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I. INTRODUCTION

Abstract—With recent Quantum Devices showing increasing
capabilities to perform controlled operations, further devel-
opment on Quantum Algorithms may benefit from Quantum
Simulations on classical hardware. Among important applications
one finds verification and debugging of Quantum Algorithms,
and elucidating the frontier for real Quantum Advantage of
new devices [1]. Tensor Networks are regarded as an efficient
numerical representation of a Quantum Circuit, but exponential
growth forces tensors to be distributed among computing nodes.
A number of methods and libraries have appeared recently to
implement Quantum Simulators with Tensor Networks [2[, [3]
intended for HPC clusters. In this work we develop a Python
library called RosneT using a task-based programming model
able to extend all tensor operations into distributed systems, and
prepared for existing and upcoming Exascale supercomputers.
It is compatible with the Python ecosystem, and offers a simple
programming interface for developers.

Tensors as Quantum States. The Quantum State W; de-
scribing a Quantum computation is represented by a n-order
unit tensor on )., C? where n is the number of qubits and
i=1y...1, are the indices of the qubits. This tensor can be
further decomposed in a Tensor Network of tensors Ay. Using
a general tensor contraction operation ® we define the state as

[Wi) =>4, o, ®(AR)]i1 - dn).

Quantum Gates acting over Quantum States are also rep-
resented as tensors of the network, such that any physical
observable is obtained solely from operations over the tensors.
When contracting the tensor network, intermediate tensors will
be created whose order is greater. Generally, as the depth
of the networks increases, so does the order of the greatest
intermediate tensor. This imposes limits on the size of the
tensor networks that we can contract, as the size of tensor
grows exponentially fast with its order.

A common method for handling large tensors is tensor
cutting or slicing [4], S]], [6]. Slicing is based on the idea of
Feynman’s Path Integral formulation of quantum mechanics,
that all the paths in a tensor network equally contribute to the
final quantum state. An index (or edge) in the tensor network
represents a vector space of dimensionality D between two
tensors. If we select one and project it into one of its basis, then
we are filtering % of the paths and the intermediate tensors
that contain the index will shrink to occupy a % of its original
space at the cost of % fidelity in the final result. Furthermore,
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Fig. 1. Example of a block tensor contraction between two 3-order tensors
into a 2-order tensor. To compute a block of C' (light green), the needed
pairwise A, B blocks are colored in a range of colors by matching couples.

if we make copies of the tensor network, each projected to a
different basis of the selected index, and repeat this process,
we end up with a massively parallel problem and can calculate
up to the desired fidelity. However, contraction of non-sliced
tensors become redundant and may add a significant overhead
to computation. We notice that by viewing tensor projections as
block divisions of the original tensors, this compute overhead
disappears and becomes an indicator of block reuse while still
can fit in a distributed system.

Block Tensor Contraction. Based on the Dimension Ex-
tents layout [2f], [3]], we slice tensors into uniform grids of
sub-tensors or blocks. Employing the example in Figure [I]
block tensor contraction between tensors A;ji, and Bk, is
performed following these steps:

1)  For each output block in tensor C, we select the
blocks from A and B needed to compute the resulting
block. These blocks are chosen by matching coordi-
nates from non-contracting indexes j, m.

2)  Once the input blocks of A and B have been selected,
we group them in pairs by matching the coordinates
of contracting indexes ¢, k.

3)  Each of the pairwise coupled blocks, when contracted
locally, will compute a partial contribution to the
output block.

4)  Partial result blocks are summed into the block of C.

II. IMPLEMENTATION

COMP Superscalar (COMPSs) [7] is a task-based pro-
gramming model for distributed computing. It is supported
by a runtime that manages several aspects of the applications’
execution, such as task dependency analysis, data synchroniza-
tion and resource management. In the COMPSs programming
model, the developer has to explicitly mark a function as
task. On call, COMPSs will execute it in a free distributed
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worker selected by the scheduler. The type and direction of
the task dependencies can be annotated. COMPSs has bindings
for C/C++, Java and Python languages [8]. We opted for
Python due to its popularity on the scientific community having
already a rich ecosystem above which we can leverage our
work.

Alternative distributed runtimes available in Python are
Daskand Ray. The main features that differentiate COMPSs
are:

e Data is located out-of-core. Our benefits here are two-
fold: (1) Fault-tolerance is straightforward and ensured
for each task and (2) with a higher secondary storage,
the size of the quantum states we can represent grows.

e  Detailed tracing and profiling support with Extrae and
Paraver.

e Dynamic Heterogeneous Computing. The user may
provide several implementations for the same routine
and COMPSs will select the implementation on run-
time based on the available resources.

III. EVALUATION

Block size has a non-trivial effect on the execution time
of simulations. On Figure [2] the execution time of a Random
Quantum Circuit simulation for different maximum block sizes
is shown. Note that if the maximum block size is too large,
the grain of parallelism is too coarse and it does not fully
exploit the resources. Moreover, if the maximum block size is
too thin, the (de)serialization overhead surpasses the effective
execution time.

B sequential

14001 B commutative

1200 1
1000 4

800 A

Time (s)

600

400 A

200 A

226 228 230
Block size

Fig. 2. Execution times for the contraction of a Random Quantum Circuit
with 53 qubits and depth 12, varying the maximum block size.

IV. CONCLUSIONS

Using COMPSs runtime our library features out-of-core
data location, tracing and profiling support, and potential for
heterogeneous computing. As an example thanks to numpy’s
dispatching mechanism, we can leverage over numpy deriva-
tives like cupy adding GPU acceleration to RosneT. Our
library is a novel contribution bringing flexible tools to perform
large-scale simulations of Quantum systems to a community
of Quantum developers.
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