind flows were measured by the reference and floating LiDARs.

3.3. FDWL Geometrical Model

We defined the right-handed Cartesian XYZ “moving body” coordinate system of the
LiDAR buoy (hereafter, the “moving” coordinate system) and the right-handed Cartesian
north–east–down (NED) “fixed” inertial frame of reference (hereafter, the “fixed” system,
Figure 1). The IMU (see Section 2) measured the rotation and translation of the “moving”
coordinate system with respect to the “fixed” system. The vectors n̂, ê, and d̂ were the
unitary vectors aligned with the N, E, and D axes of the fixed coordinate system, respectively.
x̂, ŷ, and ẑ were the unitary vectors aligned with the X, Y, and Z axes, respectively, of the
moving coordinate system. ĥ was a unit vector in the outbound direction of the LiDAR
scanning cone axis and is defined as the opposite of ẑ. The half-angle cone aperture was
θ0 = 30 deg.

The unitary vector r̂ defined the LiDAR beam pointing direction in each LoS measure-
ment during the LiDAR scan. In what follows, r̂ is given in spherical coordinates relative
to the moving coordinate system. Specifically, r̂ is given by the zenith angle relative to ĥ,
which is denoted θ0 (i.e., the cone aperture), and by the azimuth angle relative to x̂, which
is denoted φ (Figure 1). As mentioned, θ0 is the constant value of 30 deg corresponding to
the scanning-cone aperture. φ is a time-variable angle representing the LiDAR scanning
phase (positive towards ŷ).

During the LiDAR scan, the vector r̂ rotated around ĥ with a uniform circular motion
at a rate of 1 revolution per second, i.e., φ(t) = 2π × t [rad]. In what follows, for simplicity,
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we use the variable φ instead of the usual time variable t. The variable φ ranged from 0 to
2π [rad] during a LiDAR scan. Therefore, r̂ can be formulated in the moving coordinate
system as follows:

r̂(φ) = sin(θ0) · cos(φ− φ0)x̂ + sin(θ0) · sin(φ− φ0)ŷ− cos(θ0)ẑ, (12)

where φ0 is the LiDAR initial scan phase or, hereafter, the “initial phase”.

Figure 1. The motion geometry of the FDWL buoy.

3.4. The VAD Algorithm as a First-Order Fourier Series

Focusable CW DWLs use the VAD algorithm to retrieve the wind vector from the
measured along-LoS-projected wind velocity during the LiDAR scan, which is computed as
the so-called VAD function,

f (φ) = ~u · r̂(φ). (13)

In a motionless uniform nonturbulent wind scenario, the wind vector can be decomposed
as ~u = HWSρ̂ + wĥ, where ρ̂ = cos(WD)x̂ + sin(WD)ŷ, with WD as positive counterclock-
wise. Then, the ideal VAD function f (φ) takes the shape of the model cosine function [16,47],

fmodel(φ) = A · cos(φ− B) + C, (14)

where A is the amplitude, B is the phase, and C is the offset term. From Equation (14)
above, the HWS, WD, and VWS components of the wind vector are obtained as [28]

HWS =
A

sin(θ0)
,

WD = B,

VWS =
C

cos(θ0)
.

(15)
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In Equation (15) above, the HWS, WD, and VWS refer to the values retrieved at the i-th
scan.

The VAD algorithm uses the least squares (LSQ) algorithm to fit the model cosine
function fmodel (Equation (14)) to the measured function f (φ) in order to obtain the sought-
after parameters A, B, and C:

min
∣∣∣

A,B,C

{∣∣∣∣ f (φ)− [A · cos(φ− B) + C]
∣∣∣∣2}. (16)

The LSQ fit is usually carried out by means of numerical methods. Yet, they do
not allow the explicit analytical formulation of solving coefficients A, B, and C with a
view to understanding the propagation of the motion-induced error. A way out of this
problem is to treat the error-norm minimization of Equation (16) in the Hilbert space of
the square integrable functions L2[0, 2π], in which {1, cos(mφ), sin(nφ)}, m, n = 1 . . . ∞
form an orthogonal basis. Equivalently, the Fourier series is the LSQ projection of a target
function to an orthogonal space defined by the sum of the sine and cosine functions [48].
Therefore, the solution of Equation (16) is the first-order Fourier series of f (φ) in the basis
function {1, cos(φ), sin(φ)}. The first-order Fourier series can be rewritten in the form of
Equation (14), in which the A, B, and C parameters can be expressed as a function of the
Fourier coefficients as [49]

A =
√

a2
1 + b2

1,

B = arctan
(
− b1

a1

)
,

C =
a0

2
,

(17)

where a0, a1, and b1 are the first-order Fourier coefficients of f (φ), obtained as [50]

a0 =
2
P

∫ P

0
f (φ)dφ,

a1 =
2
P

∫ P

0
f (φ) cos(φ)dφ,

b1 =
2
P

∫ P

0
f (φ) sin(φ)dφ,

(18)

where P = 2π.
From Equations (15) and (17) above, it emerges that the Fourier coefficients a1 and b1

propagate errors to the HWS and WD (i.e., to the wind horizontal components), while the
coefficient a0 propagates errors only to the retrieved VWS.

As mentioned, homodyne-detection LiDARs, as in the case of the ZephIR 300, are only
able to measure the magnitude of the along-LoS radial velocities but not the sign. This is
equivalent to saying that f (φ) takes the shape of a rectified cosine, i.e., the absolute value
of f (φ) [28]. When applying the VAD algorithm to | f (φ)|, parameters A and C retain the
same value as for the heterodyne case (VAD applied to f (φ)), but B has a±π rad ambiguity.
The latter can be disambiguated by the wind vane co-located with the LiDAR buoy.

3.5. Estimation Error Methodology

In the absence of buoy motion, the X, Y, and Z axes of the moving coordinate system
would coincide with the N, E, and D axes of the fixed system [23]. In the presence of waves,
the FDWL experiences angular and translational motion around the three NED axes. In this
section, we formulate analytical expressions for the motion influence on the VAD-retrieved
wind vector.

In order to simplify the obtained analytical expressions, the following assumptions
are considered: (i) the motion in each of the six DoF is considered to be a zero-mean
simple harmonic motion; (ii) the rotational and translational motions are considered to be
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independent error sources; and (iii) under motion, the VWS contribution to the HWS error
is considered to be null as compared to the HWS contribution [51].

3.5.1. Rotational Motion Model

The FDWL buoy undergoes roll, pitch, and yaw motions around the three fixed
coordinate axes, i.e., N, E, and D, respectively. As observed experimentally [23], roll and
pitch motions can be modeled using a first-order small-angle approximation as simple
harmonic motions. The yaw motion, which shows larger and more constant values with
time, can be modeled by the constant tilt.

We define roll and pitch tilts (in units of radians) as sinusoidal signals of the form

Ωx(φ) = Ax · sin( fxφ− αx), (19)

where Ax, fx, and αx denote the amplitude, frequency, and motional phase, respectively.
Subindex x = roll, pitch denotes the roll and pitch motion, respectively. Note that, for
convenience, Equation (19) is expressed as a function of the LiDAR scan-phase variable φ
(φ = 2πt) instead of time variable t.

As mentioned, the yaw tilt is considered a constant value Ωyaw(φ) = Ayaw. This is
conducted without limiting the general formulation of the problem. Thus, the reader could
extend the formulation of the yaw angle to the harmonic case by defining the yaw motion
as a sinusoidal signal (Equation (19)) plus an offset term equal to its mean value during the
interval under study, and by following the formulas in Section 3.5.1 and Appendix A.1.

First, in order to compute the rotated LiDAR pointing direction, r̂rot, in the fixed NED
coordinate system given the roll, pitch, and yaw rotations, we used the Euler rotation
matrix. Euler’s rotation theorem states that any rigid-body rotation can be defined by
three rotation angles [52]. There are many different conventions regarding the rotation
angles and their order of application. Here, we considered the NED convention, i.e., three
elemental rotations were carried out sequentially: first, a rotation around the N axis (roll
motion); second, a rotation around the E axis (pitch motion); and finally, a rotation around
the D axis (yaw motion). The rotations were positive counterclockwise. Therefore, the
Euler rotation matrix can be written as [53]

RRR = RDRDRD ·RERERE ·RNRNRN , (20)

where RNRNRN , RERERE, and RDRDRD are the elemental rotation matrices around the N, E, and D axes,
respectively. They can be formulated as follows:

RDRDRD =

cos(Ωy) − sin(Ωy) 0
sin(Ωy) cos(Ωy) 0

0 0 1

,

RERERE =

 cos(Ωp(φ)) 0 sin(Ωp(φ))
0 1 0

− sin(Ωp(φ)) 0 cos(Ωp(φ))

,

RNRNRN =

1 0 0
0 cos(Ωr(φ)) − sin(Ωr(φ))
0 sin(Ωr(φ)) cos(Ωr(φ))

,

(21)

where subindexes y, p, and r stand for the “yaw”, “pitch”, and “roll”, respectively.
The small-angle approximation for roll and pitch angles [23,28] translates into a first-

order Taylor approximation for the sine and cosine functions (i.e., sin(x) ' x and cos(x) ' 1).
These first-order approximations were incorporated into Equation (A1), Appendix A.1, in
order to simplify the rotation matrix RRR.
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The second step was to compute the rotated version of the LiDAR pointing vector,
r̂rot(φ), in the NED fixed coordinate system:

r̂rot(φ) = RRR · r̂(φ). (22)

Third, the FDWL-measured wind under rotational motion was computed by projecting
the wind vector over the rotated LiDAR pointing vector for each LoS. This was expressed
by means of the dot product as follows:

frot(φ) = ~u · r̂rot(φ). (23)

Eventually, the motion-corrupted FDWL wind vector was derived by applying the
VAD algorithm to the function frot(φ) above. With this aim, the first-order Fourier coeffi-
cients of frot(φ) (i.e., arot

0 , arot
1 , and brot

1 ) were computed through Equation (18) by substi-
tuting frot(φ) in place of f (φ). The HWS retrieval error was computed as the difference
between the “true” HWS (i.e., without motion influence) and the FDWL-retrieved HWS
under rotational motion:

εrot
HWS,i = HWS, i− 1

sin(θ0)

√
(arot

1 )2 + (brot
1 )2, (24)

where arot
1 and brot

1 are the Fourier coefficients of frot(φ). See Appendix A.3 for the mathe-
matical results in expanded form.

3.5.2. Translational-Motion Model

Waves also induce translational motion to the FDWL in the N, E, and D directions,
i.e., surge, sway, and heave motions, respectively. Similar to the derivation of the rota-
tional motion components in Equation (19), sinusoidal variation was assumed for each
translational-motion component. They were formulated as follows:

tx(φ) = Ax · sin( fxφ− αx), (25)

where Ax, fx, and αx, are the amplitude, frequency, and phase of the translational motion x,
where x denotes the surge, sway, or heave components. We also defined the translational-
velocity vector~t(φ) in the NED fixed coordinate system as the three-component vector,

~t(φ) = [tsu(φ), tsw(φ), the(φ)], (26)

where the subscripts su, sw, and he referred to the surge, sway, and heave, respectively.
First, to compute the FDWL-measured wind under translational motion, we computed

the apparent wind vector. The apparent wind vector measured by the FDWL was the
difference between the wind vector and the translational-velocity vector:

~utrans(φ) = ~u−~t(φ). (27)

Second, the translational-velocity contribution to the LiDAR-measured LoS, ftrans(φ),
was obtained by projecting the apparent wind vector, ~utrans, on the LiDAR pointing direc-
tion r̂(φ) as follows:

ftrans(φ) = ~utrans(φ) · r̂(φ). (28)

The LiDAR-retrieved wind vector was the result of applying the VAD algorithm over
the motion-corrupted LoS, ftrans(φ). The Fourier coefficients atrans

0 , atrans
1 , and btrans

1 were
obtained through Equation (18) by substituting f (φ) by ftrans(φ). The Fourier coefficients
are given in expanded form in Appendix A.4 of Appendix A.

Finally, the HWS measurement error due to the FDWL’s translational motion εtrans
HWS,i

became
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εtrans
HWS,i = HWSi −

1
sin(θ0)

√
(atrans

1 )2 + (btrans
1 )2. (29)

3.5.3. Total Error Model

In order to estimate the total error, we departed from the assumption that the rotational
and translational motion were independent error sources (see Section 3.5). Therefore, the
total error in the retrieved HWS in a LiDAR scan is the superposition of errors:

εHWS,i(~u, φ0) = εrot
HWS,i(~u, φ0) + εtrans

HWS,i(~u, φ0). (30)

In Equation (30), the total error, εHWS,i(~u, φ0), is parameterized by the instantaneous wind
vector ~u and initial phase φ0.

Figure 2a illustrates the estimated HWS total error in a LiDAR scan parameterized as a
function of the wind direction (WD ranging from 0 to 360 deg) and the initial phase φ0 in a
roll-only motion scenario (HWS = 10 m/s, VWS = 0 m/s). As can be observed, the HWS
error was highly dependent on both input parameters (WD and initial phase), ranging from
−1.5 up to 1.5 m/s (the HWS errors for other input HWSs are scalable through simple
direct proportionality). If the WD is known, the HWS error in a LiDAR scan is dependent
only on the initial phase. This is represented in Figure 2b, where the HWS error in the
LiDAR scan in Figure 2a is represented as a function of the initial phase φ0 for the constraint
settings HWS = 10 m/s, WD = 275 deg, and VWS = 0 m/s.

(a)

Figure 2. Example of the estimation of the HWS total error in a LiDAR scan (HWS = 10 m/s,
VWS = 0 m/s, and a WD ranging from 0 to 360 deg, roll-only motion). (a) Color plot of the HWS
error as a function of the wind direction, WD, and initial phase, φ0. (b) HWS error for WD = 275 deg
(vertical black line in panel (a)) as a function of the initial phase. The blue horizontal line indicates
the mean HWS error.

However, the initial phase is the manufacturer’s undisclosed parameter for the ZephIR
300 LiDAR. As the instantaneous value of the initial phase at each LiDAR scan cannot
be known nor, consequently, the total error, we assumed the initial phase was a random
variable with a uniform distribution between 0 and 2π rad [25]. As a result, HWS error
moments rather than instantaneous values were derived.

The 10 min HWS bias (Equation (5)) was computed as the expectation (first raw
moment) of the HWS total error function (Equation (30)), εHWS,i(~u, φ0), with respect to the
initial phase, φ0, constrained to the mean wind vector ~U as follows:

biasest = Eφ0 [εHWS,i(~U, φ0)]. (31)

In practice, the biasest is simply the mean value of εHWS,i(~U, φ0) computed as
biasest = 1

N ∑N
i=1 εHWS,i(~U, φ0,i), where the discrete random variable φ0 is defined by a

finite list {φ0,1, . . . , φ0,N} of equally likely outcomes (vertical line in Figure 2a).
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Analogously, the 10 min TI increment of Equation (7) is estimated as follows:

∆TIest =
STDφ0 [εHWS,i(~U, φ0)]

ˆHWS
, (32)

where STD stands for the standard deviation, which is the square root of the variance of
the total error (σεHWS,i ), and ˆHWS is the 10 min mean HWS measured by the FDWL.

3.6. Bias and TI-Increment Estimation Procedure

Figure 3 summarizes the procedure described in Section 3.5 to compute the estimated
10 min bias and TI increment. The 10 min mean wind vector (~U), as well as the characteristic
amplitude, frequency, and phase of each of the 6 DoF, were the inputs. In practice, the yaw
frequency and phase were set to zero. The Fourier coefficients arot

1 and brot
1 were obtained

through Equations (A3) and (A4), respectively, which estimated the HWS measurement
error due to the rotational motion (εrot

HWS,i, Equation (24)). Similarly, the Fourier coefficients
atrans

1 and btrans
1 were obtained through Equations (A5) and (A6), respectively, which esti-

mated the HWS measurement error due to the translational motion (εtrans
HWS,i, Equation (29)).

The following step was to sum the rotational- and translational-error expressions to yield
the total error as a function of the wind vector and initial scan phase (Equation (30)). Then,
it was constrained to the 10 min mean wind vector, ~U, by substituting the ~u in Equation (30)
with ~U. Finally, the bias and TI increment were estimated by means of Equations (31) and
(32), respectively.

Figure 3. Block diagram depicting the Section 3.5 estimation procedure for the bias and TI increment.

Alternatively, for a specific 1 s error model validation (refer to Section 4.1), the total
error (Equation (30)) was obtained as a function of the instantaneous wind vector and the
LiDAR initial scan phase.

3.7. Sinusoidal Characterization of the Measured Motion Time Series

In order to estimate the FDWL motion-induced error with the presented methodology
based on Equations (19) and (25), there is a requirement that the motion time series in each
of the DoF be modeled as a sinusoidal signal with a characteristic amplitude, frequency,
and phase (A, f , and α, respectively). The estimation procedure for these parameters is
described next through a case example.

Figure 4a shows a record of the IMU-measured roll time series during the PdP cam-
paign. As can be noticed, the signal was composed of multiple frequency components. To
analyze the signal spectrum, the power spectral density (PSD) was computed in batches of
10 min segments using the Blackman–Tukey method [54]. In Figure 4b, it emerges that the
signal had a broad spectrum with relevant frequency components from approximately 0.25
to 0.5 Hz. The characteristic frequency f was computed as the frequency corresponding to
the peak PSD maximum ('0.3 Hz).

In order to estimate the characteristic amplitude A, we made use of the fact that
the amplitude of a sinusoidal signal is related to its power, P, through the relationship
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P = A2/2 [54]. Moreover, the mean power P of a stochastic signal s(t) (i.e., the IMU-
measured motion) with duration T is computed as [54]

P =
∫ T

0
|s(t)|2dt. (33)

The mean power, P, takes into account all the frequency components of the signal
spectrum [55]. Therefore, the characteristic amplitude was estimated from the mean signal
power as A =

√
2P. Finally, the characteristic phase α was obtained from the first-order

Fourier decomposition of s(t) in a similar fashion to the calculation of phase term B in
Equation (17), given the first-order coefficients a1 and b1 in Equation (18) (see Section 3.4).

Figure 4a shows the IMU-measured roll time series against the “fitted” sinusoidal
signal with the characteristic amplitude, frequency, and phase of A = 1.3 deg, f = 0.3 Hz,
and α = 1.1 deg, respectively. It can be observed that the fitted sinusoidal signal reproduced
the measured time series under a first-harmonic approximation with reasonable accuracy.

(b)(a)

Figure 4. The FDWL motion characterization as a sinusoidal signal: roll motion example (PdP, 24
June 2013, 00:00 LT). (a) The 10 min roll time series (blue trace) and fitted sinusoidal signal (black
trace). (b) PSD of the panel (a) time series.

3.8. A Note on Appendix A and the Supplementary Materials Math Formulations

Provided in Appendix A is a formulation compendium to compute the 6-DoF-motion-
induced error (Sectioin 3.5.3). A MATLABTM R2020a code to compute the total error
(Sectioin 3.5.3) is also included as part of the Supplementary Materials of this manuscript.

The mathematical derivations of this Appendix A were checked both algebraically and
numerically. Algebraically, the manually derived math expressions were validated using
the MATLABTM R2020a symbolic toolbox. Numerically, these expressions were coded in
MATLAB and compared with the outputs of the FDWL simulator [35] (Figures 5–7) for
quality assurance.
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(a) (b)

(c)

Figure 5. Validation of the analytical-error formulation in the roll-only scenario #1: HWS error
(parameters: Aroll = 10 deg, froll = 0.3 Hz and αroll = 0 deg. Input wind: HWS = 10 m/s, VWS = 0
m/s). (a) The analytically estimated HWS error as a function of the wind direction (WD) and the
initial scan phase (φ0). (b) The simulator-estimated HWS error. (c) The difference of (a) minus (b) (in
absolute value).

WD [deg]

(a) (b)

(c)

Figure 6. Validation of the analytical-error formulation in the translational-only scenario #2: HWS
error (parameters: Asurge = 10 deg). (a) The analytically estimated HWS error as a function of the
wind direction (WD) and the initial scan phase (φ0). (b) The simulator-estimated HWS error. (c) The
difference of (a) minus (b) (in absolute value).
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(a) (b)

(c)

Figure 7. Validation of the analytical-error formulation in the 6 DoF scenario #3: HWS error (pa-
rameters: Aroll = Apitch = 10 deg, and Asurge = Asway = Aheave = 2 m/s). (a) The analytically
estimated HWS error as a function of the wind direction (WD) and the initial scan phase (φ0). (b) The
simulator-estimated HWS error. (c) The difference of (a) minus (b) (in absolute value).

4. Results and Discussion
4.1. Error Model Validation

In order to validate the presented analytical-error formulation (Section 3.5 and Appendix A;
in what follows, “the unified-error formulation”), the estimated total error in the FDWL-
retrieved HWS (Equation (30)) was compared with the LiDAR motion simulator as a
reference [37]. The study was carried out by inputting the same reference wind vector
(HWS = 10 m/s and VWS = 0 m/s) into both the unified formulation and the simulator
under three different motion scenarios: (i) rotational motion only, (ii) translational motion
only, and (iii) 6 DoF motion. In all cases, fx = 0.3 Hz and αx = 0 deg, x = roll, pitch were
used. In each scenario, the performance of the analytically estimated error was evaluated
as a function of the WD and initial scan phase φ0.

In roll-only scenario #1 (Figure 5), the analytically estimated error (Figure 5a, Equation (24))
was virtually identical to the simulator-estimated error (Figure 5b) over the whole span
of the WDs and the initial-phase values. From Figure 5c, all the error differences between
panels (a) and (b) were lower than 0.3 m/s, which is evidence of the satisfactory accuracy
attained using the first-order approximation in the formulation. The RMSE between the
error estimates of Figure 5a,b (equivalently, the square root of the mean of the squares of
the error values shown in Figure 5c) was 0.04 m/s.

When addressing the translational-only scenario #2 (Figure 6), null differences (0 m/s)
were found in Figure 6c between the analytically estimated and the simulator-estimated
error. The exact 0 m/s error difference was explained by the fact that no approximations
were used when deriving the analytical expressions for the translational-motion component.

Opposite to other floating remote-sensing devices such as high-frequency surface-
wave radars, which measure the horizontal propagation of waves and thus are not sensitive
to heave-induced Doppler effect [56,57], the ZephIRTM 300 FDWL is sensitive to all three
translational motion components due to its inherent conical scanning pattern [16].

Finally, the successful performance of the unified formulation presented for the ana-
lytically estimated error was re-encountered in Figure 7, where both the translational and
rotational motion were combined into the 6 DoF motion scenario #3. Despite the greater
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complexity of this scenario, the error differences (Figure 7c) remained below 0.7 m/s. The
RMSE was 0.22 m/s.

4.2. Experimental Results

The unified-error formulation (Section 3.5 and Appendix A) was also validated by
comparing the analytically estimated HWS mean bias and TI increment (Equations (31) and
(32), respectively) against their experimental values (Equations (4) and (6), respectively).
The experimental values were computed from the 10 min errors between the FDWL and
the reference fixed LiDAR used in both the nearshore (“Pont del Petroli”) and open-sea
(IJmuiden) scenarios. For the IJmuiden campaign, the measurements of the FDWL at
83 m and the measurements of the metmast DWL at 92 m were considered. Towards this
purpose, 848 data records (6 to 30 June 2013) from PdP campaign and 3893 data records
(1 April to 7 May 2015) from the IJmuiden campaign were used (see Section 2). The data
were filtered for quality assurance following the outlier-rejection criteria [33]: the measured
HWS values outside the 1–80 m/s range, the rain-flagged data, the spatial variation (SV)
values higher than 0.2, and the backscatter coefficients lower than 0.02 were removed. The
SV is an indicator of the goodness of the VAD fitting of the measured LoS in a LiDAR
scan [58]. The backscatter coefficient is indicative of the power of the received LiDAR echo.

4.2.1. The Performance according to the Estimation of the HWS Bias

In the PdP campaign, using statistical analysis, the measured 10 min HWS bias
(Equation (4)) showed virtually nil values in accordance with the previous results in
nearshore locations in the state of the art [27,28]. The median of the measured 10 min HWS
bias was −0.02%, with 25th and 75th percentiles of −0.89% and 0.76%, respectively. On the
other hand, the analytically estimated 10 min HWS bias (Equation (5)) showed values of
the same order of magnitude as the measured ones, thus validating the method. Thus, the
median of the estimated bias was 0.06%, and the 25th and 75th percentiles were −0.66%,
and 0.64%, respectively. The median bias was in accordance with the results obtained in
other state-of-the-art studies [38].

In the Ijmuiden campaign, the measured 10 min HWS showed higher values than the
observed ones in the “Pont del Petroli” campaign: the median of the measured 10 min HWS
bias was −0.53%, with 25th and 75th percentiles of −2.30% and 1.08%, respectively (and
notice the asymmetrical distribution of these percentiles around 0%). These values were in
accordance with the previous open-sea measurement campaigns [32,59]. This is due to the
fact that in an open-sea scenario there is stronger wave motion, which induces a higher error
in the FDWL measurements. The abovementioned asymmetry on the measured biases
accounts for the wind shear between the fixed DWL and FDWL measurement heights
(92 and 83 m, respectively). The analytical model estimated biases of the same order of
magnitude as the measured ones with a median of 0.05%, and 25th and 75th percentiles of
−1.48% and 1.47%, respectively, which further validated the analytical model.

4.2.2. Performance according to the Estimation of the TI Increment (I): Case Example

As part of the validation study, in the next case example, the analytically estimated
10 min TI increment, ∆TIest (Equation (32)), was compared with the measured one, ∆TImeas
(Equation (7)). The different motion conditions studied are described as a function of the
mean tilt amplitude and mean translational-velocity amplitude of the LiDAR buoy.

The mean tilt amplitude was computed as the 10 min mean of the quadratic sum of
roll and pitch tilts (simple harmonic motion, Equation (19)) [28]. It can be formulated as
follows:

Atilt =
∑N

k=1

√
Ωroll(k)2 + Ωpitch(k)2

N
, (34)

where Ωx, x = rollpitch is the IMU-measured roll/pitch tilt, N = 6000 is the number of
samples in a 10 min interval at a 10 Hz IMU-sampling frequency, and k is a reminder of the
discrete time tk.
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The mean translational-velocity amplitude was computed as the 10 min mean norm of
the FDWL translational-velocity vector,

Avtrans =
∑N

k=1 ||~t(k)||
N

, (35)

where~t(k) is the translational-velocity vector defined by Equation (26).
Figure 8a compares the estimated TI-increment time series (∆TIest) with the measured

one (∆TImeas) in the context of the PdP campaign. The motion-induced error on the FDWL-
measured TI manifested as TI increments between 0.5 and 5%. The highest TI increments
occurred during the daytime (from 10 a.m. to 4 p.m., approximately), corresponding to time
periods with high HWSs. These periods were also related to the high wave motion [27,60].
This was corroborated by Figure 8b, where the mean tilt amplitude and mean translational-
velocity amplitude of the floating LiDAR are depicted as time series. It can be observed
that the high TI-increment values in Figure 8a were linked to high-motion scenarios, i.e., to
the time periods with high tilt and velocity amplitudes in Figure 8b.

(a)

(b)

Figure 8. Validation of the analytical-error formulation in a real case scenario (PdP campaign, 25 June
2013, 00:00 UTC to 27 June 2013, 00:00 UTC): TI increment. (a) The analytically estimated vs. the
measured TI-increment time series. The black dots represent the 10 min analytically estimated TI
increment, ∆TIest (Equation (7)). The blue dots represent the 10 min measured TI increment, ∆TImeas

(Equation (6)). (b) The mean tilt amplitude (Equation (34)) and the mean translational-velocity
amplitude (Equation (35)) time series. In both panels, the solid trace represents the 1 h averaged
time series.

As shown in Figure 8a, the estimated TI increment exhibited similar values to the
measured ones over the period under study. The 1 h averaged time series further showed
the goodness of the TI-increment estimates. However, a small underestimation of the peak
values occurred. Thus, while the measured TI increment peaked at 5% close to noon,
the estimated one only reached 3.5%. Larger differences were observed in one-to-one
comparisons of the 10 min estimates with the 10 min measurements. A suitable explanation
for this is that in the unified formulation presented in Section 3.5.3, the wind flow during
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10 min periods was assumed to be uniform, and only the motion influence was considered.
As the LiDARs were located 50 m apart, wind scenarios with high spatial variability
(e.g., turbulent winds coming from the urban area, Section 2) usually led to different
instantaneous measurements between the floating and the reference LiDAR. Therefore,
the correlation coefficients ρF,R < 1 (Section 3.2.1) may limit the validity of the estimates,
∆TIest. This effect may also occur in low-motion scenarios [33].

4.3. The Performance of the Estimation of the TI Increment (II): Statistical Analysis

The performance of the analytical-error formulation when estimating the 10 min TI
increment was also assessed with reference to the FDWL-measured TI increment under
nearshore and open-sea motional scenarios (the PdP and IJmuiden campaigns, respectively).
The statistical sample consisted of 848 data records (from 6 to 30 June 2013) for the PdP
campaign and 3893 data records (from 1 April to 7 May of 2015) for the IJmuiden campaign.
The estimated and the measured TI increments (∆TIest and ∆TImeas, respectively) for the
whole campaign were clustered as a function of the wind intensity, using the HWS as the
binning variable, and as a function of the type of motion (i.e., rotational or translational),
using the mean tilt amplitude and the mean translational-velocity amplitude as the respective
binning variables.

The estimation accuracy was quantitatively assessed according to the root mean square
error (RMSE), which is formulated as follows:

RMSE =

√
∑N

p=1[∆TIest(p)− ∆TImeas(p)]2

N
, (36)

where N is the number of samples in the bin under study, ∆TIest(p) is the p-th TI-increment
estimate in the bin, and ∆TImeas(p) is the corresponding p-th measurement.

Figure 9 depicts the statistical results for the PdP (left panels) and IJmuiden (right
panels) campaigns. In all panels, it can be observed that the TI increment, ∆TI, was always
positive, evidencing the motion-induced additive turbulence [26,28]. Moreover, it increased
with increasing wave motion, i.e., with increasing mean tilt amplitude (panels (a), (b))
and mean translational-velocity amplitude (panels (c), (d)). ∆TI ranged from median
values of ∆TI ' 1% in low-motion scenarios to ∆TI ' 2% in high-motion ones. The
green bars illustrating the statistically significant bins (i.e., bins containing greater than
or equal to 5% of the population of the PdP campaign, i.e., '50 samples) showed mean
tilt amplitudes between 1 and 3.5 deg for the PdP campaign and between 1 and 5.5 deg
for the IJmuiden campaign (notice the different X-axis ranges used). The observed mean
translational-velocity amplitudes ranged between 0.1 and 0.2 m/s for the PdP campaign
and between 0.1 and 0.65 m/s for the IJmuiden campaign (notice the different X-axis ranges
used). The HWS ranged between 2 and 8 m/s in the PdP campaign and between 2 and
22 m/s in the IJmuiden campaign (notice the different X-axis ranges used). The higher
motion and wind magnitudes evidenced the harsher scenario experienced by the FDWL
during the IJmuiden campaign.
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Figure 9. Validation of the analytical-error formulation: Global statistics for the PdP campaign (6 to 30
June 2013) and IJmuiden campaign (1 April to 1 June 2015). The left panels show the results obtained
for the PdP campaign, and the right panels show the results obtained for the IJmuiden campaign,
with the comparison between the measured and the estimated TI increment as a function of different
motion conditions clustered by (panels (a,b)) mean tilt amplitude (rotational motion), (panels (c,d))
mean translational-velocity amplitude, and (panels (e,f)) mean HWS. The error bars indicate the 25th and
75th percentiles. The bar graphs represent the number of occurrences in the data for each category
of bin. The solid red lines represent the RMSE between ∆TIest and ∆TImeas for each category of bin.
The bins containing less than 5% of the PdP population are gray shaded.

On one hand, Figure 9a,b plot the TI increment as a function of the mean tilt amplitude
in 0.5 deg bins, which was representative of the rotational-motion component. The median
of the estimated ∆TI values virtually matched that of the measurements, thus validating
the overall analytical-error formulation. In the PdP campaign (Figure 9a), the error bars
showed a larger dispersion for the measured values (∆TImeas) than for the estimated ones
(∆TIest). This is attributable to the urban topology surrounding the experimental area,
which creates a high spatial variation in the wind field. In contrast, this was not found in
IJmuiden. Thus, Figure 9b,d,f shows estimated error bars virtually coincidental with the
measured ones due to the more homogeneous wind fields found over the ocean.

On the other hand, Figure 9c,d represent the TI increment as a function of the FDWL
mean translational velocity in 0.025 m/s bins for the PdP campaign and 0.05 m/s bins for the
IJmuiden campaign, respectively. Similar to Figure 9a,b, the median of the estimated ∆TI
values almost ideally matched the measurements in all the significant bins (dark green),
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Figure 9c,d. The largest difference was ∆TImeas − ∆TIest = 0.26% for the 0.175 m/s bin.
Similar comments apply to those for Figure 9a,b regarding the measurement error bars.

Finally, Figure 9e,f depict the TI increment as a function of the mean HWS in 1 m/s
bins for the PdP campaign and 2 m/s for the IJmuiden campaign, respectively. Similar
concurrent results were observed, with the estimated ∆TI median values matching the
measurements for all HWS bins except for the 2 m/s one. This was due to the fact that the
ZephIRTM 300 HWS measurements below 3 m/s were tagged as “unreliable”, according to
the manufacturer’s specs for the LiDAR [40]. Similar discussion comments apply for the
error bars shown in Figure 9e,f.

The RMSE between the estimated and the measured ∆TI (Equation (36)) is depicted
in red for each of the tilt, velocity, and HWS bins. Similar values were obtained in all
the statistically significant bins, ranging from RMSE = 0.004 (0.4%) up to RMSE = 0.013
(1.3%), which was comparable to (therefore, consistent with) the size of the measurement
error bars obtained for ∆TImeas. As can be observed, the RMSE was slightly correlated
with the tilt, so that the larger the buoy tilt, the larger the RMSE in rough approximation,
which in turn accounted for the first-order approximation used in Equation (A1) (refer to
Appendix A.1).

5. Conclusions

A unified analytical formulation for the computation of the 6-DoF-motion-induced error
in focusable CW FDWLs was presented (Figure 3). The total error in the retrieved HWS
was computed as the superposition of the rotational- and translational-motion errors.
The formulation proved to be capable of estimating the HWS bias (Section 4.2.1) and TI
increment (Figures 8 and 9).

The analytical model departed from a thorough formulation of the FDWL buoy ge-
ometry and dynamics in order to derive the rotational- and translational-motion influence
on the LiDAR-measured LoS measurements in a CW DWL scan. The well-known VAD
algorithm was computed as a first-order Fourier series, which allowed derivation of the
sought-after analytical expressions describing the FDWL-measured wind-vector error as a
function of the buoy attitude and the “true” wind vector. The first-order approximation
was retained when computing the buoy rotational matrix. The assumption of a uniformly
distributed random initial scan phase permitted the estimation of the HWS measurement
bias and RMSE over 10 min time intervals.

The wave-induced motion in each of the six DoF was modeled as a simple harmonic
motion with a characteristic amplitude, frequency, and phase recomputed every 10 min
for each DoF. A method to estimate these variables based on spectral analysis of the
LiDAR-buoy motional time series was presented in Section 3.7.

The proposed formulation was numerically validated by comparing the HWS error
figures obtained as a function of the WD and the initial scan phase with those output by
the FDWL motion simulator [37]. A virtually perfect match between both methods was
found except for the second-order approximation errors.

The methodology was further validated using experimental data from the “Pont del
Petroli” (Badalona, Barcelona) and IJmuiden (North sea, 85 km offshore the Netherlands)
campaigns, in which an FDWL and a reference fixed LiDAR were used. The estimated
10 min bias using the analytical formulation presented here yielded similar results to the
measured one. Thus, for the PdP campaign, the median values obtained for the estimated
and the experimental HWS bias were −0.02% and 0.06%, respectively, and the 25th and
75th percentiles were −0.66% (estimated) and −0.89% (measured) and 0.76% (measured)
and 0.64% (estimated), respectively. For the IJmuiden campaign, median values of −0.53%
(measured) and 0.05% (estimated) were found, and the 25th and 75th percentiles were
−2.30% (measured) and −1.48% (estimated) and 1.08% (measured) and 1.47% (estimated),
respectively. The inherent asymmetry between the positive and negative biases was due
to the wind shear between the fixed DWL and FDWL measurement heights. The slight
differences between the measured and estimated values were inconsequential and were
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due to the harsher sea conditions at the IJmuiden site. With regard to the estimation of the
TI increment, the analytical estimates matched the measured values in statistical terms
under all motion and wind scenarios for both the PdP and IJmuiden campaigns (Figure 9).
Thus, the root mean square differences between the medians of ∆TIest and ∆TImeas were
0.16% (PdP) and 0.11% (IJmuiden) for the rotational motion (Figure 9a,b), 0.13% and 0.16%
for the translational motion (Figure 9c,d), and 0.14% and 0.21% for the HWS (Figure 9e,f),
giving mean values of about 0.015 (1.5%). The experimental validation was limited by
the fact that the compared LiDARs were a minimum of 50 m apart and subject to wind
flows that were not always uniform. This caused moderate dispersion in the turbulence
values measured by the two LiDARs, which deteriorated in one-to-one comparison of the
10 min TI.

All in all, the unified formulation presented here proved to be a straightforward and
accurate tool for quantitatively assessing the 6-DoF-motion-induced error in focusable CW
FDWLs in terms of both the HWS-bias and TI-increment estimation, in addition to the
real one. This information is increasingly being recognized as critical to the acceptance of
FDWLs and ship-borne LiDARs in the Wind Energy industry as compared to fixed LiDARs
and reference metmasts [61,62]. To the best of our knowledge, the proposed unified analyti-
cal formulation is the first in the state of the art able to estimate the TI increment at a 10-min
basis from solely FDWL measurements under virtually all motional and wind scenarios. In
addition, the novel analytical expressions obtained are less computationally demanding
than numerical simulators and unveil a key understanding of the involved FDWL attitude
and LiDAR-retrieval-algorithm error sources. These findings have important implications
for the accurate measurement of wind speed and turbulence in FDWLs, particularly when
they are being deployed as standalone measurement instruments. MatlabTM R2020a codes
are also provided to the reader as part of the Supplementary Materials of this manuscript.
Further steps could include the study of multimodal motion as well as the wind flow
variability in a LiDAR scan. Finally, experimental validation would benefit from tests at
different LiDAR sounding heights.
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.3390/rs15061478/s1.

Author Contributions: Derivation of analytical expressions, J.F.-G. and A.S.-B.; software devel-
opment, A.S.-B. and M.P.A.d.S.; analyses and figures, A.S.-B. and J.F.-G.; writing—original draft
preparation, A.S.-B., J.F.-G. and M.P.A.d.S.; review and editing, F.R.; funding acquisition, F.R.; concep-
tualization support, F.R. This work was developed as part of A.S.-B.’s doctoral thesis, supervised by
F.R. and J.F.-G.’s master thesis co-advised by F.R. and A.S.-B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research project was part of the project PID2021-126436OB-C21 funded by the Ministe-
rio de Ciencia e Investigación (MCIN)/Agencia Estatal de Investigación (AEI)/10.13039/501100011033
y FEDER “Una manera de hacer Europa”. The work of A. Salcedo-Bosch was supported by grant
2020 FISDU 00455 funded by Generalitat de Catalunya—AGAUR. The work of M.P Araújo da Silva
was supported under Grant PRE2018-086054 funded by MCIN/AEI/10.13039/501100011033 and
FSE “El FSE invierte en tu futuro”. The European Commission collaborated under projects H2020
ATMO-ACCESS (GA-101008004) and H2020 ACTRIS-IMP (GA-871115). The European Institute
of Innovation and Technology (EIT), KIC InnoEnergy project NEPTUNE (call FP7), supported the
measurement campaigns.

Data Availability Statement: Data are available from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/rs15061478/s1
https://www.mdpi.com/article/10.3390/rs15061478/s1


Remote Sens. 2023, 15, 1478 22 of 27

Abbreviations
The following abbreviations are used in this manuscript:

CW continuous wave
DoF degrees of freedom
DWL Doppler wind LiDAR
FDWL floating Doppler wind LiDAR
HWS horizontal wind speed
IMU inertial measurement unit
LD linear dichroism
LoS line of sight
LSQ least squares
NED north–east–down
metmast meteorological mast
MDPI Multidisciplinary Digital Publishing Institute
PdP Pont del Petroli
PSD power spectral density
RMSE root mean square error
SV spatial variation
TI turbulence intensity
VAD velocity–azimuth display
VWS vertical wind speed
WD wind direction

Appendix A. Formulation Compendium

This Appendix provides exhaustive details for the formulation of the 6-DoF motion-
induced error. Specifically, Appendix A.1 addresses the first-order approximation of the
Euler rotation matrix, RRR, in connection with Equations (20) and (21). Appendix A.2 provides
the calculation of the LoS-projected wind vector under rotational motion to obtain the
VAD function frot(φ). The first-order Fourier coefficients under rotational and translational
motion are formulated in Appendices A.3 and A.4, respectively, by using the auxiliary
integrals given in Appendix A.5. The Supplementary Materials provide the MATLABTM

R2020a code to compute the total error (Section 3.5.3).
Refer to Section 4.1 and Figures 5–7 for quality assurance.

Appendix A.1. First-Order Approximation of the Rotation Matrix

The Euler rotation matrix, RRR, is the result of elemental rotations about the N, E, and D
axes, RNRNRN , RERERE, and RDRDRD, respectively, representing the roll, pitch, and yaw rotations. Inserting
Equations (21) into (20) and retaining the first-order terms yields:

RRR '

cos(Ωy) − sin(Ωy) sin(Ωy) ·Ωr(φ) + cos(Ωy) ·Ωp(φ)
sin(Ωy) cos(Ωy) − cos(Ωy) ·Ωr(φ) + sin(Ωy) ·Ωp(φ)
−Ωp(φ) Ωr(φ) 1

, (A1)

where Ωx, x = r, p, y is the tilt angle already defined in Equation (19). r, p, y is shorthand
notation for “roll”, “pitch”, and “yaw”.

Appendix A.2. Wind-Vector Projection over the Rotated LiDAR Pointing Vector r̂rot(φ)

In rotational motion, the FDWL-measured wind as a function of the scan phase, frot(φ),
is the projection of the wind vector ~u on the LiDAR pointing vector r̂rot(φ). Inserting
Equations (12) and (A1) into Equation (22) gives r̂rot(φ), and substituting this vector and
definitional Equation (1) for the wind vector into Equation (23) gives the VAD function for
the measured wind. The result can be expressed as follows:
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frot(φ) = ~u · r̂rot(φ) = HWS · [cos(WD) · (sin(θ0) · [cos(φ− φ0) · r11 + sin(φ− φ0) · r12]

− cos(θ0) · r13) + sin(WD) · (sin(θ0) · [cos(φ− φ0) · r21 + sin(φ− φ0) · r22]

− cos(θ0) · r23)] + VWS · (sin(θ0) · [cos(φ− φ0) · r31 + sin(φ− φ0) · r32]

− cos(θ0) · r33),

(A2)

where coefficients rij, i, j = 1 . . . 3 are the entries in the i-th row and j-th column of the
rotation matrix RRR (Equation (A1)).

Appendix A.3. Fourier Coefficients for the Rotational Motion Model

In the rotational motion of the FDWL (Section 3.5.1), the first-order Fourier coefficients
arot

1 and brot
1 of Equation (24) that give the HWS rotational error are obtained in analytical

form by inserting Equation (A2) above into definitional Equation (18). They take the
following form:

arot
1 =

1
π

∫ 2π

0
frot(φ) cos(φ)dφ =

1
π

HWS · [cos(WD) · (sin(θ0) · [cos(y)I11

− sin(y)I12]− cos(θ0) · [Ar sin(y)I1,r + Ap cos(y)I1,p])

+ sin(WD) · (sin(θ0) · [sin(y)I11 + cos(y)I12]

− cos(θ0) · [−Ar cos(y)I1,r + Ap sin(y)I1,p])],

(A3)

and

brot
1 =

1
π

∫ 2π

0
frot(φ) sin(φ)dφ =

1
π

HWS · [cos(WD) · (sin(θ0) · [cos(y)I21

− sin(y)I22]− cos(θ0) · [Ar sin(y)I2,r + Ap cos(y)I2,p])

+ sin(WD) · (sin(θ0) · [sin(y)I21 + cos(y)I22]

− cos(θ0) · [−Ar cos(y)I2,r + Ap sin(y)I2,p])],

(A4)

where coefficients Imn and Im,x with m, n = 1, 2 and x = r, p are the auxiliary integrals of
Table A1. The mnemonic subscript m = 1 (m = 2) refers to the Fourier coefficient a1 (b1),
and as mentioned, subscripts r and p denote “roll” and “pitch”, respectively.

Appendix A.4. Fourier Coefficients for the Translational-Motion Model

In the translational motion, the FDWL-measured wind as a function of the scan phase,
ftrans(φ) (Equation (28)), is the projection of the apparent wind vector (Equation (27)) on the
LiDAR pointing vector (Equation (12)). The first step towards computing the Fourier coeffi-
cients is, therefore, computation of the apparent wind by substituting translational-velocity
vector Equation (26) and definitional Equation (1) for the wind vector into Equation (27).
The second step is substituting Equation (27) for the measured wind and Equation (12)
for the LiDAR pointing vector into Equation (28), which gives the VAD function for the
measured wind, ftrans(φ).

Finally, the first-order Fourier coefficients atrans
1 and btrans

1 in Equation (29), giving the
HWS translational error, are derived in analytical form by inserting Equation (28) into
definitional Equation (18). This gives

atrans
1 =

1
π

∫ 2π

0
ftrans(φ) cos(φ)dφ =

1
π
· (sin(θ0) · [HWS · (cos(WD)I11

+ sin(WD)I12)− Asu · I11,su − Asw · I12,sw]

+Ah · cos(θ0) · I1,h),

(A5)
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and

btrans
1 =

1
π

∫ 2π

0
ftrans(φ) sin(φ)dφ =

1
π
· (sin(θ0) · [HWS · (cos(WD)I21

+ sin(WD)I22)− Asu · I21,su − Asw · I22,sw]

+Ah · cos(θ0) · I2,h),

(A6)

where coefficients Imn, Im,x, and Imn,x with m, n = 1, 2 and x = su, sw, h are the auxiliary
integrals of Table A1. As mentioned, the mnemonic subscript m = 1 (m = 2) refers to the
Fourier coefficient a1 (b1). The subscripts su, sw, and h denote the “surge”, “sway”, and
“heave”, respectively.

Appendix A.5. Auxiliary Integrals

Table A1. Auxiliary integrals for computation of the rotational- and translational-motion Fourier coef-
ficients given by Equations (A3)–(A6), respectively. Note that not all possible subscript combinations
are simultaneously used.

Coef. g(φ)
∫ 2π

0 g(φ) dφ

I11 cos(φ) · cos(φ− φ0) π · cos(φ0)

I12 cos(φ) · sin(φ− φ0) −π · sin(φ0)

I21 sin(φ) · cos(φ− φ0) π · sin(φ0)

I22 sin(φ) · sin(φ− φ0) π · cos(φ0)

I1,x cos(φ) · sin( fxφ− αx) − fx
f 2
x−1
· [cos(αx − 2π fx)− cos(αx)]

if fx = 1 −→ −π sin(αx)

I2,x sin(φ) · sin( fxφ− αx) − 1
f 2
x−1
· [sin(αx − 2π fx)− sin(αx)]

if fx = 1 −→ π cos(αx)

I11,x cos(φ) · cos(φ− φ0) · sin( fxφ− αx)
1

fx( f 2
x−4)

[ fx sin(φ0)Ax − ( f 2
x − 2) cos(φ0)Bx]

if fx = 2 −→ π
2 sin(αx − φ0)

I12,x cos(φ) · sin(φ− φ0) · sin( fxφ− αx)
1

fx( f 2
x−4)

[ fx cos(φ0)Ax + ( f 2
x − 2) sin(φ0)Bx]

if fx = 2 −→ π
2 cos(αx − φ0)

I21,x sin(φ) · cos(φ− φ0) · sin( fxφ− αx)
1

fx( f 2
x−4)

[ fx cos(φ0)Ax + 2 sin(φ0)Bx]

if fx = 2 −→ π
2 cos(αx − φ0)

I22,x sin(φ) · sin(φ− φ0) · sin( fxφ− αx)
1

fx( f 2
x−4)

[− fx sin(φ0)Ax + 2 cos(φ0)Bx]

if fx = 2 −→ π
2 sin(αx − φ0)

where: being:
x ∈ [r = roll, p = pitch Ax = sin(αx)(1− cos(2π fx))

su = surge, sw = sway, h = heave] + cos(αx) sin(2π fx)
Bx = sin(αx) sin(2π fx)
− cos(αx)(1− cos(2π fx))
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