
Benchmarking the continuous behavior
of stream processing techniques on the

problem of enumerating weakly
connected components

Bachelor Thesis

Sergi Cassanmagnago Somoza

Specialization in Computing

Directors: Edelmira Pasarella Sánchez and Maŕıa-Esther Vidal

GEP Tutor: Javier Juan Morales Sorolla

January, 2022

Acknowledgements

To all the people who have supported me during this journey, special thanks to my family
and the directors of the project.

1

Abstract

The problem of enumerating subgraphs satisfying some properties (e.g., patterns and mo-
tifs) corresponds to listing such subgraphs. In general, because of the large/huge graphs re-
lating objects in different domains (biology, mobile networks, social networks, genetics, etc.),
waiting until achieving the whole enumeration of subgraphs satisfying some properties can
be too expensive and unmanageable for some families of problems. Thus, the possibility of
incrementally enumerating these subgraphs (i.e., a subgraph is returned as soon as they are
identified) rises as a promising approach for some families of problems (e.g., network analysis
and motif identification). In effect, following a search approach over the listed subgraphs allows
stopping the enumeration when it is convenient. The implementation of incremental enumer-
ation solutions suits well to stream processing paradigms and frameworks. In this work, as a
proof of concept, we conduct a comparative study of the continuous behavior of two stream
processing-based solutions for the problem of incrementally enumerating weakly connected
components of (bounded) undirected graphs. One of these solutions is implemented using the
Go programming language following the Dynamic Pipeline Paradigm, and the other solution
is implemented on top of the DataSet API provided by the Apache Flink Framework. Finally,
we analyze and report experiments against large graphs having up to 2, 746 connected compo-
nents. Obtained results satisfy our expectations. To assess the incremental delivery of results,
we measure the the diefficiency metrics, i.e., the continuous efficiency of the implementation
of the algorithm for generating incremental results.

Resum

El problema de l’enumeració dels subgrafs que satisfan determinades propietats (per exem-
ple patrons i disenys) correspon a la mostra d’aquests subgrafs. En general, a causa dels grafs
grans/enormes que relacionen objectes en diferents dominis (biologia, xarxes mòbils, xarxes so-
cials, genètica, etc.), esperar fins a aconseguir l’enumeració sencera dels subgrafs que satisfacin
certes propietats pot ser massa costós i immanejable per a algunes famı́lies de problemes. Per
tant, la possibilitat d’enumerar incrementalment aquests subgrafs (es dir, enumerar els com-
ponents a mesura que es calculen o s’identifiquen) sorgeix com una alternativa prometedora
per a algunes famı́lies de problemes (per exemple, en l’anàlisi de xarxes i en l’identificació de
patrons). En efecte, seguir un enfocament de cerca sobre els subgrafs enumerats permet aturar
l’enumeració quan sigui convenient. La implementació de solucions d’enumeració incremental
s’adapta bé als frameworks i paradigmes de processament de fluxos de dades. En aquest tre-
ball, com a prova de concepte, realitzem un estudi comparatiu del comportament continu de
dues solucions basades en el processament de fluxos de dades per al problema de l’enumeració
incremental de components dèbilment connexes de grafs (acotats) no dirigits. Una d’aques-
tes solucions s’implementa utilitzant el llenguatge de programació Go seguint el Paradigma
de Dynamic Pipeline, i l’altra solució s’implementa sobre l’API de DataSet proporcionada per
l’Apache Flink Framework. Finalment, analitzem i informem sobre experiments realitzats amb
grafs grans que contenen fins a 2746 components connexes. Els resultats obtinguts satisfan les
nostres expectatives. Per avaluar el lliurament incremental de resultats, mesurem les mètriques
de dieficiència, és a dir, l’eficiència continua de la implementació de l’algorisme per generar
resultats incrementals.

2

Resumen

El problema de la enumeración de los subgrafos que satisfacen determinadas propiedades
(por ejemplo patrones y diseños) corresponde a la muestra de estos subgrafos. En general,
debido a los grafos grandes/enormes que relacionan objetos en distintos dominios (bioloǵıa,
redes móviles, redes sociales, genética, etc.), esperar hasta lograr la enumeración entera de
los subgrafos que satisfagan ciertas propiedades puede ser demasiado costoso e inmanejable
para algunas familias de problemas. Por lo tanto, la posibilidad de enumerar incrementalmente
estos subgrafos (es decir, enumerar los componentes a medida que se calculan o se identifican)
surge como un enfoque prometedor para algunas familias de problemas (por ejemplo, en el
análisis de redes y en la identificación de patrones). En efecto, seguir un enfoque de búsqueda
sobre los subgrafos enumerados permite detener la enumeración cuando sea conveniente. La
implementación de soluciones de enumeración incremental se adapta bien a los frameworks y
paradigmas de procesamiento de flujos de datos. En este trabajo, como prueba de concepto,
realizamos un estudio comparativo del comportamiento continuo de dos soluciones basadas
en el procesamiento de flujos de datos para el problema de la enumeración incremental de
componentes débilmente connexas de grafos (acotados) no dirigidos. Una de estas soluciones
se implementa utilizando el lenguaje de programación Go siguiendo el Paradigma de Dinamic
Pipeline, y la otra solución se implementa sobre la API de DataSet proporcionada por el
Apache Flink Framework. Finalmente, analizamos e informamos sobre experimentos realizados
con grafos grandes que contienen hasta 2746 componentes connexas. Los resultados obtenidos
satisfacen nuestras expectativas. Para evaluar la entrega incremental de resultados, medimos
las métricas de dieficiencia, es decir, la eficiencia continua de la implementación del algoritmo
para generar resultados incrementales.

3

Contents

1 Introduction 8
1.1 Definition of the problem . 8
1.2 Objectives . 9
1.3 Methodology . 9

2 Preliminaries 11
2.1 Stream Processing Systems . 11
2.2 Dynamic Pipeline Paradigm . 13
2.3 Apache Flink Framework . 13
2.4 Diefficiency Metrics . 14

3 Enumerating Weakly Connected Components 16
3.1 Approaches for Solving the Problem of WCC Enumeration 16
3.2 The DP-WCC Algorithm . 19
3.3 The AF-WCC Algorithm . 22

4 Implementation 26
4.1 DP-WCC Implementation . 26
4.2 AF-WCC implementation . 32

5 Empirical evaluation 39
5.1 Experiments Definition . 40
5.2 Analysis of Results . 40

6 Conclusions and Future Work 45

A Project Management 47
A.1 Description of the tasks . 47
A.2 Resources . 49
A.3 Risk management, alternative plans and obstacles 52
A.4 Budget . 52
A.5 Sustainability . 57
A.6 Planning changes . 58
A.7 Legal and regulatory context . 62

4

List of Figures

1 Illustration of an SP system’s topology [1]. 11
2 Initial configuration of a DP [2]. 13
3 Evolution of the DP when the Generator stage spawns Filter stage instances [2]. . . 13
4 Anatomy of a Flink cluster [1]. 14
5 Example radar plot to compare the performance of different approaches with dief@t

and other metrics. Plot interpretation: Higher is better. [3]. 15
6 Example of a graph with connected components {1,2} and {3, 4, 5}. 16
7 Initial configuration of DP-WCC. 20
8 First phase of the execution of DP-WCC. 20
9 Second phase of the execution of DP-WCC. 20
10 Third phase of the execution of DP-WCC. 20
11 Fourth phase of the execution of DP-WCC. 21
12 Fifth phase of the execution of DP-WCC. 21
13 Sixth phase of the execution of DP-WCC. 21
14 Seventh phase of the execution of DP-WCC. 21
15 Eighth phase of the execution of DP-WCC. 22
16 Ninth phase of the execution of DP-WCC. 22
17 Initial configuration of the graph used to demonstrate the behavior of AF-WCC . . 23
18 First iteration of the AF-WCC example. 23
19 Graph after the first iteration of the AF-WCC example. 24
20 Second iteration of the AF-WCC example. 24
21 Graph after the second iteration of the AF-WCC example. 24
22 Third iteration of the AF-WCC example. 25
23 Representation of the edge type in DP-WCC. 26
24 Implementation of the main function of DP-WCC. 27
25 Implementation of the SrWCC stage of DP-WCC. 28
26 Implementation of the GWCC of DP-WCC. 29
27 Implementation of the actor1 phase of the FWCC of DP-WCC. 29
28 Implementation of the actor2 phase of the FWCC stage of DP-WCC. 30
29 Implementation of the printing mode of the SkWCC stage of DP-WCC. 31
30 Implementation of the trace generating mode of the SkWCC stage of DP-WCC. . . . 31
31 Assignment of variables and execution environment in the main function of AFWCC. 32
32 Implementation of the Parser class in AFWCC. 33
33 Implementation of the UndirectedEdge class in AFWCC. 33
34 Implementation of the CollectVertex class in AFWCC. 34
35 Implementation of the AssignID class in AFWCC. 34
36 Implementation of the assignment of variables for the delta iteration in AFWCC. . . 34
37 Implementation of the AssignID class in AFWCC. 35
38 Implementation of the AssignID class in AFWCC. 35
39 Implementation of the delta iteration in AFWCC. 36
40 Implementation of the ConnectedComponents class in AFWCC. 36
41 Implementation of the OutputFile function in AFWCC. 37
42 Implementation of the Traces class in AFWCC. 37
43 Implementation of the part of the main function that produces results in AFWCC. . 38

5

44 Resulting trace obtained from the execution of ca-AstroPh with the DP Paradigm
approach . 42

45 Resulting trace obtained from the execution of ca-AstroPh with the Apache Flink
approach. 42

46 Metrics plot comparing the execution time of both approaches with ca-AstroPh. . . 42
47 Traces plot comparing the incremental performance of both approaches with ca-

AstroPh. 42
48 Resulting trace obtained from the execution of email-Enron with the DP Paradigm

approach . 43
49 Resulting trace obtained from the execution of email-Enron with the Apache Flink

approach . 43
50 Metrics plot comparing the execution time of both approaches with email-Enron. . . 43
51 Traces plot comparing the incremental performance of both approaches with email-

Enron. 43
52 Resulting trace obtained from the execution of web-Google with the Apache Flink

approach . 44
53 Radar plot comparing the previously defined metrics for both approaches of this

study when processing ca-AstroPh. 44
54 Radar plot comparing the previously defined metrics for both approaches of this

study when processing email-Enron. 44
55 Gantt chart of the project. Created with Ganttproject [4]. 51

6

List of Tables

1 Main Characteristics of the Selected Datasets. #Vertices LWCC and #Edges LWCC
correspond to nodes and edges in the largest WCC, respectively 40

2 Results of the execution of the selected graphs for each approach. 41
3 Table containing all the tasks associated with the project, their duration, their de-

pendencies and required resources. 50
4 Estimated cost per hour of the roles involved in the project [5] 53
5 Table containing the cost per role of all the tasks associated to the project, as well

as the total cost of the staff per task and total cost per staff 54
6 Cost of the amortization of the laptop computer for the duration of the project. . . 55
7 Cost of electricity during the duration of the project. 55
8 All costs associated to the general costs of the project, as well as the total cost of

general costs associated to the project. 56
9 Incidental costs associated to the project. 56
10 Total costs associated to the development of the project. 57
11 Table containing the final difference between the calculated and actual hours for the

development of the project. 59
12 Table containing the final cost associated to the staff of the project, as well as the

difference with the initially predicted cost of the staff. 61
13 Total updated costs associated to the development of the project. 62

7

1 Introduction

The digitalization based on the processing of continuous data streams in many areas of life has given
rise to the need of developing new problem solving paradigms and processing systems. Stream Pro-
cessing (SP) systems are used to process data streams as the data arrives and gain valuable insights,
reactions to observed situations and higher level information from the data [6]. Examples of usecases
for SP systems are [7]: real-time processing of financial transactions, such as in stock exchanges
and banks, real-time tracking of shipments (logistics systems), systems to connect, store, and make
available data produced by different divisions of a company, etc. All these examples use unbounded
data. However, SP techniques can also be used for dealing with bounded (big) data as, for instance,
analysis of big networks.

Since SP systems must handle large amount of data and a lot of their applications rely on re-
ceiving the data in real time, low latency and high throughput are the primary quality of service
(QoS) goals for SP systems. If a system does not meet its QoS goal, penalty fees may arise or the
system might become less useful. In order to achieve the previously mentioned QoS goals, SP sys-
tems require parallelization techniques to take maximum advantage of the computational resources.
They also use elasticity strategies to continuously adapt the level of parallelization when the work-
load or available resources change, since SP systems always need enough resources to process the
input data streams but provisioning excessive computing resources is wasteful at off-peak hours [6].

Some real world applications rely on receiving results incrementally [8], i.e., receiving a certain
subset of the processed results as quickly as possible rather than waiting for all the results to be
generated. Commonly used platforms for SP like Apache Kafka [7] and Apache Flink [1] implement
paradigms like MapReduce[9] for providing their SP systems with parallelization and elasticity.
These types of paradigms resort to the Divide & Conquer Paradigm, where an initial problem is
partitioned into subproblems and each of the subproblems have to be completely executed in order
to start the next one. This strategy has a blocking behavior and does not allow the results to be
generated incrementally, which limits the flexibility demanded in this type of applications.

Newer paradigms for SP like the Dynamic Pipeline (DP) [8] allow for the execution of dependent
tasks on different data items simultaneously, which allows for non-blocking solutions that generate
results incrementally. Research is being done to establish some families of stream data algorithms
for which the DP paradigm is a competitive alternative with respect to other SP approaches.

1.1 Definition of the problem

The previously mentioned DP Paradigm is a recently proposed approach to address SP, and it
is currently still restricted to the academical environment. Research is being done to determine
which family of data streaming algorithms favor the DP Paradigm over other commonly used SP
paradigms.

The DP is a new paradigm that has been recently proposed as an alternative to address SP. Because
of this, research still needs to be done to conclude the viability of this paradigm for solving specific
types of problems. Research has been made to demonstrate its implementation when solving certain
problems whose incoming data is heterogeneous data in motion [8], as well as its efficiency when
solving the problem of incrementally enumerating bitriangles in large bipartite networks [10].

8

However, to the best of our knowledge, there are not any studies about the behavior of the DP
paradigm and extensively used SP paradigms.

As previously mentioned, research is needed to establish some families of data flow algorithms
for which the incremental approach of the DP Paradigm is a competitive alternative with respect
to other SP approaches. This requires comparing the performance of the DP paradigm with other
commonly used SP paradigms when solving different types of problems, which proves the viability
of this project. The aim of this thesis is to conduct a comparative study between the DP Paradigm
and the Apache Flink Framework Paradigm. This comparative study consists on implementing the
Weakly Connected Components(WCC) [2] [11] data algorithm on both paradigms, and it aims to
measure the performance of both implementations and determine if this problem is better suited
for the incremental approach of the DP Paradigm over the Apache Flink Framework Paradigm
approach, as well as comparing the process of implementing the algorithm on each paradigm and
identifying positive and negative aspects of each process. Apache Flink has been selected to be
compared with the DP Paradigm because it is a popular framework that implements a paradigm
similar to MapReduce, which as previously mentioned has a blocking behavior that does not allow
the results to be generated incrementally.

1.2 Objectives

The main objective of this work is to conduct a comparative study of the continuous behavior of two
stream processing-based solutions for the problem of enumerating weakly connected components of
a (bounded) undirected graph. One of these solutions is implemented using the Go programming
language, following the Dynamic Pipeline Paradigm and the other solution is implemented on top
of the Apache Flink Framework. This objective can be divided into the following sub-objectives:

• To develop and implement Weakly Connected Components algorithms for both approaches:
the Dynamic Pipeline Paradigm and the Apache Flink Framework. This objective can itself
be divided into the following sub-objectives:

1. To study the DP Paradigm and the Apache Flink Framework, and to create and configure
the corresponding technological working infrastructures on both computing platforms.

2. To study the WCC algorithm, and understand its behavior and how it can be imple-
mented on both infrastructures.

3. To use the developed technological infrastructures to implement the WCC algorithm.

4. To choose the appropriate datasets with which to conduct the comparative study on
both implementations.

• To conduct an experimental assessment of the implementation of the developed WCC algo-
rithm on top of both, the DP Paradigm and the Apache Flink framework.

1.3 Methodology

In this section, we give a brief overview on the methodology that will be used to implement and
validate the solution. Weekly or bi-weekly meetings will be done with the directors to discuss and
validate the achievements, as well as to make decisions of specific approaches to address emerging
sub-problems. The code of the implementations of the algorithm i both paradigms will be uploaded

9

to a project repository to facilitate the proposal of new changes to the implementations. Changes
to these implementations will also be uploaded to the project repository so that the directors of the
project can be up-to-date with the latest versions of the implementations.

• Reading of fundamental academic papers about SP and the WCC problem.

• Reading of (online) technical documents (reports, manuals and tutorials) and metric tools
about the Apache Flink Framework, as well as the DP paradigm.

• Technical writing of (partial) reports.

• Development and implementation of programs.

• Setting up the experimental platform.

• Defining and possibly refining the metrics with which to conduct the comparative study.

• Running the implemented algorithm and measuring the selected metrics.

• Analyze and report the results

According to the academic nature of this thesis, the validation of results is based on the task
done by the student for achieving each goal of the project. When reading academic or technical
documents, directors will validate that the level of knowledge acquired by the student is the proper
one. Regarding the experimental phase, directors will supervise that the conduction and the results
reporting of the experiments are done with precision and in a correct way.

10

2 Preliminaries

2.1 Stream Processing Systems

Traditional Stream Processing systems consist of a directed and acyclic operator graph that receives,
processes and forwards the input data in streams, called its topology. The topology also includes
the data sources that emit data items into the graph, as well the sinks that consume the output.
In Fig. 1, we provide an illustrative example of an SP system’s topology. Source operators provide
the data to the transformation operators, where the processing of the data takes place. Each
transformation operator applies certain transformation to the input data. Once the transformation
phase is complete, the resulting data stream is sent to the sink operators that provide the data
stream to multiple applications that consume the output. In an SP system, the operators may run
on single or multiple processing nodes that are connected via a communication network.

Figure 1: Illustration of an SP system’s topology [1].

SP systems require complex mechanisms to achieve the sufficient level of parallelization needed
to process input data streams with a satisfying QoS, as well as to continuously adapt the level of
parallelization when the conditions of the SP system change. This has led to the development of
a broad range of parallelization and elasticity solutions, each one tackling different problem cases.
These solutions have a set of key characteristic both in their parallelization and their elasticity
approaches

Parallelization characteristics When it comes to the parallelization characteristics of SP sys-
tems, we highlight the type of the SP system, its programming model, sub-stream processing,
infrastructure, operator state model, parallelization method, and splitting strategy [6].

An SP system’s type determines what operations it supports. An SP system can be general
(GP) or specialized (CEP). GP systems apply continuous operations on streams of data items,
while CEP systems are used to detect patterns of events in streams triggered by observations of the
surrounding world.

The programming model on an SP system defines if its operations and patterns are specified
with declarative queries or with an explicit imperative implementation. Declarative systems auto-
matically deploy an operator graph that implements a specified query, often with optimizations.
Imperative models require a programmatic specification of the operator graph and allow for higher
expressiveness, i.e., which queries can be implemented. However, they are harder to optimize and
the system can’t exploit operators for parallelization.

11

Operators process sub-streams are based on keys and windows. Key-based extraction groups
data items by the value of a certain key. Window-based extraction groups data items according to
a certain window policy, which has a certain scope and a slide. The scope describes the window size,
which can be count-based (number of data items) or time-based (data items within an interval),
while the slide defines the intervals the operator starts a new window on the input stream.

The infrastructure types on which an SP system is deployed are single nodes, cluster, cloud or
fog, each one offering a different trade-off between scalability and latency. Solutions running on
machines can scale up as long as the machine size permit, while environments that have less limited
scalability but might induce a queuing latency which can be critical in low-latency applications.

SP systems further differ in their operator state model, which can be stateless or stateful. State-
less operators consider one single data item at a time, and treat each data item the same way
regardless of former processing, while stateful operators store received data items or intermediate
results as states, and use or update those states when subsequent data items are processed.

The main parallelization methods for SP operators are task parallelization and data paralleliza-
tion. In task parallelization, the SP system runs multiple operations on the same data stream in
parallel, splitting bigger operators into consecutive sub-operators that can run in parallel. Data
parallelization executes identical instances of an operator in parallel, each instance running on a
partition of the input data stream.

Stateful operators require the input stream should be distributed among the operator instances
such that each instance can keep an individual state. Common data splitting strategies are Shuffle
Grouping, Key-based Splitting, Window-based Splitting, and Pane-based Splitting.

In shuffle grouping, the data items are shuffled across the operator instances. Each operator in-
stance keeps its own state for each key it has received. In key-based splitting, different ranges of
keys, i.e. a certain value of the data items, are assigned to different operator instances, where each
operator instance keeps the state of a distinct, non-overlapping key range. In window-based split-
ting, the partitions of the input event stream are split into sub-sequences, i.e., windows. Windows
are assigned to the instances of the operator. The Pane-based Splitting splits the input stream into
non-overlapping sub-sequences called panes, each one of which belongs to one or more windows.
After the processing, the results are assembled from the panes according to the window policy of
the operator.

Elasticity characteristics We now explain the most relevant properties and characteristics of
elasticity approaches [6]:

Elasticity changes the resource requirements of the SP system at runtime, so it is required
to define how resources can be acquired and released. The benefits of the adaptation need to
overcome the overhead generated by such adaptation. Elasticity methods base on data from system
information and workload information. System information comprises CPU utilization, throughput,
latencies for queuing and processing as well as memory consumption. Workload information is the
number of data items in the input streams and their data type. The timing when an elasticity
method adapts the SP system can be reactive or proactive. Reactive approaches adapt when the
system detects that its QoS goals are violated, while proactive approaches anticipate violations
with prediction models, and adapt before the violations occur. Reactive approaches are usually
simpler because they lack a prediction model, but they might temporarily lead to over-utilization
of operators or data loss due to the delay until the adaptation is fully effective. Many elasticity
approaches are centralized, i.e., one central component manages the parallelism for the complete
topology. However, the central component can become a bottleneck, so some solutions implement

12

a distributed approach. Changing the parallelization degree of a stateful operator might require
state migration. For this reason, most elasticity approaches provide a state-migration protocol.
A common optimization dimension for elastic SP systems is therefore to minimize the number of
migrations or the related downtimes.

2.2 Dynamic Pipeline Paradigm

The DP Paradigm is a data-driven computational model that is based on a computational structure
called Dynamic Pipeline (DP). A DP consists of a one-dimensional and unidirectional chain of
stages, connected by means of channels synchronized by data availability [2]. It stretches and
shrinks depending on the spawning and the lifetime of its stages, respectively.

Defining an algorithmic solution with a DP consists in defining a DP in terms of four kinds of
stages: Source (Sr), Generator (G), Sink (Sk) and Filter (F) stages. The behavior of each stage
to solve a particular problem, as well as, the number and the type of the I/O channels connecting
each stage, must be defined. Channels are unidirectional according to the flow of the data. Filter
stage instances are stateful operators as previously defined. The Generator stage spawns Filter
stage instances every time it receives data items and according to the Generator defined behavior.
It then places the newly generated Filter instance between itself and its predecessor stage. This
particular behavior of the Generator gives the elastic capacity to DP. Fig. 2 depicts the initial
configuration for deploying a DP. Data items arrive to the Source stage and are passed through
the channels until reaching the Filter stage, where results are emitted and provided to consumer
applications. The previously mentioned behavior of the Generator stage is depicted in Fig. 3.

Figure 2: Initial configuration of a DP [2].
Figure 3: Evolution of the DP when the Gener-
ator stage spawns Filter stage instances [2].

The activation of a DP starts when a stream of data items arrives to the initial configuration
of the DP shown in Fig. 2. In particular, when a stream odata items arrives to the Source stage.
If the stream data is bounded, the computation finishes when the lifetime of all the stages of the
active DP have finished. Otherwise, the DP remains active and incremental results are output.

2.3 Apache Flink Framework

Apache Flink [1] is a well known and extensively used framework for developing SP applications.
It can perform computations over real-time data from different types of streaming sources such as
message queues or distributed logs, but it can also process bounded data from a variety of data
sources, e.g. historic data. In Apache Flink, applications are composed of streaming dataflows that
may be transformed by user-defined operators. These dataflows form directed graphs that start
with one or more sources, and end in one or more sinks.

Apache Flink programs are inherently parallel, each task can be split into several parallel instances
where each instance processes a subset of the task’s input data. During execution, a stream has
one or more stream partitions, and each operator has one or more operator subtasks, which are

13

Figure 4: Anatomy of a Flink cluster [1].

independent of one another and execute in different threads and possibly on different machines or
containers. Stateful computations are also possible in Apache Flink. Operators use a key-based
splitting approach to divide their data into sets of parallel instances, where each parallel instance is
responsible for handling events for a specific group of keys. State is always accessed locally, which
helps achieve high throughput and low-latency. Apache Flink also offers multiple APIs at different
levels of abstraction to perform different types of processing over the data streams it consumes. The
lower levels provide an imperative definition of the topology of the operator graph, which allows
for higher expressiveness at the cost of being harder to optimize. Higher abstraction layers provide
a declarative Domain Specific Language (DSL) for defining what logical operation should be done.
DSL offers less expressiveness than the imperative lower layers.

Flink programs can be ran as a standalone cluster and can also be integrated with cluster resource
managers. Fig. 4 depicts the anatomy of a Flink cluster, consisting of two types of processes: a
JobManager and one or more TaskManagers. The Client prepares and sends dataflows to the
JobManager, which decides when to schedule the next one or more tasks, reacts to finished tasks
or execution failures and coordinates recoveries on failures, among others. TaskManagers execute
the tasks of a dataflow. The smallest unit of resource scheduling in a TaskManager is a task slot.
The number of task slots in a TaskManager indicates the number of concurrent processing tasks.

Apache Flink provides elasticity by allowing users to rescale their jobs. It uses a reactive
approach that provides an autoscaling mechanism, by having an external service monitor the desired
metrics. As soon as these metrics are above or below a certain threshold, additional TaskManagers
can be added or removed from the Flink cluster. Flink periodically takes snapshots of all the state
in every operator and copies these snapshots somewhere defined via the jobs’ checkpoint storage.

2.4 Diefficiency Metrics

We consider two metrics for measuring the continuous efficiency of a program to generate incre-
mental results. These metrics are called diefficiency [12]. These diefficiency metrics are, dief@t
and dief@k. The metric dief@t measures the continuous efficiency during the first t time units of
execution regarding the results generated by the program. The higher value of the dief@t metric,

14

the better the continuous behavior. The metric dief@k measures the continuous efficiency while
producing the first k answers. The lower the value of the dief@k metric, the better the continuous
behavior. The metric dief@k is commonly used to compare different approaches at different answer
completeness percentages. These diefficiency metrics execute on top of a type of record called an-
swer traces which record the exact point in time when an answer is produced during an execution.
The implementations for both paradigms for the problem of enumerating WCCs will need to have
the capability of producing answer traces in order to measure their diefficiency. Finally, since we
want to compare two approaches implemented on top of different software, in this work, we will
only be focusing on the comparison of the dief@t metric with the metrics depicted in Figure 5.

Figure 5: Example radar plot to compare the performance of different approaches with dief@t and
other metrics. Plot interpretation: Higher is better. [3].

Figure 5 depicts an example of measuring the dief@t metric. In this example, the dief@t metric
is used to compare along the following metrics:

i) Completeness(comp), which is the total number of answers produced by the scenario. In this
example we can observe that all approaches show the same value for this metric, which is
common as correct answers usually require a certain number of results to be produced.

ii) Time for the first tuple(TFFT), which measure the elapsed time spent by the scenario to
produce the first answer. In this case, TFFT is inverted to fulfill the rule stated by dief@t
that higher has to be better. We can observe that the selective approach has the highest value
for this metric, implying that it is the fastest to produce the first result.

iii) Execution time(ET), which measures the elapsed time spent by the scenario to complete the
execution of a query. ET is also inverted to fulfill the rule stated by dief@t that higher has to
be better. We can see that the random approach has the highest value for this query, implying
that it takes the shortest amount of time to produce all the results since the moment in which
the first result is generated.

iv) Throughput(T) which measure the number of total answers produced by the scenario after
evaluating a query divided by its execution time (ET). We can observe that the random
approach has the highest value for this metric.

15

3 Enumerating Weakly Connected Components

Intuitively, a graph G is a collection of related objects. Objects are called vertices or nodes and
the relationship among them is a set of edges (E = {(v, w)|v, v ∈ V }). An edge of the form (v, v)
is called a loop. A vertex not occurring in an edge is called an isolated vertex. Given a graph
G = (V,E), G is a undirected graph if (u,w) ∈ E means that u,w are related each other, i.e., the
edge is bi-directional. By the contrary, if (u,w) ∈ E only means that u is related to w, G is a
directed graph. A path in G is a sequence v1 . . . vn, where ∀i ∈ [1 : n−1] : (vi, vi+1) ∈ E. A pair of
vertices v, w ∈ V are connected if there exists a path v . . . w in G. For the sake of simplicity, we will
just refer to undirected graphs as graphs from now on. Figure 6 depicts a graph with two weakly
connected components.

Figure 6: Example of a graph with connected components {1,2} and {3, 4, 5}.

Given a graph G with no isolated vertices nor loops, the problem of computing its Weakly Con-
nected Components (WCC) is a well-known problem in graph theory: Computing the WCC of a
graph G = (V,E) consists in finding the minimal possible partition {C1, . . . , Ck} of V such that
∀i ∈ [1 : k] : Ci ⊆ V and ∀v, w ∈ Ci : v ̸= w : v and w are connected. Each Ci ⊆ V is called a
weakly connected component of the graph G. Enumerating the weakly connected components of G
corresponds to the problem of listing the WCC of G. Enumerating Incrementally the WCC of G
corresponds to the problem of listing their components in such a way that components are listed
as they are computed or identified. Nowadays, because of the large/huge graphs relating objects
in different domains (e.g., biology, mobile networks, social networks, and genetic), the incremental
enumeration of subgraphs is suitable for solving some families of problems (e.g., network analysis,
densest subgraph, and community detection). In effect, enumerating incrementally subgraphs sat-
isfying some properties (i.e., graph patterns or motifs) allows stopping the enumeration and make
decisions, accelerating the convergence of the original problem, Even more, this kind of solutions
allows for saving the consumption of resources since a pay-as-you-go approach can be used. Thus,
computing WCC incrementally opens a vast space of possibilities for enabling the process of each
component as soon as they are enumerated.

3.1 Approaches for Solving the Problem of WCC Enumeration

In this section, we explain the different alternatives that have been considered during the devel-
opment of the project, and explain why each of these alternatives has not been adopted in its
development.

Dynamic Pipeline programming language The first decision that gave rise to different al-
ternatives was choosing the programming language that would be used to implement the WCC

16

algorithm in the DP Paradigm. Although the author of this work had more experience with the
Python [13] programming language, Go [14] was chosen as the programming language on which to
implement the DP Paradigm solution to the WCC problem. The reason for this decision was that
the DP Paradigm is parallel by definition, since its stages are designed to be implemented as parallel
functions. Go programming language offers native support for concurrency (goroutines), parallelism
(multithreading) and channels. In a multicore system goroutines are executed in parallel. These
features make Go suitable for for implementing DPs.

Stream Processing Platforms Another point at which several alternatives emerged was choos-
ing the platform whose performance would be compared with the DP Paradigm. There is currently
a large variety of SP platforms, each one offering different functionalities and having positive and
negative aspects. Since the goal of this project was to compare the performance of the DP Paradigm
with one of the most used SP platforms, the focus of this analysis was directed to those alternatives
that were the most widespread and extensively used. This resulted in three candidates: Apache
Kafka [7], Apache Flink [1] and Apache Spark [15].

Apache Kafka is the most popular system used to ingest data streams into the processing plat-
forms [16], offering a wide range of functionalities such as writing, reading, storing and processing
streams of events, as well as integrating external systems and applications, so they can use those
streams of events. As far as SP is concerned, it offers its Kafka Streams API [17] for processing
and applying transformations over the datastreams it ingests. Kafka Streams is designed to process
unbounded streams and does not offer batch processing.

The second SP system that was considered was Apache Flink. As mentioned in section 2, Apache
Flink is a SP framework that is designed to support both batch and stream processing, and it offers
multiple APIs to perform different types of processing over the data. Specifically, we decided to
focus on its DataStream API [18] and its Stateful Functions API [19] for their ability to represent
states, which would be beneficial when implementing the algorithm for solving the WCC problem

Apache Spark is an SP system that provides several high level APIs which are supported in Java,
Scala, Python, and R. It is designed for batch processing and does not offer unbounded SP. In
practice, it may offer similar capabilities thanks to its micro-batching architecture, although it may
not perform quick enough if very low latency is required [20].

Different studies have been made comparing the performance of these systems [9] [21][22], obtaining
different results on different problems and with different configurations. It was finally decided to
use the Apache Flink Framework for comparing its performance with the DP Paradigm. The main
reason for this decision was that, unlike Apache Kafka and Apache Spark, Apache Flink supports
both stream and batch processing. Given that an initial objective of this study was to be able to
expand to cover both techniques in case there was time availability, using Apache Flink gave us the
ability to potentially cover both techniques with the same API.

Apache Flink API As previously mentioned, the Flink’s DataStream and Stateful Functions
APIs were the two main options to be used to compare the performance of the Apache Flink
Paradigm with the DP Paradigm. Both APIs were studied along with their required systems and
programming languages, and attempts were made at configuring the infrastructure in both APIs.
Consequently, positive and negative characteristics were identified for each of them, which are now

17

explained in more detail.

The first thing to consider was the programming languages they support. As far as the State-
ful Functions API is concerned, it supports Python, Go, Java and Javascript. On the other hand,
the DataStream API is only available in Java and Scala. Since the DP implementation of the WCC
algorithm was being done in Go, this aspect favored the Stateful Functions API, as this would allow
the study to be unilingual, reducing the time that would have to be spent getting familiar with the
programming language.

The next important point to consider was the way in which the considered APIs would be re-
ceiving and outputting the data. On the one hand, the Stateful Functions API is built to consume
and produce streams of events, which required an event streaming system to receive and send
messages to the Stateful Functions application. Since data was being read and written to the file
system in the DP implementation of the WCC algorithm, this approach required additional steps
for receiving and sending data to an event streaming system. We decided to use Kafka as the event
streaming platform during the testing of the implementation of the infrastructure with this API, as
the Stateful Functions API provides a configured Kafka connector for consuming and writing data
to Kafka. It was also possible to stream events directly to and from the file system, but this option
was not simpler than using Kafka, as personalized connectors had to be set up in order to stream
events from the file system, which required using additional APIs. On the other hand, the DataS-
tream API allows reading and writing to the file system in both Stream and Batch mode, which
would further simplify the required infrastructure for the implementation of the WCC algorithm.

The final aspect to consider was the process of setting up the required infrastructure for both
APIs. This final aspect made us initially opt for using DataStream as the API to be used to com-
pare the performance of the Apache Flink Paradigm with the DP Paradigm. The reason behind
this decision was that to this day the Stateful Functions API is very young and lacks specific docu-
mentation even for official documents. Lack of examples and documentation complicated the task
of debugging the application, setting up the I/O components in the desired environment and setting
up the runtime for the application. On the other hand, the DataStream API has better documen-
tation on the process of setting up the working environment, as well as examples of applications
that use this API to perform different types of data processing.

However, upon further inspection we realized that the DataStream API is currently replacing the
DataSet API, which was the API that was used to handle batch usecases in Flink until recently.
This replacement is still taking place, and although the DataSet API has been soft-deprecated,
the DataStream API does not currently support all usecases for the Batch execution mode, and
there are still cases where it makes sense to use the DataSet API over the DataStream API in
Batch execution mode [23]. Our investigation concluded that our problem was better suited to be
implemented in the DataSet API. Allthough the DataSet API will eventually be removed and our
problem will have to be implemented in the DataStream API, Apache Flink has intentionally made
switching from one API to another very simple, as both APIs are designed to be virtually identi-
cal to each other. Consequently, the code for the implementation of the Apache Flink Paradigm
approach is almost entirely reusable if needed to switch to the DataStream API. Because of this,
it was finally decided to use the DataSet API to compare the performance of the Apache Flink
Paradigm with the DP Paradigm.

As previously mentioned, we will implement the solutions to the WCC problem in the DP

18

paradigm and the Apache Flink Framework. We denote these solutions as DP-WCC and AF-WCC,
respectively. In both approaches, the input is a file containing the edges of the graph, where each
line contains exactly one edge and each edge is defined by a pair of numbers that correspond to
the integer identifier or name of the two vertices that it connects. Since the graph is not directed,
the order in which the numbers are written within the lines is irrelevant. Both approaches are
designed to generate both the WCCs of the input graph or SPARQL query traces that will be used
to evaluate the results with diefpy, depending on their mode of execution. The following sections
define each of the previously mentioned solutions.

3.2 The DP-WCC Algorithm

To compute the WCC of an undirected graph according to the DP paradigm, in this work, we follow
the notation and use the algorithm introduced in [8]. In [10], an implementation of this algorithm
was developed using Haskell as programming language.

DP-WCC is defined in terms of the behavior of its four kinds of stages: Source (SrWCC), Gen-
erator (GWCC), Sink (SkWCC), and Filter (FWCC) stages. The channels that connect these stages
must also be defined. The basic idea of the algorithm is that the connected components are built
in two phases. In the first phase, each filter stage instance creates a set of connected vertices from
the edges it receives from the input graph. In the second phase, the filter stage instances intersect
the sets of connected vertices to construct the minimal subset of sets of connected vertices, i.e.,
WCCs. In DP-WCC, stages are connected linearly and unidirectionally through the channels ICE,
which carries edges, and ICset(V), which carries sets of connected vertices. It outputs the connected
components of the graph incrementally, i.e., they are output as soon as they are computed.

SrWCC applies the identity transformation over the stream of edges it reads from the input file. As
it reads edges from the file, it passes them through ICE to the following stage. When it has read all
the lines of the input file, it puts the eof mark on ICset(V), it then closes both channels and then,
SrWCC dies.

The FWCC stage has a set of connected vertices as state (CV). Its behavior is the execution of
two consecutive scripts, which we denote as actor1 and actor2, respectively. actor1 reads edges as
they are passed to the filter stage through ICE, and in case one of the vertices of the received edge
appears in CV, it adds the other vertex to CV. In case the vertices of an edge do not appear in CV,
it passes the edge to the next stage through ICE. When all edges have been received, ICE is closed
and actor2 starts its execution. actor2 receives sets of connected vertices from previous filter stage
instances through ICset(V). It determines the intersection between CV and the vertices in the set it
receives. If the intersection is empty, it passes the set of vertices to the next stage through ICset(V).
If it is not empty, it adds the vertices in the set to CV. Upon receiving the eof mark, actor2 passes
CV to the next stage through ICset(V), followed by the eof mark; then, it closes ICset(V) and it
dies.

GWCC has a filter stage instance as state. When it receives an edge, it spawns a filter instance,
it sets the state of the filter instance as a set of vertices containing both endpoints of the edge it
has received and places the newly created instance before itself. Upon receiving a set of vertices, it
passes them to SkWCC through ICset(V). Upon receiving the eof mark, it closes ICset(V) and then,
it dies.

The behavior of SkWCC is simply to either output the weakly connected components of the graph

19

in a desired format or to produce the answer traces for evaluating the yielded results. When it has
received all the connected components of the graph, it dies. Figure 7 shows the initial configura-
tion of DP-WCC with the example shown in figure 6. The Source, Generator, and Sink stages are
represented by the labels SrWCC , GWCC and SkWCC , respectively. FWCC corresponds to a Filter
stage template and is the parameter of GWCC . Channels are represented as arrows between stages,
and the direction of the arrows indicate the direction in which the channels transmit data. ICE,
and ICset(V). The first and last arrows represent I/O data flow. The input stream is shown on the
left, since it has not been read by SrWCC yet.

Figure 7: Initial configuration of DP-WCC.

Figures 8 through 16 depict the evolution of the DP-WCC solution for the graph used in this
example.

Figure 8: First phase of the execution of DP-WCC.

In Figure 8, SrWCC reads the first edge from the input file and passes it through ICE.

Figure 9: Second phase of the execution of DP-WCC.

In Figure 9, GWCC receives the edge (4,5) and spawns a filter instance with its state initialized
at {4,5}. It then places the newly created instance before itself. SrWCC reads the second edge from
the input file and passes it through ICE.

Figure 10: Third phase of the execution of DP-WCC.

In Figure 10, vertex 3 is added to the state of the filter instance with previous state {4,5}, since
the edge (3,4) intersects with its state. Thus, the new state of this filter instance is {4,5,3}. SrWCC

20

Figure 11: Fourth phase of the execution of DP-WCC.

reads the third edge from the input file and passes it through ICE.

In Figure 11, SrWCC sends the eof mark through ICset(V), since all edges have been read. The
filter instance {4,5,3} sends the edge (1,2) through ICE, since it does not intersect with its state.

Figure 12: Fifth phase of the execution of DP-WCC.

In Figure 12, SrWCC closes its channels and dies. The filter instance with state {4,5,3} has no
more edges left to read, so it closes ICE and enters the actor2 phase. Since it receives the eof mark,
it sends its own state through ICset(V). GWCC receives the edge (1,2) and spawns a filter instance
with its state initialized at {1,2}. It then places the newly created instance before itself.

Figure 13: Sixth phase of the execution of DP-WCC.

In Figure 13, the filter instance with state {4,5,3} sends the eof mark through ICset(V). The
filter instance with state {1,2} has no more edges left to read, so it closes ICE and enters the actor2
phase. It sends the set of vertices {4,5,3} through ICset(V), since it does not intersect with its state.

Figure 14: Seventh phase of the execution of DP-WCC.

In Figure 14, the filter instance with state {4,5,3} closes ICset(V) and dies. The filter instance
with state {1,2} sends its own state through ICset(V), since it receives the eof mark through ICset(V).
GWCC has no more edges left to read. It receives the set of vertices {4,5,3} through ICset(V), and
sends it through ICset(V).

21

Figure 15: Eighth phase of the execution of DP-WCC.

In Figure 15, the filter instance with state {1,2} sends the eof mark through ICset(V). GWCC

receives the set of vertices {1,2} through ICset(V), and sends it through ICset(V). SkWCC receives
the set of vertices {4,5,3} through ICset(V) and outputs it.

Figure 16: Ninth phase of the execution of DP-WCC.

In Figure 16, the filter instance with state {1,2} closes ICset(V) and dies. Upon receiving the
eof mark, GWCC closes ICset(V) and dies. SkWCC receives the set of vertices {1,2} through ICset(V)

and outputs it. On the tenth and final phase SkWCC will have no more sets of vertices left to read,
so it will die.

3.3 The AF-WCC Algorithm

The approach that this work uses to produce the WCC of an undirected graph using the Apache
Flink Framework is inspired by a solution that Apache Flink provides for computing the WCC of
a bounded graph [24] using the DataSet API. In this solution, each vertex is initially assigned with
a unique ID, and a label propagation strategy is used so that, once the algorithm has completed,
all vertices in the same component will have the same ID, which will be the ID of that particular
WCC.

This algorithm uses the delta iteration operator provided by Apache Flink [25] to further opti-
mize the process of finding the minimum ID of each WCC. A delta iteration operator is designed
to apply iterative step functions for the case of incremental iterations that modify elements of the
solution and evolve the solution rather than fully recompute it. To do so, it uses a working set
containing a subset of the elements of the solution and only applies the step function to those
elements that appear in this set. This leads to more efficient algorithms when it can be applied,
since some element in the solution set do not change in each iteration, which allows the focus to be
shifted exclusively on the parts of the solution that are being modified.

Regarding the particular case of enumerating WCCs of an undirected graph, a vertex whose
component ID did not change should not propagate its information in the next step. Because of
that, the algorithm is easily expressible via a delta iteration. It models the solution set as the set
containing all vertices with their current component IDs, and the working set as the set containing
the changed vertices. In each step of the algorithm, all vertices within the working set broadcast
their ID to their neighbor. Each vertex assigns the minimum of its own ID and the IDs it receives
from its neighbors’ as its new ID. On the next iteration, all vertices that are contained in the work-
ing set broadcast their new IDs to their neighbors and the cycle repeats.

22

We now demonstrate the behavior of the previously defined delta iteration. Figure 17 shows the
graph that will be used to demonstrate this behavior. We depict each vertex by a tuple containing
its name as the first argument and its ID as the second argument. As previously mentioned, vertices
are named with a unique integer identifier, so their IDs will be initialized with the same value as
their names. We use two WCCs to represent the behavior of the delta iteration of discarding the
elements that have not had their IDs changed. The WCC consisting of vertices {3,4,7} will only
have changed on the first iteration. Because of this, it will quickly be discarded from the working
set, and will not be dealt with on the rest of the iterations.

Figure 17: Initial configuration of the graph used to demonstrate the behavior of AF-WCC

Figures 18 to 22 depict the evolution of the graph shown in 17 during the execution of AF-WCC.
For each vertex in this example, we use the pink color to represent that the vertex appears in the
working set of the next iteration, and we use green to depict that the vertex will not appear in the
working set of the next iteration. Because all vertices initially appear as changed, they will all be
considered within the initial working set.

Figure 18: First iteration of the AF-WCC example.

On the first iteration of the execution of AF-WCC shown in Figure 18, all vertices broadcast
their current component IDs to their neighbors, as they all appear in the initial working set. They
then adopt the minimum of their ID and the IDs they receive from their neighbors as their new
component ID.

In Figure 19, we can observe that, after the first iteration, vertices 2, 4, 5, 6 and 7 will have had
their component IDs changed by one of their neighbors, so they will still be included on the working
set. On the other hand, vertices 1 and 3 will have not had their component IDs changed. Because
of this, they will be excluded from the working set of the following iteration and are depicted in
green in this figure.

Figure 20 depicts the second iteration of the execution of AF-WCC. On this iteration, the
vertices that are included in the working set will have the behavior explained in the first iteration.

23

Figure 19: Graph after the first iteration of the AF-WCC example.

Figure 20: Second iteration of the AF-WCC example.

They will broadcast their IDs to their neighbors, and after that they will select the minimum of
their ID and the IDs they receive from their neighbors as their new component ID. Vertices 1 and
3 will not broadcast their IDs to their neighbors, as they are no longer be included in the working
set. However, they will still select the minimum of their ID and the IDs they receive from their
neighbors as their new component ID, since their neighbors still appear on the working set.

Figure 21: Graph after the second iteration of the AF-WCC example.

We can observe on figure 21 that vertices 2, 4 and 7 are no longer part of the working set, and
now only vertices 5 and 6 are included on the working set. All vertices of the component {3,4,7}
are excluded from the working set and, as initially described, they have all adopted the minimum
ID of all the vertices contained in this component. The delta iteration will no longer deal with this
WCC and will shift its focus to the other WCC.

24

Figure 22: Third iteration of the AF-WCC example.

Finally, figure 22 shows the third and last iteration of this example of the execution of AF-WCC.
On this iteration, only vertices 5 and 6 broadcast their IDs to their neighbors, since they are the
only vertices contained in the working set. Their IDs do not change, so they will no longer be part
of the working set. Since their IDs have not adopted by any of their neighbor vertices, the working
set is now empty. Because of this, the execution of the algorithm will conclude, and every vertex
will have adopted the ID of the WCC it belongs to, i.e. the smallest ID of the vertices contained in
that particular WCC. In this case, the resulting graph will be composed of 2 WCCs with IDs 1 and 3.

Since the aim of AF-WCC is to consume and produce data in the same format as DP-WCC,
additional transformations need to be added before and after applying the previously defined delta
iteration. These data transformations are explained in the implementation section of AF-WCC 4.2.

25

4 Implementation

We now explain the implementation of both of the previously defined approaches for computing the
WCCs, outputting them and producing the answer traces used for evaluating the performance of
each approach.

The first thing to consider are the options that these approaches offer. Both approaches offer
an option to output the generated WCCs to a file. The name of the generated file is argument given
after the output option, and it has the .wcc extension. They also offer an option to produce the
answer traces based on the generation of the WCCs of the input graph. In this option, a csv file
is created with its name being the concatenation of the used approach (dpwcc or afwcc), the name
of the used file and the given argument for the test option. Finally, AF-WCC offers an option to
change the default value of the maximum iterations for its delta iteration, which has a default value
of 10. This is necessary for processing large graphs where more iterations are required to correctly
generate the WCCs.

The implementatin of both approaches can be found i the Github repository of the project [26],
along with the resulting traces from the execution of the comparative study of the project.

4.1 DP-WCC Implementation

The DP-WCC was the first of the two approaches to be implemented. As previously discussed in
section 3.1, this approach uses the Go programming language, as it offers native support for con-
currency, parallelism (multithreading) and channels. Thus, stages are implemented as concurrent
code, goroutines, that can be executed in parallel by different cores of the computer.

This approach assumes that the identifiers of the vertices are greater than or equal to zero, as
the previously defined SrWCC , GWCC and FWCC stages use a vertex with the -1 identifier to depict
that all edges have been read and thus end their execution. Finally, as shown in figure 23, this
approach considers an edge as a struct containing two integer values x and y, which correspond to
the integer identifiers of the vertices it connects.

Figure 23: Representation of the edge type in DP-WCC.

Initially, the main function of DP-WCC measures the current time in order to display the total
execution time when the execution concludes, as well as to measure the elapsed time when gener-
ating each WCC if it is set to produce answer traces. It then initializes the ine channel containing
edges, and the inv and outv channels containing sets of vertices. Since the Golang programming
language does not provide the set datastructure, maps of integer keys and boolean values are used
to represent sets. In these maps, the key represents the integer identifier of a vertex, and the value
will be set to true if this vertex appears in the set. The main function also creates an additional
channel endchan containing strings, which is used to synchronise all goroutines and thus guarantee
that the program will wait for all goroutines to finish their respective executions before ending.

26

The next step is the initialization of the executions of the SrWCC , GWCC and SkWCC goroutines.
The SrWCC goroutine receives the input file, the ine channel and the inv channel as parameters.
The GWCC goroutine receives ine, inv and outv as parameters, and the SkWCC goroutine receives
the value of the initial time of the execution, the output file name, the execution, the outv channel
and the endchan channel as arguments.

Finally, the main function waits for the endchan channel to output the signal indicating that all
goroutines have concluded, and it prints the total execution time for convenience before concluding.
Figure 24 shows the implementation of the main function with its previously described behavior.

Figure 24: Implementation of the main function of DP-WCC.

The execution of the DP paradigm begins in the SrWCC goroutine. This goroutine opens the file,
splits its content and stores it in an array of strings, where the ith element of the array corresponds
to the ith line of the file in string format. It then iterates over each element of the array, parses
the vertices from the string and creates an edge element from the resulting vertices. It checks if
both vertices are greater or equal to zero for the reason that has been explained in the beginning
of the section. If they are both greater or equal to zero, it sends the newly created edge to the
next stage through the ine channel. When it has iterated over all lines of the file, it closes the ine
channel and sends the EOF signal. In this implementation, the EOF signal consists in set of map
with integer keys and boolean values containing only an entry with a -1 identifier and its value set
to true. Figure 25 depicts the described behavior of the SrWCC goroutine.

27

Figure 25: Implementation of the SrWCC stage of DP-WCC.

The execution of the GWCC goroutine is divided two phases. The first phase is denoted as actor1,
and it consists in waiting for edges to arrive from the ine channel. Once an edge is received, two
new channels are created, one containing edges and the other containing sets of vertices. A new
FWCC goroutine is then created with ine, inv and the two newly generated channels as parameters,
as well as a set of vertices which represents a new connected component and will be the state of
that particular stage. This set of vertices contains only the two vertices that form the edge that
the GWCC goroutine has received.

The GWCC goroutine then updates its ine and inv channels, assigning them to the two newly
created channels. By doing so, the newly created FWCC goroutine will now be listneing to the
GWCC goroutine’s previous ine and inv channels, and the GWCC goroutine will now be listening
from the newly created FWCC goroutine, following the behavior described in section 3.2. Once all
edges have been received, the execution of the second phase begins.

The second phase is denoted as actor2, and it consists on receiving sets of vertices from the ine
channel and sending them to SkWCC through the outv channel. Upon receiving a set containing
only a vertex with the -1 integer identifier, it closes the outv channel and concludes its execution.
Figure 26 shows the implementation of both phases of the GWCC goroutine for the DP-WCC ap-
proach.

28

Figure 26: Implementation of the GWCC of DP-WCC.

Each FWCC goroutine is also divided in two fases denoted as actor1 and actor2. The actor1 phase
consists in receiving edges from its ine channel. Once an edge has been received, it checks if any of
the two vertices of that edge are contained in the state of its goroutine. If any of the two vertices
is contained in its state, then the other vertex is also added to its state. Otherwise, it sends the
edge to the next stage through its oute channel. Figure 27 shows the implementation of the actor
1 phase of the FWCC stage.

Figure 27: Implementation of the actor1 phase of the FWCC of DP-WCC.

Once the actor1 has concluded the actor2 stage starts its execution. This stage consists in
waiting for sets of vertices to be received from its inv channel. Once a set of vertices is received, it
checks if the received set of vertices is an EOF signal, i.e., it checks if the received set of vertices
contains the -1 vertex. In case the set of vertices is an EOF signal, it breaks from its execution,

29

sends its own state followed by an EOF signal through its outv channel and concludes its execution.
Otherwise, it checks if the received set of vertices intersects with its own state, i.e., it checks if there
is any vertex that is contained in both sets of vertices. In case the intersection is not null then it
implies that both sets of vertices represent the same WCC, so it fuses them together and adopts
the fusion of the two sets as its new state. Otherwise it sends the received set of vertices to the
next stage through its outv channel. Figure 28 depicts the code implementation of this behavior.

Figure 28: Implementation of the actor2 phase of the FWCC stage of DP-WCC.

The final goroutine to conclude is the one corresponding to the SkWCC stage of the DP. Since
this approach is meant to execute in both printing and trace generating mode, this goroutine be-
haves differently depending on the chosen execution mode. Once this goroutine has produced the
required outputs, it sends a value through its endchan channel before concluding its execution.

The printing mode of the SkWCC goroutine first creates an output file with the .wcc extension
to write the resulting WCCs to. It then waits until receiving each generated WCC through its
inv channel. Upon receiving a WCC, it parses it and prints it on the output file in a readable
format. Once it has processed all of the generated WCCs it closes the generated file and concludes
its execution. Figure 29 shows the implementation of this part of the SkWCC goroutine.

30

Figure 29: Implementation of the printing mode of the SkWCC stage of DP-WCC.

The trace generating mode of the SkWCC goroutine first creates an output .csv file to write the
resulting traces to. It then initializes a new csv writer, sets the initial values for the variables it uses
to write the columns of the traces, as well as a data variable which it uses to store the generated
traces. It then waits for all of the generated WCCs to be received. Upon receiving a new WCC, it
measures the elapsed time since the begginning of the execution of DP-WCC, and it creates a row
variable containing the information for the resulting trace of that particular WCC: The name of
the test file, the name of the approach (i.e, Golang DP-WCC), the trace number of that particular
trace, and the execution time of that particular trace. It then appends the newly generated row
variable to the data variable, and it increases the value of the counter by one unit. Once all of the
WCCs have been processed, it writes the resulting value of the data variable to the output file it
has created, and it then concludes its execution.

Figure 30: Implementation of the trace generating mode of the SkWCC stage of DP-WCC.

31

4.2 AF-WCC implementation

As explained in section 3.1, the AF-WCC approach was implemented using the DataSet API in
the Java programming language, and it is designed with the goal of having as much of a similar
behavior as possible to that of DP-WCC, in an effort to make both approaches as comparative
as possible in this study. Because of this, it aims to read edges from a file in the same format as
DP-WCC, and it also aims to produce the resulting WCCs to a file in the same format as DP-WCC,
mimicing its incremental behavior. It receives the name of the file containing the input graph with
the input file, and it receives the name of the output file to wich to print the resulting WCCs or
traces after the output or test flags, respectively. The main difference between its usage and that of
DP-WCC is that, as previously mentioned, the delta iteration of this approach requires a number
of iterations, which is set at 10 by default. This number is given as an argument after the iterations
flag. The whole AF-WCC approach takes place inside the BatchJob Java class, which contains the
main method.

The main method of the AF-WCC approach first gives values to essential variables. It begins
by measuring the current time and storing it in a variable. It then parses the given arguments
and sets the value of the iterations for the delta iteration at 10 if it has not received a value for
the iterations flag. After that, it creates a new Flink execution environment which is required to
execute the application. The behavior described thus far is shown in figure 31.

Figure 31: Assignment of variables and execution environment in the main function of AFWCC.

The next step of the execution of the main function is to get the edges from the input file
and store them in a variable. For this step, it first gets the value of each line of the file in string
format with the readTexFile method provided by the Flink execution environment, and stores it in
a DataSet of strings. It then converts each line from string format to a tuple of two integers, where
each integer depicts a vertex from the particular edge contained in that line. This last functionality
is obtained by applying a Parser class method to each element of the DataSet. This Parser class
implements the Flink MapFunction, applying the described transformation to every element of the
DataSet. The code implementation of this method is depicted in figure 32.

32

Figure 32: Implementation of the Parser class in AFWCC.

The main function then applies a transformation to the resulting DataSet of tuples of two
integers from the Parser method, in order to duplicate each edge with its vertices inverted and
thus make them undirected, which is required by the delta iteration for solving the problem. This
transformation is achieved by applying an UndirectedEdge class function to the resulting DataSet.
This UndirectedEdge class implements a Flink FlatMapFunction class, generating a new entries for
each record of the DataSet it consumes. Its implementation is shown in figure 33.

Figure 33: Implementation of the UndirectedEdge class in AFWCC.

The obtained DataSet from this last method is then stored on a variable named edges. Another
DataSet containing the individual vertices of the graph is created from the edges DataSet by apply-
ing a method from a CollectVertex class that also implements the Flink FlatMapFunction class. It
then gets each vertex only once by applying a distinct transformation to the resulting DataSet, and
stores the result in a variable containing DataSets of integers named vertices. The implementation
of the CollectVertex class is depicted in figure 34.

33

Figure 34: Implementation of the CollectVertex class in AFWCC.

It then creates a final variable verticesWithInitialID with its value being the transformation
of the previously defined vertices variable by applying a method from the AssignID class, which
implements the Flink MapFunction. This method creates a tuple of two integers for each vertex
the value of which is equal to the vertex ID, since as explained in section 3.3 each vertex is ini-
tially assigned with its own ID as its component ID before applying the delta iteration. The code
implementation of the AssignID class is shown in figure 35.

Figure 35: Implementation of the AssignID class in AFWCC.

The part of the main method containing the creation of the previously mentioned edge vertices
and verticesWithInitialID variables containing the necessary DataSets for the delta iteration is
depicted in figure 36.

Figure 36: Implementation of the assignment of variables for the delta iteration in AFWCC.

After the previously described behavior, the main functions uses the previously declared DataSets
to apply the delta iteration with the defined number of iterations, the behavior of which is described
in section 3.3. For applying the delta iteration, it uses methods from the NeighborWithComponen-
tIDJoin and ComponentIDFilter classes, that implement the Flink JoinFunction and FlatJoinFunc-
tions, respectively. The function from the NeighborWithComponentIDJoin class allows the vertices

34

in the verticesWithInitialID DataSet to comunicate with the vertices that they are directly con-
nected to by an edge, and its behavior is shown in figure 37.

Figure 37: Implementation of the AssignID class in AFWCC.

The function from the ComponentIDFilter class applies the logic of choosing the minimum
component ID described in section 3.3, and its implementation is depicted in figure 38.

Figure 38: Implementation of the AssignID class in AFWCC.

The main function then stores the resulting value of the delta iteration in a variable called cc,
containing a DataSet of tuples of two integers, where the first value of the tuple represents a vertex
ID and the second value of the tuple represents the ID of the WCC that the vertex belongs to. The
implementation of the delta iteration and the previously mention assignment is shown in figure 39.

The last part of the processing of the results depends on the execution mode. If the execution
mode is set by the output flag, then the main function applies a method from the ConnectedCom-
ponents class, which implements the Flink GroupReduce class, returning a single element from the

35

Figure 39: Implementation of the delta iteration in AFWCC.

whole DataSet. The ConnectedComponents class groups all vertices that share the same component
ID in a HashSet with integer values representing a WCC. Its implementation is shown in figure 40.

Figure 40: Implementation of the ConnectedComponents class in AFWCC.

The main function then calls an output function for displaying the resulting WCCs in the selected
output file in the same format as DP-WCC. This function first measures the total execution time
and prints it for convenience. It then creates the new output file with the corresponding name given

36

by the parameters and writes all of the connected components in the file. The implementation of
this function is depicted in figure 41.

Figure 41: Implementation of the OutputFile function in AFWCC.

If the execution mode is set by the test flag, then the main function applies a method from the
Traces class, which has a similar behavior to that of the ConnectedComponents class, but returning
a DataSet containing the resulting traces from the execution of the provided graph. The Traces class
groups all vertices that share the same component ID in a HashSet of tuple values representing a
trace record containing the name of the provided graph, AF-WCC as its approach and its respective
elapsed time. Its implementation is shown in figure 42.

Figure 42: Implementation of the Traces class in AFWCC.

37

Finally, figure 43 shows the implementation of the last part of the main method for generating
the corresponding results depending on the specified flags passed as arguments.

Figure 43: Implementation of the part of the main function that produces results in AFWCC.

38

5 Empirical evaluation

As previously stated in section 1.1, the aim of this project is to conduct a comparative study between
the DP Paradigm and the state-of-the-art Apache Flink Framework Paradigm for the problem of
computing the WCCs of a graph. It aims to measure the performance of both implementations
and determine if this problem is better suited for the incremental approach of the DP Paradigm
over the Apache Flink Framework Paradigm approach. This empirical study aims at answering the
following research questions:

RQ1) What are the parameters that impact the continuous performance of the studied ap-
proaches?

RQ2) In which conditions are the DP and Apache Flink Framework implementations for the
selected problem comparable?

RQ3) What is the impact of the size of the data sources, i.e., do the approaches scale up?

In order to verify the correctness of each approach, we have conducted an Implementation Analysis
in which tests have performed with different graphs that have been selected from the Stanford
Network Data Set Collection [27], in an effort to analyze how each implementation behaves under
real-world graphs. For each test, we have analyzed if each implementation timeouts or not and if it
produces the correct results, which can be validated as we know the WCC of the graphs beforehand.
Furthermore, we have conducted a continuous behavior measure analysis for verifying that the
generation of results for both approaches happens incrementally, and to compare the performance
of both approaches when generating the first result record and for generating all the results. This
analysis also aims to compare the relative performance of both approaches to the results obtained
from a previous benchmarking of the DP Paradigm[2]. This final analysis will be conducted using
the diefpy [3] library.

Running Architecture All the previously mentioned experiments have been executed in a ma-
chine with an x86 architecture with 64 bits, an Intel(R) Core(TM) i7-8550U processor with 4 cores
and 8 threads @ 1.80 GHz. As mentioned in section A.2, the machine used for carrying out the
experiments has 8GB of DDR4 RAM, along with 256 KB of L1 cache memory, 1 MB of L2 cache
memory, and 8 MB of L3 cache memory.

Datasets selection Regarding the selection of the datasets used for conducting the previously
defined experiments, we have selected the following files from the Stanford Network Data Set Collec-
tion [28][29][30]. The reason for selecting these particular datasets has been to test both approaches
in large complex and undirected graphs, with different amounts of nodes, edges, diameters and
average clustering coefficients. Table 1 depicts the main characteristics of the graphs used for con-
ducting the experiments of our study.

39

Graph #Nodes #Edges #WCC #Vertices LWCC #Edges LWCC Diameter

Astro Physics 18772 198110 290 17903 197031 14
Enron email 36692 183831 1065 33696 180811 11
Google web 875713 5105039 2746 855802 5066842 21

Table 1: Main Characteristics of the Selected Datasets. #Vertices LWCC and #Edges LWCC
correspond to nodes and edges in the largest WCC, respectively

5.1 Experiments Definition

Implementation analysis In this analysis, we execute each approach outputting the resulting
WCCs in a file, as well as the total elapsed time during the execution. We can thus get an un-
derstanding of how each approach scales with different graph orders (number of vertices) and sizes
(number of edges), while at the same time validating the correctness of the resulting WCCs output
of each approach against the already known topology of each graph mentioned in Table 1. This
aims to answer research question [RQ1], as well as answering research question [RQ3].

Measuring the continuous behavior In this experiment, we first analyzed and compared the
answer traces we have been able to produce with each approach for each graph mentioned in Table 1.
We have then measured the diefficiency metric dief@t (dief@t) mentioned in subsection 2.4 for the
first two graphs shown in Table 1. This metric has been measured using diefpy [3] and traces obtained
by the execution of the previously mentioned datasets (Traces examples are provided in). The tool
diefpy generates two different kind of plots. On the one hand, a bidimensional plot containing all the
(x, y) points taken from traces like, where each x is the t time when the answer was generated and
the y is the generated answer number. This plot is useful to have a visual view of the continuous
behavior. On the other hand, the radial plot we mentioned in subsection 2.4, contains the visual
comparison of dief@t metric with respects to other non-continuous metrics: i) Completeness(comp)
which is the total number of answers produced by the scenario, ii) Time for the first tuple(TFFT)
which measure the elapsed time spent by the scenario to produce the first answer, iii) Execution
time(ET) which measures the elapsed time spent by the scenario to complete the execution of a
query and, iv) Throughput(T) which measure the number of total answers produced by the scenario
after evaluating a query divided by its execution time (ET). Visualizing the comparison of these
metrics for each approach with each of the tested graphs aims to give a better understanding of
how both approaches compare, and thus answering research question [RQ2].

5.2 Analysis of Results

Implementation analysis Table 2 shows the mean results obtained from the execution of each
approach when running the graphs mentioned in table 1. For each approach and graph, 10 differ-
ent executions have been performed, and the table shows the execution time that is closest to the
mean value of all executions that have been performed with that particular approach and graph, in
seconds.
As we can observe, both executions obtain reasonable results for the first two graphs, with the DP
approach obtaining the results with considerably less time than the Apache Flink approach, which
seems to confirm our initial hypothesis that the problem of enumerating the WCCs of a graph is
better suited for the DP Paradigm approach. However, this is not the case for the Google web
graph, where the DP Paradigm approach reaches timeout, while the Apache Flink approach does

40

Graph Dynamic Pipeline Apache Flink DataSet

Astro Physics 1.027s 8.505s
Enron email 0.855s 8.192s
Google web timeout 114.527s

Table 2: Results of the execution of the selected graphs for each approach.

generate results, although it takes considerably longer to do so compared to the first two graphs.
It must be noted that for these executions we consider timeout to be equivalent to two hours of
execution. We can observe in 1 that the Google web graph is considerably larger than the first two
graphs in its number of nodes, edges and WCCs, and that its larger WCC has much more nodes
and edges compared to those of the other two graphs. Specifically, the largest WCC of the Google
web graph contains 97.7% of the total nodes and 99.3% of the total edges of the graph. Analyzing
the structure of the algorithm of the DP Paradigm approach and how the file containing the edges
of the graph is structured, we can see that the largest WCC is the last one that is being processed
by this approach. This suggests that due to the limitations in hardware as well as the nature of
this approach, which waits for all vertices to be collected on each filter stage before processing
them, the processing time of this approach is penalized for particular cases like this one. A more
complex solution would have to be implemented to deal with cases like these without penalizing the
execution time. On the other hand, the Apache Flink approach fares better with cases like these
thanks to its delta iteration approach to the problem and its data structures that are specialized
for the processing of large datasets, although its execution time is still penalized because of the size
and the structure of the Google web graph and the generation of the results could not be achieved
incrementally with this source.

This last conclusion already answers research questions [RQ3] and [RQ1], since the obtained re-
sults suggest that the DP Paradigm approach performs better when the size of the source is not
as large while its execution time may be penalized for particular cases that combine a large source
size and a specific edge and node distribution, giving the Apache Flink approach the upper edge
in these type of cases. As far as the DP Paradigm approach is concerned, the hardware limitations
are reached because of the way in which the Filter stages manage their state. Since their state is
represented as a set containing all nodes of their WCC, we can conclude that it is the number of
nodes that causes these sets to become too large to handle with the current hardware limitations,
making these the main parameter that impacts the continuous performance of this approach. This
limitation is not as present in the Apache Flink approach because of the data structures that is uses
and the way in which it implements the algorithm for solving the WCC problem. Because of that,
it has been able to produce results for the Google web graph without reaching the previously men-
tioned hardware limitations. Since all of the considered graphs have low density, we have not been
able to determine the impact that the density of the graphs may have in the execution capabilities
of each approach. Finally, as far as the correctness of the outputs is concerned, we have verified
that the number of WCCs produced in the output of both approaches for each graph is the same
as the metrics of these graphs depicted in Table 1.

Continuous behavior experiment In this experiment, we first analyzed the individual answer
traces we have been able to produce with each approach for each graph mentioned in table 1, and
we then compared them with each other to get a further understanding on the differences in both
executions for the first two graphs mentioned in table 1. Figures 44 and 45 show the resulting

41

traces obtained from the execution of the Astro Physics graph for each individual approach. As we
can observe, both approaches display an incremental behavior, although that of the DP Paradigm
approach is more continuous than that of the Apache Flink approach, and it also starts producing
results earlier than that of the Apache Flink approach. We can observe in Figures 46 and 47 that

Figure 44: Resulting trace obtained from
the execution of ca-AstroPh with the DP
Paradigm approach .

Figure 45: Resulting trace obtained from
the execution of ca-AstroPh with the Apache
Flink approach.

when we compare both answer traces, the DP Paradigm approach is significantly quicker both in the
generation of the first result records and the overall execution, happening well before the execution
of the Apache Flink approach. This seems to further suggest that the DP Paradigm approach is
better suited to handle cases where the execution time is not penalized due to the management of
the filter stages and the topology and size of the particular graph.

Figure 46: Metrics plot com-
paring the execution time
of both approaches with ca-
AstroPh.

Figure 47: Traces plot comparing the incremental perfor-
mance of both approaches with ca-AstroPh.

We observe a similar behavior in the answer traces obtained from the execution of the Enron email
graph. Figures 48 and 49 depict the answer traces produced by each approach when executing this
graph. We can observe that the DP Paradigm approach produces an answer trace that is more con-
tinuous than that of the Apache Flink, and that it also begins generating results before the Apache
Flink approach. When we compare the traces of both approaches when executing the Enron email
graph, we obtain very similar results than the ones observed for the comparison of the traces from

42

Figure 48: Resulting trace obtained from
the execution of email-Enron with the DP
Paradigm approach .

Figure 49: Resulting trace obtained from the
execution of email-Enron with the Apache
Flink approach .

both approaches for the execution of the Astro Physics graph. As we can observe in Figures 50 and
51, the DP Paradigm execution concludes when the Apache Flink approach has not yet begun.

Figure 50: Metrics plot com-
paring the execution time of
both approaches with email-
Enron.

Figure 51: Traces plot comparing the incremental perfor-
mance of both approaches with email-Enron.

The final plot of this part of the experiment corresponds to the trace generated by the Apache Flink
approach when executing the Google web graph. As previously explained, we obtained timeout
when executing this particular graph with the DP Paradigm approach. Because of this, we have
only been able to generate the plot for the individual trace produced by the Apache Flink approach.
As previously stated, we have not been able to achieve an incremental generation of results for this
particular graph due to its size and the hardware limitations of the machine used to carry out the
experiments. Consequently, the resulting trace depicted in figure 52 show a completely sequential
execution and does not provide further information aside from the fact that the Apache Flink ap-
proach has been able to produce the correct output for the particular case of the Google web graph,
while the DP Paradigm approach has not been capable of doing so.
For this part of the experiment, we can conclude that based on the results shown in all the figures
above, the solutions of both approaches to the Astro Physics and Enron email graphs are gener-

43

Figure 52: Resulting trace obtained from the execution of web-Google with the Apache Flink
approach .

ated incrementally, but that of the DP Paradigm approach are more continuous and perform the
execution significantly faster than that of the Apache Flink approach. For the case of the Google
web graph, the DP Paradigm approach fails to generate results and reaches timeout for the reasons
previously mentioned in this section. On the other hand, we have been able to produce results
for this graph with the Apache Flink approach, although as previously explained an incremental
behavior could not be achieved for this graph.

For the second part of this experiment, we compared the plots comparing the dief@t, comp,
TTFT, ET and T metrics with the equivalent plots obtained from the previous benchmarking of
the DP Paradigm. As we can observe in figures 53 and 54, the comp metric has the same value
for both approaches in both plots, which indicates that the results produced by the approaches
are correct. We can observe in both figures that the rest of the metrics give a higher value to the
DP Paradigm approach, further confirming that this approach is better suited for the incremental
generation of results for this problem, and thus answering research question [RQ2].

Figure 53: Radar plot comparing the
previously defined metrics for both ap-
proaches of this study when processing
ca-AstroPh.

Figure 54: Radar plot comparing the
previously defined metrics for both ap-
proaches of this study when processing
email-Enron.

44

6 Conclusions and Future Work

The development of implementing approaches for solving the problem of enumerating WCCs for
both the DP Paradigm and the Apache Flink Framework has given us a very broad perspective on
the different pros and cons of the process of implementing each approach. The implementation of the
DP Paradigm approach to the selected problem was quite straight forward, as it can be implemented
in any programming language that can support parallel functions and asynchronous communication
between these functions, which is made possible in Go programming language thanks to its native
support of parallelism with its goroutines and its channels for connecting different goroutines. More-
over, this paradigm is intended to improve the incremental generation of results for data processing
problems. Consequently, the incremental generation of results for the selected problem was straight
forward with this approach, and did not introduce further complications. On the other hand, the
implementation of the selected problem for the Apache Flink Framework required more extensive
research and testing phases, as this framework is designed to provide solutions and utilities for a
wide range of problems and it provides several APIs for solving different types or problems. As men-
tioned in section 3.1, several APIs were considered as candidates within the Apache Flink Framework
for implementing the selected problem, and some of these APIs lacked documentation and exam-
ples which greatly affected the process of implementing baseline approaches for the Apache Flink
framework. The resulting conclusions for the implementation phase of the approaches is that the
inherent support that the DP Paradigm offers for the incremental generation of results gives users
the possibility of obtaining results much quicker in a pay-as-you-go model without being exhaustive
exploring the solution space, which as previously explained has a growing demand in today’s society.

The realization of the comparative study between both approaches has allowed us to measure how
each approach generates results incrementally thanks to the use of the dief@t diefficiency metric
provided by dief, as well as identifying certain strengths and shortcomings of each approach for
the selected problem. We have been able to answer the proposed research questions, which suggest
that the execution of the DP Paradigm approach is specially limited by the number of vertices of
the graph to be processed. As discussed in the experiment results in section 5.2, we can conclude
the solutions of both approaches obtained from the execution of smaller graphs have achieved a
satisfying incremental generation of results and that that of the DP Paradigm have achieved a
higher value for the different metrics stated in section 2.4, as well as being more continuous and
perform the execution significantly faster than that of the Apache Flink approach. For the case of
the Google web graph, we have failed to generate results with the DP Paradigm approach and have
reached timeout for the reasons mentioned in section 5.2. On the other hand, we have been able to
produce results for this graph with the Apache Flink approach, although as previously explained
an incremental behavior could not be achieved for this graph.

As a final conclusion, the technical skills that I have acquired during the course of my bachelor
degree have proven to be of great help when searching for information of complex topics and mak-
ing technical decisions of different alternatives, identifying positive and negative aspects for each
alternative in order to choose the most viable option, as well as giving me the capability to work
with different programming languages and paradigms.

Future work Based on the results of the empirical study we consider that a re-visiting of the
implementation of the DP-WCC must be done in order to guarantee a convenient balance of the
charge of each Filter instance. Additionally, to conduct new experiments considering datasets with

45

different topologies, densities and vertices distribution along their connected components will give
insights to answer the main question underlying the research of the Dynamic Pipeline Paradigm:
Which family of problems favor this paradigm? We think that problems needing incremental emis-
sion of results are in this family but it is necessary to characterize them in deep. Finally, it is
interesting to implement a dynamic pipeline using the Apache Flink Stateful Function API when
it is consolidated and its documentation and resources are available, since Stateful Functions seems
to be a natural feature to implement stages defined in the Dynamic Pipeline Paradigm.

46

A Project Management

A.1 Description of the tasks

This project begins on September 4th, 2022 and lasts until January 23rd, 2023. The project will be
spanning approximately 140 days and with an estimated duration of 525 hours. The planned daily
dedication is of approximately 4 hours. With the goal of finishing this project on the estimated date
and accomplishing the objectives and sub-objectives mentioned in section 1.2, the project must be
divided into tasks and a temporal study must be done on those tasks.

We now present all the tasks that will be done throughout the project, providing a description
and a duration for each task. All the provided information is summarized in Table 3, and the
schedule of the project is shown in Figure 55. Additional tasks may be added as a result of certain
obstacles and risks that are involved with the development of this project.

Project management

The project management (PM) defines the scope and the tasks of the project and plans its distri-
bution. The following are tasks that belong to the project management.

1. Context and scope. It is necessary to define the scope of the project, explaining its main
objectives. The project must also be contextualized and justification must be made explaining
the viability of the project. Prior to this task, it is necessary to have researched the state of
the art of SP systems as well as the DP paradigm, since it must be taken into account before
defining which techniques will be developed. The duration of this task has been of 25 hours.

2. Project planning. To achieve the previously mentioned scope and objectives, time planning
is carried out, as well as resources and requirements associated with each task. The risks and
obstacles are also defined, and alternative tasks are proposed to solve them. The duration of
this phase has been 20 hours.

3. Budget and sustainability. A budget will be made to quantify the cost of the project. Each
task will be analyzed taking into account the costs of personnel and equipment. Additionally,
generic costs and unforeseen costs will be quantified. The environmental, economic and social
impact of the project will be analyzed in a report. The Estimated time to complete this task
is 15 hours.

4. Meetings. It is necessary to have frequent meetings with the directors of the project to
analyze the results obtained according to the established objectives and decide if aspects of
the schedule or objectives need to be changed. Meetings are scheduled once every week, but
may be rescheduled to once every two weeks, and are expected to last from 30 minutes to one
hour. The total estimated duration of this task if of 25 hours.

5. Documentation. The documentation of the final memory of the thesis will be carried out in
parallel with the rest of the project, in order to document the different phases of the project
as they are carried out. The estimated duration is of this task is 70 hours.

6. Presentation. A presentation must be prepared for the court that will evaluate the thesis. In
order to create the presentation, support material will be prepared as well as a script, and

47

several rehearses of the presentation will be carried out. The total estimated duration of the
task is 15 hours.

Previous work

The previous work (PW) specifies the tasks to be done before the development of the project.
It consists on the following tasks:

1. Study of the state of the art. It is necessary to investigate the state of the art in SP systems
and platforms to determine what studies can be contributed with this project, as well as
its scope and methodology. Scientific articles and web pages of different SP systems and
platforms will be analyzed. The estimated duration is 15 hours.

2. Preparation of the work environment. Before the development of the project, its work envi-
ronment must be set up. The estimated duration is 35 hours, and it consists on:

• Installing Docker Apps [31] to standardize the configurations we will be using for the
project, and getting familiar with Docker image installation.

• Installing the Docker image of the Golang Programming Language(GO) [14], the lan-
guage that we will be using to implement the DP for the project.

• Installing Apache Flink, the SP framework we will be using to conduct the comparative
study with the DP implementation.

• Creating a Github repository for version control.

• Getting familiar with Dief [3], the library we will be using to plot the incremental results
generated by the DP implementation of the algorithm.

Implementation of the algorithm

The first part of the project (IA) is to develop and implement the chosen algorithm for both
the DP Paradigm and the Apache Flink framework. It can be divided into the following tasks:

1. Study of the problem. Prior to the implementation of the algorithm for each paradigm it is
necessary to understand the WCC problem, which is the problem that will be used for the
comparative study. It has an estimated duration of 15 hours.

2. To study the DP Paradigm and the Apache Flink framework, as well as the programming
language in which the algorithm will be implemented with the DP Paradigm. This task is
estimate to have a duration of 50 hours

3. To create and configure the corresponding technological work infrastructures that read data
from input files. The estimated duration of this task is 60 hours.

4. To use the developed technological infra-structures to implement the selected algorithm for
the project and verify the correctness of each implementation. This task has an estimated
duration of 50 hours

Assessment of the implementation

The second part of the project (AI) is to conduct an experimental assessment of the implemen-
tation of the developed algorithm on top of the DP Paradigm and the Apache Flink framework for
different types of entries. Generating the graphs containing the desired entries has an estimated
duration of 50 hours, and the study itself will have an estimated duration of 80 hours.

48

A.2 Resources

The following are the human and material resources needed for the proper organization and de-
velopment of the project. Table 3 associates each task with its required human and material
resources.

Human resources This project consists of three human resources:

1. The researcher is the responsible for the development, testing and documentation of the
project. He will have to design, plan and implement the project, design and perform tests and
experiments to test the validity of the system, analyze the obtained results and document the
project.

2. The directors of the project are responsible for leading and guiding the researcher for the
correct development and implementation of the project and the tests.

3. The GEP tutor is in charge of guiding the researcher with the correct management of the
project during the first month of the project.

Material resources An essential resource needed for this project is a computer. We will be
using a Huawei MateBook D 16 Laptop with 8GB of RAM and Intel(R) Core(TM) i7-8550U CPU
@ 1.80GHz processor. We must also take into account the resources for the network connection.
Scientific papers will be used when researching specific topics.

This project requires multiple software resources, each of which will help us in a specific aspect.

• We will use Google Calendar for managing the meeting and we will use Skype or Google
Hangouts Meet when meeting online, since one of the project directors resides in Hannover,
Germany, and will not be able to meet in person.

• We will use a GitHub repository to save all the information for the project.

• We will be using the GO language to implement the DP infrastructure for implementing the
algorithm.

• We will use Docker to run the desired Golang image for the project.

• We will use Dief, to plot the incremental results generated by the DP implementation of the
algorithm.

• We will be using the Apache Flink framework to conduct the comparative study with the DP
implementation.

• The Gantt chart will be created using Ganttproject [4].

• We will use Overleaf [32] as our text editor.

49

ID Name Time(h) Dependencies Resources

PM Project Management 170 hours
PM.1 Context and Scope 25 hours PW.1 R, D, GT1, Laptop, Overleaf
PM.2 Project Planning 20 hours PM.1 R, GT, Laptop, Overleaf, Ganttproject
PM.3 Budget and Sustainability 15 hours PM.2 R, GT, Laptop, Overleaf
PM.4 Meetings 25 hours - R, D, Laptop, Skype/Google Meet
PM.5 Documentation 70 hours - R, Laptop, Overleaf
PM.6 Presentation 15 hours PM.5, AI.2 R, Laptop
PW Previous Work 50 hours
PW.1 Study of the state of the art 15 hours - R, Laptop, papers
PW.2 Preparation of the work environment 35 hours PM.1 R, Laptop, GitHub, Docker, Golang, Flink
IA Implementation of the Algorithm 175 hours
IA.1 Study of the problem 15 hours PM.1 R, Laptop, papers
IA.2 Study of the languages and frameworks 50 hours PW.2 R, Laptop, Docker, Golang, Flink
IA.3 Creation of the infrastructures 60 hours IA.2 R, Laptop, GitHub, Docker, Golang, Flink
IA.4 Implementation of the algorithm 50 hours IA.3 R, Laptop, GitHub, Docker, Golang, Flink
AI Assesment of the Implementation 130 hours
AI.1 Generation of the entries 50 hours IA.1 R, Laptop
AI.2 Study of the implementation 80 hours IA.4, AI.1 R, Laptop, Dief, generated metrics
Total 525 hours

Table 3: Table containing all the tasks associated with the project, their duration, their dependencies and required resources. .

50
1R: Researcher, D: Directors of the project, GT: GEP Tutor of the project

Figure 55: Gantt chart of the project. Created with Ganttproject [4].

51

A.3 Risk management, alternative plans and obstacles

Obstacles may appear during the course of the project that hinder its progress. It is important to
anticipate those risks to ensure the correct development of the project. Alternative plans to the
previously mentioned risks and potential obstacles are described below. In this section, we will
present how can they be solved by introducing new tasks and rearranging the planning.

• Deadline of the project. This project must be delivered before a specified deadline, which
forces us to have a well established time plan to develop the project and deliver it on time.
Having a bad estimation of the tasks and their duration could cause the project to not be
developed on time. In this case, a second planning of the project should be made, and the
number of working hours per day should be increased.

• Inexperience. Situations may arise where we decide to use a programming language, SP
framework or software the researcher has never used. In this case a new task with a duration
of 25 to 30 hours should be created, and all the tasks that belong to the development of the
project should have an associated dependency to the newly created task. The newly created
task would have the PC, the programming language, framework or software and the researcher
as resources.

• Bugs in some libraries. Difficulties may arise while programming with third-party libraries for
specific functions that could impede the correct development of the project. Some functions
from certain libraries may have an incorrect behaviour due to some unresolved bugs. Because
of the time limitation of this project, waiting for the library to be updated or the bug to be
fixed is not a viable option. To solve the problem we would have to program the function from
scratch and test its correct functioning, which would be time consuming and would increase
the total duration of the project. The new task would have the PC, the programming language
and the researcher as resources.

A.4 Budget

In this section, we will estimate the necessary costs for the development of the project. These costs
are divided by costs associated to the staff and general costs, such as the cost of the workplace and
costs associated to the software and other resources we will be using for the project. In addition,
we define a contingency plan as well as possible incidental costs that can appear in the project due
to unforeseen obstacles.

Staff costs We now calculate the cost of the staff for each of the tasks previously defined in section
A.1. 5 roles are taken into account when calculating the cost of each task: Project manager, pro-
grammer, researcher, tester an technical writer. The project manager is responsible for the correct
planning and development of the project. This role is assumed by GEP tutor, the directors of the
project and the author of the project. The programmer has to program the necessary code for the
project, and the tester has to verify its correct functioning. These two roles are performed by the
author of the project. The researcher has to gather information, perform the experiments stated by
the project, analyze the results of the experiments and draw conclusions, and the technical writer
has to document everything that involves the development and results of the project. These two
roles will also be performed by the author of the project.

52

Table 4 shows the estimated hourly cost for each of the roles mentioned above. The informa-
tion regarding the salaries for each role has been obtained from Glassdoor [5], and the cost has been
estimated by adding the estimated cost of the social security, by multiplying the salary by 1,3.

Role Cost per hour(€/h)

Project manager 31,06
Programmer 17,66
Researcher 25,01
Tester 16,98
Technical writer 20,80

Table 4: Estimated cost per hour of the roles involved in the project [5] .

The cost for each task is calculated by adding the cost of the personnel involved in the activity.
The cost for each role is calculated by multiplying its cost per hour by the amount of hours that
the role is involved in the task. Table 5 shows the cost for each task based on the costs for each
role provided in table 4. The total cost of the personal for the project is 13497,45€.

53

ID Name Time(h) Time per role(h) Cost(€)
PMR P R T TW2

PM Project Management 170 105 25 25 25 95 6728,55
PM.1 Context and Scope 25 25 0 0 0 0 776,5
PM.2 Project Planning 20 20 0 0 0 0 621,2
PM.3 Budget and Sustainability 15 15 0 0 0 0 465,9
PM.4 Meetings 25 25 25 25 25 25 2787,75
PM.5 Documentation 70 0 0 0 0 70 1456
PM.6 Presentation 15 20 0 0 0 0 621,2
PW Previous Work 50 0 35 15 0 0 993,25
PW.1 Study of the state of the art 15 0 0 15 0 0 375,15
PW.2 Preparation of the work environment 35 0 35 0 0 0 618,1
IA Implementation of the Algorithm 175 0 110 65 0 0 3568,25
IA.1 Study of the problem 15 0 0 15 0 0 375,15
IA.2 Study of the languages and frameworks 50 0 0 50 0 0 1250,5
IA.3 Creation of the infrastructures 60 0 60 0 0 0 1059,6
IA.4 Implementation of the algorithm 50 0 50 0 0 0 883
AI Assesment of the Implementation 130 0 0 0 130 0 2207,4
AI.1 Generation of the entries 50 0 0 0 50 0 849
AI.2 Study of the implementation 80 0 0 0 80 0 1358,4
Total 525 105 155 95 13497,45

Table 5: Table containing the cost per role of all the tasks associated to the project, as well as the total cost of the staff per task and
total cost per staff .

54
2PMR: project manager, P: programmer, R: researcher, T: tester, TW: technical writer.

General costs The project spans 140 days and has an estimated duration of 525 hours, as men-
tioned in section A.1. The entirety of the project will be done on the laptop computer specified
section A.2.

The amortization of the resources used in the project and specified in section A.2 consists of
only hardware, as all the software used during the course of the project is free. To determine
the amortization of the laptop computer we assume a lifespan of 4 years, a total of 220 business
days per year and 8 working hours per day. The cost of the amortization per hour is then Lap-
top price/(4*220*8). Table 6 shows the cost of the amortization of the laptop computer for the
duration of the project.

Hardware Price(€) Cost per hour(€) Hours(h) Total cost(€)

Laptop 900 0,128 525 67,116

Table 6: Cost of the amortization of the laptop computer for the duration of the project.

The cost of the internet connection is estimated at 60€ per month. If we take into account that the
duration of the project spans 5 months and that the planned daily dedication is of approximately
4 hours, this results in a total cost of 5*60*4/24=50€.

The actual cost of electricity is 0.3285€/kWh [33] in the locality of the author of the project.
Table 7 shows the cost of electricity caused by the use of the laptop computer.

Hardware Power(W) Hours used(h) Total consumption(kW) Cost(€)

Laptop 84 525 44,1 14,487

Table 7: Cost of electricity during the duration of the project.

Assuming the actual cost of water is 15,64€ per month in the locality of the author of the project,
that the duration of the project spans 5 months and that the planned daily dedication is of 4 hours,
this equals to a total cost of 5*15,64*4/24=13,1€

The rental cost of the workspace where the project will be developed is of 1100€ per month.
However, the estimated cost of the workspace for the project is set at one fifth of this cost, since
there is currently five people living in that location. Hence, the cost of the workspace for the project
is of 220€ per month, which equals a total cost of 1100€ assuming the duration of the project spans
5 months.

Table 8 depicts the different costs associated to the general costs, as well as the total cost of
general costs associated to the project.

Contingencies As in any other project, it is important to add additional costs to cover obstacles
and contingencies. In this project is a research work that uses with innovative technologies, the
probability of encountering problems during its development is considerable, therefore it has been
decided to set a 15% surcharge, which equals a total cost of (1244,7+13497,45)*0,15=2211,32€.

55

Type of cost Cost(€)

Amortization 67,116
Electricity 14,487
Internet 50
Water 13,1

Workspace 1100
Total 1244,7

Table 8: All costs associated to the general costs of the project, as well as the total cost of general
costs associated to the project.

Incidental costs Unexpected events that can occur during the duration of the project are spec-
ified section A.3, as well as alternative plans to solve these potential obstacles. It is necessary to
take the cost of solving these events into account. Table 9 shows the necessary cost of solving these
events, the cost of which is computed by multiplying the estimated cost of solving the event if it
were to occur by its probability of occurring.

Event Estimated cost(€) Risk(%) Incidental cost(€)

Deadline of the project(25h) 557,55 25 139,39
Inexperience(25h) 625,25 15 93,79

Bugs in some libraries(6h) 105,96 15 15,89
Total 249,07

Table 9: Incidental costs associated to the project.

Total cost Having specified all the costs associated to the project, table 10 depicts the total cost
of the project. The total cost of the project, and thus our estimated budget, will be of 17202,54€.

Management control Once the initial budget has been defined, the necessary control mecha-
nisms must be defined to avoid deviations. When meeting with the directors of the project, the
budget will be updated each time a task is completed, and the time it took to finish the task will be
compared with the estimated hours of that task. To control unforeseen events, the extra expenses
that have occurred will be noted at the end of each task, and will be compared with the forecast
for unforeseen events and contingencies, to detect any deviation and conclude if it is necessary to
eliminate certain tasks or if the budget should be increased. The following are numeric descriptors
for the control:

• Staff cost deviation: estimated staff cost - real staff cost * total hours

• Amortization cost deviation: (estimated hours - real hours) * real cost

• Incidental costs deviation: estimated incidental cost - real incidental cost

• Total cost deviation: estimated total cost - real total cost.

56

Type of cost Estimated cost(€)

PM 6728,55
PW 993,25
IA 3568,25
AI 2207,4

Staff costs 13497,45
Amortization 67,116
Electricity 14,487
Internet 50
Water 13,1

Workspace 1100
General costs 1244,7

Staff costs + general costs 14742,15
Contingences 2211,32

Staff costs + general costs + contingencies 16953,47
Deadline of the project 139,39

Inexperience 93,79
Bugs in some libraries 15,89

Incidental costs 249,07
Total cost 17202,54

Table 10: Total costs associated to the development of the project.

These descriptors help visualize and comprehend the reason and cost for each possible deviation.
The spare budget will be reserved for contingencies and incidental costs in case the total cost
deviation is negative. The list of incidental costs will be updated if any unplanned event occurs.

A.5 Sustainability

In this section we will analyze the sustainability of the project concerning its developement, its
lifespan and the risks that it involves. The sustainability of the project is analyzed in the economic,
environmental and social dimensions.

Environmental dimension Regarding the environmental dimension, the development of this
project is done on a single personal laptop computer and does not require any manufacturing
besides the computer, so it does not generate any potential waste besides that of the computer
itself. Meetings with the directors of the project will be done exclusively online, since one of the
project directors resides in Hannover, Germany, and will not be able to meet in person. This
eliminates the need for transportation when meeting with the directors of the project, further
reducing the impact the project has in the environment. Consequently, its impact is only measured
in terms of energy consumption. As mentioned in section A.6, this project has an associated energy
consumption of 45,67KWH which is generated entirely by the use of the laptop computer. Regarding
the project lifespan, this project is a comparative study and is meant to provide value to future
investigation. Because of this, this project does not require maintenance after being published and
its environmental impact during its lifespan is negligible. Regarding the associated environmental
risks of the project, the main risk that has been identified is that the publishing of this study
may lead to more research studies being developed in this area, which would each have a certain

57

environmental impact themselves. Considering many studies must be done to address the previously
mentioned problem, it could be useful to reuse certain software or code among all studies to reduce
their total duration and their cost, consequently.

Economic dimension Regarding the economic cost of carrying out the project, as depicted in
section A.6 the final monetary cost associated to the development of the project is equal to 15,011€.
This cost is composed by 13963,49€ associated to the staff costs, 1247,6€ associated to material
costs and 2211,32€ and 249,07€ being associated to the costs of contingencies and incidental costs,
respectively. As previously mentioned, this project consists in a comparative study, so it does
not require additional maintenance after being published and the economic costs associated to its
lifespan are negligible. For this same reason, this project does not have many remarkable associated
economic risks, since it is intended to be of use to further research aiming to determine the viability
of the DP Paradigm.

Social dimension When it comes to the social impact of the developement of this project, this
project has personally allowed me to deepen my knowledge of different SP systems, frameworks
and paradigms by implementing the WCCs algorithm in those frameworks and paradigms. As
far as the lifespan of the project is concerned, the problem of engineering new paradigms and
processing systems to handle the surge of new problems arising from the digitalization based on the
processing of continuous data streams is currently being solved by different studies that propose
different alternatives for solving different type of arising problems that can be resolved with SP
techniques, and this project will contribute to this research by finding problems that favor the DP
Paradigm over the current alternatives. I believe that there is a real need for the project, as the
results provided by this project could be used by the scientific communities of big data and stream
computation in their researches and development of alternative frameworks and paradigms, as well
as computing centers that develop applications in areas that require SP. Just like in the previously
explained environmental and economical dimensions, the social risks associated with the lifespan
of this project are very limited. Competitive alternatives to the Dynamic Pipeline Paradigm could
emerge that prove to be more viable and thus reduce the social impact of this study.

A.6 Planning changes

In this section we explain the changes that have taken place both in the project tasks and in the
budget estimation.

Changes in the project tasks

During the planning phase, the project was split into tasks and a temporal study was made based
on the defined tasks. The definition of each task as well as the temporal study can be found in
section A.1.

Since the planning phase was carried out at a very early stage of the project, only PM.1, PM.2
and PW.1 had been carried out at that moment, and hence, these were the only tasks for which
actual data was available, and predictions has to be made for the rest of the tasks in order to carry
out the temporal study. Because of this, deviations from the initial planning have arisen. Table 11
shows the final difference between the calculated and actual hours needed for the development of
this project. The reasons for the deviations in each of the tasks that have been modified are also

58

described below.

ID Name Estimation(h) Result(h) Difference(h)

PM Project Management 170 174 4
PM.1 Context and Scope 25 25 0
PM.2 Project Planning 20 20 0
PM.3 Budget and Sustainability 15 19 4
PM.4 Meetings 25 25 0
PM.5 Documentation 70 70 0
PM.6 Presentation 15 15 0
PW Previous Work 50 50 0
PW.1 Study of the state of the art 15 15 0
PW.2 Preparation of the work environment 35 35 0
IA Implementation of the Algorithm 175 195 20
IA.1 Study of the problem 15 15 0
IA.2 Study of the languages and frameworks 50 60 10
IA.3 Creation of the infrastructures 60 70 10
IA.4 Implementation of the algorithm 50 50 0
AI Assesment of the Implementation 130 125 -5
AI.1 Generation of the entries 50 55 5
AI.2 Study of the implementation 80 70 -10
Total 525 544 19

Table 11: Table containing the final difference between the calculated and actual hours for the
development of the project. .

Budget and Sustainability: Filling out the sustainability report and searching for information
regarding the estimated salaries of the roles involved in the project as well as general costs such
as electricity and the workspace consumed more time than initially predicted. For this reason an
additional day had to be spent carrying out the budget and sustainability report.

Study of the languages and frameworks: The study of the Apache Flink Framework required
more time than expected, since this framework provides several APIs for different use cases which
require different external systems and are implemented in different programming languages. Several
approaches were evaluated to determine the most suitable approach for the project within this
framework. Because of that, various APIs had to be studied at a superficial level, along with the
external systems and the programming languages they depend on. Section 3.1 provides a more
detailed explanation of this process.

Creation of the infrastructures: Because of the previously mentioned external systems and,
in some cases, a lack of documentation on the connection of these systems with the Apache Flink
Framework, additional time had to be spent searching for information. For this reason, the im-
plementation of the infrastructure required more time than initially predicted. A more detailed
explanation of this process can also be found in section 3.1.

59

Generation of the entries: The generation of traces to conduct the comparative study between
the Dynamic Pipeline Paradigm and the Apache Flink Framework took slightly longer than initially
predicted. The reason for this is that Apache Flink’s DataSet API used to implement the Apache
Flink approach treats datasets as immutable collections that can only be worked on by using the
DataStream API transformations. Because of this, we cannot simply inspect the elements inside,
which made the generation of answer traces more challenging as the traces were not being generated
in order as required by diefpy. An additional script had to be made to order the resulting traces
and to include certain columns that could not be generated on the Flink side and to produce the
correct traces, which consumed approximately 5 hours.

Study of the implementation: The comparative study itself took slightly less than initially
predicted, since as mentioned in section 5.2 we could not generate a resulting trace for the Google
web graph with the DP Paradigm approach due to the nature of this particular graph and the
hardware limitations. Because of this, our final study included less plots than initially predicted,
which allowed us to conduct it quicker.

Changes in the project budget

The estimated costs have also suffered deviations, since both the budget estimation and the pre-
dicted implication of each of the mentioned roles in section A.4 with each of the tasks mentioned
in section A.1 had to be made at an early stage in the development of the project.

Based on the temporal deviations explained in the previous point, it is necessary to calculate
the final costs associated with the staff of the project, and determine whether the possible increase
in the cost of the project is still within the expected budget or if it exceeds the planned budget and
a new budget must be calculated.

Table 12 depicts the final costs associated to the staff of the project, as well as the difference
with the initially predicted costs of the staff depicted in table 5 and based on the costs for each role
provide in table 4.

60

ID Hours Time per role(h) Updated Cost Predicted Cost Difference
PMR P R T TW3 (€) (€) (€)

PM 174h 109 25 25 25 95 6852,79 6728,55 124,24
PM.1 25h 25 0 0 0 0 776,5 776,5 0
PM.2 20h 20 0 0 0 0 621,2 621,2 0
PM.3 19h 19 0 0 0 0 590,14 465,9 124,24
PM.4 25h 25 25 25 25 25 2787,75 2787,75 0
PM.5 70h 0 0 0 0 70 1456 1456 0
PM.6 15h 20 0 0 0 0 621,2 621,2 0
PW 50h 0 35 15 0 0 993,25 993,25 0
PW.1 15h 0 0 15 0 0 375,15 375,15 0
PW.2 35h 0 35 0 0 0 618,1 618,1 0
IA 195h 0 120 75 0 0 3994,95 3568,25 426,7
IA.1 15h 0 0 15 0 0 375,15 375,15 0
IA.2 60h 0 0 60 0 0 1500,6 1250,5 250,1
IA.3 70h 0 70 0 0 0 1236,2 1059,6 176,6
IA.4 50h 0 50 0 0 0 883 883 0
AI 125h 0 0 0 125 0 2122,5 2207,4 -84,9
AI.1 55h 0 0 0 55 0 933,9 849 84,9
AI.2 70h 0 0 0 70 0 1188,6 1358,4 -169,8
Total 544h 109 180 115 150 95 13963,49 13497,45 466,04

Table 12: Table containing the final cost associated to the staff of the project, as well as the
difference with the initially predicted cost of the staff.

As we can see, the staff costs have increased by a total of 466,04€ and the final duration of the
project is 544 hours, assuming that PM.6 carries out as predicted. Because of this, general costs
associated to the amortization of the resources used in the project and specified in section A.2 have
to be recalculated, along with the electric cost of the project.

Table 13 shows the total costs of the project, considering the changes in the staff costs and in
the general costs.

3PMR: project manager, P: programmer, R: researcher, T: tester, TW: technical writer.

61

Type of cost Estimated cost (€) Actual cost (€)

Staff costs 13497,45 13963,49
Amortization 67,116 69,545
Electricity 14,487 15,011
Internet 50 50
Water 13,1 13,1

Workspace 1100 1100
General costs 1244,7 1247,6

Staff costs + general costs 14742,15 15211,15
Contingences 2211,32 2211,32

Incidental costs 249,07 249,07

Table 13: Total updated costs associated to the development of the project.

We can observe that the costs associated to the amortization of the resources have increased to
a total of 69,545€. The electric consumption of the project has risen 45,67 KWH, and its associ-
ated costs have risen to 15,011€. The total cost of the project has risen by a total of 469€, which
is still smaller than the initial contingencies plan. This indicates a good initial planning of the
contingencies.

A.7 Legal and regulatory context

Because of the nature of this project, it is not very compromised in the legal field. Since graph data
that is planned to be uses in the comparative study is synthetic, it does not deal with potentially
sensitive information such as personal data from real users.

As far as software licenses are concerned, the software used during the development of this project
falls under the following licenses:

• The Golang programming language used for the implementation of the WCC algorithm using
DP Paradigm falls under the 3-clause BSD + patent grant license [34].

• The Python programming language used to carry out the comparative study of this project
falls under the Python Software Foundation License [35].

• The Java programming language used for the implementation of the WCC algorithm for the
Apache Flink Framework Paradigm falls under the [36].

• Apache Flink, the framework that this project uses to comparae its performance againts that
of the DP Paradigm falls under the Apache License 2.0 [37].

• Diefpy, the Python library that is used to compare the performance of the DP Paradogm with
the performance of the Apache Flink Framework Paradigm, falls under the MIT License [38].

62

References

[1] Documentation. https://flink.apache.org/. Accessed: 2022-09-25.

[2] Juan Pablo Royo Sales, Edelmira Pasarella, Cristina Zoltan, and Maria Esther Vidal. Towards
a dynamic pipeline framework implemented in (parallel) haskell. In Actas de las XX Jornadas
de Programación y Lenguajes (PROLE 2021), pages 1–17. Sociedad de Ingenieŕıa de Software
y Tecnoloǵıas de Desarrollo de Software . . . , 2021.

[3] Project description. https://github.com/SDM-TIB/diefpy/blob/master/README.md. Ac-
cessed: 2022-10-01.

[4] Free desktop project management software. https://www.ganttproject.biz/. Accessed:
2022-10-01.

[5] https://www.glassdoor.es/member/home/index.htm. Online. Accessed: 2022-10-06.

[6] Henriette Röger and Ruben Mayer. A comprehensive survey on parallelization and elasticity
in stream processing, 2019.

[7] Documentation. https://kafka.apache.org/documentation/. Accessed: 2022-09-23.

[8] Cristina Zoltan, Edelmira Pasarella, Julián Arturo Aráoz Durand, and Maria-Esther Vidal.
The dynamic pipeline paradigm. In Actas de las XIX Jornadas de Programación y Lenguajes
(PROLE 2019): Cáceres, septiembre de 2019, pages 1–11. Sociedad de Ingenieŕıa de Software
y Tecnoloǵıas de Desarrollo de Software . . . , 2019.

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, jan 2008.

[10] Juan Pablo Royo Sales. An algorithm for incrementally enumerating bitriangles in large bipar-
tite networks. Master’s thesis, Universitat Politècnica de Catalunya, 2021.

[11] JJP Veerman and Ewan Kummel. Diffusion and consensus on weakly connected directed
graphs. Linear Algebra and its Applications, 578:184–206, 2019.

[12] Maribel Acosta, Maria-Esther Vidal, and York Sure-Vetter. Diefficiency metrics: Measuring
the continuous efficiency of query processing approaches. pages 3–19, 10 2017.

[13] The python programming language. https://www.python.org/. Accessed: 2022-12-07.

[14] The go programming language. https://go.dev/. Accessed: 2022-10-01.

[15] Documentation. https://spark.apache.org/. Accessed: 2022-12-05.

[16] Paul Le Noac’h, Alexandru Costan, and Luc Bougé. A performance evaluation of apache kafka
in support of big data streaming applications. In 2017 IEEE International Conference on Big
Data (Big Data), pages 4803–4806, 2017.

[17] Documentation. https://kafka.apache.org/33/documentation/streams/. Accessed: 2022-
12-06.

63

https://flink.apache.org/
https://github.com/SDM-TIB/diefpy/blob/master/README.md
https://www.ganttproject.biz/
https://www.glassdoor.es/member/home/index.htm
https://kafka.apache.org/documentation/
https://www.python.org/
https://go.dev/
https://spark.apache.org/
https://kafka.apache.org/33/documentation/streams/

[18] Documentation. https://nightlies.apache.org/flink/flink-docs-release-1.16/

docs/dev/datastream/overview/. Accessed: 2022-12-05.

[19] Documentation. https://nightlies.apache.org/flink/flink-statefun-docs-stable/.
Accessed: 2022-12-07.

[20] Diego Garćıa-Gil, Sergio Ramı́rez-Gallego, Salvador Garćıa, and Francisco Herrera. A compar-
ison on scalability for batch big data processing on apache spark and apache flink. Big Data
Analytics, 2(1):1–11, 2017.

[21] Giselle van Dongen and Dirk Van den Poel. Evaluation of stream processing frameworks. IEEE
Transactions on Parallel and Distributed Systems, 31(8):1845–1858, 2020.

[22] Martin Andreoni Lopez, Antonio Gonzalez Pastana Lobato, and Otto Carlos M. B. Duarte.
A performance comparison of open-source stream processing platforms. In 2016 IEEE Global
Communications Conference (GLOBECOM), pages 1–6, 2016.

[23] Documentation. https://nightlies.apache.org/flink/flink-docs-release-1.16/

docs/dev/dataset/overview/. Accessed: 2022-12-10.

[24] The apache flink solution to the connected compontents problem. https://github.

com/apache/flink/blob/master/flink-examples/flink-examples-batch/src/main/

java/org/apache/flink/examples/java/graph/ConnectedComponents.java. Accessed:
2022-12-23.

[25] The apache flink definition of a delta iterator. https://nightlies.apache.org/flink/

flink-docs-release-1.16/docs/dev/dataset/iterations/. Accessed: 2023-01-02.

[26] Project repository. https://github.com/SergiCassanmagnago/TFG. Accessed: 2022-10-01.

[27] https://snap.stanford.edu/data/index.html. Online. Accessed: 2022-12-23.

[28] https://snap.stanford.edu/data/ca-AstroPh.html. Online. Accessed: 2022-12-28.

[29] https://snap.stanford.edu/data/email-Enron.html. Online. Accessed: 2022-12-28.

[30] https://snap.stanford.edu/data/web-Google.html. Online. Accessed: 2022-12-28.

[31] Develop faster. run anywhere. https://www.docker.com/.

[32] The easy to use, online, collaborative latex editor. https://www.overleaf.com/. Accessed:
2022-10-01.

[33] https://www.companias-de-luz.com/precio-de-la-luz/. Online. Accessed: 2022-10-07.

[34] The go license. https://go.dev/LICENSE. Accessed: 2022-12-09.

[35] The python license. https://docs.python.org/3/license.html. Accessed: 2022-12-09.

[36] The java license. https://www.oracle.com/java/technologies/javase/jdk-faqs.html.
Accessed: 2022-12-09.

[37] The apache flink license. https://github.com/apache/flink/blob/master/LICENSE. Ac-
cessed: 2022-12-09.

64

https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/datastream/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/datastream/overview/
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/dataset/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/dataset/overview/
https://github.com/apache/flink/blob/master/flink-examples/flink-examples-batch/src/main/java/org/apache/flink/examples/java/graph/ConnectedComponents.java
https://github.com/apache/flink/blob/master/flink-examples/flink-examples-batch/src/main/java/org/apache/flink/examples/java/graph/ConnectedComponents.java
https://github.com/apache/flink/blob/master/flink-examples/flink-examples-batch/src/main/java/org/apache/flink/examples/java/graph/ConnectedComponents.java
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/dataset/iterations/
https://nightlies.apache.org/flink/flink-docs-release-1.16/docs/dev/dataset/iterations/
https://github.com/SergiCassanmagnago/TFG
https://snap.stanford.edu/data/index.html
https://snap.stanford.edu/data/ca-AstroPh.html
https://snap.stanford.edu/data/email-Enron.html
https://snap.stanford.edu/data/web-Google.html
https://www.docker.com/
https://www.overleaf.com/
https://www.companias-de-luz.com/precio-de-la-luz/
https://go.dev/LICENSE
https://docs.python.org/3/license.html
https://www.oracle.com/java/technologies/javase/jdk-faqs.html
https://github.com/apache/flink/blob/master/LICENSE

[38] Diefpy license. https://github.com/maribelacosta/diefpy/blob/master/LICENSE. Ac-
cessed: 2022-12-09.

65

https://github.com/maribelacosta/diefpy/blob/master/LICENSE

	Introduction
	Definition of the problem
	Objectives
	Methodology

	Preliminaries
	Stream Processing Systems
	Dynamic Pipeline Paradigm
	Apache Flink Framework
	Diefficiency Metrics

	Enumerating Weakly Connected Components
	Approaches for Solving the Problem of WCC Enumeration
	The DP-WCC Algorithm
	The AF-WCC Algorithm

	Implementation
	DP-WCC Implementation
	AF-WCC implementation

	Empirical evaluation
	Experiments Definition
	Analysis of Results

	Conclusions and Future Work
	Project Management
	Description of the tasks
	Resources
	Risk management, alternative plans and obstacles
	Budget
	Sustainability
	Planning changes
	Legal and regulatory context

