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“Do not fear to be eccentric in opinion, for every opinion now accepted was
once eccentric.”

Bertrand Russell





Abstract
Invoice factoring has been a popular way to provide cash flow for businesses.
The primary function of a factoring system is to prevent an invoice from being
factored twice. In order to prevent double factoring, many factoring ecosystems
use one or several centralized entities to register factoring agreements. However,
this puts a lot of power in the hands of these centralized entities and makes it
difficult for users to dispute situations in which factoring data is unavailable,
wrongly recorded or manipulated by negligence or on purpose.

This thesis presents our research around the current problems of invoice factor-
ing and our new solutions to solve this process using the blockchain technology.
A public blockchain can keep a permanent, secure, ordered and transparent
record of transactions which are then available for everyone at any time to view
and verify.

In this thesis, we start proposing a base solution, and we gradually enhance
it. In the base protocol, we propose an architecture for invoicing registration
based on a general blockchain. The blockchain platform builds trust between
the parties by executing transactions correctly. We employed a smart contract
to complete the registration process, and prevent double factoring. The smart
contract provides for auditing and dispute resolution in such a way that privacy
is protected and relevant information is always available.

In the second protocol, we add a relayer to our architecture for easier on-
boarding. Only the relayer is required to submit blockchain transactions, and
pay the corresponding fees. Other participants can proxy their transactions
through the relayer, and pay the relayer in fiat money. We also enhance our
identity management and authentication using the concept of verifiable cre-
dentials (VC) in order to better comply with the Know-Your-Customer (KYC)
regulation. In fact, in this architecture, participants use their decentralized
identifiers (DIDs) and the DIDComm protocol for asynchronous and secure
off-chain interactions.

In the final protocol, we greatly enhance our smart contract with respect to
the conditions it checks before registering an invoice factoring. We integrate
non-interactive zero-knowledge proofs and cryptographic commitments into our
solution. With these cryptographic tools in place, we can prevent a special



type of denial of service (DoS) attack and better verify invoice details without
compromising privacy.

Our protocols are very efficient in terms of blockchain costs. In particular, we
only need one transaction to register an invoice factoring, and most of the details
are recorded in low-cost blockchain storage. Our evaluations and comparison
with the literature reveals that our protocols are superior to the related works
with respect to efficiency, security, privacy, and ease of use.
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Chapter 1

Introduction

1.1 Motivation

In business-to-business financial relationships, it is a common practice to pay
for some services or products with some delay, for example, several months
later. In this situation, the provider (namely the seller) might sell her future
receivable finance (invoice from a buyer) with a discount to a factoring entity
(namely the factor, e.g., a bank). Invoice factoring has been a popular way to
provide cash flow for businesses. This financial service is continually growing;
for instance, only in Europe, invoice factoring has increased from less than a
billion in 2010 to 1,6 billion Euros in 2017 [1].

This thesis is based on the research of the problems of the invoice factoring
processes and in providing new solutions using the blockchain technology. This
chapter first presents a high-level introduction to the problems and the main
ideas to solve them. Then, follows by introducing the thesis objectives, a sum-
mary of the contributions and the applied methodology. We also present a list
of scientific publications that resulted from the realization of the thesis and end
with an outline of the thesis structure.

1.1.1 The Factoring Scenario

As we mentioned, a factoring relationship involves three parties [2]: (i) a buyer,
who is a person or a commercial enterprise to whom the services are supplied on

1
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credit, (ii) a seller, who is a commercial enterprise which supplies the services
on credit and avails the factoring arrangements, and (iii) a factor, which is a
financial institution (e.g., a bank) that benefits from the discount on invoice
factoring. Typical interactions between these parties are the following (see
Fig. 1.1):

1. The seller sells some service or product to the buyer.

2. In return, the buyer issues an invoice to the seller with an already agreed
payment due in the future (typically, several months later).

3. The seller wants to get the money earlier and sells the invoice to the
factor.

4. The factor pays the invoice’s cost minus the fee to the seller.

5. When the due date of the invoice is reached, the factor asks the buyer to
settle the invoice.

6. The buyer pays the amount to the factor.

Factor

Seller Buyer
2.  Promise to pay

Figure 1.1: Typical factoring.

1.1.2 Challenges in Invoice Factoring

There are several issues and challenges in the traditional invoice factoring pro-
cess. For example, it often requires several manual steps. Moreover, the infor-
mation is dispersed among different systems and databases [3, 4]. There are
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also trust issues related to factoring. The factor has to trust the buyer to pay
the amount of invoice by the due deadline, and the buyer has to comply with
the factoring contract between the seller and the factor. The seller may inquire
about multiple financial institutions, and they may pay part of the invoice.
However, the seller shall not be able to use the same invoice multiple times and
receive extra money. So, the factor should verify and ensure that an invoice
has not been financed yet. This issue is known as double factoring and it is
the main problem that a factoring system needs to prevent [5]. In particular,
double factoring is possible because there are no insights between factors about
whether an invoice has already been financed or not . In general, the implica-
tion of the buyer is necessary to provide awareness between factors in whether
an invoice has already been financed. Usually, we can assume that the buyer is
a trusted party, since this entity does not have any economic incentives in the
factoring process. This is clearly true when the buyer is an administration or a
government, which is our main use case in this work.

1.1.3 Using Blockchain to Prevent Double Factoring

To prevent double factoring, many ecosystems (e.g., countries) use one or sev-
eral centralized entities to register factoring agreements. However, this puts
a lot of power in the hands of these centralized entities and makes it difficult
for users to dispute situations in which factoring data is unavailable, wrongly
recorded or manipulated by negligence or on purpose. Besides, if there are sev-
eral possible centralized registries for invoice factoring, which is quite common,
another problem arises. In this case, the factoring information is scattered and
it is the responsibility of the buyer, the less interested entity in the factoring
process, to check the records of all possible trusted third parties and make sure
that the payment is made to the correct party.

In this context, a public blockchain seems a natural tool to solve these issues,
because it can keep the record of factoring agreements but also prevent dou-
ble factoring [6]. A distributed ledger can make the record-keeping database
distributed and highly available, as well as logically unique and secure from ma-
nipulations [7]. This way, factoring agreements can be made faster with fewer
errors and still carry the authenticity and credibility of manual contracts.
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Several works have been proposed in the literature to implement new generation
invoice factoring protocols using distributed ledger technologies [1, 5, 8]. How-
ever, none of them is completely able to fulfill the requirements that such a new
generation ledger-based protocol should cope with. Concretely, ledger-based
invoice factoring solutions should operate without a single point-of-failure, pro-
vide privacy and protection of personally identifiable information (PII) and
business information, provide non-repudiation for handling disputes, be de-
centralized and secure against corruption, comply with Know-Your-Customer
(KYC), be cost-effective, and provide an easy user on-boarding.

1.2 Objectives

The main objective of the thesis is to investigate the applicability of Blockchain
technology to the invoice factoring process. For this purpose, three protocol
models have been designed. The first protocol considers an architecture with a
public blockchain and that all the interactions to complete a factoring registry
are managed by a smart contract. All parties can trust the correct execution of
transactions managed by the smart contract because the blockchain platform
guarantees this execution. In the second protocol, the architecture is framed in a
financial context; hence, strict regulatory restrictions apply to it. In particular,
following the Know-Your-Customer (KYC) regulation, the involved parties need
to be well identified to each other, and their agreements have to be persisted
for later audits and law enforcement. In the third protocol, we use public-
key cryptography and digital certificates for better key management. Some
part of the data is symmetrically encrypted before being stored on-chain, while
another part of the data is exchanged off-chain between the parties and we use
zero-knowledge proofs and cryptographic commitments for proving existence.

In order to achieve the previous objectives, the thesis undertakes the following
specific tasks:

• Develop the use case analysis diagram for defining the interaction between
different entities.

• Design protocols for secure information exchange between entities.

• Develop the system architecture.
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• Develop the necessary smart contracts.

• Develop and design the application.

• Do performance evaluations and security analysis of the proposed solu-
tions.

1.3 Summary of contributions

The Protocol in Chapter 3 proposes an invoice factoring registration architec-
ture and its associated protocol based on a public blockchain. Using a public
blockchain as trust anchor significantly helps the factoring registration process,
avoiding manual steps and reducing the power of trusted third parties. In our
protocol, we assume that the buyer is trusted by the seller and the factor, being
our main use case for buyers that are governments and administrations. Buy-
ers make payments off-chain using fiat transfers between bank accounts. As
a consequence, our architecture is a blockchain-based registration system and
not a payment system based on blockchain. As a general requirement, we try
to spare the buyer from as much complexity and responsibility as possible. In
particular, the buyer does not need to have a digital certificate or perform any
digital signatures. He just needs to provide a Web Service with some public
information.

Regarding availability, there are other factoring systems (like [8]) that use dis-
tributed storage systems such as IPFS [9] to provide a certain level of data
availability. In our design, we provide the buyer with the highest possible
availability for the payment data. The highest availability is provided by on-
chain data, which is ultra replicated. So our protocol stores relevant payment
data for the buyer on the blockchain. In particular, the buyer reads on-chain
data to obtain the bank account where he has to make a payment, in case the
invoice has been factored. Obviously, according to our general requirement of
involving the buyer as little as possible, the buyer does not have to send any
transactions to the blockchain, and is just requested to read from it.

Storing data on-chain creates some challenges for our protocol: we need to
provide security and privacy as well as optimizing the number of blockchain
transactions and blockchain storage used by the protocol. We ensure security
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and privacy, by using commitments and symmetric encryption for data stored
on-chain. In particular, symmetric keys are exchanged using an asynchronous
version of the well-known Diffie-Hellman protocol [10]. Regarding optimal on-
chain registration, we manage to register an invoice with only one transaction
and one key-value of storage.

Additionally, we provide evidence for dispute solving between the seller and
the factor. Again, according to our general requirement of involving the buyer
as little as possible, the buyer is not involved in dispute resolutions after the
factoring is completed. As we will demonstrate, only public information and
evidences registered in the blockchain are enough to solve disputes without
further intervention from the buyer.

In the protocol described in Chapter 4, we propose a protocol that is optimal in
terms of cost, and that is built over a public ledger, which is the most reliable,
transparent, and secure type of ledger. Regarding other proposals, we address
the entry barrier related to the fact that users have to manage cryptocurrencies
for interacting with public ledgers. In general, many users, prefer not to use
cryptocurrencies because they are highly volatile, risky, and non-compliant.
While we rely on a public distributed ledger, the parties are not required to
use cryptocurrencies. In particular, we include a relayer in our architecture.
Nonetheless, in our protocol, the buyer is not required to invest too many
resources, nor be heavily involved in the factoring process.

Additionally, the proposed protocol also enables new functionality that is not
available in any other related protocol. Specifically, the protocol allows the
involved parties identify each other in a secure and privacy-preserving manner
to comply with the KYC regulation. They implement self-sovereign identities
making use of self-managed identifiers.

The protocol also leverages the concept of Verifiable Credentials (VCs), which
are credentials issued to self-sovereign identities and grant permission to the
parties to participate in our invoice factoring architecture. Another advantage
of using DIDs is that we can relay on new communications models that are being
developed in this ecosystem, like DIDComm. DIDComm allows us to implement
asynchronous and secure off-chain communications between participants, which
means that a party does not need to be present at the moment that another
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party sends a message. The response can be received, processed, and approved
asynchronously.

In Chapter 5, we propose a final protocol that uses zero knowledge proofs
to prove certain aspects of the invoice factoring procedure without revealing
critical and confidential parts. The protocol is built upon our previous pro-
tocols and incorporates new cryptographic constructs, namely non-interactive
zero-knowledge proofs and cryptographic commitments. The extensions enable
the smart contract to thoroughly verify factoring agreements before registering
them without compromising the privacy of the involved parties.

1.4 Methodology

In this section, we review the general methodology used in our three protocols.

For the design of our ledger-based invoice factoring solution, we followed the
design-science research methodology [11]. Following this methodology, we re-
viewed the literature to better understand invoice factoring services in the first
step. Our study revealed that prevention of double-factoring is the critical
motivation behind such services.

In the second step, the distributed-ledger technology motivated us to search
for a solution based on this technology to completely prevent double-factoring
while satisfying the other requirements. We reviewed several works which im-
plemented new generation invoice factoring protocols using distributed ledger
technologies [1, 5, 8]. However, as we discuss in detail in the subsequent chap-
ters, none of them was completely able to fulfill our objectives (mentioned in
section 1.2.)

In the third step, we designed system architectures, and developed procedures
and communication protocols based on the distributed ledger technology for effi-
cient invoice factoring systems. We made use of proven and solid cryptographic
primitives to make our design secure while being functional and efficient. We
briefly introduce the cryptographic primitives and the technology we use in our
designs in Chapter 2.

We followed an iterative and incremental process in which we started by a
base design, and improved it in two increments (Chapters 4 and 5) until we
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reached our final design. We had our mentioned objectives in mind during
the whole process. Nonetheless, in each iteration, we most focused on specific
objectives. In particular, in the base design (presented in Chapter 3), we focused
on our base blockchain-based architecture, key management, non-repudiation
of the factoring agreement, and implementing the smart contract in the most
efficient way. In the second increment, we focused on identity management and
better user on-boarding. And in the final increment, we used digital certificates
for world-wide adaptability. In addition, we enhanced our protocol with zero-
knowledge proofs in order to let the smart contract better verify a factoring
agreement for both compliance and authenticity before registering it, while
preserving the privacy of the involved parties. The level of the details verified
by the smart contract vastly minimizes the chance that the buyer refuses to
pay in the last stage.

The fourth step was to evaluate our solution and compare it with the related
work. The analyses and comparisons are included besides each version of our
protocol in its respective chapter.

1.5 Resulting publications

The thesis work has yielded several scientific publications in international jour-
nals ranked in the Journal Citation Reports (JCR). The accepted publica-
tions [12],[13] are listed below:

1. Mohammadzadeh, Nasibeh, Sadegh Dorri Nogoorani, and José Luis Muñoz-
Tapia. “Invoice Factoring Registration Based on a Public Blockchain.”
IEEE Access 9 (2021): 24221-24233. Impact Factor:3.9/Q1.

2. Mohammadzadeh, Nasibeh, Sadegh Dorri Nogoorani, and José Luis Muñoz-
Tapia. “Decentralized Factoring for Self-Sovereign Identities.” Electronics
10.12 (2021): 1467. Impact Factor:2.412/Q2.

Now, we are submitting an article to Computers & Security Elsevier Journal
(Impact Factor: 4.438/ Q1) entitled “Enhanced Privacy with Zero-Knowledge
Proofs”
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1.6 Thesis Outline

This section outlines the organizational structure of the thesis document. Specif-
ically, the document is structured in six chapters:

• Chapter 1 of the thesis gives a high-level introduction to the thesis.

• Chapter 2 explains the required background for our protocols.

• Chapter 3 is devoted to the first protocol for invoice factoring registration
based on a public blockchain. This chapter mainly discusses how to apply
blockchain technology to solve the problem of double factoring.

• Chapter 4 introduces the second protocol which is developed in the con-
text of a decentralized factoring system for self-sovereign identities. The
description includes the design of an improved protocol for which we ex-
amine the security and the trust-building between the parties, again fo-
cusing on preventing double factoring.

• Chapter 5 introduces our final protocol that uses zero knowledge proofs to
prove certain aspects of the invoice factoring procedure without revealing
critical and confidential parts.

• Chapter 6 introduces a summary of the results of the thesis, the future
work, and the thesis conclusion.





Chapter 2

Background

In this background chapter, we explained the background of the tools utilized
in our dissertation on three protocols. At first, the Public Distributed Ledgers
section 2.1 expresses the Distributed Ledgers, blockchain networks, Ethereum,
and the advantage of using smart contracts. Then, a description Cryptographic
Primitives section 2.2, including the security mechanism, a brief illustration of
the digital signature, Diffie-Hellmann (DH) Key Exchange protocol, and hash
function that we used on the first and second protocols 3,4. Third, in the
Decentralized Identifiers section 2.3, we presented self-sovereign identities under
complete control of their related entity and DID methods used in the second
protocol 4.

Then, we briefly explain about asynchronous communication protocol in the
DIDComm section 2.4. We briefly define how direct and indirect messaging
work in DIDComm. We utilized DIDcomm technology for the second protocol.
At last, the zero-knowledge proof section 2.5 describes zero-knowledge poof
and the advantage of zk-SNARK. In the final protocol in chapter 5, we use the
zero-knowledge proof.

2.1 Public Distributed Ledgers

The main technology to build a public ledger is a blockchain network. In a
blockchain network, users can run a blockchain node to send their transactions
or use some available node that allows them to do so. Then, in a distributed way,

11
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the blockchain network can create a unique sequence of ordered transactions. In
more detail, the network creates a chain of blocks using a consensus algorithm to
order transactions [14]. A block contains several transactions, and an important
property is that, once the consensus algorithm definitively accepts a block, this
block will be known by all the nodes and it will be impossible to manipulate or
delete it [15].

In a blockchain network, users can own one or more accounts. Accounts are
identified via a public identifier (usually derived from a random public key using
a hash function). New blockchain accounts can be created by simply generating
a pair of asymmetric keys and deriving the account identifier from the public
key. In general, account identifiers are not directly linked with any user data,
so they can be considered pseudo-anonymous identifiers.

Transactions carry the source account identifier and a destination account iden-
tifier, and they are all digitally signed using the private key of the source ac-
count. All the nodes that form the blockchain network see the same state
(also known as world state) that results from executing all the transactions in
order [16].

In most current public ledgers, the main use of blockchain is to create a cryp-
tocurrency. As a result, the ledger state represents the balance of each account,
and transactions are used to transfer the balance from one account to another.
However, blockchain networks can be used to build other generic applications,
like we will do for registering the factoring process. For this purpose, many dis-
tributed ledgers also provide users with the ability to use smart contracts [17].

Ethereum [18] is the most popular public blockchain capable of running smart
contracts, and the platform of choice for many developers for implementing
applications with blockchain [19]. Taking Ethereum as a reference, we can define
a smart contract as code that implements business logic to manage a portion of
the ledger state. Smart contracts are deployed (installed) in the ledger through
transactions. Deployed contracts, like user accounts, also have an identifier.
Then, the portion of the ledger state which is controlled by the smart contract
can be modified by sending a transaction to a function of that smart contract. In
this case, the smart contract makes the corresponding state changes according
to its explicit and immutable logic. Moreover, once a smart contract is deployed
on the blockchain, it can be automatically executed through transactions. The
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correct operation of smart contracts is guaranteed by thousands of nodes all
over the world, so smart contracts cannot be censured or stopped [20].

The main advantages of implementing business logic using smart contracts are
that, on the one hand, the logic is publicly available and auditable, and on the
other hand, the logic is immutable and tamper-proof, which guarantees that the
execution will always be as defined. These advantages can be used to enforce the
terms of an agreement between parties without the need for intermediaries [21].

2.2 Cryptographic Primitives

A number of cryptographic primitives have been used to secure our designs,
and we briefly introduce them next. The interested reader is referred to [22] for
more detail.

Encryption is a security mechanism to make data confidential. In particular,
the data is transformed to a sequence of random-looking bytes that can only be
understood by intended parties that have access to a decryption key. There are
two types of encryption: symmetric and asymmetric. In symmetric encryption,
a secret key is shared between intended parties and is used for both encryption
and decryption. In contrast, in asymmetric encryption, a pair of keys (public
and private) are used. The public key is available to everyone and can be used
to encrypt data, but only one entity owns the private key and can decrypt the
encrypted data.

A digital signature is a security mechanism to provide assurance about the
originality of signed data and confirm the signatory’s informed consent. Digital
signatures are a method of public-key (asymmetric) cryptography. More specif-
ically, the private key is used to generate a fixed-size signature from the data,
and everybody can validate the signature by the corresponding public key. If
a fake private key is used or the data is manipulated, the signature does not
match the data and the public key.

A hash function is a cryptographic primitive to derive a fixed-size digest of its
input data. Secure hash functions (such as SHA-256) are irreversible in prac-
tice, and the original data cannot be guessed from their output value. However,
brute-force guessing attacks are still possible if the length of the input is too
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short. Therefore, special families of hash functions with configurable (sliding)
time-complexity and memory-consumption are used in security protocols to
reduce the vulnerability of online and offline brute-force attacks. These algo-
rithms (such as scrypt [23]) are built around the idea of iteratively applying
the input data and a random number (a.k.a. the salt) to a secure cryptographic
hash function. The salt is used to increase the cost of pre-computation.

Diffie-Hellmann (DH) Key Exchange protocol [10] is the first key exchange
protocol in a public-key (asymmetric) setting. It allows two parties to create a
shared secret (key) without any prior secret sharing and secure it through an
insecure communication channel. In a DH key exchange, participants agree on
a finite cyclic group G of order n and a generator g ∈ G. One party selects a
random number b1 ∈ (1,n) and sends gb1 to the other party. Then, the other
party selects another random number b2 ∈ (1,n) and sends gb2 . The agreed
DH secret is gb1b2 . In order to use DH key exchange securely, the two ends
should authenticate the received values to prevent man-in-the-middle attacks
and apply a key derivation function (KDF) to the agreed DH secret.

2.3 Decentralized Identifiers

Identifiers (IDs), as their name suggests, are used to identify and distinguish
between individuals/entities in the digital world. There are two important
properties that an ID shall have: uniqueness and verifiability. The former
property guarantees that two different entities do not have the same ID, and
the latter one requires that the link between an ID and the related entity must
be provable. Both properties are often provided by relying on a central server
or a third-party called identity provider. Decentralized identifiers (DIDs) [24]
are a means to implement self-sovereign identities (SSIs)—IDs that are under
full control of their related entity. DIDs are designed to allow for a verifiable
and decentralized digital identity system for subjects and to decouple them
from centralized registries, ID providers, and certificate authorities. A DID
has a controller which has full power over the subject of the DID without
requesting permission from any other entity. Other entities may only facilitate
the discovery of information related to a DID.
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A DID is a simple text in form of a URI, e.g., did:bc:1234, consisting of a
URI scheme identifier (did), a DID method (bc), and a DID method-specific
identifier (1234). This opaque string associates a DID subject with a DID
document (DDO) to ensure secure and reliable interactions among subjects.
When a user acknowledges a claim from an issuer, the corresponding DDO is
generated. Each DDO can contain public cryptographic material (e.g., public
keys and authentication mechanisms) or service endpoints in order to provide
a set of mechanisms to reach the subject and communicate with it securely.

A DID method specification explains specific ways for creating, resolving/veri-
fying, updating, and deleting DIDs, and these functionalities are implemented
differently for each DID method. A list of registered DID methods (more than
80) and their specifications can be accessed from Reference [25]. Blockchains
and distributed ledgers, in general, are suitable candidates for implementing the
verifiable data registry required for implementing DIDs. Regardless of the type
of blockchain (public, private, permissioned, or permission-less), specific meth-
ods are proposed. In particular, there are proposals based on Sovrin, Ethereum,
Bitcoin, Tangle, Hyperledger, ICON, Corda, and other blockchains, and some
of them are already operational.

For any identity management solution, privacy is a pivotal component; and
blockchain-based DIDs must be carefully designed so that their immutable and
transparent nature does not impair privacy. The following features of DIDs can
implement privacy by design at the very lowest level of infrastructure and for
building robust, modern, and privacy-preserving technologies:

• Pairwise-pseudonymous DIDs: In addition to being used as well-known
public identifiers, DIDs can be used as private identifiers issued on a per-
relationship basis. In this way, subjects can have multiple pairwise-unique
DIDs that cannot be correlated without their permission and, therefore,
do not compel a subject to have a single DID, like a national ID number.

• Off-chain private data: It is possible, and already implemented in some
existing DID methods, that all private data are stored off-chain and shared
only over encrypted, private, and peer-to-peer connections. Because there
are two risks for storing personally identifiable information (PII) on a
public blockchain, even encrypted or hashed: (1) When the information
is shared with multiple parties, the encrypted or hashed data becomes a



Chapter 1. Introduction 16

global correlation point. (2) When the encryption is eventually broken,
e.g., by a quantum computer, the data will be accessible forever on an
immutable public ledger.

• Selective disclosure: DIDs can open the door for individuals to gain
greater control over their personal data by using DIDs and the greater
ecosystem of Verifiable Credentials [26] based on them: (1) by privately
sharing encrypted digital credentials only with intended parties, or (2)
by using zero-knowledge proofs (ZKP) to minimize data leakage. For ex-
ample, a ZKP enables a user to disclose that he/she is over a certain age
without disclosing his/her exact date of birth.

2.4 DIDComm

DIDComm is an asynchronous communication protocol for establishing secure
and private channels between parties based on their DIDs [27]. DIDComm
supports both centralized and decentralized communication models. Different
parties do not need a highly available web server to be accessible for communi-
cations. Individuals on semi-connected mobile devices can also exchange mes-
sages in a decentralized fashion, and messages can pass through mixed networks,
e.g., an email can connect A to B without a direct connection. DIDComm also
supports HTTPS endpoints which can be used to communicate with standard
HTTP servers over TLS.

All the information required for establishing a DIDComm channel exists in the
DDOs of the involved parties. DIDComm uses public-key cryptography, and
the privacy of communications are preserved in the sense that third parties do
not learn about the content and the sender of a message. Each party utilizes a
software agent to process requests and manage keys. All interactions actually
take place between the two ends’ software agents. An agent can be implemented
in a special desktop/mobile application or a web-based application and be run
inside a standard web browser.

Next, we briefly explain how direct and indirect messaging work in DIDComm.
In the direct case, Alice directly sends a message to the endpoint specified in
Bob’s DDO [28]. In a decentralized and ad-hoc case, the endpoint is Bob’s
agent, who is accessible through the Internet [29]. The confidentiality and
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integrity of the message are guaranteed by typical public-key cryptography and
digital signature. To do so, their agents use the other party’s public key, which
is specified in his/her DDO.

In the indirect case, Alice and Bob cannot connect directly, and Alice uses an
intermediary Relay [30]. She wraps her encrypted message in another message,
encrypts the whole, and sends them to a Relay (direct messaging). The Relay
decrypts and unwraps the message and forwards it to Bob (direct messaging).
Finally, Bob decrypts and recovers the original message.

2.5 Zero-Knowledge Proofs

Goldwasser et al. created the concept of Zero-Knowledge Proofs (ZKPs) [31]. A
ZKP ensures that a prover can persuade a verifier that a statement is authentic
without disclosing any information beyond the statement itself. ZKPs were
revolutionary because for the first time in cryptography, instead of looking for
secure communications in which some of the parties are trusted, the goal was
to establish trust between distrustful parties. The first generation of these
protocols worked the following way: the verifier sent some challenges to the
prover to check that, in fact, he knew the secret information, but the answers
from the prover did not allow the verifier to reconstruct any part of the secret.
Hence, ZKPs not only protect verifiers against malicious provers but also provers
from malicious verifiers that want to obtain information from the prover. Since
their appearance 30 years ago, there has been a lot of research into developing
strong and efficient protocols.

Zero knowledge proofs fulfill the following characteristics:

• Completeness: If a statement is true and both users follow the protocol
rules, then the verifier will be convinced about the validity of the proof.

• Soundness: If the statement is incorrect, the verifier will be unconvinced
of the proof with an overwhelming probability.

• Zero-knowledge: In any case, the verifier does not obtain information
beyond the correctness or incorrectness of the statement.
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Among ZKP systems, non-interactive zero-knowledge (NIZK) protocols are the
most interesting for our scenarios in which we use distributed ledger technology
because the prover can generate all the proof himself without need to inter-
act with the verifier. For this reason, NIZKs are very suitable for blockchain
applications because the verifier can create the proof and send it as part of a
transaction to a smart contract. Then, the smart contract can act as verifier
and perform some action depending on whether the proof is valid or not. Since
we are using a NIZK, the proof can be created in advance by the prover and
the smart contract does not need to generate any challenge.

Among NIZK protocols, the most interesting ones for blockchain are those
ones whose proof size is small and verification time is also short. This type of
NIZK protocols that have succinct proof size and constant verification time exist
and are called zk-SNARKs [32]. Circuit-based NIKZs are quite revolutionary
because they provide a relatively simple interface (the arithmetic circuit) for
developers that want to create privacy-enabled applications and abstract the
complexity of the underlying proving mechanism.



Chapter 3

Invoice Factoring Registration Based on
a Public Blockchain

3.1 Introduction

Invoice factoring is a very useful tool for developing businesses that face liq-
uidity problems. The main property that a factoring system needs to fulfill is
to prevent an invoice from being factored twice. In order to prevent double
factoring, many factoring ecosystems use one or several centralized entities to
register factoring agreements. However, this puts a lot of power in the hands of
these centralized entities and makes it difficult for users to dispute situations in
which factoring data is unavailable, wrongly recorded or manipulated by neg-
ligence or on purpose. In this chapter, we propose an architecture for invoice
factoring registration based on a public blockchain. To solve the aforemen-
tioned drawbacks, we replace the trusted third parties for factoring registration
with a smart contract. Using a smart contract, we record digital evidence of
the terms and conditions of factoring agreements in explicit detail, allowing
auditability and dispute resolution. Relevant information is highly available on
the blockchain while its privacy is protected. The registration is optimal, since
it needs only one blockchain transaction and one key-value storage per invoice
factoring.

In this chapter, we first introduce the proposed architecture, then analyse its
security. Afterwards, we review the related works and compare them with our
proposal.

19
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3.2 Proposed Architecture

In our architecture, we have the three classical entities of the factoring scenario—
namely the buyer, the seller, and the factor—as well as a smart contract de-
ployed on a public blockchain. At a high level, our protocol works as follows
(see Fig. 3.1):

1. The seller submits a request to the buyer for publishing the invoice.

2. The buyer publishes a cryptographic digest of the invoice in a Web Service.

3. The seller negotiates with several factoring companies and chooses a de-
sired factor.

4. The factor verifies the cryptographic digest of the invoice by accessing the
buyer’s Web Service.

5. The seller registers the appropriate factoring agreement in a smart contact
that is available on a public blockchain.

6. The factor queries the smart contact to check that he/she has been se-
lected.

7. Since the factoring decision registered in the smart contact is immutable,
the factor pays the agreed amount (invoice amount minus some fee) to
the seller.

8. When the invoice payment deadline is reached, the buyer checks the smart
contract and notices that the invoice is factored.

9. Finally, the buyer pays the invoice amount to the factor.

Next, we present a detailed explanation of our proposal including our design
goals, assumptions, setup and the detailed protocol.
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Figure 3.1: Our architecture.

3.2.1 Design Goals & Assumptions

In our architecture, we assume that the buyer is trustworthy for the factoring
process. This is clearly true when the buyer is an administration or a govern-
ment, which is our main use case1. In the case of other types of buyers, the
factor would need to check the corresponding creditworthiness before accepting
to factor invoices issued by a specific buyer.

We also assume a public blockchain for our architecture, but we must remark
that we do not use blockchain cryptocurrencies for payments. Our architecture
is a registration system, and the actual payments are made off-chain using fiat
transfers between bank accounts.

All the interactions to complete a factoring registry will be managed by a smart
contract. All parties can trust the correct execution of transactions managed by

1We would like to specially thank Francesc Cubel from the Economics Department of the
Generalitat of Catalonia (Government of Catalonia in Spain) for collaborating with us in the
definition of the requirements for this use case.
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the smart contract because the blockchain platform guarantees this execution.
If the invoice has been factored, the buyer has to pay the invoice to the bank
account of the entity registered by the smart contract. Therefore, all involved
parties have to review the smart contract code and ensure its correctness. The
smart contract address is also part of the negotiation between the seller and
the factor.

Since each transaction that changes the state of a public blockchain has a
cost, one of our main design goals is to have the minimum possible number
of transactions for completing a factoring registry. Actually, we only use one
transaction per invoice factoring and much of the communications between the
different parties are off-chain.

Since the buyer does not have incentives in the factoring process, we prevent him
from sending transactions to the blockchain. As a general rule, in our design, the
factoring process is as less complex and resource-consuming as possible for the
buyer. In particular, in our architecture, the buyer will not need specific digital
certificates for the factoring process and will not perform digital signatures
related to this process. Instead, the buyer will provide a simple Web Service to
give access to some minimal information about his invoices so that the factor
can check the information provided by the seller.

Another issue to take into account is that, when using a public ledger we gain
transparency, but at the same time, everybody has access to the stored data.
In the factoring process, there is sensitive business information which shall be
appropriately protected. For privacy protection, we do not store sensitive data
directly on the blockchain. Instead, some part of the data is symmetrically
encrypted before being stored on-chain; another part of the data is stored off-
chain, and we use cryptographic commitments to provide proofs of existence.
Once an invoice factoring has been registered, we guarantee that:

• There is no possibility of double factoring.

• The relevant parties have access to the relevant data and its proof of
existence.

• There is no way to dispute the factoring once the smart contract has
registered it.
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In addition, to perform the registration process, all the parties will have real
identities (e.g., tax identifiers) and the seller and the factor will also have
blockchain accounts (which are pseudo-anonymous identifiers).

Finally, we assume that an invoice contains the following information: the seller
and the buyer identities, invoice number, issuance date, due payment deadline,
total amount (and currency code), and other details about the services/goods
provided by the seller to the buyer. We assume that the identity of the seller
and the invoice number are enough to uniquely identify the invoice, thus, the
use of unique invoice numbers should be enforced. Besides, the identifier of the
buyer, due payment deadline, and the total amount are necessary for factoring
negotiations. Other information can be added to the invoice without affecting
how our architecture works.

3.2.2 Setup

In this section, we describe our key management scheme for the on-chain data
encryption. We also describe the concept of Blockchain Certificate, and we pro-
vide some preliminary discussions related to our smart contract. We would like
to mention that Table ?? contains the notation used throughout this chapter.

3.2.2.1 Key Management

We use a Diffie-Hellman (DH) key exchange scheme [10] to set up our symmetric
keys for confidentiality. To use the DH key exchange, participating parties just
need to agree on a finite cyclic group G of order n and a generator g ∈ G. DH
is a two party computation protocol that consists in exchanging two messages.
One party selects a random number x1 ∈ (1,n) and sends gx1 to the other party.
Then, the other party selects another random number x2 ∈ (1,n) and sends gx2 .
The agreed DH key is gx1 x2 .

We must stress that we do not depend on any DH-specific implementation
including Elliptic Curve Diffie-Hellman (ECDH) [33] which is commonly used in
the context of blockchain. Moreover, the basic DH key exchange is vulnerable to
the man-in-the-middle attack, so in our protocol, all public DH values are either
explicitly signed or transferred over authenticated channels. On the other hand,
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in the regular use of the DH key exchange, the two parties involved are online,
and they exchange two messages over the network to establish a confidential
session. In our case, we use persistent storage to allow an asynchronous key
exchange in which one party provides a message that will be accessed by the
other party in the future. As we explain later, depending on the key being
created, the persistent storage used is either the blockchain or the Web Service
provided by the buyer. Finally, we use a Key Derivation Function (KDF) to
derive secure and random symmetric keys based on the DH-agreed key.

3.2.2.2 Blockchain Certificates

Our architecture is framed in a financial context and hence, strict regulatory re-
strictions apply to it. In particular, following the Know-Your-Customer (KYC)
regulation, the involved parties need to be well identified to each other, and
their agreements have to be persisted for later audits and law enforcement.

In order to comply with the KYC regulation, the seller and the factor will
register the correspondence between their real identity (IDA) and their pseudo-
anonymous identifier in the blockchain (@A). We use the term Blockchain
Certificate to refer to these links between real identities and pseudo-identities.
In our architecture, we rely on the buyer to create these links, because the buyer
is supposed to pay to the factor, and therefore, we can assume that factors can
trust buyers to certify sellers.

On the other hand, by design, our protocol avoids the buyer having to digitally
sign the Blockchain Certificates or any other data. Our Blockchain Certificates
are privately used and are only exchanged between a seller and a factor after
they intend to make an agreement. In addition, an entity can have multiple
Blockchain Certificates with different blockchain addresses to have additional
protections from linking attacks.

Let’s consider that the buyer is going to issue a Blockchain Certificate CA for
some entity A. The certificate will link the real identity of A (IDA) with one of
his/her identities in the blockchain (@A). To create the Blockchain Certificate,
A chooses a random number x1 ∈ (1,n), and sends gx1 to the buyer. The buyer
chooses another random number x2 ∈ (1,n) and derives a symmetric key KAB



Chapter 3. Invoice Factoring Registration Based on a Public Blockchain 25

using a deterministic KDF:

KAB = KDF((gx1)x2)) (3.1)

Next, the buyer calculates a pseudo-anonymous identifier for A (PA) as follows:

PA =MAC(KAB, (IDA,@A)) (3.2)

Notice that without further information, the pseudo-anonymous identifier PA

does not reveal any information about IDA or @A. Then, the buyer publishes
PA and gx2 through his Web Service:

B→WS : PA, g
x2 (3.3)

The value of x2 is not needed anymore and the buyer can discard it, if de-
sired. Now, A can provide the tuple (PA,x1, IDA,@A) to anyone interested to
verify his/her identity with the help of the buyer. We define this tuple as the
Blockchain Certificate of A (CA):

CA = (PA,x1, IDA,@A) (3.4)

The verification of a Blockchain Certificate involves using the PA in the certifi-
cate as the key in the buyer’s Web Service to obtain gx2 . To accept the identity
of A, PA is recalculated from (gx2 ,x1, IDA,@A) which should match the PA in
the certificate.

Unlike regular X.509 certificates, our certificates do not require digital signa-
tures. Instead, to check the validity of the certificate, some information has
to be retrieved from the Web Service. Moreover, our certificates are private,
meaning that they are only exchanged between intended parties.

On the other hand, for better anonymity and prevention of linking attacks,
each entity can have multiple Blockchain Certificates (with different blockchain
addresses). Regarding the role of Blockchain Certificates in our protocol, they
are needed for the seller and the factor. As mentioned, sellers and factors can
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obtain as many Blockchain Certificates as desired:
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where j and l are the indexes of particular certificates. The buyer has to publish
the related parameters of these certificates in the Web Service:
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A particular invoice will be factored with one particular pair of Blockchain
Certificates of the seller and the factor. For the sake of simplicity, from now
on we will simply denote this pair of certificates as (CS ,CF). As we show later,
we follow a similar scheme to publish invoices and factoring information while
protecting privacy.

3.2.2.3 The Smart Contract

Our protocol is built around a smart contract, which is deployed on a public
blockchain. The smart contract will hold registration data for a set of factored
invoices. No one (including its deployer) will have special powers over the
contract. In particular, no one will be able to interfere with the smart contract
operation or alter any data of the set of factored invoices.

We would like to emphasize that our architecture is designed to operate on
a public blockchain. Public blockchains have costs, so, our protocol needs to
be cost-efficient. In general, there are three different places in which data is
stored on the blockchain (see Fig. 3.2): (i) transaction input data, (ii) key-value
storage, and (iii) transaction output logs. Each of these places has a different
purpose and a different cost.

The transaction input data is the data in the transaction that provides the
inputs to execute the smart contract logic for the current transaction. The
transaction input data is very cheap compared to the key-value storage, which
is by far the most expensive storage. The key-value storage provides storage to
the smart contract that persists between transactions. The key-value storage
is part of the current blockchain global state and as such, it can be used by
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Figure 3.2: Summary of smart contract storage possibilities.

the smart contract logic for the execution of future transactions. Finally, the
transaction output logs are data produced after a transaction is executed 2.

We would like to highlight that the transaction input data and the transac-
tion output logs are part of the blockchain data, and as such, they are highly
available and immutable. However, these data are not part of the blockchain’s
current global state which means that blockchain nodes do not need to keep
these data in their current state once the transaction has been executed. This
is the reason why these data are cheap to store and also the reason why the
data of a log from a previous transaction is not available to the logic executing
a posterior transaction.

In our protocol, we use a combination of the previous three storage places to
provide an efficient implementation while preserving the architecture’s privacy
and security. In particular, we only use one persistent key-value slot to prevent
double factoring. The factoring data is recorded using a transaction output
log. We must mention that the data in transaction output logs typically have
indexed fields that allow external entities to do quick searches based on these
index fields. In our protocol, we use a pseudo-anonymous identifier for the
invoice as an indexed log field to speed up the search of the associated factoring
data.

The data registered by the smart contract will provide high availability for
relevant data that the buyer needs to know, like the factor’s bank account. Since
a bank account is sensitive data, we encrypt this data before storing it on-chain.
In addition, we store a proof of the summary of the factoring agreement in the
form of a cryptographic commitment. Storing the summary of the factoring

2For example, the transaction logs in Ethereum smart contracts programmed with Solidity
are implemented by emitting events (see https://docs.soliditylang.org/en/v0.6.7/contracts.
html#events for further information).

https://docs.soliditylang.org/en/v0.6.7/contracts.html#events
https://docs.soliditylang.org/en/v0.6.7/contracts.html#events
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agreement on-chain can be used to handle possible future disputes between the
seller and the factor. This agreement summary has to be signed by both the
seller and the factor.

Finally, we would like to mention that our smart contract stores the blockchain
addresses of the seller and the factor on-chain as part of the factoring registra-
tion. To do so, we use the public key recovery mechanism available in signa-
ture schemes like the Elliptic Curve Digital Signature Algorithm (ECDSA) [33],
which is used by many blockchains (e.g., Bitcoin-like blockchains and Ethereum).
The public key recovery mechanism allows, given a message m and the signer’s
signature on that message σA

m , to recover the public key pkA of the signer A.
In the case of blockchain, from the public key we can also get the blockchain
address (account) of the signer. In our protocol, as we will show, we use trans-
actions that include signatures using blockchain identities of both the seller and
the factor, and we will recover their blockchain addresses from these signatures.

In the following sections, we provide the details of the complete factoring process
using our protocol.
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Figure 3.3: Our protocol.
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3.2.3 Phase 1: Registration

The process of factoring a specific invoice starts with the registration phase and
it is followed by factoring and payment phases. Each phase consists of several
steps, which are depicted in Fig. 3.3 and explained subsequently.

At the beginning of the registration phase, the seller asks the buyer to publish
invoice information through his Web Service. The publication is quite similar
to the way Blockchain Certificates are published, except that additional infor-
mation related to the factoring process is required. To start the process, the
seller selects an invoice I and performs the following steps:

1. The seller chooses a random number i1 ∈ (1,n). Then, the seller sends the
following signed request to the buyer through a secure channel:

m = (CS , I , g
i1) (3.8)

S→ B :m,σ@S
m (3.9)

2. The buyer checks that the invoice has not been published before (ac-
cording to IDS and I). In such case, the buyer checks the signature and
proceeds by selecting a random number i2 ∈ (1,n) and computing KSB

and PI as follows:

KSB = KDF((g i1)i2) (3.10)

PI =MAC(KSB, (CS , I ,aI ,dI ,@C)) (3.11)

where aI is the invoice amount, dI is the invoice payment deadline, and
@C is the blockchain address of the smart contract. PI is used as the
pseudo-anonymous identifier of the invoice. Notice that without further
information, PI does not reveal any information about the invoice details.

2a. Then, the buyer selects another random number b1 ∈ (1,n) and publishes
the following information through his Web Service:

B→WS : PI , g i2 , gb1 (3.12)

The value of i2 will not be needed anymore and can be discarded. How-
ever, the buyer does need to keep b1. This is because the factor will store
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his/her International Bank Account Identifier (IBAN) for the payment in
a symmetrically encrypted manner on-chain. In more detail, the selected
factor will choose a random number b2 ∈ (1,n) and provide gb2 on-chain
to establish a symmetric key with the buyer (KFB).

2b. Optionally, the buyer might reply to the seller with the same information
published in the Web Service. This reply can be omitted and let the seller
read this data directly from the Web Service.

As already mentioned, the seller may have multiple blockchain addresses for
better anonymity. However, an invoice can be registered only with one of these
addresses (notice that for this purpose the address used by the seller is included
in the computation of PI ). We define the Invoice Certificate (CI ) as:

CI = (PI , i1,CS , I ,aI ,dI ,@C) (3.13)

Also note that:

• The buyer does not need to perform digital signatures, he only does small
computations once per invoice.

• The seller authenticates the Web Service (buyer) before sending the re-
quest, and the connection is secured by HTTPS, thus preserving her pri-
vacy.

• Only a MAC and two public DH values are published for better privacy
protection. Privacy is protected because an external party cannot obtain
any identity agreed with the buyer by just having access to the DH public
values. This protects the privacy of the corresponding sellers, factors and
invoices.

3.2.4 Phase 2: Factoring

This phase starts with the seller contacting multiple factors over an out-of-band
but private channel to negotiate and compare the different offers and conditions.
The seller should naturally provide her invoice details, including invoice number
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(I), the total amount of the invoice (aI ), and payment due deadline (dI ) to the
possible factors. Then, according to the received offers, the seller selects the
best factor to continue with.

The selected factor must provide his/her certificate CF to the seller. Using
the buyer’s Web Service, both the seller and the factor must verify that the
certificates from the other party are valid.

time
d

I
d

R

F

registration 
not allowed 
(e.g. 4 days)

factoring
registration

Δ
P

(e.g. 5 days)

payment
by factor

payment
by buyer

F

Figure 3.4: Timestamps and periods for factoring registration and payment.

The factors also specify their offered amount for the invoice (aF = aI − fee) and
two time parameters ∆F

P and dFR (see Fig. 3.4):

• ∆F
P : maximum period of time that the factor can last in paying the seller,

after the factoring is successfully registered by the smart contract.

• dFR: deadline for completing the factoring registration. This deadline is
important and it is enforced by the smart contract. It should be long
enough to let the seller register the invoice factoring. Since the seller is
the most interested party in doing the factoring, she will probably take
the decision and register the factoring as soon as possible. However, the
deadline set by the factor should be far enough from the due deadline of
the invoice to prevent the seller from performing a late registration and
trying to get paid by both the buyer and the factor. E.g., if invoices are
paid at 90 days, the deadline could be set by factors, for example, to 4
days before the invoice due deadline:

dFR = dI − 4 days (3.14)

In this case, dFR = 4 days is far enough from the invoice due deadline, so
that when the buyer reads the data in the blockchain, the data is stable:
the invoice is either factored or cannot be factored, and there is no pos-
sibility of double factoring. If dFR is too close to the invoice due deadline,
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it could happen that the buyer pays to the seller, the seller registers the
factor in the smart contract and the factor reads the blockchain and also
pays the seller. In this case, we assume that an honest seller is not proba-
bly going to factor an invoice just 4 days before the date in which he can
receive the total amount of the invoice. By the way, this is obviously a
configurable parameter.

On the other hand, the messages exchanged between the seller and the selected
factor for registering the factoring are the following:

3. Using a secure channel (e.g., HTTPS), the seller sends CI (which includes
her associated CS) and her bank account number (IBANS) to the selected
factor:

S→ F : (CI , IBANS ) (3.15)

4a. Using the Web Service, the selected factor verifies CI , which includes the
verification of the embedded CS . If verifications are correct, the factor
is sure about the invoice details, including the address of the factoring
smart contract. Then, the factor checks the smart contract to make sure
that the invoice has not been already factored (if the invoice has been
factored the process is obviously canceled.)

4b. The factor chooses a random number b2 ∈ (1,n) and uses it to generate
a symmetric key encryption KFB that will be used to store his account
number (IBANF) on-chain and in an encrypted manner to receive the
invoice amount from the buyer:

KFB = KDF((gb1)b2) (3.16)

Enc(KFB, IBANF) (3.17)

We define the agreement data (A) between the factor and the seller as
follows:

A = (CI ,CF ,aF ,∆
F
P , IBANS ) (3.18)

The factor sends the following data to the seller:

F→ S : (A,msg,σ@F
msg ) (3.19)
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where msg is defined as follows:

msg = (PI ,dFR,Enc(KFB, IBANF), g
b2 ,h(A)) (3.20)

Notice that the factor produces the signature over msg using his blockchain
address @F. This is because the smart contract also checks this signature
before registering the factoring.

5a. The seller checks that σ@F
msg is valid, that the agreement A is correct

(including the verification of CF), and that the hash of the agreement
h(A) is also correct. The seller records the signature for possible later use
as digital evidence.

5b. Using her blockchain address @S, the seller sends a signed transaction tx

to the smart contract:

S→ C : (tx,σ@S
tx ) (3.21)

where:

tx = (msg,σ@F
msg ) (3.22)

Notice that the transaction contains the signature of the factor and also
the signature of the seller and thus, it is explicitly approved by both
parties.

6. The smart contract is designed to ensure the security of the system and
to provide an efficient on-chain storage. To do so, the smart contract
processes the transaction (tx) as follows:

• From the transaction signature (σ@S
tx ), it recovers the blockchain

address of the seller (@S).

• From the signature embedded in the transaction (σ@F
msg ), it recovers

the blockchain address of the factor (@F).

• From the msg , it gets the deadline for registration set by the factor
(dFR) and verifies that the current blockchain time is smaller than the
registration deadline:

registration.timestamp ≤ dFR (3.23)
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The registration.timestamp is obtained from the timestamp included
in the block that contains the factoring transaction.

The smart contract needs to register the following data related to the
factoring:

• @S: blockchain address of the seller, which is recovered by the smart
contract from the transaction signature.

• @F: blockchain address of the factor, which is recovered by the
smart contract from the signature of the message embedded in the
transaction.

• PI : pseudo-anonymous identifier of the invoice.

• gb2 : it will be retrieved by the buyer to compute KFB.

• Enc(KFB, IBANF): symmetrically encrypted account number of the
factor that will be retrieved by the buyer to make the appropriate
payment. Note that by storing this value on-chain we get the high
availability and transparency of blockchain while preserving privacy.

• h(A): fingerprint of the factoring agreement. This value can be used
by the seller or the factor as a proof of existence in case of dispute.
Note that before storing this value, the signature of both the seller
and the factor are checked by the smart contract.

7. Using h(@S,PI ) as index for the log in the smart contract, the factor can
get the associated registration data and verify whether the invoice has
been assigned to himself or not.

We efficiently store the data by using only one key-value per invoice in the
storage of the smart contract as follows. We use H = h(@S,PI ) as the key
of the registry. Note that @S and PI are known to the buyer, so the buyer
can compute this hash and use it as key to find the factoring registration in the
smart contract. Associated with the key, the smart contract stores the following
value (V ):

V = h(gb2 ,Enc(KFB, IBANF),@F,h(A)) (3.24)
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So, the smart contract will contain the following key-value mapping:

H⇒V (3.25)

Obviously, the key-value mapping of the smart contract storage can only be set
if it was not previously set to a previous value, which prevents double-factoring.

Finally, we need the factoring registration data to be available for the parties:
the buyer for paying the factor, and the seller and the factor to have evidence
proofs in case of dispute. To do this efficiently, we store this data as a smart
contract output transaction log after the successful invoice registration:

log (H, gb2 ,Enc(KFB, IBANF),@F,h(A)) (3.26)

H is defined as an index field for quick search.

3.2.5 Phase 3: Payment

In the third phase, after checking the registered information by the smart con-
tract, the factor pays aF to the seller. Later, the buyer will pay the complete
invoice amount aI to the factor.

8. The factor proceeds to pay aF to the account of the seller (IBANS). This
has to happen before the agreed payment deadline, that is, not later than
registration.timestamp +∆F

P .

9a. When the deadline of an invoice (dI ) expires, the buyer has to query the
smart contract to figure out whether the invoice has been factored or
not. The buyer knows the address of the smart contract (@S) and the
pseudo-anonymous identifier of the invoice (PI ). Using these two values,
the buyer computes the hash H = h(@S,PI ) and queries a blockchain node
to obtain the log with index field H of the smart contract in address @S.
From the log, the buyer obtains Enc(KFB, IBANF) and gb2 . Using gb2 and
the value b1 that the buyer has stored, he computes KFB and decrypts
the bank account of the factor (IBANF).

9b. Finally, the buyer pays the factor using the IBANF decrypted in 9a.
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3.3 Security Analysis

Our analysis is divided into several subsections, specifically, the security of
Blockchain and Invoice Certificates, communications security, data manipula-
tion attacks, replay attacks, confidentiality and privacy, and fraud handling.
In each subsection, we explain security requirement(s), possible attack(s), and
our mitigation method(s).

3.3.1 Blockchain and Invoice Certificates

The contents of the Blockchain and Invoice Certificates are not published, and
their owners may hand them to other parties at will. Every Certificate is
protected by a MAC, which is generated using a fresh DH-generated symmetric
key. For a verifier to ensure the authenticity of a Certificate, the MAC is
queried over an authenticated HTTPS channel. Therefore, as long as the MAC

and HTTPS are secure, the Certificates are secure as well.

3.3.2 Communications’ Security

Communications between the Web Service of the buyer and the seller or the
factor are conducted over HTTPS. Therefore, the integrity and confidential-
ity of the requests and responses are guaranteed. A traditional web certificate
authenticates the server-side (Web Service), and the messages from the other
side are protected by explicit signatures when necessary. These signatures as-
sure the interested party that the other side cannot deny having generated a
message.

3.3.3 Data Manipulation and Repudiation Attacks

All data stored on a blockchain are publicly readable; therefore, confidentiality
and privacy are more of a concern in comparison to traditional systems. We do
not store any information that can be used to identify or trace the seller or the
factor on the blockchain. A pseudo-anonymous identifier is used for the seller
and the invoice, and other information is encrypted. An asynchronous version
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of the DH key exchange is used to generate the encryption keys, and a digital
signature is provided by the factor for non-repudiation.

The blockchain offers a unique security feature that protects stored data from
malicious manipulation. To be more precise, the data can only be updated or
deleted by predefined smart contract methods. If an attacker aims to disrupt
the network by taking down one or only a small portion of the network, it will
not succeed. This feature makes blockchain technology suitable for transaction
data, determining which data is valid or tampered with, and can create a net-
work of untrusted participants. Moreover, once the smart contract registers an
invoice, this fact can never be changed.

In addition to the smart contract, the buyer also publishes information. In this
respect, sellers and factors in our architecture must trust that the buyer will
not publish false information. The information is communicated through secure
channels to different parties and cannot be manipulated at the connection level.
For non-repudiation purposes, we require the factor and the seller to sign their
messages digitally.

3.3.4 Confidentiality and Privacy

Concerns about confidentiality and privacy of financial data are significant in
our use case. All private information is transferred over HTTPS or explicitly
encrypted. Encryption keys are not shared between multiple parties, and only
the intended party can decrypt the information. Pseudo-anonymous identifiers
are used in communications and stored on the blockchain to better preserve the
involved party’s privacy. The seller and the factor can use a fresh blockchain
address in each factoring contract to prevent linking attacks.

The buyer in our architecture is not involved in the negotiations between the
seller and the factors. In particular, the buyer cannot predict if the seller will
factor her invoice or not (before agreement about payment conditions and other
invoice details). Moreover, our architecture protects the factors from each other
as they do not have access to their competitors’ conditions (before and after
finalizing the factoring contract). Factors are not notified if the seller applies
to multiple factors to obtain a better bid for the invoice.
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3.3.5 Dispute Handling

We must remark that our registration protocol is not secure against malicious
buyers because if the buyer publishes false information, this can not be disputed
by the seller or the factor. As a result, the seller and the factor need to trust
the buyer. A malicious buyer, for example, may not pay the seller or the factor.
A malicious buyer may also scam factors by creating a fake seller and a high
amount of non-existent invoices. Then, the fake seller receives the payments
from the factors but the corresponding payments are not made by the malicious
buyer. In case the buyer is not trustful, some mechanism to enforce good
behavior must be used (like a reputation system as in Guerar et al.[8]).

On the other hand, a seller may be concerned about a malicious factor that
may refrain from payment. In this case, the seller reveals the message sent by
the factor in Eq. (5.2.5) to a judge. Then, the following steps are sufficient to
handle the case:

1. Verification of Invoice Certificate (CI ).

2. Verification of the agreement terms (A).

3. Verification of the address of the seller (CS).

4. Verification of the address of the factor (CF).

5. Signature verification: the judge has all the required information about
the factoring agreement and can verify the signature of the factor (σ@F

msg )
on this information.

6. Determining h(@S,PI ) (according to CI ).

7. Retrieval of registration information from the smart contract and its logs.
The address of the contract is certified by CI and the judge has the sig-
nature of the factor on it.

8. Trial: The factor will be doomed according to non-repudiation of digital
signatures, and tamper-proof evidence from the smart contract.

A factor may also be concerned about the case in which the buyer pays the
amount to another bank account. In this case, the factor reveals b2 (in Eq. (4.8))
and CI to a judge. Then, the following steps are sufficient to handle the case:
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Table 3.1: Comparison with close related work.

Proposal Buyer
tasks Currency Responsible

for the cost
Factoring

negotiation Availability Immutability Privacy

DecReg [5] operating a node of a
private blockchain fiat shared off-chain private

on-chain
private

blockchain
private
network

Battaiola et al. [1] operating a node of a
private blockchain fiat shared off-chain private

on-chain
private

blockchain commitments

Guerar et al. [8]
sending 3 transactions

per factoring to a
public ledger

crypto shared on-chain IPFS public
blockchain

commitments and
encryption

Our Proposal publishing data
by a web service fiat seller off-chain public

on-chain
public

blockchain
commitments and

encryption

1. Verification of Invoice Certificate (CI ) from the Web Service of the sus-
pected buyer.

2. Verification of the address of the factor (CF).

3. Verification of the address of the seller (CS).

4. Key confirmation: uses b2 to verify correctness of gb2 and KFB (according
to Eq. (4.8).) The judge can infer that the buyer could also calculate KFB

using b1.

5. Determining h(@S,PI ) (according to CI ).

6. Retrieval of registration information from the smart contract and its logs.
The address of the contract is certified by CI .

7. Verification of factor’s bank account: use of KFB to decrypt Enc(KFB, IBANF).

8. Resolution: the case can be resolved and the culprit can be detected
according to the bank account logs.

3.4 Comparison with the Related Works

In this section, we describe the closest related works available in the literature
that propose factoring solutions using distributed ledgers. Then, we compare
these works with our proposal and provide a comparison in Table 4.1 according
to the following parameters: buyer tasks, currency, who pays the cost of factor-
ing registration, factoring negotiation, availability, immutability and privacy.

The first of these related systems is DecReg [5]. DecReg is a framework for
preventing double factoring; that has been used by the Netherlands financial
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industry and is implemented over a private blockchain. In DecReg, a Central
Authority (CA) controls the access to the blockchain and prevents sensitive
information from being accessed by uncertified parties. The main drawback
of DecReg is that its CA is a centralization point and a single point of failure
or corruption. This matter makes it vulnerable to double factoring attacks in
case the CA is compromised. For example, if compromised, the CA can deny
access of a factor to the network and subsequently, the factor cannot verify if
an invoice is already factored or not. Besides, the CA prevents access to the
confidential data solely from entities outside the private blockchain network.
Data is not encrypted, so entities inside the network have access to these data,
and as a result the privacy of the participants is not fully preserved.

In DecReg, unlike in our system, the buyer has to operate a node in the private
blockchain, receive credentials from the CA, etc. So he is quite involved in
the factoring process. Regarding dispute resolution, if an argument between
a seller and a factor takes place, in DecReg, the signatures over transactions
are the only proof that can be used. The main problem of this approach is
that transactions are not publicly available and the system relies on the CA for
managing access to the system. On the contrary, in our system, the agreement
commitments and the payment data is publicly registered and accessible to the
appropriate parties. In DecReg, availability is provided by the network of the
private blockchain, which arguably, provides much fewer data replication than
a public blockchain. Finally, it is worth mentioning that like our proposal,
DecReg is a registry system in which actual payments are made in fiat.

Battaiola et al. also propose a system for registering factoring agreements while
preventing double factoring and preserving the privacy of involved parties [1].
The architecture proposed in [1] uses a distributed ledger as the source of truth
where all the parties send their private inputs in the form of commitments to
protect the integrity and confidentiality of factoring data. While the idea of
using commitments to protect privacy is similar to what we do in our protocol,
their protocol is designed to work over a private blockchain network (in partic-
ular, Hyperledger Fabric). Authors claim that they can replace HyperLedger
Fabric with any other ledger without affecting security. While it is possible,
the problem of the protocol in [1] is that it is not cost-optimized. Unlike our
protocol, their protocol is not optimized in terms of (i) the number of transac-
tions required to complete a factoring registration (each party needs to send a
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transaction to the ledger), and (ii) the amount of persistent storage which is
needed to record factoring agreements. In addition, regarding the buyer, his
involvement in the factoring process is quite high since he needs credentials in
the Hyperledger Fabric network and not only queries the ledger state but also
signs and sends transactions.

In [1], the data availability and immutability depends on the security provided
by the private blockchain network. A more secure private network involves
more nodes and more entities participating, which means a higher operation
cost. In particular, in the paper, it is not defined who has to account for
the cost of operating the Hyperledger Fabric network. In our protocol, the
data availability and immutability is provided by a public network. We do not
register only the commitments of factoring agreements, but also payment data
on-chain with symmetric encryption using an asynchronously exchanged key
between interested parties. This provides to our protocol the highest possible
degree of availability and immutability for relevant payment data. On the
other hand, in our protocol, the seller (the most interested party) is in-charge
of paying the cost of factoring registration. Furthermore, this cost is optimally
minimized to only one blockchain transaction that uses just one key-value of
blockchain storage. Finally, it is worth mentioning that [1], similar to our
proposal, is concerned about creating a practical registry system in which actual
payments are made in fiat.

Recently, Guerar et al. have proposed a factoring system using distributed
ledger technology [8]. Like our proposal, Guerar et al. use a public blockchain
(Ethereum). However, they make quite different assumptions from the ones
that we have. In first place, they do not consider buyers as trusted. Making
this assumption leads them to build a system that needs to measure the reputa-
tion of the buyers based on their past behavior. To build the reputation system,
they rely on their platform to assign a stable identifier to each buyer. However,
this makes the platform defined in [8] a trusted party. The platform is trusted
because it is in charge of creating the stable accounts for reputation, so, if the
platform does not correctly certify real identities of buyers, the security of the
system is jeopardized. In our protocol, we assume that the buyer, who is the
final payer of the invoice, is trustworthy.

Another assumption that is different regarding our system is that Guerar et al.
propose an open environment where factors are not only banks and financial
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companies but any investor can register into their platform. Furthermore, fac-
toring negotiation is done with an on-chain auction. While interesting, this is
not suitable for our type of buyers, that, in particular, can be governments or
administrations that need to comply with regulations and identify themselves
the possible factors. On the other hand, their system seems to be defined more
for products than for services, because authors mention that the invoice fac-
toring negotiation phase starts when transported goods are received. On the
contrary, our system is general in this regard and invoices can be created for
either goods or services.

In [8], data availability is provided by IPFS. While IPFS can provide a decent
level of availability, it is not as high as the one provided by on-chain data
and this is important in case the buyer needs to access the payment data with
a virtually zero down-time (as in our protocol). Finally, since they do the
factoring negotiation on-chain, in [8] the number of transactions required to
complete an invoice factoring is much higher than in our protocol. In particular,
there is a minimum of seven transactions to complete a factoring. But, the main
drawback is that the buyer, who in general does not have many incentives in
the factoring process, has to perform three transactions in the public ledger
per invoice factoring. In particular, the buyer has to perform one transaction
to accept the invoice and pay the shipping, another transaction for confirming
the delivery of the goods, and a final transaction is used for paying the entire
amount of the invoice to the corresponding factor.

3.5 Conclusions

In this chapter, we proposed an architecture for factoring registration using
a public blockchain. Our protocol is designed to minimize the buyer’s in-
volvement in the factoring process. The buyer is just supposed to publish a
hash of invoice details for verification of factors, and the rest of the process is
implemented by sellers and factors having on-chain and off-chain communica-
tions. We use a smart contract to register invoice factoring details on-chain
in a very efficient manner and to prevent double factoring. At the same time,
we use pseudo-anonymous identifiers, symmetric encryption for on-chain data,
and cryptographic commitments to increase the sellers’ and the factors’ privacy
protections. The registered information is later used by the buyer to pay the
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corresponding factor, and it can also be used as digital evidence for dispute
resolutions. The comparison with the related work demonstrated that, while
there are other proposals in the literature, none of them are tailored to our
requirements or provide a solution as optimal as ours.

In the following chapter, we introduce another party, a relayer, to facilitate
interactions with the blockchain. In addition, we improve our identity manage-
ment to better respect the Know-Your-Customer rule, in a decentralized and
privacy-respecting manner.





Chapter 4

Decentralized Factoring for
Self-Sovereign Identities

4.1 Introduction

Distributed ledger technology is suitable for implementing the platform to reg-
ister invoice factoring agreements and prevent double-factoring. Several works
have been proposed to use this technology for invoice factoring. However, cur-
rent proposals lack in one or several aspects, such as decentralization and se-
curity against corruption, protecting business and personally identifiable in-
formation (PII), providing non-repudiation for handling disputes, Know-Your-
Customer (KYC) compliance, easy user on-boarding, and being cost-efficient.
In this chapter we build upon our previous protocol introduced in Chapter 3,
and add a new party to our architecture, namely the relayer, to address the
entry barrier that the users have due to the need of managing cryptocurrencies
and interacting with the public ledger. Moreover, we leverage the concept of
Verifiable Credentials (VCs) for KYC compliance, and allow the parties to im-
plement their self-sovereign identities by using decentralized identifiers (DIDs).
DIDs enable us to relay on the DIDComm protocol for asynchronous and secure
off-chain communications.

The rest of this chapter is organized as follows: first we propose our enhanced
architecture. Then, we analyze our improved protocol from several security
aspects, compare it to the related work, and study a possible business use case.

45
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We conclude this chapter by introducing and studying a proof-of-concept (PoC)
implementation of our protocol.

4.2 Proposed Architecture

In this architecture, we have the three classical entities of the factoring scenario:
the buyer, the seller, and the factor. Additionally, we have a smart contract
deployed on a public distributed ledger and a relayer that facilitates sending
the transactions to the ledger. At a high level, our protocol works as follows:

• The seller submits a request to the buyer for registering an invoice.

• The buyer issues a cryptographic digest for the invoice.

• The seller negotiates with several factoring companies and chooses a de-
sired factor.

• The factor verifies the cryptographic digest of the invoice by querying the
buyer, and then sends the signed factoring agreement to the seller.

• The seller uses a relayer to register the agreement in a smart contract
that is available on a public ledger.

• The factoring company queries the smart contract to ensure that it is
actually selected as the factor.

• Since the factoring decision registered in the smart contract is immutable,
the factor pays the agreed amount (invoice amount− fee) to the seller.

• When the invoice payment deadline is reached, the buyer checks the smart
contract and notices that the invoice is factored.

• Finally, the buyer pays the invoice amount to the factor.

Next, we present a detailed explanation of our proposal, including our design
goals, assumptions, and the detailed protocol.
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4.2.1 Design Goals & Assumptions

Our basic goals and assumptions are the same as the ones in Chapter 3. To be
brief, we focus on their differences.

An important obstacle against the adoption of distributed applications is the
need of having cryptocurrency to pay the transaction fees. Managing cryp-
tocurrencies may be difficult for institutions and companies because of their
high volatility, financial risk, and regulation issues. This may lead to a situa-
tion in which parties refuse to use cryptocurrency and, hence, cannot interact
directly with smart contracts.

To overcome this problem, we use a relayer in this architecture, as shown in
Figure 4.1. A relayer is a facilitator that sends the transactions on behalf of
other users. The relayer will pay the fees, but it is not a trusted party. In more
detail, this means that the seller is who authorizes the factoring registrations,
and the relayer is an entity to merely forward and pay the transaction fee. The
advantage of this architecture is that the seller can pay the relayer with classical
payment methods (e.g., credit cards, bank transfer, etc.).

Public 
Blockchain

User

User

Transaction Relayer

 Fiat 

Cryptocurrency (for transaction fee)

Cryptocurrency (for transaction fee)

Figure 4.1: Transaction relayer.

Since the buyer does not have incentives in the factoring process, as a gen-
eral rule, in our design, the factoring process is as less complex and resource-
consuming as possible for the buyer. In particular, in our architecture, the buyer
will not need specific digital certificates for the factoring process and will not
perform digital signatures related to this process. We replace the buyer’s Web
Service (in Chapter 3) with a software agent which gives access to some min-
imal information about his invoices so that factors can check the information
provided by sellers.
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In addition, to perform the registration process, all parties are identified by
DIDs, and some communications use DIDComm. Our proposal is independent
of any specific DID-method, but we have the following assumptions:

• Sellers and factors may have multiple DIDs, but once a pair decides to
enter a factoring agreement, they use a specific DID during the whole
process. Their DIDs shall be bound to a pair of digital signature keys to
sign requests for non-repudiation purposes.

• While our architecture supports multiple buyers, but we focus on invoices
related to one buyer and assume that the respected sellers and factors
already know the DID of the buyer.

• We have a relayer role in our architecture which is also identified by a DID.
In addition to the DID, the relayer has a blockchain address for issuing
transactions. However, there is no need for the DID and the address to
be linked together.

• The other entities in our proposal are not required to have blockchain
addresses.

4.2.2 The Protocol

Remember that our architecture is framed in a financial context; hence, strict
regulatory restrictions apply to it—particularly, the Know-Your-Customer (KYC)
regulation. In order to comply with this regulation in this architecture, the
buyer issues Verifiable Credentials (VCs) to certify the real identity of the fac-
tors, the sellers, and also exact details of the invoices. The buyer is supposed
to pay the factor; therefore, as mentioned, we assume that factors can trust
buyers for this purpose. Our protocol avoids the buyer from having to digitally
sign a VC or any other data. Instead, the authenticity of VCs are verified by
securely querying the (agent of the) buyer.

The process of factoring an invoice starts with the registration phase and is
followed by factoring and payment phases. Each phase consists of several steps,
which are explained in the following sections. In Table ??, we show the notation
that we utilize to describe our protocol.
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4.2.2.1 Phase 1: Credential Registration

In this phase, VCs are registered by the buyer for identifying factors and for
identifying invoices of sellers (seller-invoice VC). Both VCs are registered in
essentially the same manner. We first explain the factors’ VC registration, and
then the seller-invoice VCs.

Factor’s credential: The VC of a factor is registered as follows (see Figure 4.2):

1a The factor establishes a mutually authenticated DIDComm channel with
the buyer and sends one of its DIDs (DIDF). This channel is re-used for
other communications between these two entities.

2a.1 The buyer selects a random number s (salt) and generates an identifier
for the credential as follows:

PF = h(s, (DIDF ,PUF , IDF)). (4.1)

To generate the identifier for the factor (PF), we use its decentralized
identifier (DIDF), the real identity of the factor (IDF), and the public key
of the factor (PUF). The factor’s public key is obtained from the DDO
that resolves DIDF . Finally, the verifiable credential for the factor is the
following tuple:

CF = (PF ,DIDF ,PUF , IDF). (4.2)

2a.2 The buyer keeps the VC and salt for further reference and replies to the
factor with PF .

FactorBuyer

(1a)

(2a.1) ( s , P
F 
, C

F 
)

1

(DID
F
)

Request for a factor VC

(2a.2)

(P
F
)

Figure 4.2: Registration of a factor’s VC.
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Note that having the value of PF , the factor can compose his/her credential
(CF). After that, any seller with a copy of CF can consult the buyer’s agent,
send PF , and obtain s to check the integrity of the VC content. Note that PF is
cryptographically bound to the contents of CF . Therefore, if any of the contents
are changed, PF does not match them anymore. Secure hash functions which
are resistant against brute-force guessing attacks (such as scrypt [23]) should
be used here. They prevent an attacker from discovering the actual content of
CF by trying different values, and matching PF with the guessed content. The
security of the communication with the buyer and pre-image resistance of the
hash function assure the authenticity of the VC. The VC is kept private and
only exchanged between intended parties. For better anonymity and prevention
of linking attacks, a factor can have multiple DIDs but can use only one of them
during the whole process of factoring a particular invoice.

Seller-invoice credential: When a seller decides to factor an invoice, she asks
the buyer to register a seller-invoice VC. The registration is independent of
factors’ registration. In particular, this registration consists of the following
steps (see Figure 4.3):

1b The seller establishes a mutually authenticated DIDComm channel with
the buyer and sends one of its DIDs (DIDS) and the identifier (I) of the
corresponding invoice. This channel is re-used for other communications
between these two entities.

2b.1 The buyer checks that a credential has not been already registered for the
invoice I . Then, they proceed by selecting a random salt s and generating
the credential identifier.

A seller-invoice credential is similar to a factor’s VC, but it contains not
only the seller identifiers but also invoice information:

CI = (PI ,DIDS ,PUS , IDS , I ,aI ,dI ,@C), (4.3)

where DIDS and IDS are the seller’s identifiers, PUS is the public key
of the seller, I is the invoice number, aI is the invoice amount, dI is
the invoice payment deadline, and @C is the blockchain address of the
factoring smart contract. Finally, PI is the identifier of the seller-invoice
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credential, which is generated in the same way as in Equation Eq. (4.1),
but computing the hash over the contents of CI :

PI = h(s, (DIDS ,PUS , IDS , I ,aI ,dI ,@C)). (4.4)

SellerBuyer

(1b)

(2b.3)

(2b.1)

(P
I 
)

(s , P
I  
, C

I  
)

(DID
S  

, I )

Request for a seller-invoice VC

(2b.2) b
1

Figure 4.3: Registration of an invoice for a seller (seller-invoice VC).

The verification process of CI is also the same as CF . As factors, sellers can
also have multiple DIDs for better anonymity and prevention of linking at-
tacks. However, as with factors, a seller can only use one of its DIDs to receive
the seller-invoice credential for a particular invoice. The buyer performs the
following additional processing for seller-invoice registration:

2b.2 The buyer selects another random number b1 ∈ (1,n) and stores it for
later use. In particular, b1 will be used by the selected factor to derive an
encryption key using a Diffie-Hellman (DH) key exchange scheme. As we
explain in the next phase of the protocol, we use DH to establish a shared
secret key between the buyer and the selected factor using the buyer’s
agent and on-chain information provided by the factor.

2b.3 The buyer replies to the seller with PI . Having the value of PI , the seller
can compose the corresponding seller-invoice credential CI (see Equa-
tion Eq. (4.3)).

4.2.2.2 Phase 2: Factoring

According to Figure 4.4, the steps followed in this phase are the following:
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3.1 The factoring phase starts with the seller contacting multiple factors to
negotiate and compare the different offers and conditions for the possible
invoice factoring. The seller provides her invoice details, including the
invoice number (I), the total amount of the invoice (aI ), and the pay-
ment due deadline (dI ), to the factor. The factor specifies his/her offered
amount for the invoice (aF = aI − fee) and the deadline for completing
the factoring registration (dF). Then, according to the received offers,
the seller selects the best factor to continue with. After this decision,
the factor sends its credential to (CF) to the seller, and the seller sends
the seller-invoice credential (CI ) to the factor. Remember that the seller-
invoice credential identifies both, the seller and the invoice that is going
to be factored.

3.2 The factor extracts the seller-invoice credential identifier (PI ) from the
credential received from the seller and sends it to the buyer agent using
an end-to-end encrypted DIDComm channel. Then, the buyer answers
with the associated salt s and the DH parameter gb1 . Next, using Equa-
tion Eq. (4.4) with the salt and the DH parameter received, the factor
can check whether the CI provided by the seller is valid and accepted by
the buyer or not. In the affirmative case, the protocol continues with the
next step.

3.3 On the side of the seller, a similar operation as the previous one is carried
out to check the credential of the factor (CF). This step begins with the
seller extracting the factor credential identifier (PF) from the credential
received from the factor and sending this identifier to the buyer agent
using an end-to-end encrypted DIDComm channel. Then, the buyer an-
swers with the associated salt s. Next, using Equation Eq. (4.1) with the
salt received, the seller can check whether the CF provided by the factor
is valid and accepted by the buyer or not. In the affirmative case, the
protocol continues with the next step.

4.1 When the verifiable credential presented by the selected factor is verified,
the seller sends her bank account number (IBANS) to the factor using the
associated end-to-end encrypted DIDComm channel.

4.2 The factor checks the smart contract at address @C (as specified in CI )
to ensure that the invoice has not been already factored. In addition,
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he/she subscribes to one or several nodes of the distributed ledger to be
notified about any factoring agreement registered by the smart contract
in the ledger.

4.3 The factor sends the agreement information (A) and settlement informa-
tion (S) to the seller. All these data are digitally signed using the public
key PUF , which is resolved from DIDF (the signature is noted as σDIDF

S ):

F→ S : A,S ,σDIDF
S , (4.5)

A = (CI ,CF ,aF , IBANS ), (4.6)

S = (PI ,dF ,Enc(KFB,CF , IBANF), g
b2 , r,h(r,A)), (4.7)

where r is a random number (salt), A is actually a confirmation for the
seller, and neither is given to the buyer nor stored on-chain. However, the
salted hash of A is included in the signature (σDIDF

S ) as a commitment
and for non-repudiation purposes. In contrast, S will be registered on-
chain and a part of it is encrypted and hidden from the seller. Notice that
the encrypted part is essentially the account number of the factor where
the buyer has to pay in case the invoice has been factored. Clearly, this
information is not necessary to be known by the seller. To create this
symmetric encryption, the value gb2 is provided on-chain by the factor to
allow the buyer to reconstruct the shared key KFB and decrypt that part.
To do so, the factor selects a random number b2 ∈ (1,n) and uses the DH
key-exchange formula to generate the symmetric encryption key KFB:

KFB = KDF((gb1)b2). (4.8)
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Figure 4.4: The factoring phase.

After an agreement is reached, the relevant factoring and payment details have
to be registered in the distributed ledger. In general, each interaction that mod-
ifies the state of a public ledger requires a fee to be paid. In our protocol, one of
our main design goals is to have the minimum possible number of transactions
for completing a factoring registration in order to avoid paying excessive fees.
Actually, we only need one transaction per invoice factoring, and the majority
of the communications between the different parties are off-chain. In particular,
our protocol is designed so that only the seller has to pay for invoice registra-
tion, while interactions with the distributed ledger by the factor and the buyer
are view-only, as well as are free of charge.

Moreover, as mentioned in Section 5.2.1, managing cryptocurrencies to pay the
fees may be difficult for institutions and companies. To overcome this problem,
we use a relayer. In order to explain how the relayer works, we have to un-
derstand the purpose of the signature in a regular transaction. In this respect,
the signature in a regular transaction has two different purposes. In the first
place, it determines who pays the fee, and, in the second place, it is used to
authenticate and authorize a user in front of a smart contract. Introducing a
relayer in our protocol allows us to decouple the signature required for paying
the transaction fee, which will be paid by the relayer, from the signatures re-
quired for authentication/authorization, which will be performed bilaterally by
both, the seller and the factor.
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An advantage of using a relayer is that it enables a clear and easy-to-implement
business model for our protocol. The relayer can charge sellers per usage
(e.g., per transaction request), and the sellers may have to buy some credit to
use the relayer’s API with any classical off-chain payment method, such as a
credit card, bank transfer, etc.

5.1 The seller checks that the factor’s signature over the settlement data
(σDIDF
S ) is valid (Equation Eq. (5.2.5)), that the agreement data (A) is

what it has been negotiated with the factor, and that the hash value
included in the settlement information (S) is correct. The seller records
the factor’s signature for possible later use as digital evidence. Then, the
seller creates a message for the bilateral settlement M:

M = (S ,σDIDF
S ). (4.9)

Then, the seller signs M and sends the bilateral settlement message and
its signature to the relayer:

S→ R : (M,σ
DIDS
M ). (4.10)

Notice that we do not need to trust the relayer, and the seller does not
share any confidential/private data with it. The signature σ

DIDS
M authen-

ticates the seller and prevents the relayer from changing any detail of
the bilateral agreement. Therefore, the relayer only plays the role of a
facilitator and nothing more. As mentioned, the factor and the buyer
do not need to interact with the relayer because they only need to query
the smart contract. These queries are performed directly from blockchain
nodes and are free-of-charge.

5.2 The relayer deduces the transaction fee plus probably some extra com-
mission from the seller’s credit, bundles the received information into a
meta-transaction, and sends it to the smart contract:

R→ C : (mtx,σ@R
mtx), (4.11)

mtx = (M,σ
DIDS
M ). (4.12)
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Notice that, in fact, the settlement data (S) is triply signed at this step:
(i) by the relayer to pay its transaction fee, (ii) by the seller for registering
the factoring agreement, and (iii) by the factor for promising to pay the
invoice. The first signature is automatically verified by the blockchain
platform, and the transaction fee is reduced from the balance of the re-
layer.

5.3 In the final step of this phase, the smart contract processes the meta-
transaction (mtx) as follows:

• Determines the public keys used for signing M and S , that is PUS

and PUF , respectively. With these keys, it checks the signatures in
the meta-transaction.

• Verifies that the current blockchain time is smaller than the regis-
tration deadline (dF). This deadline is extracted from S .

• If the invoice is already registered by the seller, the meta-transaction
is rejected.

• If all the previous steps are correctly passed, the smart contract
registers the factoring agreement by setting a flag in its key-value
storage and storing the public keys and settlement information in a
log.

In most distributed ledgers, logs are on-chain data produced by the transaction
execution, but the log’s contents are not recorded in the ledger’s global state.
This makes logs much cheaper than storing data in the smart contract storage
and also makes them convenient if their content is not needed by successive
transactions (the case in our registration protocol). More details about the
registration by the smart contract are given next.

We efficiently store the data by using only one boolean flag per invoice in the
key-value storage of the smart contract:

PI ⇒ true. (4.13)

Obviously, the mapping can only be set if it was not already set to another
value and is sufficient for the correct functionality of the smart contract and
prevention of double-factoring. The complete settlement information (S) is not
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required anymore to be accessible by the smart contract code, so we can store
it in a log to get the immutability of blockchain:

log(PI ,S ,PUS ,PUF). (4.14)

PI is defined as an index field for quick search. We use PI again as the key of
the log, which is known by all involved parties. The buyer can use it as the
key to finding out whether the invoice is factored or not, and get access to the
logged information. The contract cannot link the identities of the seller and
the factor with the transaction. Therefore, the public keys are recorded for
later verification by the buyer. The salted hash (fingerprint) of the factoring
agreement h(r,A) is also included in S , which can be used as a proof-of-existence
by the seller or the factor in case of dispute. Finally, the seller and the factor
can be subscribed to the smart contract, get automatically informed about the
registration, and verify the contract log to ensure everything is recorded in line
with their agreement.

4.2.2.3 Phase 3: Payment

In the third and last phase, the factor pays the seller after checking the infor-
mation registered by the smart contract. Later, the buyer will pay the complete
invoice amount to the factor also, after checking the information registered by
the smart contract. The steps followed in this phase are described next (see
Figure 4.5):

6. The factor proceeds to pay aF = aI − fee to the account of the seller. This
has to happen before the agreed payment deadline.

7.1 When the deadline of an invoice (dI ) expires, the buyer queries the smart
contract to figure out whether the invoice has been factored or not. The
buyer knows the address of the smart contract (@C) and the pseudo-
anonymous identifier of the invoice (PI ). Using these two values, the
buyer queries a node of the distributed ledger to obtain the log with the
index field PI from the smart contract. From this on-chain log, the buyer
obtains Enc(KFB,CF , IBANF) and gb2 .
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7.2 The buyer computes KFB and decrypts the encrypted part of the logged
information using the obtained gb2 and the value b1 that it stored in
step (2b.2) for this invoice. Then, the buyer:

• Verifies that the value PUF which is recorded by the smart contract,
belongs to CF . Otherwise, the factor has cheated because the seller
has verified everything other than this encrypted part. In this case,
the buyer cannot pay the factor because of the KYC regulation.

• Obtains the seller-invoice credential related to PI from its database
and matches its public key with the recorded PUS . If the public key
does not match, obviously both the seller and the factor are cheating
because the invoice does not belong to this seller. In this case, the
buyer will pay the invoice amount to the authentic seller.

If the verifications in the last step are passed, the buyer knows the correct
selected factor and his/her associated IBANand pays the invoice amount
(aI ) to that IBAN.

1

FactorSellerSmart-ContractBuyer

(6)

(7.2)

(7.1)

Payment

Payment

Check registered factoring

Figure 4.5: Payment phase.

4.2.3 Use Case

This section describes a typical scenario for better understanding the process in
which the system in this chapter is used to register a factoring agreement related
to monetizing geolocation data. In our scenario, the buyer is the municipality of
a city buying anonymized geolocation data from an online navigation platform
(the seller). The municipality uses the data for better provisioning of city
growth and land development in areas, such as public transport system, highway
routing, housing and zoning, placement of new public services and utilities,
and other land use plannings. In order to simplify things and avoid physical
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authentication complexities, we assume all parties are registered legal entities,
and the government has issued them verifiable credentials. The credentials
specify their tax identification number which can be used to identify them (real
identity) in our protocols.

The municipality buys a lot of products and services from private companies,
and many of them make factoring agreements with financial institutions. In
order to reduce errors and prevent double-factoring, the municipality has ac-
credited an implementation of our architecture, and the sellers have to register
their factoring agreements in this system. The implementation provides a spe-
cial agent to the buyer for performing the required operations. In addition, the
municipality owns a government-issued VC and DID which is in the control of
the agent.

The municipality invites different providers of online navigation systems to a
tender, and after receiving their offers, selects the best candidate. During post-
tender negotiations, the seller company agrees to receive its money 90 days
after supplying the data. However, the company lacks enough working capital
to continue its service properly, and decides to factor the invoice. The seller
connects to the buyer’s agent over DIDComm, authenticates itself using the
government-issued VC, and proceeds until it receives a seller-invoice VC for the
aforementioned invoice.

Then, the seller contacts multiple factors, negotiates with them, compares their
offers and conditions, and, finally, selects one of them. The factor connects to
the municipality’s agent over DIDComm, and registers a factor VC. After that,
the seller and the factor establish a DIDComm channel and exchange and verify
their seller-invoice and factor VCs. Note that their tax identification numbers
are also evident from their VCs, and they register tax IDs for their work. The
seller provides the factor with its bank account number, and the factor digitally
signs the factoring agreement and sends the signed settlement information to
the seller. The seller connects to a relayer and gives the bilaterally signed agree-
ment to it, which subsequently hands all this information to the system’s smart
contract. The smart contract verifies the request and registers the agreement
in the public distributed ledger (blockchain). In this stage, the factor pays the
seller a sub-total of the invoice amount according to their agreement. After
the 90-day period is passed, the municipality’s agent checks the smart contract
and finds out that the invoice has been factored. It decrypts the encrypted
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part of the logged information, verifies that everything is correct, and pays the
complete invoice amount to the bank account of the factor.

4.3 Evaluation

In this section, we provide a security analysis of the proposal in this chapter
and a comparison with the related works.

4.3.1 Security Analysis

In the following security analysis, we analyze the security of verifiable creden-
tials, data security and privacy, availability, and dispute handling. For each of
these aspects, we explain security requirement(s), possible attack(s), and our
mitigation method(s).

4.3.1.1 Verifiable Credentials

The contents of the seller-invoice and factor credentials are not published or dis-
closed by the buyer; their owners may hand them to other parties at will. Their
identifiers are generated by a cryptographic hash function (such as scrypt),
which is:

• One-way: the content of a credential cannot be recovered from its iden-
tifier.

• Pre-image resistant: a fake credential cannot be matched to a valid iden-
tifier.

• Integrity guarantee: if the credential is manipulated, the identifier does
not match (avalanche effect).

• Resistant to guessing attacks: guessing attacks are infeasible because a
fresh salt is used (blocks offline attacks), and its computation is resource-
intensive (blocks online attacks).
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For a verifier to verify a credential, the identifier is queried over an authenticated
DIDComm channel. Therefore, as long as the hash and DIDComm are secure,
the credentials are secure, as well.

4.3.1.2 Data Security and Privacy

We use a smart contract to process and store critical factoring agreement details
on the blockchain. The blockchain is designed to guarantee the precise execution
of the contract and protect stored data from manipulations. All this data is
publicly readable; therefore, confidentiality and privacy are more of a concern
in comparison to traditional systems.

We do not store any information that can be used to identify or trace the
seller or the factor on the blockchain. No personally identifiable information
(PII), even the invoice number, is transmitted over the network in plain text or
publicly stored on the blockchain. The signatures of the seller and the factor
are verified by the smart contract and their public keys are recorded to prevent
fraud. However, these keys do not contain any information that can be traced
back to the real identity of their owner. In addition, sellers and factors are free
to use new public keys for each invoice factoring, which protects them against
curious observers who try to link transactions together and trace individuals.

Only the seller and the factor store the agreement information (the amount that
the factor pays to the seller, and the bank account number of the seller), and
this information is hidden from the buyer. In addition, we privately hand over
the identity and bank account number of the factor to the buyer. To be more
precise, the factor encrypts this information by a symmetric key which only the
buyer can know. Therefore, no one (including the seller) can have access to this
information.

The buyer in our architecture is not involved in the negotiations between the
seller and the factors. In particular, the buyer cannot predict if the seller will
factor her invoice or not (before the agreement about payment conditions and
other invoice details). Moreover, our architecture protects the factors from each
other as they do not have access to their competitors’ conditions (before and
after finalizing the factoring contract). Factors are not notified if the seller
applies to multiple factors to obtain a better bid for the invoice.
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4.3.1.3 Availability

Public distributed ledgers are maintained by many geographically distributed
nodes over the Internet. For example, at the time of this writing, the Ethereum
network is operated by more than three and half a thousand nodes [34]. There-
fore, our on-chain registered data is highly available for both the factors to
protect them from double-factoring, and the buyer to discover the correct pay-
ment information.

One may be concerned about the availability of the relayer. The first and
the most important thing is that the safety and correctness of our protocol is
not endangered when the relayer becomes unavailable. However, the protocol
may not proceed, and the seller may lose her time to conclude the factoring
agreement. We used DIDComm for our communications which is more resistant
to temporary network disconnections. Nonetheless, if the relayer is unavailable,
the seller may switch to a distributed network of third-party relayers, e.g. the
Gas Station Network (GSN) [35], to fulfill its duties. As we do not trust the
relayer, this will not pose any threats to the security of our protocol.

4.3.1.4 Dispute Handling

We must remark that our registration protocol is not secure against malicious
buyers because, if the buyer registers false information, this cannot be disputed
by the seller nor the factor. As a result, the seller and the factor need to
trust the buyer. A malicious buyer, for example, may not pay the seller or
the factor. A malicious buyer may also scam factors by creating a fake seller
and a high amount of non-existent invoices. Then, the fake seller receives the
payments from the factors, but the corresponding payments are not made by
the malicious buyer. In case the buyer is not trustful, some mechanism to
enforce good behavior must be used (like a reputation system as in Guerar et
al. [8]).

On the one hand, a seller may be concerned about a malicious factor that may
refrain from payment. In this case, the seller reveals the agreement information
to a judge, and the judge can doom the factor according to the tamper-proof
evidence stored by the smart contract on the blockchain. On the other hand,
a factor may also be concerned about the case in which the buyer pays the
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amount to another bank account. In this case, the factor reveals the agreement
information, as well as its private DH value (b2), to a judge. The judge can
also detect the culprit in this case by referring to the bank account logs and the
blockchain evidence. Note that a fraudulent seller/factor cannot conclude an
invoice factoring agreement because, before paying anything to the factor, the
buyer verifies the stored information on the blockchain against his registered
information.

4.3.2 Comparison to Related Work

Below, we compare the protocol intoduced in this chapter with the related
works. The related works are reviewed in the previous chapter, and we refere
the reader to Chapter 3 for more complete description of the works. However, as
we aim at additional design goals, we focus on the related aspects of each of the
works, and give a brief review of the works with respect to the specific aspect.
A summary of the comparison with the related works is shown in Table 4.1.

Table 4.1: Comparison with the related works.

[5] [1] [8] Our Chapter 3 This Chapter
Type of ledger private private public public public
# Transactions 1 5 7 1 1

Users do not need cryptocurrency true true false false true
Enables SSI false false false false true

The first aspect to take into account is the type of the ledger used to register the
invoice factoring. DecReg [5] and Battaiola et al. [1] propose to use a private
ledger, while Guerar et al. [8], our Chapter 3, this chapter’s protocol use a
public ledger. The type of ledger is one of the most relevant decisions to take
when designing an invoice factoring solution since it directly impacts in aspects,
such as privacy, immutability, transparency, availability, the need to optimize
the number of transactions, and the need that users manage cryptocurrency to
do the registrations.

Private or permissioned ledgers are blockchain networks that restrict their ac-
cess to registered users. This allows implementing some degree of privacy by
grating visibility to the set of transactions only to designated participants. This
is the approach followed by DecReg [5], in which transactions are not publicly
released, and the system relies on a Central Authority (CA) to control the ac-
cess to the system. Nevertheless, since the CA acts as a point of centralization,
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it can become a single point of failure, making it vulnerable to double factoring
attacks. In fact, if the CA is compromised, it can deny a factor from accessing
the network, and make it impossible for the factor to determine if an invoice has
already been factored. In this framework, data is not encrypted, and the CA
limits access to confidential data to individuals outside the private blockchain
network, which does not fully protect the privacy of the network’s participants.
In addition, the buyer is required to operate a node on the private blockchain
and obtain credentials from the CA, which heavily involves the buyer in the
factoring process. On the other hand, if a dispute arises between a seller and a
factor, the only proof that can be used under DecReg is the signatures on trans-
actions. The main problem is that the system relies on the CA for managing
access to the system, and the transactions are not publicly available.

Battaiola et al. [1] also propose to use a private ledger for registering invoice
factoring. However, instead of sending transaction data in clear, they use com-
mitments to hide data and provide privacy. Although the authors claim that
any other ledger can be used in place of the private ledger without compro-
mising protection, this replacement is not cost-effective due to the number of
transactions (five) required to complete a factoring registration. In particular,
the proposal needs one transaction from the seller to do the invoice registration,
another from the buyer to approve this registration, another from the seller to
register the factoring proposal, another from the factor to accept the factoring
proposal, and finally, another for registering the payment (or the factoring ex-
piration). In addition, the availability and immutability of data are dependent
on the security provided by the private ledger. A more secure private network
includes more nodes and organizations, resulting in a higher operating cost. In
particular, in [1], it is not specified who is responsible for the cost of operating
the private ledger.

As shown in Table 4.1, Guerar et al. [8], our Chapter 3, and the proposed
protocol in this chapter use a public ledger. Public ledgers provide the best
immutability, transparency and availability. However, when designing a solu-
tion over a public ledger, special care must be taken with privacy, cost, and
cryptocurrency management. Regarding privacy, these three proposals make
use of commitments to guarantee that sensitive data is not disclosed in the
public network.
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Regarding cost, the solution proposed in [8] conducts the invoice factoring nego-
tiation on-chain which makes it rather expensive, requiring seven transactions
to complete an invoice factoring. Concretely, the buyer, who is generally not
that much motivated for the factoring process, must perform three transactions
in the public ledger per invoice factoring: one transaction to accept the invoice
and pay the shipping, another transaction to confirm the delivery of the prod-
ucts, and a final transaction to pay the entire amount of the invoice to the
corresponding factor. Another critical issue of the proposal by Guerar et al. is
that, since the platform is in charge of creating stable accounts for reputation, if
the platform does not correctly certify the real identities of buyers, the system’s
security is jeopardized. Finally, it is worth it to mention that the proposal uses
IPFS. Although this peer to peer distributed file system can provide a reason-
able level of availability, it is not as high as that provided by on-chain data,
which is critical if the buyer needs to access payment data with no downtime.

Our protocol in Chapter 3 is based on a public ledger that is cost-efficient,
just requiring one transaction in the ledger to register an invoice factoring.
Appropriately, the single transaction for the invoice factoring registration is
performed by the seller, who is the most interested party. However, in that
protocol, the seller is forced to use cryptocurrency to execute this transaction,
which might be an obstacle against the adoption of the protocol.

In the protocol proposed in this chapter, we include a relayer in the architecture
to overcome the problem of users having to manage cryptocurrency. The relayer
allows us to free users from having to use cryptocurrency while keeping the
properties of decentralized applications. Furthermore, as shown in Table 4.1,
this protocol is not only optimal in terms of cost, and built over the most
reliable, transparent, and secure type of ledger; it also enables new functionality
not available in any other related protocol. Specifically, the protocol allows
parties to implement their self-sovereign identities making use of their self-
managed identifiers.

The protocol also leverages the concept of Verifiable Credentials (VCs), which
are credentials issued to self-sovereign identities and grant permission to the
parties to participate in our invoice factoring architecture. Another advantage
of using DIDs is that we can relay on the new communications models that
are being developed in this ecosystem, like DIDComm. DIDComm allows us to
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implement asynchronous and secure off-chain communications between partic-
ipants, which means that a party does not need to be present at the moment
that another party sends a message. The response can be received, processed,
and approved asynchronously.

4.4 Implementation

In this section we describe a possible proof-of-concept implementation for our
architecture. For this proof-of-concept, we created two components: a front-end
and a registration smart contract. Next, we mainly focus on the description of
the registration smart contract, which is the core component of our proposal.

4.4.1 Tools and Setup

The registration smart contract is written in Solidity, which is the Ethereum’s
most popular programming language for writing smart contracts. We also used
the Truffle1 Development Framework, which helped us to create, compile, de-
velop and test smart contracts. The Truffle framework can used to develop
distributed applications, in particular, using a personal blockchain (Ganache)
and a front-end DApp development kit (Drizzle).

Apart from Truffle, we also used Infura. Infura2 provides us with a gateway
to different Ethereum networks, so that we do not need to run an Ethereum
node by ourselves. Recall that every change we make in Ethereum has to be
done with a transaction; whether it is transferring Ether, deploying a smart
contract, or calling a function of an already deployed smart contract. A private
key must be used to sign every transaction, so our app needs the ability to
sign transactions to be able to make state changes in Ethereum. To send these
signed transactions to the Infura nodes, we used the Truffle HD wallet provider.

Finally, to make more real tests of our implementation, we deployed our smart
contract to Rinkeby. Rinkeby is a public Ethereum test network where we can
deploy our code in an environment similar to the main Ethereum network. For
this, we created a test account and used one of the Rinkeby’s faucets to receive

1https://trufflesuite.com
2https://infura.io

https://trufflesuite.com
https://infura.io
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test Ether. This Ether allows us to pay the cost of each transaction. We also
configured Truffle to use the Infura’s nodes for interacting with the Rinkeby
test network. All the secrets where stored in a configuration file called .env
that is not shared or versioned.

4.4.2 The Smart Contract

The complete code of the registration smart contract is available at appendix A.
The main function of the smart contract is the invoiceRegistration function.
The function examines the following steps to verify its inputs and complete the
registration transaction:

• First, we check the timestamp to ensure that the contract execution time
is less than the due time.

• Then we verify the given signatures. In order to be able to check a sig-
nature, it is necessary to have its corresponding message and the signer’s
public key. The point is that instead of giving the public key to the con-
tract manually, it is recovered from the signature itself. In particular,
ECDSA signatures have a property that the public key of the person who
signed the message is recognizable. We have a recoverSigner function to
extract the signer’s public key from his/her signature. To recap this step,
we compose the signed messages S and M from the provided input to the
contract, then calculate the public keys of the seller and the factor (PUS

and PUF) from the signatures (σDIDF , σDIDS ).

• Then, the identifier of the invoice (PI ) is checked so that it is not reg-
istered before. If PI is being re-registered, the execution of the function
invoiceRegistration will fail, reverting the transaction.

• The registration is finalized by setting to true the corresponding identifier
in the alreadyRegistered mapping, and emitting an event NewInvoiceReg-
istered.

All the above steps are implemented in the invoiceRegistration function which
is called by the relayer (Listing 4.1.)
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1 function invoiceRegistration (bytes memory p_I,uint256 due_time,string memory
enc_factor_bank,string memory public_bank,uint256 r,uint256 h,bytes memory
sign_DID_F,bytes memory sign_DID_S) public {

2
3 address p_u_s;
4
5 address p_u_f;
6
7 require(block.timestamp < due_time, ”Meta transaction is expired”);
8
9 bytes32 M = keccak256( abi.encodePacked(

10 p_I,due_time,enc_factor_bank,public_bank,r,h,sign_DID_F));
11
12 bytes32 S = keccak256(
13 abi.encodePacked(p_I, due_time, enc_factor_bank,public_bank,r, h)
14 ) ;
15
16 p_u_s = recoverSigner(M, sign_DID_S);
17 p_u_f = recoverSigner(S, sign_DID_F);
18
19 require (! isInvoiceRegistered (p_I), ”The invoice is already registered .”) ;
20
21 alreadyRegistered[p_I] = true;
22
23 emit NewInvoiceRegistered(
24 p_I,due_time,enc_factor_bank,public_bank,r,h,p_u_s,p_u_f
25 ) ;
26 }
27

Listing 4.1: invoiceRegistration function to factor an invoice

The isInvoiceRegistered function simply returns true if the identifier of an in-
voice (PI ) is registered (Listing 4.2).

1 function isInvoiceRegistered (bytes memory p_I) public view returns (bool) {
2 return AlreadyRegistered[p_I];
3 }

Listing 4.2: isInvoiceRegistered function to check if an invoice is already
registered
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4.4.3 Functions for Testing

In the above steps, the digital signatures on M and S have to be checked.
In order to test our code, we have written utility test functions in our smart
contract to calculate the digital signatures (σDIDF and σDIDS ).

The function get_S calculates the value of S from the corresponding input data
(Listing 4.3.)

1 function get_S(
2 bytes memory p_I,
3 uint256 due_time,
4 string memory enc_factor_bank,
5 string memory public_bank,
6 uint256 r ,
7 uint256 h)
8 public pure returns (bytes32)
9 {

10 bytes32 S = keccak256(abi.encodePacked(p_I, due_time, enc_factor_bank,
public_bank, r, h));

11 return (S);
12 }

Listing 4.3: Calculate S (on-chain)

With S, we can compute σDIDF off-chain. For example, we can do so using the
following Javascript code (Listing 4.4).

1 const EthUtil = require(’ethereumjs-util ’ ) ;
2 const web3 = require(’web3’);
3
4 const messageToSign =

”0x607766330da20b09790047553de552dc475b0760fd9e2ba19af598a9a56ee019”;
5 const privateKey =

”dcb0075613ce655885815afc168dbb0b188addb5bba9fb25e3a744db266c5b43”;
6
7 var msgHash = EthUtil.hashPersonalMessage(Buffer.from(messageToSign));
8 var signature = EthUtil.ecsign(msgHash, Buffer.from(privateKey, ’hex’));
9 var signatureRPC = EthUtil.toRpcSig(signature.v, signature.r, signature.s)

10 var arr = new Uint8Array(msgHash);
11 var hash = web3.utils.bytesToHex(arr);
12 console. log(”Hash: ”, hash.toString() , ” sign : ”, signatureRPC);

Listing 4.4: Calculate σDIDF (off-chain)
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Note that messageToSign and privateKey are sample test values. Finally, we
can provide σDIDF to the function (get_M) of the smart contract, which returns
the M value (Listing 4.5).

1 function get_M(
2 bytes memory p_I,
3 uint256 due_time,
4 string memory enc_factor_bank,
5 string memory public_bank,
6 uint256 r ,
7 uint256 h,
8 bytes memory sign_DID_F)
9 public view returns (bytes32 M)

10 {
11 require(
12 block.timestamp < due_time,
13 ”META_TX: Meta transaction is expired”
14 ) ;
15
16 return
17 keccak256(
18 abi.encodePacked(p_I,due_time,enc_factor_bank,public_bank,r,h,sign_DID_F)
19 ) ;
20 }

Listing 4.5: Calculate M (on-chain)

4.5 Conclusions

In this chapter, we presented an improved protocol with respect to the one we
proposed in Chapter 3 that uses a public distributed ledger to register invoice
factorings. We added several enhancements to the protocol and simplified it
to increase efficiency and flexibility, as well as to facilitate user on-boarding.
We used Decentralized IDentifiers (DIDs) and let the involved parties use their
self-sovereign identities (SSIs). One advantage of using DIDs is that we can
relay on the new protocols being developed in this ecosystem, like DIDComm,
which allows us to implement asynchronous secure communications between
participants. When using DIDs, we can also leverage on the concept of Verifiable
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Credentials (VCs) to grant permission to parties allowed to participate in our
invoice factoring ecosystem.

In this ecosystem, the buyer, who is considered to be the trusted party for the
factoring process, issued Verifiable Credentials to DIDs of sellers and factors.
The proposed protocol maintained its efficiency from the base protocol, and
used only one meta-transaction per factoring registry. The seller used to pay
the cost of executing the meta-transaction in the public distributed ledger since
it was the party with the highest interest in the service. To provide sellers
with an easy on-boarding, a relayer was introduced in our invoice factoring
ecosystem. The advantage of using the relayer is that sellers can have the high
security and availability levels provided by public distributed ledgers without
having to deal with cryptocurrency. This is because sellers can pay to the
relayer with off-chain methods, like credit card or bank transfer, but the relayer
cannot alter any aspect of the invoice factoring agreement being recorded. As
a result, the proposed architecture provided an efficient and friendly protocol
for registering factored invoices.

In the next chapter, we present our final architecture and protocol which adds
zero knowledge proofs (ZKPs) to the protocol. By adding the ZKPs, the smart
contract can better verify the identity of the involved parties in one hand, and
the autenticity of the provided data on the other hand. In this case, most of
the checks that we required the buyer to perform, are handled by the smart
contract and a special denial-of-service attack is prevented.





Chapter 5

Enhanced Privacy with Zero-Knowledge
Proofs

5.1 Introduction

The protocol presented in this chapter is an enhancement regarding our previous
protocols [12] and [13]. In particular, we enhance the privacy design, by only
allowing the intended parties to see their relevant data. We also fix a possible
denial of service (DoS) attack in which the identifier of the invoice was set in the
smart contract with dummy data. This could create a DoS attack because the
corresponding invoice cannot be registered. Notice that the invoice identifier is
not available until a registration transaction is sent to the blockchain network,
but the attack, in principle, can succeed by doing a front running (sending a
transaction with more fee). In this version, we fix this issue with a zk-SNARK
proof. The zk-SNARK proof guaranties that the registration comes from the
authentic parties but without affecting privacy, that is to say, without disclosing
any identity or any other private data.

The rest of the chapter is organized as follows: section proposed architecture 5.2
introduces the third protocol. Afterwards, we review the related works 5.3
and compare them with our proposal,and chapter is concluded in the section
conclusion 5.4.

73
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5.2 Proposed Architecture

In our architecture, we have the three classical entities of the factoring scenario:
the buyer, the seller, and the factor. Additionally, we have a smart contract
deployed on a public distributed ledger. Our protocol is related to a factoring
process on a pre-arranged agreement between a seller and a buyer. Once the
agreement is final, the buyer is required to issue a special invoice certificate
about the details of the agreement. At this time, the seller may decide to
factor-out the invoice using our protocol. In the following sections, we will first
state our goals and assumptions. Then, we will explain the format of the invoice
certificate, and subsequently detail our protocol.

At a high level, our protocol works as follows:

• The seller negotiates with several factoring companies and chooses a de-
sired factor.

• The factor sends a signed factoring agreement to the seller. In this system,
before entering the factoring phase, the factor is required to register with
an accreditation agency and receive a compliance certificate (CF). The
compliance certificate is a certificate that adds information to the digital
certificate of a factor, in particular, it states that the identified entity can
execute financial transactions.

• The seller adds other information to the agreement, signs the everything,
and sends it to the smart contract. The seller includes a non-interactive
zero-knowledge proof in his/her transaction to the smart contract to prove
the possession of the invoice certificate.

• The smart contract verifies the credibility of the involved parties as well as
the public invoice details which, among other things, confirm the identity
of the seller. If everything is okay, and the invoice has not been factored
before, the smart contract registers the agreement to prevent double-
factoring.

• The factor queries the smart contract to ensure that the agreement is
final, and pays the agreed amount to the seller.

• When the invoice payment deadline is reached, the buyer checks the smart
contract and notices that the invoice is factored.
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• Finally, the buyer pays the invoice amount to the factor.

The main advantage of the protocol in comparison to the existing protocols are
the following:

• Supports multiple buyers.

• The level of detail checked by the smart contract greatly reduces the
possibility that the buyer refuses to pay in the final step.

• The zk-SNARK proof prevents a fraudulent seller from registering a fake
invoice.

All the above improvements are achieved without compromising privacy.

5.2.1 Design Goals & Assumptions

In our design, a smart contract manages all interactions required to finish a
factoring registry. Payments are made off-chain via fiat transfers between bank
accounts. We assume that all parties trust the correct execution of transac-
tions controlled by the smart contract. Generally, the smart contract must be
reviewed by all parties concerned and these parties must agree to use it as the
reference for their factoring purposes. The buyer must pay the invoice to the
bank account of the smart contract’s registered entity if the invoice has been
factored.

In our previous works, we relied on hash functions and symmetric encryption
to make the factoring process is as less complex and resource-consuming as
possible for the buyer. The buyer was unique so it was possible to do the
design with these simple cryptographic primivies. However, how we can have
multiple buyers, so we need a mechanism to identify buyers. This is the reason
why we use public key cryptography and digital certificates.

In the factoring process, sensitive business information must be adequately
protected, especially considering that we use a public ledger in which everybody
has access to data sent in transactions. For this reason, any sensitive data that
must go on-chain is symmetrically encrypted. This encryption uses different
keys depending on whether the data should be accessible by the seller and the
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factor or by the buyer and the seller. We use zero knowledge to guarantee that
registrations are correctly done by an authorized seller. With this protocol, our
invoice factoring process:

• Prevents double factoring without threatening privacy.

• There is no way to challenge the smart contract once it has registered an
invoice factoring.

• Allows the appropriate parties to have access to their relevant data as
well as provides evidences of the existence of these data.

In general, an invoice has the following information: the seller and the buyer
identities, invoice number, issuance date, due payment deadline, total amount
(and currency code), and other details about the service/goods provided by the
seller to the buyer. We consider that the seller’s identity and the invoice num-
ber are sufficient to identify the invoice uniquely; consequently, using unique
invoice numbers should be mandated. In addition, the buyer’s identification,
due payment deadline, and total amount are required for factoring agreements.
Other details can be added to the invoice without impacting how our system
functions.

5.2.2 The Protocol

Our protocol is an improved extension to our previous protocols [12] with non-
interactive zero-knowledge proofs. The extensions enable the smart contract
to throughly verify factoring agreements before registering them, without com-
promizing the privacy of the involved parties. In addition, we have stripped
some details from the protocol, and the factoring process to better focus on our
contributions. The protocol is composed of four phases and the notation used
to describe it can be found in Table ??.

5.2.3 The Protocol Setup

All the involved parties (buyers, sellers, factors) in our system shall have long-
term asymmetric encryption and digital signature key-pairs. We assume they
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have registered their public keys (denoted by PUX) with a trusted registration
authority (e.g., a government authority) and have a corresponding digital cer-
tificate (denoted by IDX). The certificate links a real entity to a long-term
public key. Given of a public key PUX , any entity in possession of the corre-
sponding private key is assumed to be the entity X. From now on, without loss
of generality, we solely rely on these public keys to identify the parties.

As we use zk-SNARKs in our protocol, a trusted setup procedure is also fol-
lowed in this phase to select the public parameters, and distribute the ZK
proving and verification keys. In addition, a smart contract is deployed on a
public blockchain to assist in the verification of zero-knowledge proofs. A reg-
istration smart contract is in the core of our protocol and is also deployed on
the blockchain in this phase.

5.2.4 The Registration Phase

In this phase, two types of certificates should be issued which are used in the
subsequent phase (factoring): (1) the buyer issues an invoice certificate (denoted
by CI ) to the seller, and (2) a trusted authority issues a compliance certificate
(denoted by CF) to the factor. The certificates are explained in the following
sections.

5.2.4.1 The Invoice Certificate

We assume that the seller always receives an electronic invoice certificate (CI )
from the buyer, even if she is not going to factor it. We also assume that
the buyer will not issue multiple invoice certificates for the same invoice. The
invoice certificate is a digital certificate that includes all the details of an invoice,
and that it is signed by the corresponding buyer. For privacy purposes, not all
involved parties in a factoring scenario should have access to all details of the
invoice/certificate. In particular, the buyer and the seller have complete access
to the details, while the factor should only know the financial details, and the
smart contract only needs to know the due deadline of the invoice and the
identity of the buyer (we will elaborate on the details needed by the smart
contract when we explain the factoring process.)
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One possible solution is to split the invoice details into three fragments corre-
sponding to the mentioned three levels of access, and ask the buyer to sign each
fragment, separately. However, this solution is not efficient, as we need to (1)
include redundant information into the fragments to link them together, and
(2) one should verify multiple signatures in case he/she has access to multiple
fragments.

Instead, we build a two-level Merkle hash tree in which the buyer only signs
the root of the tree (top-level hash). In particular, the invoice certificate is
composed of three fragments, as well as a signature over the root:

CI = [αI ,βI ,γI ,σ
B
θI
],

where

αI = [PI ,PUB,deadlineI ],

βI = [NI ,PUS ,dateI ,amountI ],

γI = [other business-related invoice details],

θI = [h(αI ),h(βI ),h(γI )].

The first fragment is αI , which is publicly accessible. This fragment is com-
posed of the pseudo-identifier of the invoice, the public key of its buyer, and its
payment deadline, respectively. The pseudo-identifier (PI ) uniquely identifies
the invoice and is checked to prevent double-factoring.

The second fragment of the invoice certificate is βI which is composed of the
invoice number, the public key of its seller, and its issue date and amount,
respectively. The βI fragment is accessible to the buyer and the seller as well
as the factor.

Finally, the most private invoice details are included in the third fragment, γI ,
which are the business-related information such as the list of the provided goods
or services, and their fees. The γI fragment is only known by the buyer and
the seller.

The hashes of the individual fragments are concatenated and signed by the
buyer collectively (σB

θI
). One can verify the signature with the corresponding

Merkle proof, that is to say, by considering the hashes of his/her inaccessible
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fragments and calculating the hashes of the accessible fragment(s). Therefore,
the certificate is verifiable even if some of its fragments are not disclosed to the
verifier.

5.2.4.2 The Compliance Certificate

Because of know-your-customer (KYC) and other legal compliance issues, the
involved parties shall authenticate and know each other diligently. We can
assume that the seller and the buyer in one hand, and the seller and the factor
on the other hand know each other before interacting with our system. However,
the buyer and the factor, in general, do not have to know each other before the
payment deadline of the invoice. Therefore, we would like to comply with
the KYC regulation in this relation, and require the factor to register with an
accreditation agency, and receive a compliance certificate (CF) before entering
the next (factoring) phase.

The compliance certificate is a special attribute certificate which adds infor-
mation to the digital certificate of a factor. In particular, it asserts that the
factor identified by a public key is a legal entity that can perform financial
transactions. For simplicity and in order to eliminate the necessity of a revo-
cation mechanism, the certificate is short-lived and limited to the duration of
a factoring agreement. The compliance certificate has the following details:

CF = [αF ,βF ,σ
A
θF
],

where

αF = [PUA,dateF ,expiryF],

βF = [SN,PUF],

θF = [h(αF),h(βF)].

in which the content of the certificate is its serial number, the long-term public
key of the factor, the public key of the accreditation agency, and the issuance
and expiry dates, respectively. All the content are signed by the agency (σA

θF
).
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5.2.5 The Factoring Phase

In this phase, the seller and the factor register their agreement around the de-
tails of factoring an invoice, which is denoted by I . The registration is performed
in the following steps:

1. The seller sends the following message to the factor over a secure channel:

S→ F : [αI ,βI ,h(γI ),σ
B
θI
, IBANS ].

The message begins with disclosing relevant fragments of the invoice cer-
tificate (αI and βI ) the hash of the other fragment (γI ), and the signature
of the buyer on the certificate as well as the bank account number of the
seller (IBANS).

2. The factor confirms the factoring agreement, and provides other infor-
mation to the seller for sending to the registration smart contract. In
particular, the factor:

2.1. Uses the public key of the buyer PUB, obtained from αI , to verify
the signature σB

θI
over the certificate CI .

2.2. Looks up the pseudo-identifier of the invoice (PI ) from the smart
contract to ensure that the invoice has not been already factored.

2.3. Generates a compliance proof (denoted by πF) which is a zk-SNARK
which (1) proves that he is in possession of a compliance certificate,
and (2) links his long-term public key with one of his blockchain
addresses.

2.4. Composes the agreement and settlement information:

A = [αI ,βI ,h(γI ),σ
B
θI
,CF , IDF ,aF , IBANS ],

comF = h(r2,βF),

M = [PI ,dF ,αF ,comF ,

Enc(KFB,CF , IDF , r2, IBANF),

Enc(PUB,KFB),h(r1,A)].

The agreement information (A) is the factor’s commitment to the
mutual agreement which is neither given to the buyer nor stored
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on-chain. We included αI and βI in A and only a hash of γI for
privacy reasons. By the way, the signature (σB

θI
) is verifiable by this

information. comF is another commitment which privately links PUF

to πF . The amount mentioned inA will be payed by the factor to the
seller after reducing some fee from the amount of the invoice (aF =

aI−fee). The dF is the deadline before which the seller has to register
the factoring agreement. The settlement information (M) contains
the details which will be stored on-chain, and includes the salted
hash of A as a commitment and for non-repudiation purposes. The
value r1 is a random number (salt) to prevent brute-force guessing
attacks on the hash of A in M. The M includes the compliance
certificate of the factor as well as his account number. The public
fragment of the certificate (αF) is directly included. However, the
private fragment which is hidden from the seller and is included in
the encrypted part ofM. We used a symmetric key (KFB) to encrypt
the mentioned information which is wrapped by the public key of
the buyer (Enc(PUB,KFB)).

2.5. Sends the agreement and signed settlement information as well as
the compliance proof to the seller over a secure channel:

F→ S : [A,M, r1,σ
@F
M , r2,πF]

The signature is generated with the factor’s blockchain public key
(@F). The compliance proof links the long-term public key of the
factor with his blockchain address, and the commitment comF . The
secrets in the commitment are revealed in the encrypted part of M
to give an evidence to the buyer about the identity of the factor who
generated πF .

3. The seller checks the details in A andM, verifies the salted hash of A is
correctly included inM, verifies the commitment comF matches r2 and CF ,
and if agrees with them, proceeds by sending the registration request to
the smart contract. In addition, she records the factor’s signature for pos-
sible later use as digital evidence. The registration information is minimal
and without any personally identifiable information. The request also in-
cludes an authenticity proof (denoted by πS) which is a zk-SNARK proof
which (1) proves that she is the authentic seller mentioned in the invoice
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certificate, and (2) links her long-term public key with her blockchain
address. The request is signed by one of the blockchain addresses of the
seller, and sent to the smart contract in a blockchain transaction.

S→ C : [tx,σ@S
tx ],

where
tx = [M,σ@F

M ,πF ,αI ,πS ].

The value of αI is the public information of the invoice certificate which
is required to verify πS .

4. The smart contract:

4.1. Verifies that the invoice (PI ) has not been already factored.

4.2. Verifies the dates. In particular, verifies that the current blockchain
time is: (1) prior the registration deadline (dF inM) and (2) after the
issue date of the factor’s compliance certificate (dateF). In addition,
(3) the expiry date of the certificate is after the invoice deadline (dI
in αI ).

4.3. Recovers the addresses of the seller (@S) and the factor (@F) from
the transaction. Then, verifies πS and πF to ensure the that: (1)
the invoice is valid, (2) the authentic seller has sent the transaction,
(3) a complaint factor is involved, (4) the factor has confirmed the
factoring, (5) the commitment comF matches the certificate of the
factor.

4.4. If all the previous steps are correctly passed, it registers the factoring
agreement by setting a flag in its key-value storage:

⟨PI ,PUB⟩ ⇒ true

4.5. Logs the details of the agreement to be used by the buyer for pay-
ment:

log(PI ,PUB,M,@S,@F,πF)

PI and PUB are defined as both an index and the key of the log for
quick search.
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5. The factor proceeds to pay aF to the account of the seller. This has to
happen before the agreed payment deadline.

5.2.6 Phase 3: Payment

When the deadline of an invoice (dI ) expires, the buyer proceeds with the
following steps to pay the factor. The buyer:

1. Queries the smart contract to figure out whether the invoice has been
factored or not. Then, queries a node of the blockchain to obtain the log
of the smart contract with the index field PI and his/her public key PUB.

2. From this on-chain log, the buyer obtains Enc(PUB,KFB), uses his/her
private key to decrypt it and recover KFB. Then, decrypts the other
encrypted part of M using KFB and recovers the public key certificate
of the factor, his compliance certificate, and his bank account number.
The buyer also recovers the salt r2 and with CF , he/she verifies that they
match the commitment comF in M. The commitment is also verifies in
πF and ensures the buyer that @F actually belongs to the factor who has
generated πF . If we did not have this commitment, πF would prove that
@F belongs to a compliant factor but that factor might be different from
the one that is mentioned in the encrypted part. In that case, we had
two other options: (1) πF should decrypt the encrypted parts of M and
prove that the same certificate for the factor is included in them. This
is a very heavy zero-knowledge proof, and we avoid that. (2) The factor
should include a signature in M such as σF

@F to link @F to PUF . This
would also reveal the link to the public, and we should avoid that.

3. If the checks in the previous step succeed, the buyer knows the factor
and his/her associated IBANF and pays the invoice amount (aI ) to that
IBANF .

5.2.7 Denial of Service Attack

The included public key (PI ) is a pseudo-identifier for the certificate, and only
the correct seller has the corresponding private key. The seller uses a zk-SNARK
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proof to prove possession of the private key to the smart contract. This prevents
a fraudulent factor from depriving a seller from factoring his/her invoice. In
this attack, once the seller negotiates with the factor, the factor may use the
provided details about the invoice to impersonate the seller and fraudulently
register the invoice instead of the original seller. If the attack succeeds, the
smart contract will not allow the seller to register his/her factoring. In this
case, even if anyone knows all the invoice details, including its pseudo-identifier
(PI ), they cannot register it on the smart contract becase they cannot generate
the zk-SNARK proof. The mentioned attack was possible in previous versions
of our protocol. Nonetheless, the buyer did not pay the factor in the end,
because the identity of the seller did not match the invoice. However, this was
not possible to detect by the smart contract and would disrupt the factoring
process.

5.3 Related Work

This section describes works in the literature that propose blockchain-based
solutions using digital certificates. These works are the ones that are more
related to our protocol. At the end of the section we provide a comparison of
these works with our proposal in Table 4.1.

Yakubov et al.[36] presented a blockchain-based Public-Key Infrastructure (PKI)
for issuing, validating, and revoking X.509 certificates. Blockchain smart con-
tracts and PKI procedures as the underlying technology can guarantee authen-
tication. For each Certificate Authorities(CA), a smart contract is established
in the blockchain. The smart contract includes the CA certificate, hashes of
the CA’s issued certificates, and revocation status. They integrate metadata
related to blockchain using extensions in standard X.509 certificates. When val-
idating a TLS certificate, an extension is provided with the issuing CA’s smart
contract address and utilized to build a trust chain even though the certificate
is not a root CA certificate. In reality, in the TLS client system, the essential
certificates are validated by invoking a smart contract or utilizing a web service
that checks the chain’s authenticity. They do not require external auditing
to assess their cryptographic correctness and behavior because new blocks are
confirmed and appended to the log only when the underlying blockchain net-
work has reached a consensus. Furthermore, it can be efficiently and quickly
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monitored. To validate the TLS certificates in their system, clients must ask a
web server or a bookkeeper, which violates their privacy.

CertLedger[37], the work presented by Kubilay et al., provides a blockchain
system to replace the certificate validation and revocation logs as well as the
certificate revocation list (CLR), eliminating CRL spoofing and retaining the
full secure channels since the commencement of communication. CertLedger
makes use of the blockchain to enable certificate transparency and provides
an efficient means of certificate verification. It is a novel PKI proposal based
on blockchain technology that provides certificate transparency in revocation
and management of trustworthy CA activities. The basic idea behind this
proposal is to use smart contracts to keep all transactions secure from Web
server certificates. All of this is to prevent a data breach or hijack, given that
the traditional CAs that produce and maintain certificates can go rogue, or
the blockchain could be subject to a 51 percent attack. As a result, the actual
security of the system is based on the architecture’s cryptographic primitives.

Yang and Li [38] modified the current claim identification model in the blockchain
using smart contracts and zero-knowledge proof (ZKP) methods to achieve
identity unlinkability, thus preventing attribute ownership from being exposed.
Fragmented identities, single points of failure, internal attacks, and data leak-
age have been issues with traditional centralized digital identity management
systems (DIMS). DIMSs may be used in conjunction with blockchain technol-
ogy, which considerably reduces the risks posed by a centralized third party.
Nonetheless, the inherent transparency and lack of privacy constitute a signifi-
cant barrier to DIMSs. They talked about the existing claim identity model as
well as their suggested work on an improved identity claim model. Incorporat-
ing the attribute identifier and user’s public key in the hash preimage avoids
exposing the ownership of the privacy attribute in the public and transparent
distributed ledger in the revised claim identification model. Furthermore, they
created the BZDIMS system prototype, which features a challenge-response
protocol that allows users to selectively disclose their ownership of character-
istics to service providers in order to safeguard users’ behavior privacy. Their
approach achieved effective attribute privacy protection and a broader appli-
cation scope, according to performance evaluation and security analysis. Yang
and Li used zk-SNARKs for data minimization. The verifiable credential is
issued as a committed form with its zk-SNARKs evidence in its design. The
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user additionally develops a verified presentation that expresses the accuracy of
the credential and its one-time use. Furthermore, the zk-SNARKs are used in
their work to prove the ownership of a given attribute issued in advance. Fur-
thermore, because they only use zk-SNARKs to improve verification efficiency,
their work restricts the presentation format to revealing only the possession of
an attribute, despite the expression power of the zk-SNARKs.

The table 5.1 summarizes the properties of state-of-the-art blockchain-based
Zero-knowledge proof, digital certificate, and our idea.

Table 5.1: Comparison with close related work.

Proposal
Blockchain
Permission

type
Revocation Blockchain

type
Storage

type Privacy

Yakubov et al. [36] Permissionless Yes Ethereum-based on-chain:None
off-chain: Public No

CertLedger [37] Permissionless Yes Ethereum-based on-chain:Hash
off-chain: Private No

Yang and Li [38] Permissionless Yes Ethereum-based on-chain: Hash in a zk-SNARK
off-chain: Public Yes

Our Proposal Permissionless Yes Ethereum-based

on-chain:Hash
and

Digital Signature
in a zk-SNARK
off-chain: Public

Yes

A short discussion of the general observations property by property follows:

Blockchain Permission Type: Since the permissionless blockchain is the same
as the public blockchain, all the related works under consideration, including
our proposed protocol, are permissionless. Permissionless implementations of
Internet-scale applications are used in the chain consensus process to validate
transactions and data and are available to everyone.

Revocation : Revocation is one of the security features of digital certificates
in Blockchain and Zero-Knowledge proof. Because using blockchain, all ap-
proaches implement this feature. In the traditional method, reliable third par-
ties were required for revocation, but in these systems, this revocation may not
be done correctly due to the possibility of a MITM attack.

Blockchain type: Here, all implementations are based on Ethereum. Consid-
ering the reliability, non-manipulation, and availability of public blockchain is
valid.
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Storage type: This section examines storage in two forms, off-chain and on-
chain. On-chain data storage in Yakubov et al. [36] implementation is stored
certificate completely outside the chain. In CertLedger [37] the storage is only
hash. In Yang and Li [38] work and our proposed protocol, if our certificates
are to be stored, they are stored as a hash in zk-snark technology. In off-chain
mode, storage for the kubilay project is private, and the rest of the related
works are public.

Privacy: Yakubov et al. [36] andCertLedger [37] do not explicitly consider pri-
vacy in their implementation. While Yang and Li [38] and our proposed protocol
take into the privacy of each entity. We do not store sensitive data directly on
the blockchain for privacy reasons. Instead, before being put on a chain, the
data portion is symmetrically encrypted. The extensions provide the smart
contract to check factoring agreements before they are registered without jeop-
ardizing the privacy of the persons concerned. Not all parties engaged in a
factoring scenario should have access to all information of the invoice/certifi-
cate for privacy reasons.

5.4 Conclusions

In this chapter we introduced a protocol for an invoice factoring system with
enhanced privacy. We utilized non-interactive zero-knowledge proofs for en-
hancing privacy. In particular, we use two ZKPs: one proof is created by the
seller and it confirms that the buyer approves the invoice. This proof includes
the blockchain address of the owner of the invoice. The other proof is created by
the factor and it proves that an accreditation authority approves the factor. As
we detailed in the explanations in the chapter, these zero-knowledge proofs also
prevent possible denial of service attacks. Future work will concentrate on the
detailed implementation of these proofs and in getting experimental results.





Chapter 6

Conclusions and Future Work

Although invoice factoring is a substantial part in the worldwide financial sector,
the absence of a single source of truth makes it ripe for the double-factoring
fraud. In this thesis we propose a blockchain-based architecture for invoice
factoring registration. The architecture is gradually developed and enhanced in
Chapters 3, 4 and 5. In the first protocol, we proposed our base architecture
for factoring registration using a public blockchain. The protocol is intended
to limit the buyer’s participation in the factoring process. The buyer was only
required to publish a hash of invoice details for verification by the factor, and
the rest of the process was carried out by the sellers and the factors using
on-chain and off-chain communications. The on-chain details were registered
by a smart contract which also protected our system from double-factoring
attacks. Simultaneously, pseudo-anonymous identifiers, symmetric encryption,
and cryptographic commitments were used for on-chain data, to improve the
privacy of the participants. The registered information was used by the buyer to
pay the corresponding factor. In addition, it could be used as digital evidence for
dispute resolution. A comparison with the literature revealed that our proposal
were superior to the related works with respect to efficiency, privacy, and buyer’s
involvement.

The second proposed protocol was an evolution of our first protocol, with en-
hancements in flexibility and user on-boarding. We employed Decentralized
IDentifiers (DIDs) and allowed the participants to use their self-sovereign iden-
tities (SSIs). One benefit of adopting DIDs was that we could rely on new
protocols created in that ecosystem, such as DIDComm, to perform secure
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asynchronous communications between participants. We were also enabled to
use DIDs for granting permission to parties who were allowed to participate
in our invoice factoring ecosystem by leveraging the concept of Verifiable Cre-
dentials (VCs). A relayer was also added to our ecosystem for facilitating the
onboarding of sellers on the system. In particular, the sellers could send their
transactions to the relayer to free themselves from dealing with cryptocurrency,
and at the same time, benefit from the high security and availability of a pub-
lic distributed ledger. This was achieved because the relayer sent the sellers’
transactions to the blockchain (as a meta-transaction), and payed all respective
blockchain fees on behalf of the sellers. The sellers could pay the relayers via
off-chain methods (such as credit card or bank transfer). Therefore, the second
proposal was easier to be used for registering invoice factorings. The improve-
ments did not negatively affect our efficiency in comparison to our first protocol
as only one meta-transaction were required per factoring registry.

In the third and last evolution of the protocol, we proposed to use zero-knowledge
proofs (ZKPs) to allow the smart contract to do a more complete validation
before a registration is actually realized and this was achieved without hinder-
ing privacy. In particular, we proposed to use non-interactive zero-knowledge
proofs as validity evidences for protecting most invoice details, and the identity
of involved parties from prying eyes. One of the proofs were created by the fac-
tor to prove approval from an authority and another proof was provided by the
seller to confirm that the he/she was authorized to factor the invoice. We plan
to further enhance our system in the future by conducting more comprehensive
experimental assessments and analyses. Finally, we would like to remark that
our ideas can be applied to other use cases and ecosystems in which efficient
and privacy-preserving registrations are needed while having a high degree of
privacy and where easy user on-boarding is important.
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AppendixA

This appendix shows the main smart contract proposed for implementing the
registration of invoice factoring. The smart contract is written in Solidity and
it registers information from the seller and factor. The smart contract allows
the buyer to determine whether an invoice identified by PI has been previously
registered or not.

1 // contracts/FactoringProcess.sol
2
3 // SPDX-License-Identifier: MIT
4
5 pragma solidity ^0.8.0;
6
7 contract FactoringProcess {
8
9 mapping(bytes => bool) private alreadyRegistered;

10
11 event NewInvoiceRegistered(
12 bytes indexed p_I,
13 uint256 due_time,
14 string enc_factor_bank,
15 string public_bank,
16 uint256 r ,
17 uint256 h,
18 address p_u_s,
19 address p_u_f
20 ) ;
21
22
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23
24 function invoiceRegistration (
25 bytes memory p_I,
26 uint256 due_time,
27 string memory enc_factor_bank,
28 string memory public_bank,
29 uint256 r ,
30 uint256 h,
31 bytes memory sign_DID_F,
32 bytes memory sign_DID_S
33 ) public {
34 address p_u_s;
35 address p_u_f;
36
37 require(
38 block.timestamp < due_time,
39 ”META_TX: Meta transaction is expired”
40 ) ;
41
42 bytes32 M = keccak256(abi.encodePacked(
43 p_I,due_time,enc_factor_bank,public_bank,r,h,sign_DID_F));
44 bytes32 S = keccak256(
45 abi.encodePacked(p_I, due_time, enc_factor_bank, public_bank, r, h)
46 ) ;
47 p_u_s = recoverSigner(M, sign_DID_S);
48
49 p_u_f = recoverSigner(S, sign_DID_F);
50
51 require (! InvoiceRegister(p_I), ”Already registered .”) ;
52
53 AlreadyRegistered[p_I] = true;
54
55 emit newInvoiceRegistered(
56 p_I,due_time,enc_factor_bank,public_bank,r,h,p_u_s,p_u_f
57 ) ;
58
59 }
60
61 function isInvoiceRegistered (bytes memory p_I) public view returns (bool) {
62 return AlreadyRegistered[p_I];
63 }
64
65
66
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67
68 function getFirstCall ( string memory yourname)
69 public
70 pure
71 returns ( string memory)
72 {
73 return string(abi.encodePacked(”Hello ”, yourname));
74 }
75 function get_S(
76 bytes memory p_I,
77 uint256 due_time,
78 string memory enc_factor_bank,
79 string memory public_bank,
80 uint256 r ,
81 uint256 h
82 ) public pure returns (bytes32) {
83
84 bytes32 S = keccak256(
85 abi.encodePacked(p_I, due_time, enc_factor_bank, public_bank, r, h)
86 ) ;
87 return (S);
88
89 }
90 function get_M(
91 bytes memory p_I,
92 uint256 due_time,
93 string memory enc_factor_bank,
94 string memory public_bank,
95 uint256 r ,
96 uint256 h,
97 bytes memory sign_DID_F
98 ) public view returns (bytes32 M) {
99 require(

100 block.timestamp < due_time,
101 ”META_TX: Meta transaction is expired”);
102
103 return keccak256(abi.encodePacked(
104 p_I,due_time,enc_factor_bank,public_bank,r,h,sign_DID_F));
105 }
106
107
108
109
110
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111
112
113 function prefixed(bytes32 hash) internal pure returns (bytes32) {
114 return
115 keccak256(
116 abi.encodePacked(”\x19Ethereum Signed Message:\n32”, hash)
117 ) ;
118 }
119
120 function splitSignature (bytes memory sig)
121 internal pure returns (
122 uint8 v,
123 bytes32 r,
124 bytes32 s
125 )
126 {
127 require(sig .length == 65);
128 assembly {
129 r := mload(add(sig, 32))
130 s := mload(add(sig, 64))
131 v := byte(0, mload(add(sig, 96)))
132 }
133 return (v, r , s) ;
134 }
135
136 function recoverSigner(bytes32 message, bytes memory sig)
137 internal pure returns (address)
138 {
139 (uint8 v, bytes32 r, bytes32 s) = splitSignature(sig) ;
140 return ecrecover(message, v, r , s) ;
141 }
142 }
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