
Treball de Fi de Grau
Grau en Enginyeria en Tecnologies Industrials (GETI)

Controllers implementation in low-cost
platforms

MEMORANDUM
January 2023

Author: Iván Barrachina Sabariego

Director: Carlos Ocampo-Martínez

Call: 02/2023

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Controllers implementation in low-cost platforms pàg. 1

Summary
Català
L’objectiu d’aquest treball és implementar un controlador en una placa basada en Arduino per
controlar una maqueta del sistema ball and beam i desenvolupar una documentació que pugui
ajudar estudiants tant del Grau com del Màster d’Enginyeria Industrial de l’ETSEIB (o qual-
sevol persona amb coneixements bàsics de control automàtic) a entendre el funcionament del
controlador i com implementar-lo en un entorn real.

Aquesta memòria documenta els diferents processos que s’han seguit per implementar el con-
trolador. Aquests processos inclouen el muntatge del model físic, incloent els esquemàtics del
circuit elèctric o les característiques més rellevants dels components, la inicialització i config-
uració de la placa i la sintonització dels seus perifèrics. La memòria també inclou l’abstracció
matemàtica del model físic, la qual és la clau del càlcul del controlador que finalment serà im-
plementat a la placa Arduino i evaluat.

Castellano
El objetivo de este trabajo es implementar un controlador en una placa basada en Arduino para
controlar una maqueta del sistema ball and beam y desarrollar una documentación que pueda
ayudar a estudiantes tanto del Grado como del Máster de Ingeniería Industrial de la ETSEIB
(o a cualquier persona con conocimientos básicos de control automático) a entender el fun-
cionamiento del controlador y como implementarlo en un entorno real.

Esta memoria documenta los diferentes procesos que se han seguido para implementar el con-
trolador. Estos procesos incluyen el montaje del modelo físico, incluyendo los esquemáticos
del circuito eléctrico o las características más relevantes de los componentes, la inicialización
y configuración de la placa y la sintonización de sus periféricos. La memoria también incluye
la abstracción matemática del modelo físico, la cual es la clave del cálculo del controlador que
finalmente será implementado en la placa Arduino y evaluado.

English
The goal of this project is to implement a controller in an Arduino based board in order to
control a low-cost ball and beammodel, and to develop a series of documentation which can help
students from either ETSEIB Industrial Engineering Bachelor’s or Master’s Degree -or anyone
with basic automatic control knowledge- understand the controller’s functioning and how to
implement it into a real environment.

This memory documents the different processes which have been followed in order to imple-
ment the controller. These processes include the model’s physical layout assembly, including
the electric circuit’s schematics or the components’ most relevant data, the initialization and
configuration of the board and the tuning of its peripherals. It also includes the mathematical
abstraction of the physical model, which is the key to the calculation of the controller whichwill
be then implemented in the Arduino board and tested.

pàg. 2 Memorandum

Contents
1 Preface 6

2 Introduction 7
2.1 Project goals . 7
2.2 Project scope . 7
2.3 Project planning . 8
2.4 State of the art . 8

3 Model components, assembly and software 9
3.1 Model components . 9
3.2 Model assembly . 14
3.3 Software used during the project . 15

4 Board initialization and peripheral tuning 16
4.1 Base code creation . 16
4.2 PWM timer initialization . 17
4.3 ADC reading initialization . 19
4.4 SWD plot information . 21
4.5 Base code generation . 21

5 Non-controller coding 23
5.1 Library inclusion . 24
5.2 User code begin 0 . 24
5.3 User code begin 2 . 25
5.4 User code begin 3 . 25
5.5 Code compilation and debugging . 26
5.6 Sensor calibration . 28

6 Ball and Beam mathematical modeling 31

7 Controller calculation and implementation 36
7.1 First iteration . 36

7.1.1 PID Calculation . 36
7.1.2 First iteration implementation . 42

7.2 PID controller iterations . 45
7.2.1 Specification iterations . 46
7.2.2 Model parameter changes . 48

8 Educational application 51

9 Economic, environmental, social and gender analysis 54
9.1 Economic analysis . 54
9.2 Environmental analysis . 55
9.3 Social and gender impact analysis . 55

Conclusions 56

Thanksgiving 57

3

A Laboratory session guide 58
A.1 Session materials . 3

A.1.1 The SHARP GP2Y0A21 sensors . 4
A.1.2 The STM32F411RE micro-controller . 4
A.1.3 The Futaba S4004 servomotor . 5
A.1.4 Implementation software . 6

A.2 Starting up the plant . 7
A.3 First calculations . 7
A.4 Controller implementation and analysis . 9
A.5 Alternative controllers . 10

B MATLAB and C codes 71
B.1 MATLAB code - System modelling for simulation 71
B.2 MATLAB code - Controller system solving for the pole placement method 72
B.3 C code - Final controller code . 72

Bibliografia 85

List of Figures
1 The project’s Gantt diagram . 8
2 Model picture with numbered parts . 9
3 The two ping-pong balls . 10
4 The infrared distance sensor . 10
5 The sensor’s theoretical distance to analog signal graph 11
6 Sensor 1’s relative distance to analog value graph 11
7 Sensor 2’s relative distance to analog value graph 12
8 The servo-motor . 12
9 The relationship between the PWM duty cycle and the motor’s position 13
10 Sensor signal filters . 14
11 Selecting the workspace’s folder . 16
12 Opening a new STM32 project . 16
13 Selecting the board . 17
14 Clearing the pinout . 17
15 Setting the APB1 timer clock . 18
16 Enabling the TIM2 timer . 18
17 Setting TIM2’s parameters . 19
18 Selecting the ADC inputs . 19
19 Setting the ADC inputs . 21
20 Setting the SWD plot . 21
21 Activating float printing . 23
22 The debugging configuration menu . 27
23 The debugging console . 27
24 Measure printing at the SWV . 28
25 Ball and beam system diagram . 31
26 The global system’s block diagram . 34
27 The PID controller structure . 36
28 The system’s closed loop block diagram representation 37
29 The Simulink model block diagram . 41

4

30 The first controller’s system simulation . 42
31 Iteration 3 system simulation . 47
32 Iteration 3 alternative system simulation . 47
33 The yellow ball’s system simulation . 49

List of Tables
1 Calibration measures for each position . 28
2 The model constants’ values for the first iteration 33
3 The model’s variables for the yellow ball system 48
4 The model costs . 54

5

pàg. 6 Memorandum

1 Preface
This projectwas started byETSEIBAutomaticControl ProfessorCarlosOcampo-Martínez along-
side two of his former students, Santi Prats Moreu and Eduard Morera Torres as a free-time
project whose objective was to build a physical ball and beam model from common and cheap
materials such as wooden planks, screws or glue and to control it using widely used hardware
and control techniques such as the PID controller structure. They managed to build a couple of
models and to successfully implement three functioning controllers which could stabilize the
system as desired using the PID, State Feedback and MPC control structures before Santi and
Eduard ended their studies.

The project was later resumed by the author when he addressed Professor Ocampo-Martínez
looking for ideas to develop his TFG (Bachelor Studies Final Project). This project phase’s idea,
as will be explained further later, is to follow the controller calculation and implementation
steps in order to create didactic and educational materials for other Automatic Control students
in ETSEIB.

Controllers implementation in low-cost platforms pàg. 7

2 Introduction
2.1 Project goals
The goal of this project is to use low-cost platforms to implement a controller to control a ball
and beam system, which consists of a ball which can move along a straight beam in a one degree
of freedom movement. The beam, at the same time, has another degree of freedom set by the
beam angle, which can be set through a servomotor. Thus, the global system has two degrees of
freedom that will be governed by controlling the angle of the beam and by limiting the position
of the ball with two wooden pieces placed at the end of the beam.

The controller’s function is to drive the ball to the beam’s central point or to maintain it there
if it is already in that position. The controller will receive the ball’s position signal using two
infrared position sensors located at each end of the beam andwill send the required signal to the
servomotor so it can rapidly correct the beam’s angle as necessary to make the ball slide from
its previous position to the desired one. The controller structure that will be used to achieve
this goal is the PID controller, which will be presented with more detail later.

This project will also include a comparison between several PID controllers with different char-
acteristics in their specifications or their external conditions -by changing the ball for another
ball with different characteristics-. These different controllers will be implemented to compare
their performance, which will be evaluated by observing how precise, fast and stable is the final
position of the ball compared with the desired state of the system.

The main goal, though, is to synthesize and keep record of all this process so the generated
documentation can be used to introduce this system to ETSEIB’s Automatic control students in
a way it helps them to understand how these controllers work and how they are implemented
physically in a practical example. For this reason, the final documentation will be presented in
a practice script format which will be included in the memory annex, as it is how Automatic
Control professors introduce practical examples to students.

2.2 Project scope
As explained previously, this project’s scope is to design and implement these two controllers
and to test their performance so they behave as expected. This process will be considered as
successful if the controllers are able to keep the ball at the center of the beam with a maximum
error of ±2 centimeters and if they show resistance to perturbations on the model, such as the
presence of an obstacle which obstructs the beam or a disturbance in the ball’s position due to
a person’s action on the model.

The scope also includes the final approval of the developed documentation by an ETSEIB au-
tomatic control professor, so it is labeled as quality content which could be used anytime for
educational or informative purposes. This documentation will be prepared in order to make
students synthesize everything that has been seen during the project, making a special empha-
sis on the implementation and testing of the controllers, which is essentially what students are
not particularly familiar with.

pàg. 8 Memorandum

2.3 Project planning
The project will be completed during the span of four months, starting on September 2022 and
ending in late January 2023. An estimate project planning has been prepared at the beginning
in order to have a reference of the project’s times, although, since there are many programs,
processes and concepts to learn and to get adapted to, the periods are subject to alterations due
to unexpected problems or difficulties.

The planning has been illustratingwith aGantt diagram,which includes themain tasks -classified
in several groups of tasks that are related to each other or have overlapped- carried out during
the eighteen weeks that the project’s span occupies. The planning has also made taking into
account external events and circumstances, such as holidays or other university commitments
such as exams or other projects. In this Gantt diagram each task has been assigned an starting
and an end date, although the tasks that have required more time have been highlighted with
an asterisk and a lighter shade of color for the extra time.

Figure 1: The project’s Gantt diagram.

The weekly hours spent in the project have not been constant though its span, but an estimated
average of 10 hours per week is considered as accurate for the whole project duration.

2.4 State of the art
The ball and beam model is one of the most widely known systems in automatic control since
it is a simple example of an open-loop unstable system which requires a controller to acquire
stability. Because of this main characteristic, it has become an excellent exercise for beginners
in this field of knowledge, as it is a really interesting but accessible tool to practice the design
of controllers and the calculation of mathematical models from physical systems which can be
built and assembled following a low-costDIY (do it yourself) philosophy. This is the reasonwhy
a huge number of teachers and educators use it as a practical example of the use of automatic
control for students without needing a big budget, which is often the case these professionals
face during their classes. This philosophy, apart from being the philosophy which has been
followed during this project is the way lots of online science and tech content creators have
been approaching during recent years to bring a wide variety of fields to the massive public of
the Internet and encourage people to discover more themselves.

Controllers implementation in low-cost platforms pàg. 9

3 Model components, assembly and software
This project’s model was created before its start by ETSEIB professor Carlos Ocampo-Martinez
and two of his former students, Santi Prats Moreu and EduardMorera Torres, since the creation
of themodel and its controllers was originally conceived as a past-time activity, not an academic
one. Despite the fact that all the components, then, were provided and assembled together by
them, it is necessary to list what materials make up the model, their function in the model and
how they are united together to form the final system.

3.1 Model components
The model is composed of five distinctive basic elements which are interconnected by a series
of connections and connectors:

1. The physical model, which consists on a V-shaped wooden beam (1) fixed to a wooden
base (2) and articulated by two wooden articulations (3) and a set of metallic screws and
joints. The beam incorporates two wooden pieces (4) which limit the ball’s movement to
150 millimeters in each direction from the center of the beam. The beam also incorporates
two wooden supports (5) at the end of the slide for the infra-red sensors and a small
wooden box (6) to accommodate the servo-motor.

Figure 2: An image of the model studied in the project with numbered parts.

2. Two ping-pong balls,whose function is to slide down the beam, withwhom they are con-
nected via friction. The reason why there are two of them is that, since they have different
diameters, weights, friction coefficients andmoments of inertia, it is possible to study how
the system’s behaviour changes when its conditions are changed, and therefore, to study
its robustness.

3. Two SHARPGP2Y0A21 infrared distance sensors,which calculate the distance between
them and the ball to determine its position measuring the time it takes to an infrared light
beam to get to the ball and return to the sensor. Then, they send an analogical 1-3.3 V

pàg. 10 Memorandum

Figure 3: The two ping-pong balls that have been used. The yellow one is larger, heavier and
has a higher friction coefficient.

electric signal which is proportional to the distance to the micro-controller.

Figure 4: The infrared distance sensor located at the left part of the model.

This analogical electric signal, though, does not present a linear correspondence to the
measured distance. The theoretical correspondence graph is presented next:

Controllers implementation in low-cost platforms pàg. 11

Figure 5: Sensors’ theoretical relative distance to analog value graph.

However, since each sensor has its own variability, an experimental graph has been done
for each sensor during their calibration. The ball’s relative distance to the setpoint to ana-
log value -proportional to the analog electric signal- graph for Sensor 1 is presented next:

Figure 6: Sensor 1’s relative distance to analog value graph.

This relative distance, though, is not the same as the sensor’s measured distance because
the sensor is located at the end of the beam. In this case, the higher the relative distance,
the closer to the sensor the ball is. With Sensor 2 the opposite case happens, as it is located
at the other end of the beam. Its graph is presented next:

pàg. 12 Memorandum

Figure 7: Sensor 2’s relative distance to analog value graph.

It has been proved that the measured distance to analog signal relation is not linear. This
will make the distance measurement process a bit more complex, as it is shown in Section
5.6

4. A Futaba S3003 servo-motor, the model’s actuator, which receives a control signal from
the micro-controller’s PWM pins. This control signal determines how the motor will ro-
tate so the beam angle changes. This is possible because the motor shaft is mechanically
attached to the rotating articulation of the beam.

Figure 8: One of the replacement Futaba S3003 servo-motors.

Controllers implementation in low-cost platforms pàg. 13

The motor’s motion is controlled via pulse-width modulation (PWM), which consists on
discretizing an electric signal in two unequal parts to reduce its average power. In one
of the parts the signal delivers its nominal power, while in the other it shuts down. The
proportion between them is called the duty cycle and it is what determines the movement
of the servo-motor. The S3003 servo functions with a 50 Hz pulse frequency and a 5-10%,
as showed in the following figure:

Figure 9: Diagram which shows the relationship between the PWM duty cycle and the motor’s
position.

As it can be seen, a duty cycle of 5%will maintain themotor’s angle at theminimumangle,
while a duty cycle of 10% will drive it to the maximum angle, which is 180º. This will be
important when initializing the board’s PWM pins at Chapter 4.

It is remarkable, though, that the real duty cycles obtained by experimentation and by
adjusting the motor’s edge position correspond to the 2.5-8.5% duty cycle range. If the
motor received a signal with a duty cycle regime out of this range it could get saturated
and even be damaged.

5. A64 pin STM32F411RET6micro-controller compatiblewithArduino, which is the center
of the system and the key element that stabilizes the ball at the desired position. It receives
and processes the signal coming from the sensors through its analogical input pins, it also
controls themotor’s positionmodifying the duty cycle of the PWMsignal it sends through
the PWM output pins, as explained before.

6. Hardware filters, which were deemed as necessary the first time the sensor calibration
process was started. The sensor readings contained an important noise component in
their values that could not be attenuated by software moving average filters. This caused
the sensor calibration to be less accurate and thus the ball’s positioning more unstable to
the point it seriously conditioned the controller’s validity.

To improve the readings’ quality, a capacitive power stabilizer and low-pass filter have

pàg. 14 Memorandum

been installed in the electronic circuit [1].

Figure 10: The sensor noise filtering circuit.

The power stabilizer consists on a 35µF capacitor between the positive and ground power
lines, while the low-pass filter consists on a 14.87kΩ resistor and a 0.47µF capacitor be-
tween the signal line and the ground. However, due to availability reasons, the 35µF
capacitor has been substituted by a 45µF one, while the resistor has been changed to a
22kΩ one. These substitutes proved to be the best available options compared to different
magnitude components when tested.

These filters, combined with the previously mentioned software moving average filters
have brought the noise factor to acceptable levels, which have made the distance calibra-
tion process viable.

3.2 Model assembly
The assembly of the model, though done prior to the project’s start and by different people, is
a key factor for the project’s objectives, since the project’s aim is to create sustainable, low-cost
automatic control materials. This factor, though, also conditions the project’s results, as the
available models will not have the quality and reliability that could be found in commercial or
industrial systems which could be studied otherwise.

The model assembly has largely consisted on the construction fixation of the wooden-made
pieces, which has been done by drilling the necessary holes and creating the fixations and ar-
ticulations with brass screws, washers and joints and gluing the pieces together -in the beam’s
case-.

The electronic circuit has been installed in a prototyping connection board and has consisted
on connecting the different circuits using common electronic prototype wires to the different
components through the board’s pins.

Controllers implementation in low-cost platforms pàg. 15

3.3 Software used during the project
The project has relied heavily on the use of different software programs. In this section a brief
description on their relevance for the project will be included for each of them. It is important
to consider that these programs have been used in their latest versions available during the
project’s development, and the different processes described during this memory may be have
to be done in a different way if posterior or previous versions are used.

1. MATLAB. This programming language and numeric computing environment has been
key for making controller calculations and making the system’s mathematical modelling.
The model calculation scripts were already prepared by the project’s previous students,
but they have been adapted and corrected during the project’s development. The con-
troller calculation scripts have been fully developed during the project. All of them can
be consulted in Annex B.

2. Simulink, a MATLAB-based modeling and simulating environment. It has been used to
simulate the calculated controllers and their impact in the whole system before actually
implementing them. This has been done using material prepared by former students,
even though understanding the models has been considered part of the project’s tasks.
The Simulink model that has been used for these simulations will be shown in Section
7.1.1. Both MATLAB and Simulink have been used in theirMATLAB R2022b version.

3. STM32CubeIDE, an Integrated Development Environment (IDE) which has been used
for the board’s initialization and configuration, but also for theC codedevelopment through
its C code view. This program has allowed to generate all the settings code automatically
without needing how to code all these instructions manually. This makes this software
specially useful for beginner users, since even if the initialization instructions in Chapter
4 are not followed, it is possible to work with the boards using one of the many tutorials
available on the Internet for many different types of applications. This software has been
used in its STM32CubeIDE 1.10.1 version.

4. For this memory’s redaction, the LATEXOverleaf interface has been used in order to make
the document’s arrangement easier and more uniform.

pàg. 16 Memorandum

4 Board initialization and peripheral tuning
As mentioned previously in Section 3.1, the STM32F411RET6 micro-controller is the key com-
ponent of the system because its software and hardware will be the nexus between the model’s
sensors and its actuator. Even though the controller’s code implementation will be the most
important step in the project’s software development, there are some previous requirements
which must be accomplished so the board works as desired. These steps will include a base
code creation, which will create the required environment to initialize the different peripherals,
the PWM timer initialization, which will configure the board’s signal output, the ADC reading
initialization and posterior calibration, which will set the analogical measuring, the SWD plot
configuration and finally the base code generation which will include the desired settings in the
final C code.

4.1 Base code creation
This initial stage consists on the creation of a configuration environment using STM32CubeIDE,
an integrated development environment (IDE) which allows the user to set their board basic
features without necessarily needing to have knowledge of coding in C/C++ language. To do
so, it is necessary to follow these steps:

1. Creating a folder which will contain the project’s workspace. Once STM32CubeIDE is
opened for the first time, the programwill ask for a folder to use as workspace, where the
user must select the desired folder as shown in the next figure:

Figure 11: This figure shows what will appear for this step of the initialization.

2. The program’s home window appears now, where the Start a new STM32 project option
must be selected. In this step it may be necessary to install packages.

Figure 12: This figure shows what the user will see when completing Step 2.

Controllers implementation in low-cost platforms pàg. 17

3. After creating a new project, it is necessary to specify which board is being used for the
project. In this case, the selected boardmust be theNucleo-F411RE, which should be found
in the list at the Board Selector tab. After that, the user only needs to click Next and give a
name to the project. The user will now have to select the option that initializes the periph-
erals in their Default Mode and open the Device Configuration Tool perspective.

Figure 13: This figure shows where to select the correct board.

4. Now the board is ready to be configured, even though there is some default pinout con-
figuration generated by the program, which must be deleted. To do so, select the Clear
Pinout option at the Pinout tab.

Figure 14: This figure shows what the user can see before resetting the board’s pinout.

4.2 PWM timer initialization
The actuator’s control regime has been described in Section 3.1. In this stage of the initialization
the board will be configured to use one of its output pins as the PWM signal source for the
servo-motor with the previously stated duty cycle and pulse frequency. The following steps
must be followed to complete this stage:

pàg. 18 Memorandum

1. Opening theClock configuration tab to set theAPB1 timer frequency at 16MHz. The default
status will show a wide variety of frequencies for the different timers. To solve this, it is
necessary to switch the System Clock Mux input to HSI and set the APB1 prescaler to /1.
The result should be the one shown at the next figure:

Figure 15: This should be the clock configuration status.

2. Going back to the Pinout and Configuration tab, then select the Timers dropdown to enable
the TIM2 timer, whichwill be achieved after setting its Channel 1 as PWMGeneration CH1.

Figure 16: This figure shows how to enable the TIM2 timer.

3. The last step consists on changing the timer’s prescaler and counter period. This can be
done at the Parameter Settings tab of the timer menu. The prescaler must be set at 32 and
the counter period at 10000. The prescaler and the counter period will reduce the timer’s
original 16MHz frequency to the desired 50 Hz that will create 20millisecond long pulses
-the prescaler will set its value to 0.5MHz and the counter period to the final 50 Hz-. After
completing this step, the PA5 pin should be appear named as TIM2_CH1, which means
the PWM output is tuned.

Controllers implementation in low-cost platforms pàg. 19

Figure 17: This figure shows how to set TIM2’s parameters.

4.3 ADC reading initialization
Thenext stage of the board initialization consists on theADC reading settings. TheADC reading
process is based on an analogical electric signal input into one of the board’s analogical-digital
converter pins, which converts these analogical values to a digital value which can be stored in
the board’s memory. These settings are done following the following steps:

1. Selecting the Analog option at the Pinout and Configuration tab, which will make appear
the ADC1 dropdown. After selecting that item it will be possible to select a set of ADC
input modes. Since the model only has two sensors, that are the only analogical inputs
the project will include, there is only need to select two inputs. Therefore, the IN0 and IN1
inputs will be selected.

Figure 18: This figure shows how to set the ADC inputs.

2. Checking the ADC configuration to set the Clock Prescaler to PCLK2 divided by 8 in the

pàg. 20 Memorandum

Parameter Settings tab. The ADC Resolution will be set to 12 bits, it is desired to have the
highest possible value since the higher the measure’s resolution the more accurate the
controller’s input will be as a result of having more digital values available for storing
information.

3. Since the STM32F411 board has only one ADC data output register it can only store read-
ings into its memory from one channel at a time. To do this with more channels the most
efficient method is to activate the Scan Conversion Mode, an embedded scanning protocol
which consists on a continuous sequenced scanning through the selected channels and
storing its readings directly into the board’s RAMmemory through a DMA (Direct Mem-
ory Accesswithout needing to use the board’s CPU. This reading mode was created by the
board’s designers so it is possible to read frommultiple channels without needing to reset
the ADC, which would be a lot slower and resource-consuming.

To activate this conversion mode, the Scan Conversion Mode, Continuous Conversion Mode
and DMA Continuous Requests options will be enabled at the previous tab. At the ADC
Conversion Mode dropdown it will be possible to set the channel scanning sequence by
setting the Number of Conversion to 2 (the number of channels that will be scanned) and
then selecting Channels 0 and 1 for the 1 and 2 ranks respectively. The Sampling Time
will be set at 480 cycles, the maximum one, as it is not necessary to scan samples at an
extremely high rate.

To set the DMA,ADC1will be added at theDMA Settings tab in Circularmode, which will
make the DMA store the values of the channel array recursively. The DMA will also be
set with a data width of half word since the ADC resolution is 12 bits.

The ADC1 global interrupt at the NVIC settings tab will also be activated. Activating this
option will make the C code use a timer (which will be set at the next step next) to trigger
the ADC interrupt.

4. The same process followed at the PWM timer initialization step 3 will now be repeated
similarly to set the new timer, this time using the TIM3 timer. This time the Prescaler
will be set to 16, while the Counter Period is set to 50000. This results in a 20 Hz sample
acquisition frequency, or a 0.05 second sampling period, which will be used later to define
the system’s discrete time mathematical representation.

This sampling period has quite a reasonable value, as the ball’s position measure will be
update relatively quickly, but it will not make the reading unstable, which happens if an
excessively low sampling period is introduced. This is due to the fact that, as themeasures
occur very frequently, so do the inaccurate measures, which gives a higher amount of
misleading information to the controller and makes the system likely to get unstable.

Instead of designating a role to some channel, it is now necessary to set the timer’s mode
to clock source. It will be set as Internal Clock, which means it will be act as the internal
clock of the board. At the NVIC Settings tab of the timer’s configuration the TIM3 global
interrupt optionwill be selected to link this timer to the global interrupt whichwill be used
to trigger the ADC interrupt.

After completing this step, the PA0 and PA1 pins should appear highlighted in green the same
way the PA5 pin was highlighted after setting the PWM timer.

Controllers implementation in low-cost platforms pàg. 21

Figure 19: This figure shows the Parameter Settings tab configuration for the ADC inputs.

4.4 SWD plot information
The Serial Wire Debug (SWD) plot is a debug tool which is incorporated in most STM32 and
similar boards. It allows the user to watch and control the behaviour of the board embed-
ded code (which has been generated previously) while running from the STM32Cube IDE and
therefore, to be able to measure variables and to check if the code is working as expected.

In order to configure the SWD plot the user must use the SYS (SYS Mode and Configutation)
tab inside the System Core dropdown and select the Trace Asynchronous Sw debug option. This
should make the program highligh in green the PB3, PA14 and PA13 pins.

Figure 20: This figure shows how to set the SWD plot.

4.5 Base code generation
Once all the previous steps have been completed, select the yellow gear figure at the upper
toolbar and accept the pop-up’s request to generate the project’s base code file which will be

pàg. 22 Memorandum

eventually implemented in the board. This code will be visible and ready to explore and edit,
under the name of "main.c".

Controllers implementation in low-cost platforms pàg. 23

5 Non-controller coding
Once the base code has been generated, the next step is to include some elements which will
make possible to finally implement a controller through it. It must be stated that the pieces
of code depicted in this chapter will not include the whole final code, only the basic elements
needed for the controller’s function.

When coding in C, it is important to take into account that not all the space in the code is suitable
for generating code, since this can only be done in certain coding dedicated spaces generated
by the program. If the developer generates some piece of code outside these spaces, everything
that has been written will disappear when the code is compiled. These spaces can be easily
recognized since there are many of them all over any C code and they always follow a similar
structure. There are two "barriers" which limit every space, which begin and endwith "/* USER
CODE", followed with "BEGIN" or "END" depending on which of the barriers is it and finally
and argument that declares what is that space used for followed by "*/".

For example, the space started by "/*USERCODEBEGIN Includes */" is used to declare libraries
which must be included to import necessary functions for the code. In this case, apart from the
library inclusion there only will be new code written into the spaces 0 and 3 of the program,
the first being used for variable and function definitions and the second to create code inside
a loop. On the other hand, space 2 will be dedicated to peripheral initialization, so it must not
contain any other piece of code generated for other reasons.

Before explaining the C code any further, it will be necessary to change some IDE settings so it
is possible for the user to print float numbers from the code. To do so, it is necessary to select
the Project tab at the upper toolbar and then select the Properties option. A newmenu will open
with a content bar on the left. Select the C/C++ Build option, followed by Settings and MCU
Settings and then mark the following option:

Figure 21: This figure shows how to activate float printing for the C code.

pàg. 24 Memorandum

Once the IDE is ready to code it is time to show the code that, as explained before, must be cre-
ated before implementing the controller. This non-controller code is necessary because before
implementing any controller it is crucial to check out that the micro-controller will be able to
receive measures from the sensor and translate them from voltage to distance properly and also
to move the servo the way it is has been planned. To make this process easier to understand,
this explanation will be made step by step showing the different spaces that will be filled with
code.

5.1 Library inclusion
The code for the libraries inclusion is showed next:

/∗ USER CODE BEGIN Includes ∗/
include " s td io . h" /∗ standard in out header , inc lou e l p r in t f ∗/
include "math . h"
inc lude " time . h"
/∗ USER CODE END Includes ∗/

In this part the user must include desired libraries to use throughout the code. This is also the
space to incorporate MATLAB-generated functions’ headers.

5.2 User code begin 0
As mentioned before, this space is dedicated to define variables and functions which are meant
to be used in other sections of the code (especially in Section 3). The following code piece is an
example of a function definition which will be implemented:

/∗ USER CODE BEGIN 0 ∗/
i n t _wri te (i n t f i l e , char ∗ptr , i n t len) /∗ funcio Per usar pr in t f ∗/

{
i n t DataIdx ;
fo r (DataIdx = 0 ; DataIdx<len ; DataIdx++)
{

ITM_SendChar(∗ ptr++) ;
}
re turn len ;
}

/∗ USER CODE END 0 ∗/

This function showed before is used to print information from code variables into the console
so it is easier to control the way the system and its components are working.

The necessary variables to make the code perform the desired tasks are not included here since
it is not relevant information, and because it can be seen at the full code that has been attached
in Annex B

Controllers implementation in low-cost platforms pàg. 25

5.3 User code begin 2
This part of the code is used to initialize the board’s peripherals. The following piece of code
starts the PWMandADC trigger timers which have been defined automatically during the code
generation using the parameters defined during Chapter 4:

/∗ USER CODE BEGIN 2 ∗/

// S t a r t the t imers
HAL_ADC_Start_DMA(&hadc1 , (u in t32_ t ∗)adcValArray , 4) ;
HAL_TIM_PWM_Start(&htim2 , TIM_CHANNEL_1) ;

/∗ USER CODE END 2 ∗/

In this code, the first function starts the continuous analog scanning from the hadc1 object, and
stores the measures into the adcV alArray 16-bit two-element array which has been defined in
the 0 coding space. The last input of the function equals the total number of bytes stored into
the array. Since each sensor has a measure resolution of half-word (as explained in Section 4.3),
which means that each element of the array occupies 16 bits. The total number of bytes, then,
equals 4.

The second function, meanwhile, initializes the PWM timer selecting the desired channel even
though it does not modify the signal’s duty cycle. This will be shown at the third code space.

5.4 User code begin 3
Section 3 is the final code section with which the user will interact in the predicted scope of
this project. As stated at the beginning of this chapter, this section is used to create code that is
meant to be executed recursively. This mean this section of the code is the core of the controller
because it will include key information such as the sensor calibration, the measure translation
from the analogical signal to a distance value in meters, the controller structure and parameters
and the output signal creation which is sent to the servo-motor. These are only the necessary
features that must be included here to make the system function properly, but the user can add
any type of code that they might find useful or interesting, such as printings to control some
variable.

Even though the final version of this code section is not showed here it can be found in Annex
B. The code lines which allow the user to read an analog signal and to change the motor’s duty
cycle are attached next. These operations are the base of the user code andmust be ready to use
before calibrating the reading or implementing a controller. From these lines the sensor will be
calibrated using a set of analog measures, which will allow to have a functioning system where
the controller can be implemented.

/∗ I n f i n i t e loop ∗/
/∗ USER CODE BEGIN WHILE ∗/
while (1)
{

/∗ USER CODE END WHILE ∗/

pàg. 26 Memorandum

/∗ USER CODE BEGIN 3 ∗/

//SENSOR 1 : Moving average f i l t e r

adcMA1=0;
i 1 =0;
fo r (i 1 =0; i1<len ; i 1++){
adcMA1=adcMA1+adcValArray [0] ;
}
adcMA1=adcMA1/ len ;

//SENSOR 2 : Moving average f i l t e r

adcMA2=0;
i 2 =0;
fo r (i 2 =0; i2<len ; i 2++){
adcMA2=adcMA2+adcValArray [1] ;
}
adcMA2=adcMA2/ len ;

p r i n t f (" \n adcMA1 %f \n" , adcMA1) ;
p r i n t f (" \n adcMA2 %f \n" , adcMA2) ;

htim2 . Instance−>CCR1=DutyCycle ;

}
/∗ USER CODE END 3 ∗/

}

As stated before, this piece of code only includes the necessary instructions to execute a set of
readings recursively and to send the motor a new duty cycle value. This duty cycle value is
constant by the moment as now the only goal is to check that the motor moves when changing
this parameter, butwhen the controller is operative themotorwill receive the controller’s output
as its new duty cycle.

It can be seen that the reading code section is almost equal for both sensors: it begins with
two auxiliary variables, one will store the analog value for each reading and the other will be
used to create a moving average filter, which will reduce the signal’s noise by calculating the
final measure as the arithmetic average of a set (which length is defined by the variable len)
of analog readings. The greater the set’s length, the more accurate will be the reading, even
though an oversized length may bring no significant benefit for the measure but will make the
code run slowlier.

5.5 Code compilation and debugging
In order to check if the previously attached pieces of code work, this means, to debug it, it is
necessary to compile the code. To do so, the spider-shaped Debug button from the top toolbar
must be pressed after connecting the board to the computer through an USB cable. This will
make the program scan the code to check it does not contain any error and then it will load it

Controllers implementation in low-cost platforms pàg. 27

down to the microcontroller.

The first time the user presses this button the program will ask them to create a debugging
configuration. To do so, the STM32 Cortex-M C/C++ Application option must be selected at the
first emerging window. Now it is time to configure the debugger. The first step to do so is to
make sure that ST-LINK (ST-LINK GDB Server) is selected as the Debug probe. At the Interface
section it will be possible to use an specific ST-LINK by checking the option showed next and
scanning to find the debugger of the connected board.

Figure 22: This figure shows the successful board debugger scanning.

The next step is to enable the Serial Wire Viewer that was configured in Section 4.4. To do so, it
is necessary to check the Enable option below the Interface section and make sure the stated Core
Clock frequency is equal to the board’s clock frequency.

The debugger configuration is finished now and if the compilation and the loading are success-
ful, the following menu should appear at the bottom of the screen:

Figure 23: The debugging window will now appear at the bottom of the page. The successful
download message can also be seen at the menu’s console.

The debugging menu has several tabs which contain useful information and options for the
user. However, the only useful tab for the project’s program debugging is the SWM ITM Data
Console tab, whose job will be to print out all the variables that were included within the printf
commands at the end of the third user code section. If this tab does not appear at the toolbar by
default, it must be selected at the Window tab at the upper toolbar, then check Show View, SWV
and SWM ITM Data Console.

After clicking on the hammer-shaped Configure trace button the SWV setting menu will open,
within which the 0 stimulus port must be selected. To make the SWV data console work the red
circle shaped Start Trace button must be checked to start the console’s trace.

Now the debugger is ready to use. If the Resume button at the top left part of the screen is
pressed, the analog readings of both sensors (corrected by the moving average filter) will now

pàg. 28 Memorandum

appear recursively on the SWM ITM Data Console, as shown in the figure below:

Figure 24: An example of corrected analog value printings for the 75mm position

The motor will also tilt the beam to the new position after its input signal’s duty cycle has been
modified to the one value written in the code (unless it was already in that position). This
means that the code works and that the sensor calibration can be finally started.

5.6 Sensor calibration
Once the code is developed enough to test the analogical input measuring, it is possible to
finally calibrate the sensors. This process is crucial for the system’s correct operation as the
board’s analogical reading assumes that the correspondence between the physical magnitude
(the ball’s relative position to the sensor) and the analogical value is lineal, which is false since,
as shown in Section 3.1, the sensor’s output voltage is not linearly related to the distance to the
reflective object. It is easy to see that the voltage vs distance function provided in the datasheet
is excessively difficult to implement into the controller’s code. Thus, the calibration will consist
of establishing linear approximations between these two magnitudes so it is easier to establish
this correspondence.

It is also worth noting that these analogical values will be limited by the measuring resolu-
tion which, as stated previously, is a 12-bit resolution. The maximum possible analogical value
which can be obtained, then, is 212 − 1 = 4095.

The calibration’s first step consists on establishing a set of measure values for each sensor’s
readings at different ball positions in the beam. The set of values has been decided to consist
of measures from the -150mm to the 150mm positions with a 25 millimeter step between each
position. The measuring results are shown in the following table:

Table 1: This table shows the calibration measures for each position

Position [mm] Sensor 1 Measure Sensor 2 Measure
150 3100 700
125 2500 700
100 2050 760
75 1750 800
50 1550 900
25 1410 1000
0 1270 1100
-25 1150 1280
-50 1050 1450
-75 950 1700
-100 950 2000
-125 920 2480
-150 900 3220

Controllers implementation in low-cost platforms pàg. 29

It can be seen with the naked eye that the closer the ball is to the sensor the faster its measure
grows. This could also be predicted by looking at the voltage vs distance graph in Chapter 3.1.
The noticeably non-linearity of the measure makes it necessary to separate the measurement
positions in groups in which the function’s gradient is somewhat constant or approximately
linear in order to create a set of linear correspondence equations between the two magnitudes.
The gradient of the measuring also remains constant when the ball is on the furthest half of the
beam, which will make it impossible to extract any useful information from the measure of one
of the sensors most of the time. Therefore, each sensor will be in charge of its half of the beam
while the other sensor’s readings will be discarded.

There is another case, in which the ball is positioned on the central region of the beam, in which
both sensor readings are valid. This case adds some difficulty to the calibration and forces the
code to create a more complicated sensor choice in this particular range of analog values.

In order to create this adaptation on the equations tomake them suit this problem it is necessary
to firstly define what will be considered as the central area of the measuring. As it can be seen
in Table 1, the analog values for the central position are 1270 for Sensor 1 and 1100 for Sensor 2.
Thismeans that when the analog reading approaches these values the actual measured distance
will be uncertain, as both sensors will apply their linear equations to approximate the distance
value.

This problem has been solved by implementing a measuring selection code which rejects the
sensors’ measures if they are below a certain threshold -1150 for Sensor 1 and 950 for Sensor
2-. The case in which both sensors’ readings can be considered valid has been solved by coding
that, if both readings are within a certain range, a mean from both readings is considered as
the analog reading. If one of the readings is over this range and the other does not present a
significantly higher value, the code will consider that the ball is nearer its sensor and thus will
reject the other sensor’s reading.

The rejection thresholds and the mean reading range have been established through experi-
mentation in order to optimize the measuring. These values have been tested repeatedly by
measuring the ball’s position when it is idle in a certain critical spots -when both valid ranges
overlapped-. These measures have been compared to the real position watching if there were
sudden measure changes after slightly moving the ball. If this happened, it would mean that
one of the readings -which have a certain variability- presented borderline values for that posi-
tion, making it necessary to review the thresholds and ranges.

Once the calibration has been described, the equations will be finally stated. For both sensors,
the measurement range will divided in three areas in which a linear or polynomial trend line
is calculated. For Sensor 1, the first area is the one obtained from the 150, 125 and 100mm
measures -named EQ1-, with the others spanning between 100 and 25mm -EQ2- and from 25 to
-25mm -EQ3-. The three equations are presented next:

r = 0.0473x+ 4.39 , (1)

r = −441 + 0.479x− 0.000105x2 , (2)

pàg. 30 Memorandum

r = −332 + 0.326x− 0.0000518x2 , (3)

where r is the approximated distance in millimeters and x the measured analog value. These
linear regressions have R-square parameters of 0.993, 1 and 1, respectively, which shows that
the approximation is almost perfect for the whole studied distance range.

The equations for Sensor 2, noted as EQ4, EQ5 and EQ6, are obtained from the 25 to -25mm
positions, from -50 to -100mm and from the -100 to -150mm, respectively. They are presented
next:

r = 354− 0.447x+ 0.000116x2 , (4)

r = −0.0907x+ 80.6 , (5)

r = −0.0404x− 21.4. (6)

These linear regressions have R-square parameters of 0.994, 0.997 and 0.985, respectively.

It is worth pointing out that these approximations have been obtained from filtered measures.
The rawmeasures presented a sensibly high variability, which did not get stabilized after apply-
ing the moving average filters. This is due to multiple factors like harmonic frequency electrical
interference coming from the electric network, poor cable insulation among others. These prob-
lems were solved after establishing the signal electronic filter that was described in Section 3.1.
Implementing these filters reduced the signal noise sensibly, making it possible to calibrate the
sensor using reliable data and reducing the system’s final functioning instability brought by the
sensors. However, it is almost impossible to fully eliminate this instability in the readings, that
is the reason why the sensors’ acquisition period has been modified. Making the controller re-
ceive feedback with less frequency makes the system less sensible to flawed data, as the errors
are introduced less often into the loop.

Controllers implementation in low-cost platforms pàg. 31

6 Ball and Beam mathematical modeling
In order to calculate any controller, it is necessary to generate a mathematical model from the
system’s dynamics and kinematics, as to do so it is key to know the system’s temporal response
parameters, specially its poles. This chapter encompasses the calculations performed to calcu-
late the model’s transfer function between the servo-motor’s angle (represented in the model as
θ) and the position of the ball in the beam (represented as r), both in continuous and discrete
time, which is the tool that will be used to extract any necessary information to calculate the
controllers which will control the motor’s desired input signal to keep the ball at the center of
the beam.

As explained at the project’s introduction, the ball and beam system consists of a ball which
can move along a straight beam in a one degree of freedom movement. The beam’s inclination
inputs another degree of freedomandwill be forced into certain values through the servo-motor.

Figure 25: Physical diagram which shows the system’s physical variables.

The first stage of the transfer function’s calculation is to establish the system’s Lagrangian equa-
tion ofmotion, which represents the ball’s kinematics over the system’s two degrees of freedom.
The ball and beam is a classic automatic control problem and its Lagrangian equation is widely
known and relatively simple to calculate. Therefore, the previous calculations will be consid-
ered trivial and the equation will be directly presented as [2]:

(
Ib0

R2
+m

)
r̈ + kṙ −mrα̇2 +mg sinα = 0 , (7)

where Ib0 represents the ball’s moment of inertia, R its radius, m its mass, k the friction con-
stant between the ball and the beam and g represents gravitational acceleration. The equation’s
variables are r and α, which represent the ball’s relative position on the beam (with r = 0 repre-
senting the ball being located at the center of the beam) and the beam’s angle to the horizontal

pàg. 32 Memorandum

reference axis. The dots on some of the variables represent the variables’ derivatives, with one
dot on the variable representing its first derivative and two dots the second derivative.

Since the beam angle α will not be comprised between relatively high values, the linear ap-
proximation α ≈ 0 will be considered valid. This will allow the angle’s first derivative nullifi-
cation and the sinus approximation to α following its Taylor’s polynomial. The approximated
Lagrangian equation is given by:

(
Ib0

R2
+m

)
r̈ + kṙ +mgα = 0 , (8)

in which the moment inertia Ib0 is calculated ([5]) by:

Ib0 =
2

5
m
R5 − r5

R3 − r3
, (9)

in which r is referred to the internal radius of the ball, as it is hollow. It is necessary to remark
that it is not the same r that is used for the ball’s relative position. To avoid confusion, from now
on this calculation will not be repeated in the memory and it will be assumed.

It is important to notice that the Lagrangian equation is not expressing any link between the
ball’s position, which is the one variable desired to control and the servo-motor’s angle θ, the
one that can be controlled. Therefore, the transfer function which can be obtained from the
Lagrangian equation would not contribute with any significant information for the project’s
goal. To extract the desired relation, the beam’s angle must be substituted by the motor’s one
using a mathematical expression.

According to [2], the equation which describes the relationship between the two angles can be
approximated to:

α =
d

P
θ , (10)

where d represents the model’s articulation lever arm offset to the motor’s edge and P the dis-
tance between the lever arm’s articulation to the beam and the center of the beam.

Thus, substituting this expression into (2) the following expression is obtained:

(
Ib0

R2
+m) · r̈ + kṙ +

mgd

P
θ = 0 (11)

Now there exists the desired relation between the two degrees of freedom and therefore the
continuous time transfer function can be calculated. The transfer functionwill be obtained from
(5)’s Laplace transform, which is showed next:

(
Ib0

R2
+m

)
s2R(s) + ksR(s) = −mgd

P
Θ(s) (12)

Controllers implementation in low-cost platforms pàg. 33

Table 2: This table shows the constant’s values

Constant Value Unit
Ib0 5.788e-06 kg · m2

R 0.01988 m
m 0.028 kg
d 0.06 m
P 0.15 m
k 0.05 -

The transfer function will have R(s) as its output and Θ(s) as its input. Therefore, R(s) will
be isolated and then divided by Θ(s). By doing this operation, the continuous time transfer
function will be finally obtained. Before stating the final result, the system’s constants will be
substituted in order to obtain the transfer function at its simplest form. The constants when
studying the system with the common, white ping-pong ball are listed in the following table:

Note: The constants’ units follow the international system and the gravitational acceleration has been
approximated to the second decimal.

Proceeding to operate as stated before the transfer function is obtained. It is mathematically
desirable to express it in its canonical form, as showed next:

G(s) =
R(s)

Θ(s)
=

2.5764

s2 − 0.1172s
. (13)

Before calculating this transfer function is necessary to take into account that the gravitational
constant g takes a negative value according to the physical reference axes. Using a positive value
would result in a totally different system representation which would make the calculations
impossible to make.

Once this function has been obtained, it is already possible to know how the system will react
to any analogical signal input and to study its behaviour in continuous time. However, since
the controller will be implemented into a micro-controller, which processes digital signals in
discrete time, it will be necessary to obtain the discrete time equivalent of this transfer function
so it is possible to study the whole system in this modeling framework.

In order to obtain a discrete time transfer function from a continuous time one it is necessary to
perform a variable conversion known as the z-transform. This operation takes a discrete-time
equation or function as an input, which in this casewill be the sampled continuous-time transfer
function, and converts it into a complex discrete time form whose variable is represented as z.

Before going any further, it is convenient to take a look to the global system’s block diagram to
see what the system’s whole picture will look like:

Even though the controller can be calculated in the continuous time domain, it will bemore con-
venient to calculate it directly in its z-domain form as the controller works in the discrete-time
domain. The system will be represented as an unitary closed-loop system because the sensors
will give the controller a distance feedback which will be compared to the desired distance.

pàg. 34 Memorandum

Figure 26: This figure shows a simplified representation of the system’s block diagram

The difference between the measured and the desired distance values is named error -noted as
e, E(s) or E(z)- and will be the controller’s real input.

It can be seen that the controller and the plant work in different domains. In theory, this would
be solved by placing a sampler -also known as analog to digital converter- and a holder -a dig-
ital to analog converter, in this case a zero order holder will be considered- at the controller’s
output, a sampler at its input and another sampler at the plant’s output, which would cause the
whole system’s equations to be expressed in sampled discrete time. This would also make the
calculations simpler, as will be seen soon. But in practice, there is no need to place anything as
the model components already perform these tasks. The sensors act as the system’s feedback
but also take samples -measures- from the system’s output, which is the ball’s position. This
can be considered as the model’s equivalent for the the micro-controller’s input and the plant’s
output samplers, as themicro-controller will not have to sample the signal twice. It will also cal-
culate new discrete duty cycle values periodically -the output’s sampler-, an information which
will be transferred to the motor which functions in continuous time -the holder-.

As it is have been explained, even though the system is considered to be represented in sampled
discrete time, themicro-controller’s calculations will be made in the z-domain, so it is necessary
to calculate the controller in this domain no matter how the rest of the system looks like.

To convert a Laplace transfer function into a z-domain one, it is necessary to state a sampling
period which determines the time elapsed between two samples. However, as it is established
in a simplified way by Shannon’s sampling theorem [3], a signal’s sampling period must be
equal or lower than the signal’s faster fundamental oscillation component in order to capture
all the signal’s information. If the sampling period does not fulfill this requisite the sampling is
not valid as some information is lost.

Since the sampling period Ts must be faster -which means it must have lower values- than the
system’s oscillation, a period of 0.05 seconds -or a sampling frequency of 20 Hz- will be chosen
as it will be easy for the micro-controller to work at this speed and it will be pretty visual for the
user to see how the system works. This period is considered valid as the system is not intended
-and will not- oscillate at any similar period.

Thus, to calculate the discrete time TF the following expression will be used [4]:

G(z) = (
z − 1

z
) · Z(

G(s)

s
) , (14)

Controllers implementation in low-cost platforms pàg. 35

which calculates the z-domain equivalent of a zero order holder in series with a sampled contin-
uous time plant. It is calculated this way since the micro-controller output acts as a zero order
holder. It is worth noting that the Z in this equation represents the direct z-transform of G(s)

s .

Applying this formula on (13) results in the following expression:

G(z) =
0.0032z + 0.0032

z2 − 2.0059z + 1.0059
, (15)

which will be used as the plant’s equation to calculate the controllers at the next chapter.

pàg. 36 Memorandum

7 Controller calculation and implementation
Once the physical device has been mathematically modeled, it is possible to study the system
and create a controller which can enforce the desired state on the model. As it has already
been stated, the controller structure that will be used to control the model and to prepare a
laboratory practical session is the PID controller. This controller is one of the most elemental, if
not the most, controllers in automatic control, due to its relative simplicity and effectiveness.

Even though the PID controller will the only control structure that will be implemented and
tested, a series of specification and model conditions changes will be performed in order to
evaluate how the same control structure adapts to be capable of stabilizing the system. This
process will be carried on though different iterations. In the first iterations the desired system
characteristics will be altered -mainly its settling time-, while in others the model conditions
will be altered by changing the regular ping-pong for a heavier one, which will alter three of
the system parameters presented at Table 2.

7.1 First iteration
7.1.1 PID Calculation
The PID controller is a closed loop control structure which corrects the plant’s input signal by
applying and summing three actions -known as Proportional, Integral and Derivative actions-
to the system’s feedback or error. This error is calculated as the difference between a certain
measured plant variable value and the desired value for that variable, also known as the set-
point. These three actions are applied to obtain the controller’s output for a certain time value
-noted as u(t)- from the error signal following the expression presented next [3]:

u(t) = Kpe(t) +Ki

∫ t

0
e(t) dt+Kd

de(t)

dt
, (16)

in which each K constant represents the coefficient for one of the three terms. The error and
the controller’s output are calculated periodically with a period equal to an integer number n
times the sampling period Ts.

This equation is equivalent to Figure 27’s block diagram:

Figure 27: This figure shows the PID controller block diagram continuous time representation.

To allow the controller to compare the ball’s relative distance value to the setpoint it is necessary

Controllers implementation in low-cost platforms pàg. 37

to implement it in a closed loop form, whose structure can be seen represented in its block
diagram form in the next figure:

Figure 28: This figure shows the system’s closed loop block diagram representation.

Each of the three controller actions have a role inside the system:

1. The Proportional action (P),whose role is to be themain reaction to the error signal, since
it multiplies it to a constant, so the higher the error signal’s value is, the more intense the
controller’s action will be.

2. The Derivative action (D), which, as it applies its coefficient to the error signal’s deriva-
tive, brings the controller a reaction capability to changes in the error. In this case, the
derivative action is the one in charge of making the ball stop if the proportional action
to the error has caused the ball to move too fast. Even though it will help stop the ball
when the proportional action moves the ball away from big error areas -which means,
from points far from the setpoint-, it lacks precision, and it is difficult to make the final
point of the ball’s trajectory match the setpoint.

3. In order to avoid having the ball stop at points close the setpoint where the other two
actions are not very effective, the Integrative action (I) integrates the error signal in order
to make the system change if small error values are detected over time. This will make
the ball’s positioning more accurate at the cost of making the system "nervous", which
means that the final position will oscillate if minimum error values are measured. If the
integrative coefficient is too high, the system’s sensibility to these error accumulationswill
be higher, and it could even destabilize when the positioning has already been completed.

This subsection’s main objective is to calculate what values must be assigned to the PID con-
troller’s parameters in order to stabilize the ball’s position value to the setpoint in a fast but
stable way. There are many ways to do so, but in this project the method that will be followed is
the desired pole assignation method, which consists on calculating the system’s closed loop z-
transform monic characteristic equation without assigning any value to the controller’s param-
eters, and then equalizing this polynomial to the desired z-domain equation which is desired
to obtain in order to calculate the three coefficients.

There are many alternative methods and algorithms to perform this parameter selection, in-
cluding MATLAB and Simulink scripts or models which can easily tune PID controllers from

pàg. 38 Memorandum

the model of the plant to control, but the process is going to be done this way in order to put
into practice what was learned at ETSEIB’s Automatic Control subject. Even if both polynomi-
als have been calculated by hand -a process which is going to be described in a short time-, the
resulting equation system calculations, have been solved using MATLAB with a script that is
going to be included in Annex B.

As it was shown at the end of Chapter 6, the plant’s z-domain transfer function was the follow-
ing:

G(z) =
0.0032z + 0.0032

z2 − 2.0059z + 1.0059
, (17)

which is represented alternatively as showed next in order to make the system’s closed loop
polynomial and the MATLAB script development easier to handle:

G(z) =
αz + α

z2 − βz + γ
, (18)

The PID controller’s z-domain transfer function is stated next [4]:

CPID(z) = Kp +
KiTs

2

z + 1

z − 1
+

Kd

Ts

z − 1

z
, (19)

in which the integrative and derivative actions have been discretized in their trapezoidal and
backward Euler approximations, respectively. The trapezoidal integration is helpful in order to
avoid sharp changes in the integral actionwhen the error value changes suddenly, which is good
to make the controller more resistant to perturbations such as someone moving the ball with
their fingers. The backward Euler derivative approximation is a causal, straight-forward form
commonly used in PID controllers as it is the simplest one in terms of implementation, which
does not make it, on the other hand, be a worse choice than other more complicated strategies.

This transfer function has been restructured in order tomake the polynomials easier to calculate
and express. It is presented in the following form:

CPID(z) =
b2z

2 + b1z + b0
z(z − 1)

, (20)

in which the b2, b1 and b0 variables’ correspondence to the controller’s parameters is described
by the next set of equations:

b2 = Kp +
KiTs

2
+

Kd

Ts
, (21)

b1 = −Kp +
KiTs

2
− 2Kd

Ts
, (22)

Controllers implementation in low-cost platforms pàg. 39

b0 =
Kd

Ts
. (23)

The closed loop polynomial is obtained from the denominator of the closed loop transfer func-
tion, which is calculated following the next expression:

T (z) =
CPID(z)G(z)

1 + CPID(z)G(z)
, (24)

whose denominator is expressed in its monic form in function of the controller parameters as
showed in the next Equation, which corresponds with the system’s closed loop characteristic
equation. This denominator is stated next:

D(z) = z4 + (b2α− β − 1)z3 + (γ + b2α+ b1α+ β)z2 + (b1α+ b0α− γ)z + b0α = 0. (25)

This characteristic equation is meant to be equaled to the desired denominator of the closed
loop transfer function, which is obtained directly by multiplying four -as many as equations the
system has- poles in their (z − pi) form, where i = 1...4.

The four selected poles for this first iteration and the reasons of why they have been selected
are presented next:

1. A pole located at z = 1 in order to make the system be a type 1 system, which will make
its steady state error to a step input converge to 0. This is key since the motor input signal
is step-shaped. Therefore, having some error to this type of input signal would make the
ball positioning be imprecise.

2. A pole located at z = 0.8752 in order to set the system’s settling time at 1.5 seconds. The
settling time is defined as the time taken for a system’s response to reach and stay within
a 2% range of its final value. This means, to make the ball positioning be certainly fast
-even though in practice this time will be higher-.

Once the desired settling time has been established it is possible to calculate the pole.
Since the settling time ts -which is important to distinguish from the sampling period
Ts is known, the Laplace transform pole’s real part can be extracted by following this
expression [4]:

ts = − 4

σ
. (26)

The pole’s imaginary part is set to 0 as it is not desired to work with two conjugated com-
plex poles. Thus, it is obtained that σ = −2.6667. The resulting z-domain real pole is the
already stated z = 0.8752 and it is calculated by the z-transform of the Laplace pole by
following:

pàg. 40 Memorandum

z = eσTs . (27)

3. A fast pole located at z = 0.1. Its adjective refers to the fact that it will not change the
system’s properties and it will not determine the system’s response speed as there are
slower poles in the characteristic equation. The slower poles are the ones with the biggest
module, and vice versa.

4. An undetermined pole noted as z = a. This undefined pole will be the equation system’s
fourth variable and must have a module strictly lower than 1 to avoid making the system
unstable. It can’t have a module equal to 1 either since there is already one (pole 1).

From these poles’ product it is possible now to represent the desired characteristic equation of
the system in function of the undefined pole a as shown next:

Dd(z) = z4+(−1.9752−a)z3+(1.9752a+1.0627)z2+(−1.0627a−0.0875)z+0.0875a = 0 (28)

Now the PID controller’s parametersKp ,Kd andKi and the undefinedpole a can be determined
by solving the equation system obtained from equaling each term of both polynomials. The
necessary calculations to achieve this have been donewith computational help through a simple
MATLAB code that is attached in Annex B. This system is expressed in its matrix form as shown
next:

α 0 0 1
α α 0 −1.9752
0 α α 1.0627
0 0 α −0.0857

×

b2
b1
b0
a

 =

−0.9752 + β

1.0627− β − γ
−0.0875 + γ

0

 , (29)

which has the following result:

b2
b1
b0
a

 =

26.8042
−52.6420
25.8378
0.9449

 . (30)

It is clear now that the z = a pole, which equals 0.9449, satisfies |z| < 1. This means that the
pole will not destabilize the system and it is valid to include in the controller. By solving the
system composed by (21), (22) and (23) the controller parameters will be found. This system
is shown next:

 1 Ts
2

1
Ts

−1 0 −2
Ts

0 0 1
Ts

×

Kp

Ki

Kd

 =

b2b1
b0

 . (31)

Controllers implementation in low-cost platforms pàg. 41

Now, the PID controller’s parameters are known and it is possible to implement the obtained
PID control structure into the micro-controller. The obtained parameters are:

Kp

Ki

Kd

 =

0.96440
1.2919

 . (32)

It is noticeable that the integral constant is stated as negligible -since it was of order -13-. How-
ever, at the controller implementation it will be shown that the integral action must not be null
in order to correctly drive the ball to the setpoint position.

In order to evaluate the controller’s theoretical behaviour without entering the implementation
process, a Simulink model -which was introduced in Section 3.3- of the closed-loop system
which includes this PID controller has been used.

The Simulink model’s block structure is an emulation of the system’s closed loop. It can be seen
at the Figure below:

Figure 29: This Figure shows the Simulink model’s block diagram.

The model provides a simulation of the ball’s trajectory over a specific simulation time from a
starting point that can be set at will by modifying its value inside the r_ini4 block. It is also
necessary to introduce the system’s -both the plant’s and the controller’s- parameters in the
"BallBeam_Model.m" and run it so the simulation can use this information. The simulation
results can be seen in a distance to time graph -and an error to time one- at the Scope31 block.

A 30 millisecond simulation taking r = 0.1m as the initial position has been carried out. A
Ki = 0.1 integrative coefficient has been introduced for computational reasons, even though
when the controller is implemented it will be seen that it is actually necessary for the correct
functioning of the system. The following simulation results have been obtained:

pàg. 42 Memorandum

Figure 30: The ball’s simulated trajectory for an initial position rini = 0.1m.

It can be seen in the graph that the ball’s positionwill reach the setpoint in around 2 seconds and
remain in there stably, moving slowly to the setpoint, where it will arrive after approximately
20 seconds. The result is the desired, as the stationary error tends to zero and the settling time
is approximately the desired. However, when it is implemented later it will be possible to tell if
its real behaviour matches the theory.

7.1.2 First iteration implementation
Once the PID controller parameters have been calculated for all controllers, the control structure
must be implemented into the C code. The first PID to be tested will be the first iteration, whose
coefficients are stated in (32).

The PID controller will be coded in the user code section 3 which was described at Chapter 5.4.
After having the analog measure from the sensors translated to a distance value in meters, the
codewill process that value to convert it into a duty cycle value andwill send the corresponding
pulse to the motor.

The piece of code that performs this task is showed next:

d i s t=d i s t /1000 ;

//PID CONTROLLER
error=d i s t _ r e f−d i s t ;
e r ror_an t=error_ant ;
I _ant=I_ant ;
Ts=Ts ;

Controllers implementation in low-cost platforms pàg. 43

// ///////////////////////WRITE YOUR CODE HERE///////////////////////
P=kp∗ e r ro r ; //P component of the output
D=kd∗(error−er ror_an t)/Ts ; //D component of the output
I=(ki∗Ts/2)∗(e r ro r+error_ant)+I_ant ; // I component
// ///
i f (I >100) I =100;
e l s e i f (I <−100) I=−100;

DutyCycle=530−(P+I+D) ∗244 ;

// Sa fe ty sa t
i f (DutyCycle>850) DutyCycle=850;
e l s e i f (DutyCycle<250) DutyCycle=250;
//Motor movement
htim2 . Instance−>CCR1=DutyCycle ;
I_ant=I ;
e r ror_an t=er ror ;
HAL_Delay(50) ;

This piece of code uses the sampled temporal form of the three controller actions to calculate the
error. These forms are obtained by multiplying each signal (the error and each of the actions)
by z−n, in which n is the highest index of the z variables in the action equation. It is key to know
that multiplying a signal by a negative index n variable z is the equivalent of having the value
of the sampled signal delayed n samples. An example is showed next:

KiTs

2

1 + z−1

1− z−1
E(z) = I(z) , (33)

which results in the sampled form of the integrative action:

I(n) =
KiTs

2
[E(n) + E(n− 1)] + I(n− 1). (34)

The proportional and derivative actions are also stated in this form:

P (n) = KpE(n) , (35)

D(n) =
Kd

Ts
[E(n)− E(n− 1)]. (36)

The error at the present iteration is stored at the error variable, while the values of the previous
iteration error and integrative action are stored at the error_ant and I_ant ones, respectively.

The integrative part can grow without control under certain circumstances -e.g. if there is an
obstacle that prevents the ball from moving to the setpoint or if it does not stand exactly at that
point for any other reason-, which can create calculation problems or destabilize the system. To

pàg. 44 Memorandum

avoid these problems, an anti-windup control mechanism has been coded to limit the values
that the I action can take.

The value of the sumof the P, I andD control signals corresponds to a newvalue of desired angle
for the motor’s edge in radians at the present iteration, but to move the motor it is necessary to
perform a new conversion from the angle value to a duty cycle value which can be sent to the
servo-motor. This conversion is performed assuming that the correspondence between these
two variables is linear. By testing how some duty cycle values changed the motor’s angle it has
been seen that the 5.3% duty cycle (or 530 in the code) corresponds to a 0 radian position -the
horizontal position for both themotor and the beam angle-. Themaximum real duty cycle value
-8.2% or 820- corresponds to a π

3 or 60º position. By establishing the linear equation using these
two measures the following expression has been obtained:

DC(n)− 530 = 250(P (n) + I(n) +D(n)) , (37)

which equals to the expression of the duty cycle calculation shown at the code.

As it was mentioned in Section 3.1, the real limits of the duty cycle values are not the theoretical
0% and 10% ones, as values outside the 2.5%-8.5% range make the motor get saturated. To
protect the motor from damage if too extreme duty cycle values are calculated, another anti-
windup mechanism has been introduced to limit the output signal’s duty cycle that is sent to
it.

It is also worth noting that the code has been structured in a way it is easier to understand by
someone with less C language knowledge, at the cost of making the code less optimal, but that
has not been considered problematic for the project’s purposes.

Implementing the other PID controllers that were calculated at the previous subsection is as
simple as changing theKp,Ki andKd code variableswhichwere defined at the user code section
0, which, as was stated in Chapter 5, is used to define user variables and auxiliary functions, to
each iteration’s results.

The controller has been implemented into the board and tested in Debugging Mode following
the process described in Chapter 5. The ball has been placed at the r = 0.15 position before the
test. After observing its behaviour the following conclusions have been obtained:

1. The model has been static the whole test. This is due to the absence of an integrative
action that drives the ball to the setpoint even if the system is already stabilized at any
other point. With a high certainty it is also due to that the model is not similar at all to the
real system and the proportional and derivative actions are not powerful enough to move
the ball to the setpoint. The controller needs to be tuned to be adjusted to the reality of
the model.

To test the integrative hypothesis a Ki = 0.1 coefficient has been added to the controller.
The integrative action is usually really sensible and effective, so the coefficient must not
be tested at very high values.

2. After adding this integrative coefficient the system has not been that idle, but the result
has been equally unfruitful. The motor eventually drove the ball out of the end of the

Controllers implementation in low-cost platforms pàg. 45

beam, but it just rolled to the other end and stayed there.

This behaviour shows that the proportional action must be higher, as it will bring the
system a sharper response to a high error signal. The proportional coefficient has now
been assigned to a Kp = 1.5 value.

3. It is has now been seen that the system is now more sensible to the error, but not fast
enough. The ball tended to roll out the end of the beam a lightly faster, but even if the
derivative action tried to make it stop at the setpoint it was not powerful enough to do so
in an acceptable amount of time.

The system needs to be more sensible to the error but also to the error fluctuations so it
can stop the ball when it moves too much. The proportional action will now be updated
to Kp = 2 and so will be the derivative one.

4. The last changes to the controller have improved its performance significantly. The ball
has moved instantly when the test has begun, and the derivative action has now stopped
the ball with a surprising speed and stability. However, the setpoint of the ball has been
around 25 millimeters away from the desired setpoint. This circumstance is not critical
but it can be easily improved by increasing slightly the integrative action. A Ki = 0.2
coefficient has been added.

5. The system has responded as expected and it is has become more sensible to small errors,
even too much sensible, which has made the ball’s final position unstable. Ki has been
lowered to 0.15.

6. This last version has proved to be precise and relatively stable. Naturally, the behaviour is
not perfect, but it is considered acceptable taking into account the limitations of themodel
and how difficult it has been to find a good combination starting from the theoretical
controller.

Finally, it is has been seen that the controller does not behave as expected in the real world,
and that it is necessary to tune every computer to adjust to the model’s limitations. This tuning
has not been negligible at all, since it is has been necessary to double the proportional and
derivative coefficients and introduce not a small integrative one to make it control the system
as desired. However, the calculated controller is not considered wrong or invalid whatsoever,
as the simulation back the calculations.

7.2 PID controller iterations
Once the PID calculation process has been described through the first iteration, it will be re-
peated for new iterations along this chapter.

These iterations have been selected in order to achieve two main goals:

1. First, to test how the PID controller can show adaptability to changes in the specification
process, and to test if the real functioning controller obtained through experimentation is
sensibly different to the first iteration’s one. This would indicate that the model is limiting
the controller’s specification possibilities, limiting them in a minimum quality limit.

2. The second goal is to test if changing the model’s parameters by switching the white ball

pàg. 46 Memorandum

for the yellow, heavier ball has a significant impact on the controller’s parameters and
behaviour. In particular, it is desired to check if the yellow ball controller -for the first
iteration- can control the white ball’s position and vice-versa. This will show the con-
troller’s robustness in both directions -and by directions it is meant to say that if calcu-
lating a controller for a heavier ball helps have a better control on lighter balls and the
opposite-.

7.2.1 Specification iterations
The specification iterations consist on testing changes on the settling time and the free small
pole in order to study their effects on the closed-loop system. These changes cause a variation
on the controller’s desired characteristic equation, whichwill change the controller parameters’.
If the resulting controller appears to be valid, it will be tested and analyzed the same way as the
one in the first iteration.

These iterations are the following:

1. Lowering the settling time to ts ≈ 1s and maintaining the small pole at z = 1. These
specifications result in the following characteristic equation:

Dd(z) = z4+(−1.9187−a)z3+(1.9187a+1.006)z2+(−1.006a−0.08187)z+0.08187a = 0 ,
(38)

in which the pole associated to the settling time is z = 0.8187.

After solving the system it is obtained that a = 1.002. This controller can not considered
as valid, since the controller would make the closed-loop system be unstable.

2. Keeping the settling time at 1 second and lowering the small pole to z = 0.05. The char-
acteristic equation now becomes the following:

Dd(z) = z4+(−1.8687−a)z3+(1.8687a+0.9096)z2+(−0.9096a−0.0409)z+0.0409a = 0
(39)

Now the system’s results are that a = 1.1009. This controller would not be valid either.
The settling time is already low, and some tests with even lower settling times show that
the free pole grows even more. This is an indicator that lowering the settling time too
much is not realistic and it makes the system unstable. It has been decided, then, that
lowering the settling time more than 1.5 seconds is not worth the time and effort.

3. Now the settling timewill be increased to ts ≈ 10s. The small free pole will be maintained
at z = 0.1. These specifications’ associated characteristic equation is the following:

Dd(z) = z4+(−2.0802−a)z3+(2.0802a+1.1782)z2+(−1.782a−0.09802)z+0.09802a = 0 ,
(40)

Controllers implementation in low-cost platforms pàg. 47

whose associated free pole is located at z = 0.8418, which means that the closed-loop
system will be stable. The associatedKp,Ki andKd of 0.4379, -0.0099 and 1.2893, respec-
tively.

Figure 31: The ball’s simulated trajectory for an initial position rini = 0.1m and the third itera-
tion’s specifications.

It can be clearly seen that the system is not valid, since it appears to be unstable. Since the
integrative coefficient is negative, which is not really logical, a Ki = 0.15 coefficient has
been tested. The simulation shows the following graphs:

Figure 32: The ball’s simulated trajectory after modifying the integrative coefficient.

pàg. 48 Memorandum

The simulation shows that the Ki modification has helped making the system stable. It
can also be seen that, even though the system presents wider oscillations, the ball reaches
the setpoint approximately after 10 seconds, which satisfies the closed-loop specifications
that were imposed during this iteration.

These controller parameter values are even lower than the ones at the first iteration, which
means that the working values and the system’s behaviour are the same as that iteration’s.
The same results will be obtained with similar small poles, which do not offer many vari-
ability to the system’s coefficients. After implementing the second simulation’s controller,
the same problems from the first one have been encountered.

Since analyzing higher settling times configurationswould not be of interest, as the system
would be too slow, no more settling times will be studied. The real settling time will be
considered somewhat constant and equal to the first iteration’s one.

4. Setting the small pole to z = 0.05 again using the original ts ≈ 1.5s. The following char-
acteristic equation has been obtained:

Dd(z) = z4 +(−1.9252− a)z3 +(1.9252a+0.969)z2 +(−0.969a− 0.0438)z+0.0438a = 0 ,
(41)

which results in a free pole in a = 1.0375. The system, then, is not stable.

The obtained conclusion is that, even if within a reasonable settling time range, the real sys-
tem will force the closed-loop characteristics, no matter how the controller’s specifications are
changed. Since the plant’s application is purely educational, this is not a serious circumstance,
but if it was destined to be implemented in the industry this would be totally unacceptable. The
controller experimentation would be more fruitful if the model was refined to be more accurate
to theory, but this will remain out of the project’s scope.

7.2.2 Model parameter changes
These iterations correspond to the model variation in which the yellow ball is introduced in
the system. The system’s parameters that change are, then, the ball’s mass, radius and inertia
moment. These new values are presented in the following Table:

Table 3: The model variables’ values that change when the balls are switched.

Constant Value Unit
Ib0 1.453e-05 kg ·m2

R 0.0225 m

m 0.046 kg

These newvariables change the system’s transfer function, whichwas presentedduringChapter
6. The system’s new Laplace and z-transform transfer functions are the following:

Controllers implementation in low-cost platforms pàg. 49

G(s) =
R(s)

Θ(s)
=

2.4163

s2 − 0.0669s
, (42)

G(z) =
αz + α

z2 − βz + γ
=

0.0030z + 0.0030

z2 − 2.0034z + 1.0034
(43)

This last transfer function has been used to extract the controller’s parameters in order to ob-
tain the first iteration’s closed-loop specifications, following the process that was described in
Section 7.1.1.

The following results have been obtained for the controller’s coefficients:

Kp

Ki

Kd

 =

1.07620
1.3754

 (44)

The undetermined pole has been located at z = 0.9425, which makes the controlled mathemat-
ically acceptable.

It can be seen at plain sight, by looking at the controller’s parameters and at the transfer function,
that the new system is not -at least theoretically- far from the one in the first iteration. However,
the experimentation has proved that the controller’s reality is not similar at all. The closed-loop
system -after adding a Ki = 0.15 integrative coefficient- has been simulated using the same
Simulink model from the first controller with a 30 second simulation time. The resulting error
and ball’s position to time graphs is attached next:

Figure 33: The yellow ball’s simulated trajectory for an initial position rini = 0.1m.

pàg. 50 Memorandum

The simulation results shows that the system should behave similarly to the first iteration. This
result shows that the controller calculation is correct again, as the simulated system behaves as
it was specified first.

The controller has been implemented -even though an integrative coefficientKi = 0.15 has been
introduced- and tested. The ball has started to move almost immediately after starting the test
and has stopped near the setpoint. After a short period of time, the integrative action has driven
the ball to the setpoint, where it has stayed with a surprising stability.

It has been deduced that the yellow ball’s higher mass has made it easier for the controller to
move the ball from the end of the beam, as it tended to roll with more ease when the beam’s an-
gle became less plain, but it has also made the setpoint placement more resistant to the integral
action’s instability, as the ball had less tendency to make sudden position changes when idle.

After completing this test, the first controller has been tested again in order to know whether it
required tuning when using the yellow ball just like it happened with the white one or not. A
Ki = 0.15 integrative coefficient has been added again.

The system’s behaviour has been similar to the one at the previous test, but with the ball’s move-
ment being slower, as the proportional constant was quite lower. Since the derivative actionwas
lightly lower too, it has been more difficult for the controller to make the ball stop and to be less
sensible to the integrative instability. However, it has been proved that the yellow ball system is
noticeably more accurate to theory. It is also been proved that controllers designed for lighter
balls, which need to have more precision, are also capable of stabilizing the position for heav-
ier balls. The opposite case has not been tested as it was clear that the yellow ball’s controller
coefficients were too low to make the system behave as desired, as happened in the original
tests.

Controllers implementation in low-cost platforms pàg. 51

8 Educational application
The ball and beam system’s main purpose is to serve as an educational tool about automatic
control, specifically about controller calculation and implementation, but also about basic elec-
tronics and programming. The goal of this project is to prepare a piece of educational material
for ETSEIB students to use, while putting into practice what was learned about discrete time
controllers during the Industrial Technologies Engineering degree and discovering how to bring
them to the real world. Once the learning phase of the project has been finished, in this chapter
a synthesis about what has been done is performed so the students are able to follow this path
too.

Before stating what is wanted to be achieved, it is necessary to put some context about what
the conditions will be for its usage. In present day automatic control students in ETSEIB have
three two hours long groupal laboratory sessions in which they perform some activities about
certain concepts that are previously introduced to them in class and at the session guide. In
these sessions the students must develop MATLAB codes and graphs in order to solve a set
of questions about the session’s laboratory systems and concepts. At the end of the semester,
they take an examwhich contains questions and problems related to what was seen at the three
sessions.

However, the aim of the session that is being prepared in this chapter is not only to review the
subject’s content that is given in classes, but also to give students an opportunity to escape the
classes’ theoretical and conceptual focus and take a look on how the control systems they are
learning about are used to control real life systems of all kinds. Specifically, it is intended to
introduce to students to simple, low-cost automatic control platforms and applications which
do not require from an industrial or research background to work.

Since the laboratory session guide that has been attached in Annex A is thought to be used only
in one of the three sessions, it means that it will be limited in content and length so it is feasible
for the students to understandwhat is being presented to them and solve the session’s questions
and problems. The session’s guide, though, is not restrictive for the conducting professor and
is intended to be just supporting material to them, as they are meant to achieve the session’s ob-
jectives the way they prefer. The guide is also subject to modifications by the Automatic Control
Department whenever they consider some changes are required, this is only a first approach to
a material proposal to introduce this piece of content to students.

The session’s objectives will be based on understanding and doing most of what has been
achieved until now in this project. To achieve these objectives, each student group will have
a fully configured model, both in software and hardware terms, as it is not intended for them
to understand how to prepare the model to work during the session.

1. It is desired for the students to review how to calculate discrete time functions from phys-
ical models. They will be supposed to have seen this process in class, either at Automatic
Control or at Dynamic of Systems, the Industrial Engineering degree’s two main control
subjects. In order to achieve this, (7), (8), (10) and (11) will be provided to them.

2. Another of the project’s objectives is that the students learn how to implement controllers
as the ones they learn about in class, but in a simple and low-cost way. That is why the
guidewill include a brief explanation of themodel’s components and their function inside
the system.

pàg. 52 Memorandum

During the session the implementation software will also be presented. Since this is the
most important element of the controller implementation, a good amount of time will be
invested in showing how the C codes work and how implementing them into boards like
the one used in this model allow to control systems without needing a classical computer.
There will be also an explanation of how the code is connected to the model’s main ele-
ments, the sensors and the motor. This means, an explanation of analogical measuring
and output signals, duty cycles and other characteristics of the components presented in
Chapter 4 and their influence on how the system works.

3. The students will calculate a PID controller from the system’s discrete time transfer func-
tion and the desired closed loop poles via the pole assignationmethod. Since thatmethod-
ology will be already presented in classes by the time they attend the session, they will be
supposed to know how to find the controller constants from the system’s transfer function
they will have already calculated. A basic MATLAB code will be given to them so they
can solve the system faster after they calculate the two denominators.

The system’s desired characteristics for this first controller can be whatever the teacher
wants, but in the guide the same iteration order that was followed during Chapter 7 will
be followed. However, the other iterations will be introduced later.

4. The students will implement the controller structure after being presented the C code
contained in the space shown in Section 7.1.2, except for the three controller actions’ cal-
culations. They will be required to transform the PID controller’s classical discrete time
transfer function -(19)- into each action’s difference equation so it can be properly imple-
mented into the program.

It is important that the students learn about the three actions and what role they have in-
side the controller, so before implementing the three action controller theywill implement
one of the actions at a time, first the proportional, then the derivative and finally the inte-
gral one. By the time they test the derivative action they will already have implemented
the calculation’s resulting control. This is a good opportunity to introduce the integrative
action and its paper inside the PID controller, also to show how introducing an excessive
integrative constant can make the system be unstable.

5. Once the controller has been implemented it is a good moment to introduce how it can
adapt to changes in the system’s desired parameters or in the model’s conditions. Section
7.2’s iterations will be introduced to fulfill this purpose.

The first iterations, as stated previously, are intended to show how changing the desired
parameters make the controller’s coefficient change to adapt the controller to the new
conditions. Students will recalculate the controller’s coefficients and test each controller,
paying special attention to the undetermined pole’s value and making sure its module
is strictly lower than the unit. However, it is also a good opportunity to study how the
controller can make the system unstable if it is not tuned properly -the cases in which
|a| > 1-.

Once the parameter changes iterations are calculated, implemented and tested, the second
ping-pong ball will be introduced. It is important that students distinguish between al-
tering the desired system’s parameters and changing the model’s dynamics, and how this
type of controllers adapt to these circumstances. During these iterations it will be neces-

Controllers implementation in low-cost platforms pàg. 53

sary not only to recalculate the system by changing the desired characteristic polynomial,
but also the system’s closed loop transfer function by updating the model’s transfer func-
tion to the new conditions.

With the session’s objectives already described, the session’s guide has been created taking as a
model the existing Automatic Control session guides. The guide has been reviewed and finally
approved, which was one of the project’s main objectives. The guide’s questions have been
conceived so students who attend the session have to perform somewhat similar calculations
and reasonings and reach similar conclusions as the ones reached during the course of this
project. Their results and conclusions, then, should be almost the same as the ones obtained
at Chapters 6 and 7, plus obtaining certain knowledge about what was seen during Chapters 4
and 5.

The laboratory guide is attached at Annex A.

pàg. 54 Memorandum

9 Economic, environmental, social and gender analysis
This project is based on creating low-cost, sustainable educational material that can inspire stu-
dents to enter automatic control from a do-it-yourself (DIY) perspective, in a way they do not
necessarily need to spend a significant amount of money to explore projects and applications
for the knowledge they get in their studies. This is the reason why every piece of material that
has been used has been selected not only for its characteristics or function but also for its price
and environmental impact.

9.1 Economic analysis
Since the model which has been used during the project was already made when it started, any
economic study of its costs that is done will be based purely on estimations.

The project’s costs have been broken down in several categories which are presented next:

1. Personnel costs: Since the project has been carried out by an engineering student who is
ending his bachelor’s degree in Industrial Engineering, no real personnel cost has affected
the project. However, in this chapter it will be computed as if the university had developed
this project with its own personnel, which adds a junior engineer’s fees as personnel costs.
Taking a 10€/hour fee, and knowing as was stated in Section 2.3 that 10 hours on average
were dedicated to the project during 18 weeks brings out a personnel cost of 1800€.

2. License costs: Since the project has been carried out using free or university sponsored
program licenses, no license cost will be computed to the total cost. However, the devel-
oper’s MATLAB license has had a cost for UPC in reality.

3. Material costs: These costs are the main bulk of costs and the most important factor
through the project’s perspective. They are, too, the most difficult costs to calculate.

The wood used for the model’s pieces will be considered as recycled wood that can be
obtained from many sources, and thus having virtually no cost for the project. The other
components’ costs are presented next:

Table 4: The model costs broken down by item.

Product (units) Cost per unit (€/unit) Total cost (€)
Glue bottle (1) 5 5

Screws, washers and joints (1) 20 (total for all of them) 20
STM32F411RE micro-controllers (2) 22 44
Electronic board and wires (1) kit 15 15

Resistors kit (1) 12 12
Capacitors kit (1) 12 12

Futaba S4004 servo (2) 3 6
Infrared distance sensors (2) 13 26

TOTAL COST: 140€

The different prices have been considered as the common price for each product in a elec-
tronic commerce chain. It is also remarkable that some of the products can be used for

Controllers implementation in low-cost platforms pàg. 55

making more models, making the total cost per model considerably low. Since only one
model has been created so far, this will not be taken into account.

4. Energetic costs: The energetic costs of the project have been paid by the university since
it has been mainly developed within its facilities. Since it is hard to know what energetic
contact the university has and howmuchdoes the energy cost for each facility, no energetic
costs will be considered. The project, though, has been as respectful as possible with
nature and economy in this sense, since every device was conveniently disconnected from
the electrical network when it was not being used.

The total cost, then, amounts to a total of 1940€, which, as explained before, is probably lower.
Makinguse of the project’s advancementswould notmean significantly high costs for the school,
since no personnel costs would apply. In this sense, the project is considered successful in its
goals.

9.2 Environmental analysis
The vast majority of the model’s components that have been used are recycled from several
electronic or construction parts, and everything that has not been used has been conveniently
stored for future use in other projects. This means that the only environmental impact that
this project has had on nature has been caused by energy consumption due to computer use
or electronic component powering. As it was just said, when any of the project’s devices or
computerswas not being used itwas disconnected from the electric network, which significantly
reduced their energy consumption. In addition, it is important to remark that the development
of this project has been carried out during an energetic crisis due to multiple factors, and in a
context of climate change and transition to clean energies.

9.3 Social and gender impact analysis
The fact that this project has had as a goal to create materials with low costs means that it is
conceived for any student to use. Any student should be able to experiment and to satisfy their
curiosity -in this case, related to automatic control or electronics-, no matter their economic
status. This project, then, is considered to be specially sensitive in this matter and, once it is
coming to an end, also successful at satisfying this goal.

However, economic status is still one of the most important factors that decide a student’s per-
formance in their studies, since students with more resources are more likely to have better
results than students which do not have such a privileged position. This is manifested in many
areas such as mental health condition or in work-studies conciliation. Gender and sexual iden-
tity are also an important factor in these ambits, specially in a discipline like engineering, which
has been traditionally occupied by males. Luckily, this is changing over years, but there is still
a lot of work to do as a society in this matter.

pàg. 56 Memorandum

Conclusions
The objectives thatwere definedduring the project’s introduction have been considered achieved
for the most part. While it is true that the different controllers are not really consistent in reality
and must be adapted to external circumstances, the system has been successfully stabilized by
all of them -all the valid ones- after some tuning. These issues, however, have made the con-
troller calculation and implementation processmore fruitful from the educational point of view,
since it is has been required to invest more time and effort into it in order to get it off the ground.

Another issue thatmakes the final result a bit unsatisfactory is the fact that it is has not been pos-
sible to find relevant differences between the different controllers that have been implemented,
as the system has conditioned the results with its inaccuracy. However, the testing and analysis
process has been carried out properly, which was what was desired to do, since the project’s ob-
jectivewas to compare the controllers, even if this comparative did not finally bring out specially
interesting results.

This project has been a huge learning experience, since many new knowledge from different
areas like electronics, C software development and automatic control has been acquired. This
was a personal objective thatwas proposed since before starting the project, and from a personal
point of view, it has been specially successful.

The educational component of the project has been also specially successful, as the content that
has been prepared has enough level to be considered as a first draft for official university edu-
cational material. This was a first approach to this field of knowledge, and being able to syn-
thesize all the knowledge that has been absorbed through the last months into this laboratory
guide brings special personal satisfaction.

To sum up, even though the technical final results were good to some point but not the desired,
the process followed to obtained them is correct. The other half of the project, which is its soul
and main goal, has been completed successfully. All these results have been obtained through
low-cost, sustainable means, which follows the project philosophy as it was proposed during
its conception. The overall results for the projects are considered successful.

From a personal point of view, this project has been a challenge, since it has required a great
amount of time and effort which not always translated into satisfactory results. However, all
that has been learned and the fact that in the end a solution has been reached for most of these
problemsmake the final feeling be quite more positive. In my opinion, it has been a fruitful and
mostly very positive experience.

Controllers implementation in low-cost platforms pàg. 57

Agraïments
All of this would not have been possible without the unconditional support frommy family and
all my friends, which are my backbone every time I trip. Nothing I can do can bring all this love
back to them, all I can do is try my best everyday to improve and to be up to it.

I also want to give special thanks to Santi Prats for his help, advice and patience when I faced
hardships. This is also his project and I hope I did enough to follow what was done before me.

pàg. 58 Memorandum

A Laboratory session guide

Automatic Control - GETI
LAB SESSION

PID controllers calculation and
implementation in low-cost platforms

Escola Tècnica Superior
d’Enginyeria Industrial de Barcelona

Automatic Control Department (ESAII)

Controllers implementation in low-cost platforms pàg. 3

Objective: Designing, implementing and testing a series of PID controllers to control the
position of a ball in a ball and beam system while satisfying certain closed-loop specifications.

In this session the student will:

1. Design a PID controller in order to control a ping-pong ball’s position in a ball and
beam system using one of themethods studied in class -including pole placement,
frequency approaches, root locus, algebraic methods, among others-.

2. Implement the controller structure into a micro-controller using a C coding inter-
face.

3. Test the controller’s performance experimentally.

4. Test how the controller can be redesigned to adapt to circumstances like a change
in the closed-loop desired characteristics or the model conditions.

These final goal of the session is not only to review the PID controller’s discrete time
structure and calculation, but also to show a practical example of simple controller im-
plementation in low-cost platforms that can be easily replicated by students with their
own means.

Note: This is the initial version of the guide. Annotations will be included in this format to include
comments about how the guide should be used to conduct the session as desired.

A.1 Session materials
This laboratory session consists in the design of PID controllers using several methods in order
to stabilize a ball and beam system so its ball remains at the center of the beam. This central
position is known as the setpoint.

The ball and beam is one of the most classical automatic control problems and it is widely used
for educational or recreational purposes. It consists of a beam (1) whose angle to the horizontal
axis can be controlled using a servomotor (6), and a ball, which can slide across the beam. The
beam incorporates two infrared distance sensors (5) which measure the ball’s relative position
periodically. The session’s model also includes a wooden base (2) to which the beam is fixed
through twowooden articulations (3) and twowooden pieces (4) that limit the ball’smovement
to 15 centimeters in each direction from the beam’s center.

An image of the session’s model with numbered parts.

pàg. 4 Memorandum

The motor and the sensors are connected to a STM32F411RE micro-controller which reads the
sensors’ measures and processes them through the implemented PID controller in order to send
the angle correction signal to the servo-motor. All the plant’s components except for the micro-
controller are connected to a 5V regulator which can be turned off or on to connect or disconnect
the system.

The power regulator. In this figure the power is cut, to connect the system the white button
must be pressed.

A.1.1 The SHARP GP2Y0A21 sensors
These sensors measure the ball’s distance via infrared beams and convert it to an analog voltage
value that is transferred to themicro-controller’s A/D converter pins. These voltages are filtered
by a hardware low-pass filter in order to avoid interference that may cause the sensors’ signal
to be unstable. They are one of the system’s most critical elements, as if they do not measure
the ball’s position properly the controller will not work no matter how well designed it is.

A.1.2 The STM32F411RE micro-controller
Themicro-controller that is used in this session is the 64-pin STM32F411RET6. Especificaciones.

The micro-controller is used as an A/D converter when reading analog measures from the sen-
sors. The measurements are codified in 12-bit arrays that are converted to distance values in
the controller’s code in its calibration section. After calibrating the measures (since the analog
value does not have a linear relation to the measured distance and thus a correction must be
performed), the code processes the measures to correct the beam’s angle by sending it a certain
pulse signal. This action is equivalent to a D/A conversion.

The micro-controller must be connected to the computer via USB when compiling and debug-
ging the C codes. Even if it is recommended to leave it connected to the computer, it can be
connected directly to the network to execute an uploaded code.

Controllers implementation in low-cost platforms pàg. 5

Some of the micro-controller’s most important features

Feature Specification
Micro-controller STM32F411RET6

Recommended power supply 1.7V to 3.6V
Flash Memory 512 kB

SRAM 128 kB
Clock maximum speed 100 MHz

A.1.3 The Futaba S4004 servomotor
The Futaba S4004 is powered by a 5V pulse DC (direct-current) electric input signal which can
bemodulated in length in order to control themotor’s angle and thus change the ball’s position.
This motor’s control system is known as Pulse Width Modulation (PWM).

Diagram which shows the relationship between the signal’s pulse and the motor’s position.

As shown in the previous figure, the PWM pulse’s period is 20 milliseconds. However, the
signal brings no power for most of it. The quotient between the positive signal’s length and
the total period is known as duty cycle, and it is the variable that is used to change the motor’s
position. It can be seen that the duty cycle has a linear correspondence to the motor’s position,
being the 5% duty cycle associated with the 0º position and the 10% one to the 180º position.

However, in reality the motor’s duty cycle range is comprised between the 2.5% and the 8.5%
values in order to avoid saturation in themotor. Thismeans that comprising the valid duty cycle
range between 5% and 8.5% will limit the motor’s mobility. That is the reason why the motor
has been assembled in order to make the 5% assigned to the 90º position, while the extreme
values for the duty cycle will be the 2.5% and 8.5% ones. It is has been experimentally observed
that these two values correspond to the 30º and 150º angles, respectively.

Thus, since the correspondence between the motor’s angle and the duty cycle is linear, a linear

pàg. 6 Memorandum

correspondence equation can be obtained.

The motor is powered by the micro-controller through three wires, the positive and negative
power wires (corresponding to the red and brown ones at the image below, respectively) and
the signal wire (the orange wire). The red wire is connected to a 5 V power supply, while the
black is connected to the ground, which is common for all the components and the orange one
to the board’s PWM output pin.

The motor’s and the three wires it is connected to.

A.1.4 Implementation software
In order to design the PID controllers, a MATLAB script will be provided so it is easier to solve
the characteristic polynomials’ equation system. The resulting controllers will be simulated in
a Simulink environment in order to check if the closed-loop system acts as desired in theory.

Once each controller has been designed and simulated, it will be implemented into the micro-
controller via a C script. These C scripts will be developed using STM32CubeIDE a specific
integrated development environment (IDE) for STM32 boards.

These C codes contain the PWM and ADC pins’ configuration, the measure calibration and
translation into distance measures and the duty cycle calculation. This last operation is where
the controller structure appears andwhere the studentswill work on. There are designed spaces
for students to introduced their codes. At the top of the code, inside the "/*USER CODE BEGIN
0*/" section, the PID coefficients will be declared within theKp,Ki andKd variables.

The code has been prepared to take distance measures with a 20 Hz sampling frequency, while
the motor’s signal has been programmed to work at a 50 Hz one, as the motor’s pulse period is
20 ms.

The analog distance measures are processed through a software moving average filter, which
stores an average of a set of a certain number of samples in order to reduce variations on the
measuring and translated to distance values by a series of equations obtained experimentally.
Once the measures are translated to distances in meters, the error signal is calculated by sub-
tracting each measure from the reference setpoint (which is the goal distance, in this case 0).

When the code has been updated and the controller is ready to be launched and tested, press

Controllers implementation in low-cost platforms pàg. 7

the Debug button at the topside toolbar in the STM32CubeIDE interface.

The Debug button.

This button will open the debugger, in which the students will be able to run the code as long
as desired while monitoring certain variables which will be recursively printed into the SWV
ITM Data Console.

In order to start the debugging and sending instructions to the plant, the Resume button at the
topside toolbar will be pressed after finishing the launching process. To pause the debugging,
press the Pause or Terminate buttons. These buttons will appear at the toolbar after pressing the
Debug button.

A.2 Starting up the plant
1. Open MATLAB and select the "BallBeam_Model" file. Do not open the "PIDSystem.m"

file yet.

2. Open Simulink and select the "PID_Constants" model.

3. Open STM32CubeIDE. The "main.c" file should already appearwhen the program is opened.

4. Connect the micro-controller is to the computer with the USB cable.

5. Whenever you are about to debug and run a code check that the power regulator is
switched on.

A.3 First calculations
In the following exercises some questions will be asked about the plant’s mathematical repre-
sentation and the controller’s calculation and simulation. Until further notice, you will work
with the lighter, common white ping-pong ball.

EXERCISE 1 - Plant’s transfer function calculation

The ball’s dynamics of the white ball are defined by the following Lagrangian equation:

(
Ib0

R2
+m

)
r̈ + kṙ −mrα̇2 +mg sinα = 0 , (45)

which states the mathematical link between the beam’s angle α and the ball’s position r. How-
ever, it is desired to work with the relationship between the motor’s angle θ, since θ is the one
variable that can be controlled through themotor. Thus, after some approximations, the follow-
ing Equation is obtained:

pàg. 8 Memorandum

(
Ib0

R2
+m

)
r̈ + kṙ +

mgd

P
θ = 0 , (46)

in which the constants take the following values when studying the white ball:

Constant Value Unit
Ib0 5.788e-06 kg·m2

R 0.01988 m
m 0.028 kg
d 0.06 m
P 0.15 m
k 0.05 -

Given the following constants’ values, obtain:

a) The plant’s Laplace transform transfer function G(s) = R(s)
Θ(s)

b) The plant’s discrete time transfer function G(z) considering a sampling period Ts = 0.05s

EXERCISE 2 - PID controller calculation

a) Calculate a PID controller through the pole placement method in order to satisfy the follow-
ing closed-loop specifications:

1. A setting time tss ≈ 1.5s.

2. Null steady state error for step inputs, ess = 0.

3. Use a fast pole in z = 0.1 and an undetermined pole z = a.

This calculation can be done by expressing the PID controller’s discrete time TF in the following
shape:

G(z) =
b2z

2 + b1z + b0
z(z − 1)

. (47)

After solving the equation system the variable conversion can be reversed to the common PID
discrete time structure by applying the following equations:

b2 = Kp +
KiTs

2
+

Kd

Ts
, (48)

b1 = −Kp +
KiTs

2
− 2Kd

Ts
, (49)

Controllers implementation in low-cost platforms pàg. 9

b0 =
Kd

Ts
. (50)

Reminder: The PID standard TF form is the following:

CPID(z) = Kp +
KiTs

2

z + 1

z − 1
+

Kd

Ts

z − 1

z
. (51)

b) Is the controller that was just calculated valid (not performance related)? Justify your an-
swer.

EXERCISE 3 - Closed-loop simulation with Simulink

Introduce the PID constants in the "BallBeam_Model.m" script and run. Exercise 2’s TFs can be
checked now at the results in MATLAB’s Workspace.

Then, run the Simulink model with a 20ms stop time. In the "Scope31" block the ball’s position
and the error signal over time to the reference (0 meters) will be plotted for an initial distance
of 100 millimeters. The initial distance can be changed at will inside the "r_ini4" block.

a) Analyze the ball’s trajectory simulation. Does it correspond to the desired specifications?
Find the simulated ts.

b) Recompute the controller conveniently.

A.4 Controller implementation and analysis
The following exercises consist on implementing and testing the controller in the C code that
will be uploaded into the board. Make sure no other changes are make than the required at the
questions. Before going any further, initialize the controller constants’ values in the designated
area inside the "/*USER CODE BEGIN 0*/" section.

EXERCISE 4 - PID controller codification

Check the designed area at the "/*USER CODE BEGIN 3*/" section. The error signal is calcu-
lated for every internal clock instant as the difference between the sensors’ measured distance
and the reference distance, which is 0, as it is the central point of the beam. For every clock in-
stant, the controller must process this error signal as its input and calculate the new duty cycle
that is going to be sent to the motor. To fill the blank that is missing in this designated space:

Calculate the difference equation for each of the three signals from the controller’s standard TF.
Then, write these equations in the code. Some helpful variables that will be used are remarked
just before the designated space. Use the variable names P ,D and I to store each action’s value.

Tip: Take a look at the code sections just above the designed space. Notice that coding in C is
relatively similar to coding in MATLAB or even Python.

Note: This exercise might be specially hard to get right for students since they have no experience at coding
in C language. Make sure no one gets lost in this part by giving some advice if necessary.

pàg. 10 Memorandum

EXERCISE 5 - Controller implementing and testing

a) Compile and upload the C code as explained in Section A.1.4.

b) Observe the system’s behaviour. Does it behave as expected and as it was simulated in Ex-
ercise 3? Why?

c) In case the system does not act as expected, reason why it does not. What could be done to
improve its functioning? Could the controller that has been implemented be adapted to correct
the model’s behaviour?

d) In order to test each action and review its function inside the controller test the next controller
parameters configurations:

1. Implement Kp = 2 without adding any Kd or Ki and test the system. Then, try Kp = 5
and Kp = 10. What does the proportional action do? What happens if an excessive Kp

value is introduced?

2. From now on use Kp = 5. Test the controller for Kd values of 2, 5 and 10. What does
the derivative action bring to the system? What happens to the system if excessive or
insufficientKd values are introduced?

3. Use Kd = 2 for this iteration. Test the controller for Ki values equal to 0.1, 0.25 and 0.4.
What paper does the integrative action inside the controller? What happens if an excessive
integrative coefficient is introduced in the controller?

e) Are the conclusions that you just obtained consistent with the difference equations you cal-
culated in Exercise 4?

Note: When students are done with these two exercises is a good moment to do a result recap. It is
important that they understand that the controllers they calculate that seem to work in simulations do not
necessarily work with the real model, as it is far from ideal and does not correspond to the mathematical
model that was previously calculated. This message is important as they might get frustrated or even lost
during these two exercises as they will most likely find that the controller is not working, and might come
to the conclusion that there is a problem with the code or their calculations.
Talk about how the physical model has deficiencies from the materials it is made of and its assembly. Talk
also about how some electronic configurations, such as the clock speed can be improved in order to make
the model more accurate. Also talk about how the mathematical abstraction is not exact, like for example
assuming a friction constant that is not known. The students are not meant to know all this but it can
not be included in the guide for practical reasons.

A.5 Alternative controllers
Since the controller calculation and implementation process has been already studied, different
specification and model variations will be introduced in order to analyze what influences these
changes have on the closed-loop system’s behaviour.

EXERCISE 6 - Alternative closed-loop specifications

a) First of all, new closed-loop specification combinations will be studied and calculate as done
in Exercise 2. For the next combinations, repeat the process done in Exercises 2, 3 and 6:

Controllers implementation in low-cost platforms pàg. 11

1. A settling time tss ≈ 1s and a small pole in z = 0.1

2. A settling time tss ≈ 1s and a small pole in z = 0.05

3. A settling time tss ≈ 10s and a small pole in z = 0.1

4. A settling time tss ≈ 10s and a small pole in z = 0.05

5. A settling time tss ≈ 1.5s and a small pole in z = 0.05

b) Analyze the model’s behaviour for every valid controller among the five iterations. What
effect does the small pole in z = 0.1 or z = 0.05 in the system -(both in simulations and in real-
ity)? And the settling time? Do the controller’s coefficients grow or decrease with the settling
time? Why does this happen?

EXERCISE 7 - Changes on the model’s parameters

Repeat Exercises 1, 2, 3 and 6 for the yellow, heavier ball using Exercise 2’s original closed-loop
specifications. The new ball’s parameters are the following:

The model variables’ values that change when the balls are switched.

Constant Value Unit
Ib0 1.453e-05 kg· m2

R 0.0225 m
m 0.046 kg

The other three parameters will remain the same for this new model.

EXERCISE 8 - Model comparison

In order to study if one of the twomathematicalmodels ismore robust than the other, implement
the white ball’s controller but use the yellow one, and vice-versa. Is one of them more resistant
to changes in the physical system? Justify your answer.

Controllers implementation in low-cost platforms pàg. 71

B MATLAB and C codes
B.1 MATLAB code - System modelling for simulation
%% Ba l l Beam S ta t e Space Equations and Transfer Function
c l e a r a l l ;
c l o se a l l ;
c l c ;

%% Parameters
m=0.046 ; %Mass
Ibo=1.453e−05; %Ba l l i n e r t i a
g=−9.81; %Grac i ty a c c e l e r a t i on
k=0.005 ; %F r i c t i o n constant
R=0.0225 ; %Ba l l radius
b1=0.06 ; %Bar 1 length
l 2 =0.150 ; %Bar 2 length

%% Continous and Disc re t e models . Control s i gna l : u=Theta
Ts=0.05 ;
A=[0 1 ; 0 k/(Ibo/R^2+m)] ;
B=[0 −0.4∗m∗g/(Ibo/R^2+m)] ’ ;
C=[1 0] ; %Determines input−output of the TF
D=0;
cP lant=ss (A, B ,C,D) ; %Continous SS
dPlant=c2d(cPlant , Ts) ; %Disc re t e SS
[numc , denc]= s s 2 t f (A, B ,C,D) ; %Continous TF
[numd, dend]= s s 2 t f (dPlant .A, dPlant . B , dPlant .C, dPlant .D) ; %Disc re t e TF

%% Controlador en TF − Constants trobades amb PID_Constants
Kp=2;
Ki =0 .1 ;
Kd=2;
N=0;
Tf=1/N;
C = pid(Kp, Ki ,Kd, 0 , Ts , ’ IFormula ’ , ’ BackwardEuler ’ , ’DFormula ’ , ’

BackwardEuler ’)
dC=t f (C)

Num=dC. Numerator { 1 } ;
N1=Num(1) ;
N2=Num(2) ;
N3=Num(3) ;
Den=dC. Denominator { 1 } ;
D1=Den(1) ;
D2=Den(2) ;

pàg. 72 Memorandum

B.2 MATLAB code - Controller system solving for the pole placement method
This code’s version corresponds to the first iteration’s system solving. The other iterations were
resolved by changing this program’s parameters.

alpha =0.0032 ;
gamma=1.0059 ;
beta =2.0059 ;

Ts=0.05 ;

A=[alpha 0 0 1 ;
alpha alpha 0 −1.9252;
0 alpha alpha 0 . 9 6 9 ;
0 0 alpha −0 .0438 ;] ;

B=[−1.9252+beta+1; 0.969−beta−gamma; −0.0438+gamma; 0 ;] ;

X=A\B ;

C=[1 0 .5∗Ts 1/Ts ;
−1 0 .5∗Ts −2/Ts ;
0 0 1/Ts ;] ;

D=[X(1) ;X(2) ;X(3)] ;

pole=X(4)

cons tantes=C\D

B.3 C code - Final controller code
/∗ USER CODE BEGIN Header ∗/
/∗∗

∗∗

∗ @f i l e : main . c
∗ @brief : Main program body
∗∗

∗ @attent ion
∗
∗ Copyright (c) 2022 STMicroe lec t ron ics .
∗ All r i gh t s reserved .
∗
∗ This software i s l i c ensed under terms tha t can be found in the

LICENSE f i l e
∗ in the root d i r e c to ry of t h i s software component .
∗ I f no LICENSE f i l e comes with t h i s software , i t i s provided AS−IS

.

Controllers implementation in low-cost platforms pàg. 73

∗
∗∗

∗/
/∗ USER CODE END Header ∗/
/∗ Inc ludes

−−
∗/

include "main . h"

/∗ Pr iva te inc ludes
−−∗/

/∗ USER CODE BEGIN Includes ∗/
include " s td io . h" /∗ standard in out header , inc lou e l p r in t f ∗/
include "math . h"
inc lude " time . h"
/∗ USER CODE END Includes ∗/

/∗ Pr iva te typedef
−−−∗/

/∗ USER CODE BEGIN PTD ∗/

/∗ USER CODE END PTD ∗/

/∗ Pr iva te def ine
−−∗/

/∗ USER CODE BEGIN PD ∗/
/∗ USER CODE END PD ∗/

/∗ Pr iva te macro
−−−∗/

/∗ USER CODE BEGIN PM ∗/

/∗ USER CODE END PM ∗/

/∗ Pr iva te va r i ab l e s
−−−∗/

ADC_HandleTypeDef hadc1 ;
DMA_HandleTypeDef hdma_adc1 ;

TIM_HandleTypeDef htim2 ;
TIM_HandleTypeDef htim3 ;

/∗ USER CODE BEGIN PV ∗/
u in t8_ t counter=0;
/∗ USER CODE END PV ∗/

/∗ Pr iva te funct ion prototypes
−−−∗/

pàg. 74 Memorandum

void SystemClock_Config (void) ;
s t a t i c void MX_GPIO_Init(void) ;
s t a t i c void MX_DMA_Init(void) ;
s t a t i c void MX_TIM2_Init(void) ;
s t a t i c void MX_ADC1_Init(void) ;
s t a t i c void MX_TIM3_Init(void) ;
/∗ USER CODE BEGIN PFP ∗/

/∗ USER CODE END PFP ∗/

/∗ Pr iva te user code
−−−∗/

/∗ USER CODE BEGIN 0 ∗/

u in t16_ t adcValArray [2] ;
double adcMA1=0;
double adcMA2=0;
double adcMA1_ant=0;
double adcMA2_ant=0;
u in t16_ t len =200;
u in t16_ t i 1 =0;
u in t16_ t i 2 =0;
u in t16_ t i 3 =0;

double d i s t =0;
double d i s t 1 =0;
double d i s t 2 =0;

double d i s t _an t =0;
double d i s t _ r e f =0;

// ///////////ONLY EDIT THESE PARAMETERS
////////////////////////////////

double kp=0.9644 ;
double k i =0 .15 ;
double kd=1.2919 ;
//

///

double P=0;
double D=0;
double I =0;
double I_ant =0;
double e r ro r =0;
double er ror_ant =0;
double Ts=0.05 ; // sampling period
double ac t1 =1;
double ac t2 =1;

Controllers implementation in low-cost platforms pàg. 75

u in t16_ t DutyCycle=530;

i n t _wri te (i n t f i l e , char ∗ptr , i n t len) {
i n t DataIdx ;
fo r (DataIdx = 0 ; DataIdx < len ; DataIdx++){

ITM_SendChar(∗ ptr++) ;
}
re turn len ;

}

/∗ USER CODE END 0 ∗/

/∗∗
∗ @brief The app l i c a t i on entry point .
∗ @retval i n t
∗/

i n t main(void)
{

/∗ USER CODE BEGIN 1 ∗/

/∗ USER CODE END 1 ∗/

/∗ MCU Configuration
−−∗/

/∗ Reset of a l l per iphera ls , I n i t i a l i z e s the Flash i n t e r f a c e and
the Sys t i ck . ∗/

HAL_Init () ;

/∗ USER CODE BEGIN I n i t ∗/

/∗ USER CODE END I n i t ∗/

/∗ Configure the system clock ∗/
SystemClock_Config () ;

/∗ USER CODE BEGIN Sys In i t ∗/

/∗ USER CODE END Sys In i t ∗/

/∗ I n i t i a l i z e a l l configured per iphera l s ∗/
MX_GPIO_Init () ;
MX_DMA_Init() ;
MX_TIM2_Init () ;
MX_ADC1_Init() ;
MX_TIM3_Init () ;
/∗ USER CODE BEGIN 2 ∗/

HAL_ADC_Start_DMA(&hadc1 , (u in t32_ t ∗)adcValArray , 4) ;

pàg. 76 Memorandum

HAL_TIM_PWM_Start(&htim2 , TIM_CHANNEL_1) ;

// S t a r t the t imer
/∗HAL_TIM_PWM_Start(&htim2 , TIM_CHANNEL_1) ;
HAL_TIM_Base_Start_IT(&htim3) ;
// S t a r t ADC as IT∗/
/∗ USER CODE END 2 ∗/

/∗ I n f i n i t e loop ∗/
/∗ USER CODE BEGIN WHILE ∗/
while (1)
{

/∗ USER CODE END WHILE ∗/

/∗ USER CODE BEGIN 3 ∗/

//SENSOR 1 : Moving average f i l t e r

adcMA1=0;
i 1 =0;
fo r (i 1 =0; i1<len ; i 1++){
adcMA1=adcMA1+adcValArray [0] ;
}
adcMA1=adcMA1/ len ;
//adcMA1=adcValArray [0] ;

//SENSOR 1 : Measure t r an s l a t i o n

i f (adcMA1>=1900){
d i s t 1 =0.0473∗adcMA1+4.39 ;
ac t1 =1;

}
e l s e i f (adcMA1>=1520 && adcMA1<1900){

d i s t 1 =−441+0.479∗adcMA1−0.000105∗(adcMA1∗adcMA1) ;
ac t1 =1;
}

e l s e i f (adcMA1>=1150 && adcMA1<1520){
d i s t 1 =−332+0.326∗adcMA1−0.0000518∗(adcMA1∗adcMA1) ;
ac t1 =1;

}
e l s e {

d i s t 1 =0;
ac t1 =0;

}

//SENSOR 2 : Moving average f i l t e r

adcMA2=0;
i 2 =0;

Controllers implementation in low-cost platforms pàg. 77

fo r (i 2 =0; i2<len ; i 2++){
adcMA2=adcMA2+adcValArray [1] ;
}
adcMA2=adcMA2/ len ;
//adcMA2=adcValArray [1] ;

//SENSOR 2 : Measure t r an s l a t i o n

i f (adcMA2>=1850){
d i s t 2 =−0.0404∗adcMA2−21 .4 ;
ac t2 =1;

}
e l s e i f (adcMA2>=1420 && adcMA2<1850){

d i s t 2 =−0.0907∗adcMA2+80 .6 ;
ac t2 =1;

}
e l s e i f (adcMA2<1420 && adcMA2>=950){

d i s t 2 =354−0.447∗adcMA2+0.000116∗(adcMA2∗adcMA2) ;
ac t2 =1;

}
e l s e {

d i s t 2 =0;
ac t2 =0;

}

//DISTANCE CONFIGURATION

i f (ac t1==0){
d i s t 1=d i s t 2 ;

}

e l s e i f (ac t2==0){
d i s t 2=d i s t 1 ;

}

i f (adcMA1>1500 && adcMA2<1300){
d i s t=d i s t 1 ;

}
e l s e i f (adcMA2>1500 && adcMA1<1300){

d i s t=d i s t 2 ;
}
e l s e {

d i s t=(d i s t 1+d i s t 2) /2 ;
}
d i s t=d i s t /1000 ;

//PID CONTROLLER
error=d i s t _ r e f−d i s t ;
e r ror_an t=error_ant ;

pàg. 78 Memorandum

I_ant=I_ant ;
Ts=Ts ;
// ///////////////////////WRITE YOUR CODE HERE

///////////////////////
P=kp∗ e r ro r ; //P component of the output
D=kd∗(error−er ror_an t)/Ts ; //D component of the output
I=(ki∗Ts/2)∗(e r ro r+error_ant)+I_ant ; // I component
//

///

i f (I >100) I =100;
e l s e i f (I <−100) I=−100;
// i f (D>0.3) D=0.3 ;
// e l s e i f (D<−0.3) D=−0.3;

DutyCycle=530−(P+I+D) ∗244 ;

//PRINTS
// p r i n t f ("\n adcValArray [0] %d \n " , adcValArray [0]) ;

// p r i n t f ("\n adcValArray [1] %d \n " , adcValArray [1]) ;
p r i n t f (" \n adcMA1 %f \n" , adcMA1) ;
p r i n t f (" \n adcMA2 %f \n" , adcMA2) ;
// p r i n t f ("\n Dist1 %.3 f \n " , d i s t 1) ;
// p r i n t f ("\n Dist2 %.3 f \n " , d i s t 2) ;
// p r i n t f ("\n P %.3 f \n " , P) ;
// p r i n t f ("\n I %.3 f \n " , I) ;
// p r i n t f ("\n D %.3 f \n " , D) ;
p r i n t f (" \n Dis t %.3 f \n" , d i s t) ;
// p r i n t f ("\n DutyCycle %d \n " , DutyCycle) ;
// p r i n t f ("\n consigna %f \n " , consigna) ;

// Sa fe ty sa t
i f (DutyCycle>850) DutyCycle=850;
e l s e i f (DutyCycle<250) DutyCycle=250;
//Motor movement
htim2 . Instance−>CCR1=DutyCycle ;
I_ant=I ;
e r ror_an t=er ror ;
HAL_Delay(50) ;

}
/∗ USER CODE END 3 ∗/

}

/∗∗
∗ @brief System Clock Configurat ion

Controllers implementation in low-cost platforms pàg. 79

∗ @retval None
∗/

void SystemClock_Config (void)
{

RCC_OscInitTypeDef RCC_OscInitStruct = { 0 } ;
RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 } ;

/∗∗ Configure the main i n t e rn a l regu la to r output vol tage
∗/
__HAL_RCC_PWR_CLK_ENABLE() ;
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1) ;

/∗∗ I n i t i a l i z e s the RCC Os c i l l a t o r s according to the spe c i f i ed
parameters

∗ in the RCC_OscInitTypeDef s t ruc tu r e .
∗/
RCC_OscInitStruct . Osc i l l a torType = RCC_OSCILLATORTYPE_HSI ;
RCC_OscInitStruct . HSIState = RCC_HSI_ON;
RCC_OscInitStruct . HSICal ibrat ionValue = RCC_HSICALIBRATION_DEFAULT ;
RCC_OscInitStruct . PLL . PLLState = RCC_PLL_NONE;
i f (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{

Error_Handler () ;
}

/∗∗ I n i t i a l i z e s the CPU, AHB and APB buses c locks
∗/
RCC_ClkInitStruct . ClockType = RCC_CLOCKTYPE_HCLK|

RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1 |

RCC_CLOCKTYPE_PCLK2 ;
RCC_ClkInitStruct . SYSCLKSource = RCC_SYSCLKSOURCE_HSI ;
RCC_ClkInitStruct . AHBCLKDivider = RCC_SYSCLK_DIV1 ;
RCC_ClkInitStruct . APB1CLKDivider = RCC_HCLK_DIV1 ;
RCC_ClkInitStruct . APB2CLKDivider = RCC_HCLK_DIV1 ;

i f (HAL_RCC_ClockConfig(&RCC_ClkInitStruct , FLASH_LATENCY_0) !=
HAL_OK)

{
Error_Handler () ;

}
}

/∗∗
∗ @brief ADC1 I n i t i a l i z a t i o n Function
∗ @param None
∗ @retval None
∗/

s t a t i c void MX_ADC1_Init(void)

pàg. 80 Memorandum

{

/∗ USER CODE BEGIN ADC1_Init 0 ∗/

/∗ USER CODE END ADC1_Init 0 ∗/

ADC_ChannelConfTypeDef sConfig = { 0 } ;

/∗ USER CODE BEGIN ADC1_Init 1 ∗/

/∗ USER CODE END ADC1_Init 1 ∗/

/∗∗ Configure the g loba l f e a tu r e s of the ADC (Clock , Resolution ,
Data Alignment and number of conversion)

∗/
hadc1 . Ins tance = ADC1;
hadc1 . I n i t . C lockPresca ler = ADC_CLOCK_SYNC_PCLK_DIV8 ;
hadc1 . I n i t . Resolut ion = ADC_RESOLUTION_12B ;
hadc1 . I n i t . ScanConvMode = ENABLE;
hadc1 . I n i t . ContinuousConvMode = ENABLE;
hadc1 . I n i t . DiscontinuousConvMode = DISABLE ;
hadc1 . I n i t . ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1 . I n i t . ExternalTrigConv = ADC_SOFTWARE_START;
hadc1 . I n i t . DataAlign = ADC_DATAALIGN_RIGHT;
hadc1 . I n i t . NbrOfConversion = 2 ;
hadc1 . I n i t . DMAContinuousRequests = ENABLE;
hadc1 . I n i t . EOCSelection = ADC_EOC_SINGLE_CONV;
i f (HAL_ADC_Init(&hadc1) != HAL_OK)
{

Error_Handler () ;
}

/∗∗ Configure fo r the s e l e c t ed ADC regular channel i t s
corresponding rank in the sequencer and i t s sample time .

∗/
sConfig . Channel = ADC_CHANNEL_0;
sConfig . Rank = 1 ;
sConfig . SamplingTime = ADC_SAMPLETIME_480CYCLES ;
i f (HAL_ADC_ConfigChannel(&hadc1 , &sConfig) != HAL_OK)
{

Error_Handler () ;
}

/∗∗ Configure fo r the s e l e c t ed ADC regular channel i t s
corresponding rank in the sequencer and i t s sample time .

∗/
sConfig . Channel = ADC_CHANNEL_1;
sConfig . Rank = 2 ;
i f (HAL_ADC_ConfigChannel(&hadc1 , &sConfig) != HAL_OK)

Controllers implementation in low-cost platforms pàg. 81

{
Error_Handler () ;

}
/∗ USER CODE BEGIN ADC1_Init 2 ∗/

/∗ USER CODE END ADC1_Init 2 ∗/

}

/∗∗
∗ @brief TIM2 I n i t i a l i z a t i o n Function
∗ @param None
∗ @retval None
∗/

s t a t i c void MX_TIM2_Init(void)
{

/∗ USER CODE BEGIN TIM2_Init 0 ∗/

/∗ USER CODE END TIM2_Init 0 ∗/

TIM_MasterConfigTypeDef sMasterConfig = { 0 } ;
TIM_OC_InitTypeDef sConfigOC = {0 } ;

/∗ USER CODE BEGIN TIM2_Init 1 ∗/

/∗ USER CODE END TIM2_Init 1 ∗/
htim2 . Ins tance = TIM2 ;
htim2 . I n i t . P r e s ca l e r = 32 ;
htim2 . I n i t . CounterMode = TIM_COUNTERMODE_UP;
htim2 . I n i t . Period = 10000 ;
htim2 . I n i t . ClockDivis ion = TIM_CLOCKDIVISION_DIV1 ;
htim2 . I n i t . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
i f (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{

Error_Handler () ;
}
sMasterConfig . MasterOutputTrigger = TIM_TRGO_RESET ;
sMasterConfig . MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
i f (HAL_TIMEx_MasterConfigSynchronization(&htim2 , &sMasterConfig)

!= HAL_OK)
{

Error_Handler () ;
}
sConfigOC .OCMode = TIM_OCMODE_PWM1;
sConfigOC . Pulse = 0 ;
sConfigOC . OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC .OCFastMode = TIM_OCFAST_DISABLE ;
i f (HAL_TIM_PWM_ConfigChannel(&htim2 , &sConfigOC , TIM_CHANNEL_1) !=

pàg. 82 Memorandum

HAL_OK)
{

Error_Handler () ;
}
/∗ USER CODE BEGIN TIM2_Init 2 ∗/

/∗ USER CODE END TIM2_Init 2 ∗/
HAL_TIM_MspPostInit(&htim2) ;

}

/∗∗
∗ @brief TIM3 I n i t i a l i z a t i o n Function
∗ @param None
∗ @retval None
∗/

s t a t i c void MX_TIM3_Init(void)
{

/∗ USER CODE BEGIN TIM3_Init 0 ∗/

/∗ USER CODE END TIM3_Init 0 ∗/

TIM_ClockConfigTypeDef sClockSourceConfig = { 0 } ;
TIM_MasterConfigTypeDef sMasterConfig = { 0 } ;

/∗ USER CODE BEGIN TIM3_Init 1 ∗/

/∗ USER CODE END TIM3_Init 1 ∗/
htim3 . Ins tance = TIM3 ;
htim3 . I n i t . P r e s ca l e r = 16 ;
htim3 . I n i t . CounterMode = TIM_COUNTERMODE_UP;
htim3 . I n i t . Period = 50000 ;
htim3 . I n i t . ClockDivis ion = TIM_CLOCKDIVISION_DIV1 ;
htim3 . I n i t . AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
i f (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{

Error_Handler () ;
}
sClockSourceConfig . ClockSource = TIM_CLOCKSOURCE_INTERNAL;
i f (HAL_TIM_ConfigClockSource(&htim3 , &sClockSourceConfig) !=

HAL_OK)
{

Error_Handler () ;
}
sMasterConfig . MasterOutputTrigger = TIM_TRGO_RESET ;
sMasterConfig . MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
i f (HAL_TIMEx_MasterConfigSynchronization(&htim3 , &sMasterConfig)

!= HAL_OK)

Controllers implementation in low-cost platforms pàg. 83

{
Error_Handler () ;

}
/∗ USER CODE BEGIN TIM3_Init 2 ∗/

/∗ USER CODE END TIM3_Init 2 ∗/

}

/∗∗
∗ Enable DMA con t r o l l e r c lock
∗/

s t a t i c void MX_DMA_Init(void)
{

/∗ DMA con t r o l l e r c lock enable ∗/
__HAL_RCC_DMA2_CLK_ENABLE() ;

/∗ DMA in t e r rup t i n i t ∗/
/∗ DMA2_Stream0_IRQn in t e r rup t conf igura t ion ∗/
HAL_NVIC_SetPriority (DMA2_Stream0_IRQn , 0 , 0) ;
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn) ;

}

/∗∗
∗ @brief GPIO I n i t i a l i z a t i o n Function
∗ @param None
∗ @retval None
∗/

s t a t i c void MX_GPIO_Init(void)
{

/∗ GPIO Ports Clock Enable ∗/
__HAL_RCC_GPIOA_CLK_ENABLE() ;
__HAL_RCC_GPIOB_CLK_ENABLE() ;

}

/∗ USER CODE BEGIN 4 ∗/

/∗ USER CODE END 4 ∗/

/∗∗
∗ @brief This funct ion i s executed in case of e r ro r occurrence .
∗ @retval None
∗/

void Error_Handler (void)
{

pàg. 84 Memorandum

/∗ USER CODE BEGIN Error_Handler_Debug ∗/
/∗ User can add his own implementation to repor t the HAL er ror

re turn s t a t e ∗/
__d i sab l e_ i rq () ;
while (1)
{
}
/∗ USER CODE END Error_Handler_Debug ∗/

}

i f d e f USE_FULL_ASSERT
/∗∗

∗ @brief Reports the name of the source f i l e and the source l i n e
number

∗ where the assert_param error has occurred .
∗ @param f i l e : po in ter to the source f i l e name
∗ @param l i n e : assert_param error l i n e source number
∗ @retval None
∗/

void a s s e r t _ f a i l e d (u in t8_ t ∗ f i l e , u in t32_ t l i n e)
{

/∗ USER CODE BEGIN 6 ∗/
/∗ User can add his own implementation to repor t the f i l e name and

l i n e number ,
ex : p r i n t f ("Wrong parameters value : f i l e %s on l i n e %d\ r \n " ,

f i l e , l i n e) ∗/
/∗ USER CODE END 6 ∗/

}
endi f /∗ USE_FULL_ASSERT ∗/

Controllers implementation in low-cost platforms pàg. 85

Bibliografia
[1] Aleksandar Haber, Calibration and noise reduction of distance sensors (SHARP 2Y0A21

infrared sensors), Web tutorial, Fusion of Engineering, Control, Coding, Machine Learning,
and Science

[2] Santosh Anand, Rajkishore Prasad, Modeling and control of Ball and Beam system, Inter-
national Journal of Engineering Research in Electronics and Communication Engineering
(IJERECE), Vol 4, Issue 9, September 2017

[3] Benjamin C. Kuo, Digital control systems, México: Compañía Editorial Continental, 1997

[4] Ramon Costa Castelló, Enric Fossas Colet, Sistemes de control en temps discret, Barcelona:
Universitat Politècnica de Catalunya. Iniciativa Digital Politècnica, 2014

[5] Xian-Sheng Cao, Moment of Inertia of a Ping-Pong Ball, ChangzhouUniversity, Changzhou,
People’s Republic of China, The Physics Teacher, Vol. 50, May 2012

	Preface
	Introduction
	Project goals
	Project scope
	Project planning
	State of the art

	Model components, assembly and software
	Model components
	Model assembly
	Software used during the project

	Board initialization and peripheral tuning
	Base code creation
	PWM timer initialization
	ADC reading initialization
	SWD plot information
	Base code generation

	Non-controller coding
	Library inclusion
	User code begin 0
	User code begin 2
	User code begin 3
	Code compilation and debugging
	Sensor calibration

	Ball and Beam mathematical modeling
	Controller calculation and implementation
	First iteration
	PID Calculation
	First iteration implementation

	PID controller iterations
	Specification iterations
	Model parameter changes

	Educational application
	Economic, environmental, social and gender analysis
	Economic analysis
	Environmental analysis
	Social and gender impact analysis

	Conclusions
	Thanksgiving
	Laboratory session guide
	Session materials
	The SHARP GP2Y0A21 sensors
	The STM32F411RE micro-controller
	The Futaba S4004 servomotor
	Implementation software

	Starting up the plant
	First calculations
	Controller implementation and analysis
	Alternative controllers

	MATLAB and C codes
	MATLAB code - System modelling for simulation
	MATLAB code - Controller system solving for the pole placement method
	C code - Final controller code

	Bibliografia

