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Tutor:
Miquel Moretó Planas
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Abstract

Arm usage has substantially grown in the High-Performance Computing (HPC) commu-
nity. Japanese supercomputer Fugaku, powered by Arm-based A64FX processors, held
the top position on the Top500 list between June 2020 and June 2022, currently sitting
in the second position. The recently released 7th generation of Amazon EC2 instances
for compute-intensive workloads (C7g) is also powered by Arm Graviton3 processors.
Projects like European Mont-Blanc and U.S. DOE/NNSA Astra are further examples
of Arm irruption in HPC. In parallel, over the last decade, the rapid improvement
of genomic sequencing technologies and the exponential growth of sequencing data
has placed a significant bottleneck on the computational side. While the majority
of genomics applications have been thoroughly tested and optimized for x86 systems,
just a few are prepared to perform efficiently on Arm machines, let alone exploit the
advantages of the newly introduced Scalable Vector Extensions (SVE).

This thesis presents GenArchBench, the first genome analysis benchmark suite targeting
Arm architectures. We have selected a set of computationally demanding kernels from
the most widely used tools in genome data analysis and ported them to Arm-based
A64FX and Graviton3 processors. The porting features the usage of the novel Arm SVE
instructions, algorithmic and code optimizations, and the exploitation of Arm-optimized
libraries. All in all, the GenArch benchmark suite comprises 13 multi-core kernels
from critical stages of widely-used genome analysis pipelines, including base-calling,
read mapping, variant calling, and genome assembly. Moreover, our benchmark suite
includes different input data sets per kernel (small and large), each with a corresponding
regression test to verify the correctness of each execution automatically. In this work,
we present the optimizations implemented in each kernel and a detailed performance
evaluation and comparison of their performance on four different architectures (i.e.,
A64FX, Graviton3, Intel Xeon Platinum, and AMD EPYC). Additionally, as proof of
the impact of this work, we study the performance improvement in a production-ready
genomics pipeline using the GenArchBench optimized kernels.
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1 Introduction

For many years, Arm processors have dominated the mobile device segment. Their energy
efficiency and license-based business model have been two of the pillars underpinning
this success.

In recent years, Arm has burst onto the high-performance computing market with
powerful companies and consortiums that have become licensees, such as Fujitsu,
Amazon, Apple, Nvidia, Samsung, AMD, Broadcom, Huawei, and Qualcomm. Currently,
the Arm-based Fujitsu A64FX processor powers the Japanese supercomputer Fugaku,
which held the top position on the Top500 list between June 2020 and June 2022, and
is currently in the second position. Amazon has been using Arm processors to power its
cloud computing platform (AWS), starting in 2018 with the Graviton processor. They
followed with the second generation of Graviton in 2019, and currently, the recently
released Graviton3. In the near future, NVIDIA’s Grace processors [12] or Ampere
servers [4] will be leading further efforts of Arm’s breakthrough in HPC. As a result,
large-scale computing infrastructures, usually equipped with Intel/AMD x86 or IBM
Power processors, now have another competitive alternative. However, most of the
scientific code for HPC is not fully adapted and optimized for Arm architectures.

Over the last decade, genomics has settled as the cornerstone of modern precision
medicine. Sequencing an individual’s genome makes it possible to provide personalized
healthcare, allowing one to predict, diagnose, and treat diseases based on their genomic
disposition. Genomics has demonstrated to be helpful in early cancer detection, the
development of new drugs, and the fight against COVID-19 [50,58,66,90,112]. This
is only possible due to the rapid improvement of sequencing technologies. In the past
20 years, sequencing costs have dropped dramatically and the amount of sequencing
data produced has increased exponentially. This increase in data production has
outperformed the pace of Moore’s law. As a result, a significant bottleneck in current
genome sequencing analysis is placed on the computational side. For many years, the
computational analysis from genomics tools has been running on top of x86 machines.
With the irruption of Arm-based HPC servers, it is paramount to adapt and optimize
such applications to guarantee the success of HPC Arm architectures in the field of
genomics and personalized healthcare.

In this work, we have selected 13 computationally-demanding CPU kernels from the
most widely-used genomics tools, and we have included them in a benchmark suite
called GenArchBench. All the kernels exploit multi-core parallelism and cover stages of
the most common genome analysis pipelines, such as base-calling, read mapping, variant
calling, and de-novo assembly. GenArchBench includes one small and one large input
for each kernel. For most kernels, the small input takes less than a minute to execute
in a single thread (for testing purposes) while the large input takes a few minutes (for
evaluation purposes). Typically, there is a 10× difference between the small and large
input execution times. For convenience, we provide automatic regression tests for all
the kernels to check the correctness of the outputs.

To exploit the capabilities of the latest Arm HPC processors, we have thoroughly
evaluated the computational kernels for potential optimizations. As a result, we have
vectorized some of the kernels using the recent Arm Scalable Vector Extension (SVE).
Moreover, we have performed algorithmic and code optimizations better to exploit the
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architecture and resources of Arm HPC machines. Additionally, we have explored the
exploitation of Arm-specific libraries optimized for Arm processors.

Besides the benchmark suite porting and optimization, this work presents a performance
characterization of GenArchBench on two Arm and two x86 HPC machines: one compute
node featuring an A64FX [114], one Amazon EC2 c7g.16xlarge instance (Graviton3) [2],
a system with two Intel Xeon Skylake Platinum 8160 [18], and a compute node with
one AMD EPYC 7742 ROME [3]. This characterization includes the instruction mix of
the kernels, single-thread and multi-thread performance, a microarchitecture bottleneck
analysis, and an energy-to-solution study of the kernels in the machines. Additionally,
we evaluate the performance delivered by a real genomics pipeline using two of the
accelerated kernels.

In summary, this work makes the following contributions:

• We present GenArchBench, the first benchmark suite targeting the Arm archi-
tecture for genomics and bioinformatics applications. The benchmark suite is
publicly available at https://github.com/LorienLV/genarchbench.

• We propose optimizations applied to GenArchBench’s kernels to exploit the
potential of Arm HPC processors, including using the novel Arm Scalable Vector
Extension (SVE), performing algorithmic and code optimizations, and the use of
optimized Arm libraries.

• We perform a detailed performance characterization of GenArchBench in two HPC
Arm processors: the A64FX and Graviton3. We compare Arm’s performance
against two HPC x86 machines.
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2 Background

Genome sequence data analysis involves long pipelines of software tools, from the
sequencing of biological samples by sequencing machines to the generation of insightful
data for scientists and medical doctors. In this section, we introduce the different
sequencing technologies and describe the main genomics software pipelines, summarized
in Figure 1.
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Figure 1: Flow diagram of two genomics software pipelines: genome resequencing (3.a)
and genome assembly (3.b). The sequencing (1) and basecalling (2) steps are common
to both pipelines.

2.1 Sequencing Technologies

In order to computationally analyze the DNA of a biological sample, it must be converted
to digital data. This process, shown in Figure 1-1, is performed by the sequencing
machines. Despite the multiple advances in the last decades, it is still not possible to
sequence a complete DNA molecule. The standard solution is to sequence small random
chunks of the complete molecule, called reads or fragments, that must be reassembled
in further steps.

A DNA molecule is composed of two strains (chains) of nucleotides: cytosine, guanine,
adenine, and thymine. Nucleotides are often represented by their initials: C, G, A,
and T. A pair of nucleotides, representing one nucleotide per DNA strain, is called a
base pair (bp). The output generated by each sequencing technology is different, but it
always contains the required information to be transformed into strings of base pairs.

Sequencing machines are usually classified into three generations. The first generation
was developed in 1977 by Sanger et al. [99] and Maxam et al. [83]. This method was
used to sequence the first draft of the human genome in 2001 [36]. First-generation ma-
chines are now replaced by second and third-generation sequencers. Second-generation
technologies, usually referred to as short-read sequencing, produce fixed-length se-
quences of around 100-300 bps with high throughput. The main manufacturer of
second-generation machines is Illumina [96], which produces reads with extremely low
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error rates. The third and latest generation technology, known as long-read sequencing,
can read variable-length sequences with a much larger size, usually around 10 Kbps.
The most prominent suppliers are Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT). Third-generation machines have less throughput and a higher
error rate than previous-generation machines; this is the reason why second-generation
machines are still used these days. A customary process to increase the quality of the
reads is to sequence the same chunk of DNA multiple times.

2.2 Genome Data Analysis Pipelines and Tools

Although the goal of genomics projects can significantly differ, we identify two main
software pipelines: genome resequencing (1-3.a) and genome assembly (1-3.b).

Any genomics workflow starts with a step called basecalling (Figure 1-2). This phase
transforms the raw sequencing data, generated by the sequencing machines, into
sequences of nucleotides (A, C, G, T) in a standard format. Usually, a dedicated
basecaller, such as Bonito [10] or Guppy [113], is used to perform this process. However,
some genomics analysis tools, such as Nanopolish [79] or Flye [67], allow inputting raw
sequencing data that is processed in an initial basecalling step.

Resequencing is performed to reconstruct the genome of the sample using a reference
genome of the same species. The first step of this pipeline, called read mapping
(Figure 1-3.a.1), attempts to match each input read to one or more positions of the
reference genome. This process is performed by mappers such as BWA-MEM2 [76,110],
Minimap2 [77], Bowtie2 [70, 71] and GEM [82]. Read mapping is a computationally
expensive step; thus, heuristics are used to speed up the process. First, the mapper
performs the seeding step (Figure 1-3.a.1.1), a process that searches small subsequences
of the reads (seeds) in the reference gnome. There are mainly two methods to perform
this search: FM-Index [57] or hash tables [42,43]. Seeding allows the reduction of the set
of possible positions a read may belong to, decreasing the amount of work performed in
subsequent steps. In order to reduce this set of positions even more, it is customary to
apply an extra step known as chaining (Figure 1-3.a.1.2). Chaining attempts to create
larger seeds by linking overlapping seeds, reducing the number of possible positions a
read may match with the reference genome. In the extend phase (Figure 1-3.a.1.3), a
dynamic programming algorithm, typically Smith-Waterman [61,101] or derivatives, is
applied to score the match between the reads and the positions of the reference genome
identified in the seeding step. Once the reads are located in the reference genome, a
variant calling algorithm (Figure 1-3.a.2) can be used to identify the differences (variants
or mutations) between the reference and the sequenced genome. GATK Haplotype
Caller [84], Platypus [97], Clair [80,115], and Medaka [21] are examples of variant calling
tools.

The genome assembly pipeline (Figure 1-3.b) is used to construct the genome of the
sample in the absence of a reference genome. One of the most common approaches for
de-novo assembly is based on De-Bruijin graphs. Given the set of reads output by the
sequencing machine, each node of its DeBrujin graph represents a unique sub-string of
length k nucleotides, known as k-mer, and each edge connects adjacent k-mers in the
input set. Graphs of k-mers are used in de-novo assemblers like Flye [67], Canu [68], or
Racon [109]. Before constructing the De-Bruijin graph of the input (Figure 1-3.b.2),
the number of unique k-mers in the reads is counted (Figure 1-3.b.1) in order to prune
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the least frequent ones, that are likely artifacts of the sequencing process. Once the
De-Bruijin graph is constructed, the input reads are aligned against each other to
determine the consensus sequence using multiple sequence alignment (MSA) algorithms
(Figure 1-3).

Steps from genome resequencing and genome assembly are frequently used in other
software pipelines. Metagenomics is a process performed by tools such as Centrifuge [65]
or Clark [91] to identify the species of a given sample. These tools employ k-mer
counting (Figure 1-3.b.1) and seeding techniques (Figure 1-3.a.1.1), such as FM-index.
Modern variant callers, like GATK Haplotype Caller [84] or Platypus [97], construct
De-Bruijn graphs (Figure 1-3.b.2) to correct artifacts produced in the read mapping
process (Figure 1-3.a.1). The chaining process (Figure 1-3.a.1.2) is also utilized for
genome assembly when using alternative approaches from De-Bruijin graphs [100].
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3 GenArch Benchmark Suite

The GenArch benchmark suite comprises 13 multithreaded CPU kernels from the
most widely used genomics tools covering the most important genome sequencing
steps. It includes 10 kernels from the GenomicsBench [105] benchmark suite and three
additional kernels: the Bit-Parallel Myers algorithm [87], the Wavefront Alignment
algorithm [81] and a SIMD accelerated version of minimap2’s chaining implementation
(FAST-CHAIN) [64]. Each kernel includes two different inputs, a small one, with
single-thread target execution time of less than a minute, and a large one, with a target
execution time of a couple of minutes. Typically, there is a 10× difference between
the small and large input execution times. GenArchBench also includes the expected
output of each benchmark with both inputs, along with automatic regression tests to
check the correctness of the execution of each kernel.

The next section introduces GenArchBench’s kernels, providing a brief description of
the kernels, which production tools use them, the specific implementations we have
used as the base versions for the porting, and a description of their inputs.

3.1 Adaptive Banded Signal to Event Alignment (ABEA)

ABEA is a redesign version of the Suzuki-Kasahara (SK) [107] dynamic programming
algorithm used to compare raw nanopore signals, produced by ONT sequencing ma-
chines, to a reference genome sequence. This step is performed in some tools, such as
Nanopolish [79], to correct errors produced in the basecalling process (Figure 1-2). For
GenArchBench, we have used the CPU implementation of f5c [60], a version of ABEA
based on Nanopish’s, optimized for both CPU-only and hybrid CPU/GPU executions.
This implementation of ABEA exploits coarse-grain multi-threading by dividing the
raw signals of the input between the available cores. Since the signals are not of regular
size, f5c implements work-stealing to improve load balance. The small and large inputs
comprise 1K and 10K raw FAST5 (ONT) reads from chromosome 22 of NA12878 and
GRCh38 as the reference genome [23].

3.2 Bit-Parallel Myers (BPM)

BPM [87] is a dynamic programming algorithm that finds all locations a query string of
size m matches a reference string of size n with k or fewer differences (Figure 1-3.a.1.3).
It computes the approximate string matching of two strings in O(mn/w) time, where
w is the word size of the machine. BPM is used in read mapping tools, such as GEM-
Mapper [82], Edlib [103], GraphAligner [95] or Hobbes [38]. For GenArchBench, we
have used an in-house implementation of the algorithm that exploits multi-threading
by assigning different pairs of strings to different threads. The small and large inputs
comprise 100K and 10M base pairs from human sample SRR7733443 downloaded from
the sequence read archive [24].

3.3 Banded Smith-Waterman (BSW)

The Smith-Waterman algorithm [101] is a dynamic programming algorithm that com-
putes the local sequence alignment of two sequences of length m and n, respectively,
in O(mn) time and space. A banded version of Smith-Waterman [49] is used to align
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sequences with a maximum of w insertions/deletions, reducing the time and space
complexity to O(wn) (Figure 1-3.a.1.3). BSW is used in variant discovery tools such
as GATK [84], and in sequence alignment software like BWA-MEM [76, 110]. For
GenArchBench, we have used BWA-MEM2’s x86-vectorized implementation of BSW.
In order to exploit multi-threading, the set of pairs of strings to align are dynamically
divided between processors. The small and large inputs comprise 100K and 10M base
pairs from human sample SRR7733443 [24].

3.4 Seed Chaining (CHAIN)

Given a set of subsequences (seeds) from a DNA sequence (read), chaining (Figure 1-
3.a.1.2) consists of linking overlapping seeds to form larger ones. This is a time-
consuming step performed by alignment tools, such as Minimap2, and by de-novo
assemblers like Flye [67] or Canu [68]. We have used the implementation of CHAIN
found in GenomicsBench that extends Minimap2’s to exploit inter-task parallelism
across reads. The small and large inputs comprise the seeds from 1K and 10K reads of
Pacbio’s Caenorhabditis elegans worm sequence data [25].

3.5 SIMD Seed Chaining (FAST-CHAIN)

The previously presented implementation of the CHAIN algorithm utilizes heuristics to
stop executing when the result is sufficiently good. This speedups execution at the cost
of accuracy, and it hinders the vectorization of the kernel. FAST-CHAIN [64] is an x86-
vectorized version of CHAIN that removes the heuristics to exploit SIMD computation.
As a result, FAST-CHAIN outputs accurate results and presents performance gains
compared to CHAIN. FAST-CHAIN uses the same inputs as CHAIN.

3.6 De-Bruijn Graph Construction (DBG)

The De-Bruijn graph (DBG) of an input set of reads is used to represent the overlaps
between the sub-strings of length k (k-mers) found in the input (Figure 1-3.b.2). Each
node of the graph represents a k-mer and the edges connect adjacent k-mers in the input
set. The construction of these graphs is a time-consuming step in de-novo assemblers
like Flye [67], Canu [68] or Racon [109], and in variant callers such as GATK [84] and
Platypus [97]. For GenArchBench, we have used the DBG construction of Platypus,
which exploits parallelism by assigning different regions of the input to different threads.
Both inputs employ chromosome 22 of BWA-MEM aligned records from the Platinum
Genomes dataset [56]. The small input uses bases 16M-16.5M, while the large input
uses the entire chromosome.

3.7 FM-Index Search (FMI)

The FM-index is a compressed sub-string index based on the Burrows-Wheler trans-
form [47]. Given a sub-string s, FM-index can be used to find the location of s in the
reference genome in O(|s|) time, where |s| is the length of the sub-string (Figure 1-
3.a.1.1). The FM-index data structure is used in sequence alignment tools such as
BWA-MEM [76,110] or Bowtie2 [70], and in metagenomic classification software like
Centrifuge [65]. For GenArchBench, we have used the super-maximal exact match kernel
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of BWA-MEM2, which utilizes the FM-Index structure. This kernel exploits parallelism
by dynamically assigning batches of reads among threads. The small and large inputs
comprise 1M and 10M pairs of 151 bases from human sample SRR7733443 [24].

3.8 K-mer Counting (KMER-CNT)

K-mer counting aims to count the number of occurrences of each k-mer in an input
sequence (Figure 1-3.b.1). This task is performed in de-novo assemblers such as Flye [67]
or Canu [68] and in metagenomics classification software like Clark [91]. For GenArch-
Bench we have used the k-mer counting kernel of Flye. This implementation divides the
input-reads between threads and relies on the thread-safe hash-map implementation of
Libcuckoo library [19] to concurrently increase the number of individual k-mers shown
by each thread. The small and large inputs comprise 1K and 50K Escherichia coli
Oxford Nanopore reads sequenced by Loman Labs [20].

3.9 Neural Network-based Base Calling (NN-BASE)

ONT sequencing machines monitor changes in an electrical current as single strands of
DNA or RNA pass through a protein nanopore. These changes in the electrical current
are then converted to a sequence of nucleotide bases in the basecalling process (Figure 1-
2). The analog signal inevitably contains ambiguities due to noise or measurement
errors. Some basecallers, such as Guppy [113] and Bonito [10], rely on neural networks
to solve these ambiguities, determining the most likely observed nucleotide in each
part of the electrical current. For GenArchBench, we have used Bonito’s deep-learning
base-caller (NN-BASE), which depends on the PyTorch library [92]. Bonito splits the
input signal into smaller chunks of regular size and feeds them to a PyTorch neural
network that internally exploits multi-threading. The small and large inputs comprise 1
and 10 raw FAST5 reads from chromosome 20 of NA12878, obtained from the Nanopore
WGS Consortium [23].

3.10 Neural Network-based Variant Calling (NN-VARIANT)

Variant calling is the process of detecting the differences (variants or mutations) between
the aligned reads and the reference genome (Figure 1-3.a.2). This is a costly process
performed by statistics-based variant callers, such as GATK HaplotypeCaller [84] or
Platypus [97], and deep-learning variant callers, such as Clair [80, 115] or Medaka [21].
For GenArchBench, we have used the second generation of Clair variant caller (Clair3),
based on the TensorFlow framework [37]. Clair3 exploits parallelism by dividing
the input into regular-size chunks, and each of these chunks is processed by one
thread using TensorFlow. Our small and large inputs comprise 100K and 10M ref-
erence positions, respectively, of chromosome 20 of HG002 from NITS’s Genome
in a Bottle (GIAB) project [117]. We are using Clair3’s ONT pre-trained model
r941 prom hac g360+g422 [11].

3.11 Pileup Counting (PILEUP)

Given the alignment data of a set of aligned reads to a region of a reference genome,
usually a SAM or BAM file [75], pileup counting is the process of summarizing the
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base-pair information at each chromosomal position. This summary, called pileup, is
customary the input for long-read neural network variant callers such as Clair [80, 115]
or Medataka [21] (Figure 1-3.a.2). For GenArchBench we have used the pileup counting
implementation of Medaka, which exploits multi-thread parallelism by distributing 100
kilobase regions of the reference genome between threads. The small input comprises
bases 1-1499707 of the Staphylococcus aureus genome [113], and the large input comprises
bases 1-1412827 of chromosome 20 of sample HG002 [117].

3.12 Partial-Order Alignment (POA)

The construction of an overlap graph from a set of reads leads to an approximate
representation of the original sample’s genome. To determine the consensus genome
of the sample, the alignment of all the reads against each other is performed in a
process called multiple sequence alignment (MSA) (Figure 1-3.b.3). The partial ordered
alignment (POA) algorithm [73] computes the MSA of all sequences by incrementally
constructing a partially-order graph aligning new sequences to it using a dynamic
programming algorithm such as Smith-Waterman [101] or Needleman-Wunsch [89].
The multiple alignment sequence (consensus sequence) is inferred from the graph by
using the Heaviest Bundle algorithm [72]. POA is used in software packages such as
Nanopolish [79] or Racon [109]. For GenarchBench we have used the SIMD-optimized
version of POA of the SPOA library [29]. SPOA exploits multi-threading by computing
the partially-ordered graph of multiple sets of sequences in parallel. The small and large
inputs comprise 1K and 6K sets of multiple sequences aligned to a reference genome,
each containing between 5 and 115 sequences. This data comes from Minimap2’s
polishing step of the Flye-assembled Staphylococcus Aureus genome [113].

3.13 Wavefront Alignment (WFA)

The wavefront alignment algorithm (WFA) [81] is a pairwise alignment algorithm
(Figure 1-3.a.1.3) that takes advantage of homologous regions between the sequences
to accelerate the alignment process. As opposed to traditional dynamic programming
algorithms that run in quadratic time, WFA time complexity is O(ns), proportional
to the read length n and the alignment score s, using O(s2) memory. The wavefront
algorithm is used in tools such as wfmash [34], AnchorWave [102] or AncestralClust [94].
GenArchBench uses a custom multi-thread implementation of the algorithm, in which
each thread works in the alignment of a pair of strings. The small and large inputs
comprise 100K and 1M base pairs from human sample SRR7733443 [24].
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4 Experimental Setup

Our experimental setup consists of two Arm and two x86 HPC systems: a compute
node featuring an Arm-A64FX processor (A64FX) [1,114], a c7g.16xlarge Amazon-EC2
instance (Graviton3) [2, 8], a system with two x86-64 Intel Xeon Skylake Platinum
8160 (SKX) [18,55], and a compute node with one x86-64 AMD EPYC 7742 processor
(EPYC) [3,15,106]. Table 1 presents an overview of the main characteristics of the four
systems.

Table 1: Characteristics overview of the experimental setup.

A64FX Graviton3
Cores 4 × 12 (+ 4 assistant) 64
SMT No No
Frequency 2.2 GHz (static) 2.6 GHz
Max. power 120 W N/A
Mem. capacity 4 × 8 GB 8 × 16 GB
Mem. technology On-package HBM2 Off-package DDR5 4800 MHz
Peak bandwidth 4 × 256 GB/s 300 GB/s
L1i 64 KB (4-way) 64 KB
L1d 64 KB (4-way) 64 KB
L2 — 1 MB
LLC 4 × 8 MB (16-way) 32 MB
Vector extension NEON/SVE 512 bits NEON/SVE 256 bits

(a) Arm systems

SKX EPYC
Cores 2 × 24 64
SMT Disabled Disabled
Frequency 1-2.1 GHz (dynamic) 1.5-2.25 GHz (dynamic)
Max. power 2 × 150 W 225 W
Mem. capacity 2 × 48 GB 16 × 64 GB
Mem. technology Off-package DDR4 2667 MHz Off-package DDR4 3200 MHz
Peak bandwidth 2 × 120 GB/s 204.8 GB/s
L1i 32 KB (8-way) 32 KB (8-way)
L1d 32 KB (8-way) 32 KB (8-way)
L2 1 MB (16-way) 512 KB (8-way)
LLC 2 × 33 MB (11-way) 16 ×16 MB (16-way)
Vector extension SSE/AVX2/AVX512 SSE/AVX2

(b) x86-64 systems

In terms of computing cores, the A64FX is based on four Non-Uniform Memory Access
(NUMA) domains within the chip, also referred to as core memory groups (CMG). Each
NUMA domain has 12 cores, plus one assistance core not used for general computing
(running daemons, I/O, asynchronous MPI, etc.). In total, the A64FX implements 48
computing cores. The AMD EPYC CPU comprises 8 core chiplets, known as core cache
dies (CCD), and a central I/O die that controls all the I/O and memory functions of the
chip. A CCD has two core cache complexes (CCX), each equipped with 4 cores. Any
pair of CCDs can communicate through the I/O die. The SKX contains two NUMA
chips, each with 24 physical cores.

Regarding operational frequency, Graviton3 presents the highest maximum frequency
among the systems with 2.6 GHz. The other three systems’ maximum frequency is very
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similar, ranging between 2.1 and 2.25 GHz. Both x86 systems dynamically adjust their
frequency based on their load. Additionally, SKX reduces its frequency when executing
AVX/AVX512 instructions [74]. In contrast, the A64FX operates at a fixed frequency
set to 2.2 GHz. There is no public information about adaptive frequency operation on
Graviton3.

With respect to SIMD extensions, the A64FX is the first CPU to implement the
Armv8.2-A Scalable Vector Extension (SVE) [104]. One of SVE’s main features is that
it is Vector Length Agnostic (VLA); that is, the same binary works on architectures
implementing vector registers of different lengths ranging from 128 to 2048 bits. The
A64FX implements 512 bits SVE registers. Graviton3 also implements SVE, with a
vector length of 256 bits. The A64FX and Graviton3 also support the Arm Neon SIMD
extension, a non-VLA SIMD ISA that works with 128-bit vectors. Both x86 systems
implement the SSE and AVX2 SIMD extensions, with a vector length of 128 and 256
bits, respectively. The SKX also supports the AVX512 extension, with a vector length
of 512 bits. None of the x86 SIMD extensions are VLA.

Concerning main memory, each A64FX’s NUMA domain has its own local on-chip 8 GB
HBM2 main memory and can access the other three NUMA domains’ local memories
via a ring bus. Graviton3 is connected to 8× 16 GB DDR5 DIMMs, for a total of 128
GB of memory. Each chip of the SKX is connected to a local off-chip 48 GB DDR4
memory and can access the other chip’s local memory. The EPYC CPU is connected
to 16× 64 GB DDR4 DIMMs, totalling 1 TB of memory.

The cache hierarchy organization of the processors is relatively different. Both Arm
machines have two 64 KB private L1 caches per core (instructions and data), while the
x86 CPUs feature two 32 KB private L1s per core. Graviton3 and SKX include one
private 1MB L2 cache per core, and EPYC has one 512 KB private L2 per core. The
A64FX has one 8 MB last-level cache (LLC) per NUMA domain, Graviton3 includes
one 32 MB LLC, SKX has two 33 MB LLCs (one per NUMA domain), and EPYC
includes one 16 MB LLC per CCX (i.e., per group of 4 cores).

Concerning memory bandwidth, the A64FX is designed to achieve good performance
executing high memory bandwidth-demanding applications. The peak bandwidth of this
chip (4× 256 GB/s) is nearly 3.5 times higher than the peak bandwidth of Graviton3
(300 GB/s), the second system among the studied in terms of memory throughput. It
is followed by SKX, reaching up to 120 GB/s per chip (240 GB/s in total), and EPYC
holds the last position with a peak bandwidth of 204.8 GB/s.

Table 2 presents the memory access latencies to each level of the memory hierarchy for
all machines. All latencies on EPYC and Graviton3 and latencies to remote memories
on the A64FX have been measured using the LMbench benchmark [85]. Latencies to
cache and local memory on the A64FX have been extracted from the micro-architecture
manual of the CPU [1]. Latencies on SKX have been measured using Intel Memory
Latency Checker [16]. The number of cycles to access the A64FX caches depends on the
type of instruction: scalar, floating-point, short SIMD, and large SIMD. The latencies
to access the L1 on the systems range from 1.5 ns (Graviton3) to 5 ns (large SIMD
access on the A64FX). Even though scalar accesses on the A64FX are faster (2.3 ns), it
still presents the highest L1 access latency. As presented previously, the A64FX only
implements two levels of caches (L1 and LLC). The L2 access latencies of the other
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systems range between 3.5 ns (EPYC) to 6.7 ns (SKX). EPYC presents the fastest
access to its LLC (13 ns), closely followed by the A64FX (16.8 ns for scalar access and
21.4 ns for large SIMD access). The LLC access latency on the SKX and Graviton3 is
25.1 and 33.1 ns, respectively. SKX presents the fastest access latency to local main
memory (86.2 ns), followed by the A64FX and EPYC, with similar latencies (∼120
ns). Graviton3 has the highest local memory access latency, as expected from current
DDR5 SDRAMs. Accessing remote main memories in the A64FX takes between 187.7
ns (near-remote memory) and 242.3 ns (far-remote memory). Accessing the other chip’s
main memory on the SKX machine takes 144 ns, 23% faster than A64FX’s best case.

Table 2: Load-to-use memory latencies in nanoseconds of the experimental setup at
maximum frequency.

A64FX Graviton3 SKX EPYC
L1 2.3-5 1.5 1.9 1.8
L2 — 4.6 6.7 3.5
LLC 16.8 - 21.4 33.1 25.1 13.0
Main Mem. Local 118.2 - 126.4 153.5 86.2 121.5
Main Mem. Remote 187.7 - 242.3 — 144.0 —

The out-of-order resources of the experimental setup are presented in Table 3. We assume
that Graviton3 implements the same resources as Neoverse V1 for non-publicly available
data [6, 7] (marked with *). Non-available data for neither Graviton3 nor Neoverse V1
is represented as N/A. The A64FX is tight in out-of-order resources compared with
the other three processors. The SKX and EPYC have a similar number of physical
registers, almost doubling the number of general-purpose registers of the A64FX (180
vs. 96) and implementing 30% more SIMD/FP registers than the A64FX (160 vs. 128).
The A64FX can issue up to 8 micro-operations (µOP) per cycle, Graviton3 can issue up
to 15, 8 for SKX, and 11 for EPYC. The A64FX and SKX are capable of committing 4
micro-operations per cycle. However, SKX can merge two micro-operations into one
fused micro-operation, increasing its theoretical commit rate to 8 micro-operations.
EPYC can commit up to 8 macro-operations (MOP)—i.e., ALU, memory, or merged
ALU/memory operation—per cycle. The reorder buffer of Graviton3 (256 entries) is
twice as big as the A64FX’s (128 entries). SKX and EPYC have an identical-size
ROB (224 entries). The sizes of the load and store buffers of the CPUs are relatively
different. Graviton3 and SKX implement the largest load buffer, with 85 and 72 entries,
respectively. The load buffer of the A64FX has 40 entries, and EPYC implements a
44-entries load buffer. Similarly, Graviton3 and SKX have the largest store buffer (90
and 56 entries, respectively). The A64FX implements a 24-entries store buffer, half
the size of EPYC’s. Additionally, a store instruction on the A64FX occupies one entry
in both the load and the store buffer. While SKX implements a unified reservation
station (RE) with 97 entries, both the A64FX and EPYC have several smaller RS. The
A64FX divides its reservation station into 2×20 entries for 2 integer, floating-point,
and SIMD pipelines, 2×10 entries for 2 address calculation pipelines, and 19 entries
for the branch pipeline. EPYC’s reservation station has 4×16 entries for 4 integer
pipelines (scalar+SIMD), 28 entries for 3 address calculation pipelines, and 36 entries
for 4 floating-point pipelines (scalar + SIMD).
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Table 3: Out-of-order resources of the experimental setup. *Neoverse V1 CPU defaults.

A64FX Graviton3 SKX EPYC
General-purpose registers 96 N/A 180 180
SIMD and FP registers 128 N/A 168 160
Issue width 7 (µOP) 15 (µOP) 8 (µOP) 11 (µOP)
Commit width 4 (µOP) N/A 4-8 (µOP) 8 (MOP)
Reorder buffer (entries) 128 256* 224 224
Load Buffer (entries) 40 85* 72 44
Store buffer (entries) 24 90* 56 48
Reservation Station (entries) 2×20 + 2×10 + 19 N/A 97 4×16 + 28 + 36
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5 Arm Porting of Genomics Kernels

Most of the kernels presented in Section 3 target x86 architectures and have not been
extensively tested nor optimized for Arm machines. Thus, it was expected that some
kernels could run into failures and even generate incorrect results. In order to verify
the execution of the kernels, we used the SKX system to compute the correct output
for all kernels and inputs (i.e., ground truth).

For our experiments, we used the GNU compiler (GCC) on Graviton3 (v11.2.0), SKX
(v10.1.0), and EPYC (v10.2.0). On the A64FX, we used GCC (v10.2.0) and the
Fujitsu Compiler (FCC) (v4.2.0b). For most kernels, FCC-compiled binaries exhibited
better performance. The Fujitsu Compiler implements two compilation modes: a
traditional mode (Trad) based on compilers for earlier systems and a Clang mode
based on Clang/LLVM. In all cases, we obtained better execution times when compiling
with FCC’s Clang mode. We lacked FCC-compiled versions of key-optimized Python
libraries. For these reasons, all the results presented in this document for the A64FX
have been obtained using the Clang mode of FCC, excluding the two Python kernels
(NN-BASE and NN-VARIANT), whose libraries were compiled using GCC.

We compile all kernels with at least -O2 optimization level and enable CPU-specific
optimizations: -march=armv8-a+sve on the A64FX, -mcpu=native on Graviton3 and
-march=native on SKX and EPYC. Enabling CPU-specific optimizations in ABEA
and POA resulted in incorrect executions (probably due to programming errors in the
original source code). Therefore, such optimizations are not used for these two kernels.

After performing the appropriate modifications to the kernels, so all of them successfully
execute on Arm, we applied further optimizations to some kernels to improve the
performance obtained in this architecture. Such optimizations are described in the
following subsections.

5.1 Exploiting Vectorization

Some kernels implement x86-vectorized versions of their most time-consuming parts.
In particular, BSW and FAST-CHAIN include AVX2 and AVX512 versions of their
critical functions using intrinsics. Similarly, POA implements SIMD versions of its code
using AVX2-intrinsics and SIMD Everywhere (SIMDe) [28]. We have implemented
SVE-intrinsics versions of FAST-CHAIN, BSW, and WFA and a Neon-intrinsics version
of BPM. SIMDe does not fully support SVE yet, so we could not leverage POA’s SIMDe
version. Figure 2 shows the speedup of vectorized kernels over their scalar version on
the experimental setup using the large input of the kernels.

5.1.1 BPM

The core idea behind vectorizing BPM is to transform the alignment operations used
to fill the dynamic programming table into simple machine-word operations. These
simple operations are integer additions, bit shifts, and bitwise ORs and ANDs. This
way, various dynamic programming cells are bit-packed within a machine word and its
dependencies are encoded using bit-wise operations. In packed SIMD, vector operations
are performed in independent packets with a maximum wide equal to the machine’s
maximum word wideness, rather than a whole bit vector (i.e., it is not possible to
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Figure 2: Speedup of SIMD kernels over their scalar scalar version on the experimental
setup using the large inputs.

perform a 128-bit wide operation in a 64-bit double word machine). For example, when
performing a left-shift operation, the leftmost bit of each word is lost. However, in
order to vectorize BPM we would want this bit to be appended to the closest-left word,
effectively performing a vector-wide left-shift operation. To circumvent this problem, we
must perform additional operations to manually carry that bit to the correct position.
The number of additional operations required by this approach to work scales with the
vector length. Thus, we decided to evaluate the potential of the vector version of BPM
using the Neon vector extension (128-bit vectors). The vectorized loop executes 1.7×
more instructions than the original but performs 2× fewer iterations.

On the A64FX, SIMD versions of simple instructions, like integer addition, were much
more expensive than scalar ones. For example, a simple 64-bit addition takes one cycle,
while a vector addition of two 64-bit words takes four cycles. This difference in latencies
leads to a slow-down of 2×. Graviton3 has lower SIMD latencies. However, the increase
in the number of instructions in the loop leads to a 30% performance loss. Since we
did not gain any performance using the Neon version, it was discarded in favor of the
original scalar code. We believe that an inter-sequence or coarse-grain approach (i.e.,
perform the sequence alignment of several sequences simultaneously) will deliver better
performance since it simplifies the vectorization.

5.1.2 BSW

The SVE version of BSW [69] is a translation to Arm SVE-intrinsics of the x86-
vector version found in BWA-MEM2, which groups the sequence alignment of multiple
equal-length sequences via SIMD instructions (i.e., inter-sequence vectorization). The
x86-intrinsics version of BSW relies on masks and blend operations to select valid
entries from the vector registers. The SVE version takes advantage of SVE’s predicate
instructions to avoid the need for blend operations, effectively reducing the number
of total instructions executed. BSW uses integers of 16 bits, allowing to process 32
elements per iteration using SVE-512 (A64FX) and 16 using SVE-256 (Graviton3).

The SVE version of BSW performs 3.4× and 1.3× faster than its scalar version on the
A64FX and Graviton3, respectively.
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5.1.3 FAST-CHAIN

Our SVE implementation of FAST-CHAIN is a translation to SVE intrinsics of the
x86 version. The original x86 implementation of FAST-CHAIN executes its main loop
scalar version (i.e, avoids executing the vectorized loop) when the number of iterations
to perform is small. Additionally, as usual in x86 vector loops, it implements a loop-tail
to process the remaining elements. Since SVE is vector-length agnostic, we could avoid
most of the logic of the x86 version, reducing the number of performed instructions.

The x86 vectorized version of FAST-CHAIN uses 32 bits anchors. In some cases, 32-bit
anchors are not sufficient, and this kernel generates incorrect results. To solve this, we
have implemented 64 and 32 bits SVE versions of FAST-CHAIN. The 64 bits version
always outputs correct results, but we have used the 32 bits implementation to compare
against the 32 bits x86 implementation.

GenArchBench’s SVE version of FAST-CHAIN runs 4.5× and 1.8× faster than its
scalar version (CHAIN without heuristics) on the A64FX and Graviton3, respectively.
Experimental results show that the performance of FAST-CHAIN compared to reg-
ular CHAIN greatly depends on the input used—the usage of heuristics may lead to
performance variations based on the characteristics of the input. For instance, using
GenArchBench’s large input, our SVE version of FAST-CHAIN is 2.2× faster than
regular CHAIN on the A64FX, but it presents a 1.4× slowdown on Graviton3.

5.1.4 WFA

The Wavefront Alignment Algorithm consists of two operations: compute the next
wavefront (next operation) and extend all the farthest-reaching (f.r.) points of a
wavefront by exact matching characters from two strings (extend operation). The
next operation can be automatically vectorized by the compiler due to its simple
computational pattern. In contrast, the extend operator cannot be automatically
vectorized as each diagonal requires an irregular amount of computations. To this end,
we have vectorized the extend operation using a custom implementation relying on
SVE intrinsics. Each vector lane extends a different diagonal, comparing four bases per
lane until a mismatch is found. Because each diagonal requires a different number of
character comparisons, some lanes can require more iterations than others. We tackle
this problem by masking the lanes as they finish the extension process. This way, several
diagonals are extended in parallel.

The SVE version of WFA delivers a 1.6× and 1.25× speedup over its scalar version on
the A64FX and Graviton3, respectively.

5.2 Optimized Libraries

Many HPC kernels and tools rely on frequently used libraries. It is common for vendors,
such as Arm, Fujitsu, or Intel, to develop optimized versions of widely used functions
and libraries targeting their systems and architectures. For genome data analysis, some
tools exploit neural networks (NNs) to improve the quality of their analysis and results.
For the GenArchBench, we have tested different implementations of the libraries used
by the NN-BASE and NN-VARIANT kernels.
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5.2.1 NN-BASE

The NN-BASE kernel builds upon the PyTorch library [92]. On the A64FX we have
used an optimized version of PyTorch for this specific CPU provided by Fujitsu. On
Graviton3, we tried two different PyTorch backends: PyTorch compiled with OpenBLAS
(recommended by Arm) and PyTorch compiled with oneDNN optimized with ACL
(labeled as experimental). The docker images with the two backends are available
in [26]. The oneDNN-ACL backend performed 6.5× better than the OpenBLAS one,
and therefore we used it for our experiments. On SKX, we used an optimized version of
PyTorch that exploits the AVX512 vector extension. On EPYC, we used an optimized
PyTorch version that supports the AVX2 vector extension available on the machine.

5.2.2 NN-VARIANT

The original NN-VARIANT kernel from GenomicsBench is based on Clair [80] variant
caller. In turn, this variant caller relies on TensorFlow [37]. Clair uses TensorFlow 1
while Fujitsu provides an optimized version of TensorFlow 2 for the A64FX. For that
reason, we decided to use Clair3 [115] instead (an updated version of Clair that relies on
TensorFlow 2). To execute using GenArchBench’s inputs, we used the Oxford Nanopore
r941 prom hac g360+g422 [11] pre-trained model from Clair3. On Graviton3, we tested
three different TensorFlow backends: TensorFlow compiled with oneDNN optimized
with ACL, using TensorFlow’s Eigen thread-pool for parallelism (recommended by
Arm); TensorFlow compiled with oneDNN optimized with ACL, using ACL’s scheduler;
and Tensorflow compiled with the Eigen backend. The docker images with the three
backends are available in [33]. The Eigen backend performed more than 1.6× better
than the other and therefore it was the one used to run our experiments. We used
optimized TensorFlow versions on SKX and EPYC capable of exploiting the AVX512
and AVX2 vector extensions.

5.3 Algorithmic and Code Optimizations

This section presents the algorithmic and code optimization we performed to improve
the performance of FMI and KMER-CNT on the experimental setup.

5.3.1 FMI

GenArchBench’s FMI version implements three optimizations proposed by Rubén et
al [69]. One of the most called functions in this kernel is backwardExt. To reduce
the overhead of the calls, this function is always forced to be in-lined. FMI uses the
builtin popcount function. This function counts the number of bits set to one in
an integer. None of the tested compilers translates this function to SVE’s population
count instruction. Instead, they use bitwise operations and masks. To force exploiting
SVE capabilities, all calls to builtin popcount are replaced by SVE intrinsics. FMI
performance is heavily affected by memory access latencies. To hide these latencies,
the optimized version of FMI interleaves the execution of several sequences, effectively
performing several memory accesses in parallel. By applying the three presented
optimizations, we improved the kernel performance on both Arm machines by roughly
35%.
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5.3.2 KMER-CNT

Our experimental evaluation shows that the performance of this kernel is heavily affected
by thread migrations. To avoid thread migrations, we ported KMER-CNT from the
Pthreads library to OpenMP and set OMP PROC BIND clause to true before executions.
This change led to more than 4× speedups on both x86 machines when using all
available cores. However, the performance of the Arm machines remained the same.

KMER-CNT relies on two global data structures to store the number of individual
k-mers: an array of 4 bits counters and libcuckoo’s [19] multi-thread hash-map, which
stores 64 bits counters. Each entry of the global array is an 8-bit atomic integer, which
is split in half to create two 4-bits counters. The array counters are updated using
atomic compare-and-swap operation. Once the 4 bits counter of a k-mer saturates,
the following increments are performed in the global hash map, also relying on atomic
compare-and-swaps to update its counters.

Even by avoiding thread migrations, the scalability of the original kernel was poor on
all the machines. It achieved a maximum of 7× and 5× vs. serial execution on the
A64FX (48 threads) and Graviton3 (64 threads), respectively. We decided to implement
two new approaches to try to improve parallel performance. The application divides
the input between the available threads. Each thread iterates through the k-mers of its
part of the input and increments the counter of the read k-mers in the global array or
hash map. Since the input is read sequentially and there is almost no computation to
perform, most of the execution time is spent accessing the global counters in mutual
exclusion.

To reduce contention and improve data locality, we implemented the complementary
approach to the original. Instead of assigning part of the input to each thread, all
threads read the full input but only count part of the k-mers. This way, instead of
having a single global array and hash map, each thread can have a smaller instance of
the data structures and access them without contention.

The original approach uses compare-and-swap instead of fetch-and-add to update the
counters because each 8-bit entry of the array stores two 4-bit counters to save space.
The k-mer size of our inputs is 17. Thus, the global array uses 8GB of memory. Since
we have more than enough memory in all systems, our second approach uses 8 bits
counters instead of 4 bits, doubling the memory requirements. This enables the usage
of fetch-and-add and reduces the number of accesses to the hash map.

The single thread execution time of the kernel did not change with any of the new
versions. Our first approach (private structures) equally divides the possible k-mers
between threads. However, some k-mers are more common in the input, causing
load imbalance between threads deriving in even poorer scalability than the original
kernel. The second approach (fetch-and-add) improves the kernel’s scalability on all
the machines: it runs 2.5×, 1.4×, 3× and 2.3× faster than the original version on
the A64FX (48 threads), Graviton3 (64 threads), SKX (48 threads) and EPYC (64
threads), respectively. Consequently, we used the fetch-and-add approach for the rest
of the experiments.
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6 Performance Characterization

This section presents a detailed performance characterization of the kernels in our
experimental setup. We use the optimized versions of the kernels described in Section 5.
For all of the studies presented, we have annotated the code of the kernels to define their
region of interest, i.e., we only study the part of the kernels dedicated to meaningful
computation. All the results shown in this section have been computed using the large
input of each kernel.

6.1 Single Thread Performance

Figure 3 shows the single-thread execution time of each kernel on the experimental
setup. The results are normalized to the performance on the A64FX.

ABEA BPM BSW CHAIN DBG FCHAIN FMI KCNT NNB NNV PILEUP POA WFA Average

Application

0.00

0.25

0.50

0.75

1.00

1.25

N
o
rm

a
li
z
e
d

E
x
e
c
u

ti
o
n

T
im

e A64FX Graviton3 SKX EPYC

Figure 3: Single-thread execution time of GenArchBench’s kernels on the experimental
setup. The results are normalized to the performance on the A64FX. FCHAIN, KCNT,
NNB and NNV are the abbreviations of FAST-CHAIN, KMER-CNT, NN-BASE and
NN-VARIANT, respectively.

The A64FX features significantly fewer out-of-order resources, a smaller memory hi-
erarchy, and higher memory latencies than the rest of the systems. On average, the
former is between 1.9-2.4× slower than the other systems on single-threaded executions.
Exploiting the SVE capabilities of the A64FX helps to reduce this slowdown. SVE
vectorized kernels (BSW, FAST-CHAIN, and WFA) present better-than-average perfor-
mance on the A64FX: BSW performance is similar to the exhibited on Graviton3 and
only 17% worse than the performance on the x86 machines, FAST-CHAIN performs
better than on EPYC, and WFA performs better than on SKX. Note that BSW and
FAST-CHAIN exploit AVX512 on SKX while they leverage AVX2 on EPYC, and that
WFA is not vectorized on the x86 machines. The deep-learning kernels (NN-BASE and
NN-VARIANT) are the worst-performing on this machine.

Graviton3 performs exceptionally well in single-thread executions. On average, it
presents between 1.2× and 1.3× performance speedups with respect to SKX and
EPYC. Graviton3’s SVE vector length is half the A64FX’s (256 bits), and therefore the
performance speedups of SVE kernels over their scalar versions are more modest (see
Figure 2). However, it still presents more than 2× speedup vs. the A64FX on average.
FAST-CHAIN performance on Graviton3 is 1.8× better than on EPYC (AVX2) but
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70% worse than on SKX since it exploits AVX512 (512 bits) on that machine. WFA runs
2.5× and 1.8× faster on Graviton3 than on SKX and EPYC, respectively. In contrast
to the A64FX, the deep-learning kernels (NN-BASE and NN-VARIANT) deliver good
performance on Graviton3, showing speedups of between 3.1-6.2× compared to the
A64FX.

6.2 Parallel Performance

We evaluate the parallel performance of GenArchBench’s kernels using different thread
counts: 2, 4, 8, 24, 48, and 64. The A64FX and SKX implement 48 cores. Hence,
executions with more than 48 threads have only been performed on Graviton3 and
EPYC. In our experiments, controlling thread affinity was mandatory to achieve good
parallel performance on the machines, especially on the A64FX. For most kernels, all
the executions were performed by binding threads to cores. ABEA, NN-BASE, and
NN-VARIANT do not allow full control of thread affinity. Therefore, thread migrations
can occur in these three kernels.

Figure 4 shows the speedup over serial execution achieved by the kernels on the
experimental setup using the previously presented thread counts. Additionally, Figure 5
provides a comparison of the performance obtained using all available cores on each
machine: 48 threads on the A64FX and SKX and 64 threads on Graviton3 and EPYC.
The parallel performance of NN-VARIANT on the A64FX is extremely poor, and
therefore, it is not taken into consideration for the average calculation. The results are
normalized to the performance on the A64FX using 48 threads.

All GenArchBench kernels exploit coarse-grain parallelism. Most of them, except for
KMER-CNT, present little to no interaction between threads. It can be seen that some
kernels achieve near-perfect scaling on all machines. This is the case for BPM, BSW,
CHAIN, FMI, and WFA. For this set of kernels, the normalized plots using 1 thread
and all available cores are extremely similar. It is important to note that Graviton3
and EPYC show some performance gains compared to the other two machines since
the number of available cores is higher.

In ABEA and PILEUP, the full input is read by the master thread and split into smaller
chunks that are dynamically assigned to idle threads. This is the same scheduling
implemented by other kernels, such as BSW. However, the chunks used in ABEA and
PILEUP are significantly bigger, leading to load imbalance. For ABEA, the smallest
grain size assigned to a thread is a whole read. Therefore, in order to improve scalability,
we would need to change the granularity used by the kernel. PILEUP implements a
default chunk size of 100 kbp. Dynamically choosing the chunk size based on the input
would reduce load imbalance. The parallel performance of both kernels should also
improve by using larger inputs. In both kernels, the A64FX presents poorer scalability
than the other three machines, further increasing their performance difference compared
to single-thread executions.

DBG also implements dynamic scheduling and shows good scalability and load balance
on the A64FX, SKX, and EPYC. Runs of DBG on Graviton3 using more than 8 threads
present high variability in contrast to the other machines, resulting in poor scalability
in most cases. Due to this behavior, DBG performance on Graviton3 using all cores is
similar to SKX’s.
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Figure 4: Speedup over serial execution of GenArchBench’s kernels on the experimental
setup. We show the achieved speedup using different thread counts: 2, 4, 8, 24, 48, and
64. The A64FX and SKX 64-threads points are not shown in the figure, since those
machines only implement 48 cores.
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Figure 5: Multi-thread execution time of GenArchBench’s kernels in the experimental
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48 threads on the A64FX and SKX and 64 threads on Graviton3 and EPYC. NN-
VARIANT is not taken into consideration for the average. The results are normalized
to the performance on the A64FX using 48 threads. FCHAIN, KCNT, NNB and NNV
are the abbreviations of FAST-CHAIN, KMER-CNT, NN-BASE and NN-VARIANT,
respectively.

In KMER-CNT, all threads continuously perform random memory write accesses using
atomic operations, resulting in high memory contention and poor scalability. For this
kernel, the A64FX presents the best parallel scalability: a maximum speedup of 20×
with respect to single-thread executions vs. a maximum of 5× on the other machines.
This results in similar performance between the A64FX and Graviton3 when using all
available cores.

NN-BASE does not implement any high-level parallelism. It relies on PyTorch mul-
tithreading [27], which allows using intra-op parallelism (via math libraries like Intel
MKL [17]) and inter-op parallelism. This approach works relatively well on the A64FX
but offers poor scalability on the rest of the systems.

NN-VARIANT presents significant load imbalance even with low thread counts. In
order to improve this, we tried two different scheduling policies: to assign each core
a similar-sized chunk of the input and to assign small chunks to available threads
dynamically. In both cases, the time needed to process the chunks was unpredictable.
Additionally, NN-VARIANT relies on Tensorflow, making it difficult to control the
number of threads used. Besides the kernel’s high-level parallelism, Tensorflow uses
between 1 to 4 threads during the model inference step, degrading parallel performance
when NN-VARIANT uses more than 1/4 of the available threads. The performance of
NN-VARIANT on the A64FX does not improve with any number of threads, resulting
in extremely poor parallel performance compared to the other systems.

Except for BPM and WFA, all kernels read and store the whole input in the main
memory of the master thread. The other threads access the master’s main memory to
read their part of the input. This is an additional problem for memory-bound kernels
on systems with more than one NUMA domain, in our case, the A64FX and SKX, since
access latencies to remote memories are higher and they only exploit a part of the total
memory bandwidth.
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6.3 Instruction Mix Comparison

The instruction mix of an application is used to determine which processor pipelines
and functional units are the most used during its execution. To obtain it, we used the
instruction mix report offered by the Fujitsu Advanced Performance Profiler (FAPP) on
Arm (A64FX) and a modified version of DynamoRIO’s opcode mix tool [13, 46] on x86
(SKX) that divides the executed instructions into different categories (see Appendix A).
The instruction mix offered by both tools is significantly different, so we designed a
mapping from FAPP categories to the categories defined in our modified DynamoRIO
(see Table 4).

Table 4: Instruction mix mapping from Fujitsu Advanced Performance Profiler to our
DynamoRIO categories.

Fujitsu Advanced Profiler Category Aggregated Category
Load (memory) Load
Store (memory) Store
Floating point move Register Move/Manipulation
Element manipulated
Register manipulated
Floating-point (arithmetic) Floating-point
Floating-point conversion
SIMD integer Integer/Logical
Predicated SIMD integer
Other instructions
Branch Branch
Prefetch Other
DCZVA
Cryptographic
MOVPRFX
Math functional

Figure 6 shows the instruction mix of GenArchBench’s kernels in Arm (A64FX) and
in x86 (SKX). The Fujitsu Advanced Performance Profiler does not allow the creation
of child processes, for this reason, we have not been able to compute the Arm in-
struction mix of the Python kernels (NN-BASE and NN-VARIANT). The Register

Move/Manipulation category includes any data movement between registers or manip-
ulation of the contents of a register without performing any arithmetic operation (like
the setz instruction of x86). The Other category includes prefetching, cryptographic,
string, and special Arm/x86 instructions (such as the DCZVA and MOVPRFX instructions
of Arm or the RDRAND instruction of x86).

ABEA and the deep-learning kernels (NN-BASE and NN-VARIANT) are the only kernels
that perform a significant number of floating-point operations. As explained before, we
lack the tools to compute the instruction mix of NN-BASE and NN-VARIANT on Arm,
but as for the rest of the kernels, we expect it to be similar on both architectures. CHAIN
and FAST-CHAIN also perform floating-point operations, but are mainly dominated
by integer, logical, and register move/manipulation instructions. FMI mainly performs
memory operations and is heavy on register move/manipulation instructions on Arm.
On the other hand, KMER-CNT performs near no data movements (although memory
accesses in this kernel are expensive, as shown in Section 6.4). The rest of the kernels
mostly execute integer and logical instructions and between 30% and 40% of data
movement operations.
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Figure 6: Instruction mix of GenArchBench’s kernels on Arm (A64FX) and x86 (SKX).
FCHAIN, KCNT, NNB and NNV are the abbreviations of FAST-CHAIN, KMER-CNT,
NN-BASE and NN-VARIANT, respectively.

6.4 Microarchitecture Bottleneck Analysis

We have studied the microarchitecture bottlenecks of each application using FAPP on
the A64FX, Perf on Graviton3 and EPYC, and Intel VTune Profiler on SKX. Analogous
to the instruction mix, we have designed a mapping from the different profilers and
systems metrics to our microarchitecture bottleneck categories. Table 5 shows such
mappings, utilizing the names of the metrics as defined in each profiler: FAPP detailed
report categories on the A64FX, Perf events on Graviton3 and EPYC, as shown by
the perf list command, and Intel VTune Microarchitecture Exploration metrics on
SKX. We have not been able to compute the microarchitectural bottlenecks of Python
kernels (NN-BASE and NN-VARIANT) on the A64FX, as FAPP does not allow the
creation of child processes. We also lack the tools to compute Memory Stalls and
Core stalls on EPYC and Core stalls on Graviton3. Additionally, we could not
measure stalls due to caches on Graviton3. To overcome this problem, we generated a
hierarchical study: The Memory Stalls and Core stalls metrics are aggregated in a
super-category called Back-End stalls. We computed both the Memory Stalls and
Core stalls on the A64FX and SKX (Back-End stalls = Memory Stalls + Core

stalls), the Memory Stalls and Back-End stalls on Graviton3 (Memory Stalls =
stalls in the main memory only), and the Back-End stalls on EPYC. It is important
to note that performance counters are not standardized between machines, let alone
architectures, so similar metrics may count moderately different events on different
machines. Comparisons between counters of different machines must be seen as rough
estimations of reality.

Figure 7 shows the microarchitecture bottlenecks of GenArchBench’s kernels on the
experimental setup. On average, there are significantly more memory stalls on the
A64FX than on the rest of the machines. While the A64FX has the highest memory
bandwidth, it implements a small memory hierarchy and suffers from high memory
latencies. On the other hand, the bottlenecks on Graviton3 are more similar to those
shown by the x86 machines. ABEA, DBG, PILEUP, and POA are mainly compute-
bound on SKX (we do not have the required data to know if that is also the case on
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Graviton3 and EPYC), but they suffer from a high cache-miss count on the A64FX.
On the other hand, FMI and KMER-CNT, are memory bound on all machines. These
kernels mainly perform random memory accesses and do not exploit temporal or spatial
locality. Thus, they are highly impacted by memory latencies. Kernels such as DBG,
PILEUP, or WFA suffer from a high count of stalls due to bad speculation on x86
systems, especially on SKX, while the bottleneck on Arm is much smaller. Although
this can very well be due to how these stalls are counted on different machines, we
believe that Arm predicated instructions play an important role in this metric. The
number of cycles NN-VARIANT dedicates to useful work on EPYC is small compared
to the other machines, explaining its poor performance compared to other kernels on
this machine. On the contrary, the Useful Work metric percentage of NN-BASE is
considerable on all machines.
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Figure 7: Microarchitecture bottlenecks of GenArchBench’s kernels on the experimental
setup. FCHAIN, KCNT, NNB and NNV are the abbreviations of FAST-CHAIN,
KMER-CNT, NN-BASE and NN-VARIANT, respectively. Grav3 is the abbreviation of
Graviton3.

6.5 Energy Consumption

Figure 8 and Figure 9 show the energy-to-solution of GenArchBench’s kernels on the
A64FX, SKX, and EPYC using, respectively, 1 and all available cores on each machine.
Energy consumption was measured using the Fujitsu power API [62] on the A64FX,
and an in-house library based on the Running Average Power Limit (RAPL) [52] on
SKX and EPYC (see Appendix B). Graviton3 does not expose its energy consumption.
Since there is a large difference between machines, the results of NN-VARINAT were
not taken into consideration for the average calculation. On EPYC we cannot measure
the energy consumption of its DRAM. SKX’s DRAM consumes between 8-10% of the
total energy. Since EPYC has a DRAM similar to the SKX’s, we have added a 10%
extra energy consumption to the measurements on this system (expressed as error bars
in Figure 8 and Figure 9).

The maximum power consumption of the A64FX (120 W) is substantially lower than
the maximum power consumption of the x86 systems: 2×150 W on SKX and 225 W on
EPYC. However, SKX and EPYC are capable of dynamically scaling their frequency
depending on the load of the system (CPU throttling), while the A64FX constantly
consumes power near its peak, even on low usage.
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Figure 8: Single-thread energy to solution of GenArchBench’s kernels on the experi-
mental setup. The results are normalized to the energy-to-solution on the A64FX.
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Figure 9: Multi-thread energy to solution of GenArchBench’s kernels the experimental
setup. The results correspond to executions using all available cores on each machine:
48 threads on the A64FX and SKX and 64 threads on Graviton3 and EPYC. NN-
VARIANT is not taken into consideration for the average. The results are normalized
to the energy-to-solution on the A64FX using 48 threads.

32



The results shown in Figure 8 are highly similar to those presented in Figure 3. On
average, the A64FX consumes 1.7× more than SKX and 2.6× more than EPYC in
single-thread executions. As expected, kernels with good single-thread performance,
such as BSW or WFA, require much less energy to run on the A64FX.

The previous picture dramatically changes when using all available cores on each
machine (see Figure 9). In this scenario, the A64FX consumes 12% less power than
SKX and 1.9× more than EPYC. On the A64FX, BPM, BSW, CHAIN, DBG and FMI
show slowdowns of at least 1.3× compared with the x86 systems. However, those kernels
present similar parallel scalability on the three machines. This results in much better
energy consumption results on the A64FX compared to single-thread measurements,
beating SKX in most cases. BSW and WFA perform remarkably well on the A64FX
and demonstrate substantial energy consumption gains in this processor when using
all available cores, equaling EPYC’s results. The rest of the kernels present different
parallel scalability on the machines. NN-BASE scales better on the A64FX, resulting in
good energy consumption gains compared to SKX. ABEA, PILEUP, and NN-VARIANT
consume less energy on the x86 machines due to better parallel scalability or significant
difference in single-thread performance compared with the A64FX. When using all
available cores, SKX consumes more energy than the A64FX in 9 out of 13 kernels,
while EPYC is more energy efficient when executing most kernels.

6.6 Evaluation of a Real Genomics Pipeline

Finally, we evaluate the performance of a real genomics pipeline that uses some of the
ported kernels presented in this article. For this matter, we use BWA-MEM2 [110]
a read mapping tool (Figure 1-3.a.1) that employs the FMI kernel for the seed stage
(Figure 1-3.a.1.1) and the BSW kernel for the extend stage (Figure 1-3.a.1.3). We use
the optimized versions of the kernels, that have been presented and evaluated in this
work. In our tests, BWA and FMI represent 45% and 34% of the total execution time
of BWA-MEM2, respectively.

For our study, we have used three input datasets, each one with 1.25M reads of different
lengths obtained from real sequencing machines: D3 [30], D4 [32], and D5 [31]. These
reads are aligned against the human genome [14].

Figure 10 shows the performance of BWA-MEM2 using one and all available cores
on the machines of the experimental setup. On single thread executions, Graviton3
and the x86 systems perform similarly, showing over 2× speedups over the A64FX.
When using all available cores, Graviton3 performs 10% better than EPYC, and more
than 30% better than SKX (as can be expected due to the difference in cores). The
A64FX, on the other hand, shows 2× slowdowns compared to SKX. These results
can be easily correlated with the ones shown in Figure 3 and Figure 5. In the results
from GenArchBench, BSW on Graviton3 performed slightly worse than on the x86
systems. However, FMI performed better on Graviton3, and the kernel represents a
higher percentage of the total execution time of BWA-MEM2. Similarly, the A64FX
delivered good performance when executing BWS, but severe slowdowns with respect
to the other machines when executing FMI.

We also evaluate the parallel scalability of BWA-MEM2 using 2, 4, 8, 24, 48, and
64 threads. As presented previously (see Figure 4), BSW and FMI achieved perfect
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Figure 10: Execution time of BWA-MEM2 using 1 core (left) and all available cores in
each machine of the experimental setup (right). We show results using three inputs:
D3, D4, and D5. The results are normalized to the performance on the A64FX using 1
core (left) and 48 cores (right).

scaling when executed standalone as part of GenArchBench. As we could anticipate,
BWA-MEM2 also showed excellent parallel scalability, as presented in Figure 11.
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Figure 11: Speedup over serial execution of BWA-MEM2 on the experimental setup for
three inputs: D3, D4 and D5. We show the achieved speedup using different thread
counts: 2, 4, 8, 24, 48, and 64. The A64FX and SKX 64-threads points are not shown
in the figure, since those machines only implement 48 cores.
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7 Related Work

Outside the field of genomics and bioinformatics, there are many examples of domain-
specific benchmark suites. Some widely known examples are LINPACK Benchmarks [54],
for linear algebra; the GAP benchmark suite [45], for graph processing; or Big-
DataBench [111], for big data.

Focused on genomics, GenomicsBench [105], on which this work is based, is a benchmark
suite that includes 12 computationally demanding kernels from common steps in genome
data analysis. GenomicsBench includes CPU and GPU kernels, targeting the x86 HPC
and Nvidia GPU ecosystem. GenarchBench includes 10 CPU kernels of this suite
and three additional ones. All GenArchBench’s kernels have been ported to the Arm
architecture and, most of them, implement optimizations targeting Arm architectures.
Additionally, GenArchBench includes automatic regression tests to verify the correctness
of the execution of its kernels.

In the spirit of this work, the BioPerf [44] benchmark suite, released in 2005, compiles
DNA and protein analysis applications, such as Blast [42] or FASTA [93], two of the
most widely used aligners at the time. Moreover, it includes three inputs per kernel;
pre-compiled binaries for x86, PowerPC, and Alpha; execution scripts; and simulation
points (Simpoints) to simulate the execution of the kernels. Similarly, BioBench [39],
also released in 2005, offers some of BioPerf’s benchmarks and presents a performance
characterization. Recently, some of the kernels included in BioBench were updated in
BioBench2 [9].

Furthermore, many publications analyze state-of-the-art genomics workloads, algorithms,
and tools. Jason et al. [86] present a review of the steps involved in genome assembly.
Similarly, Mohammed et al. [41] focus on the genome resequencing pipeline. Most
notably, one of the main bottlenecks in genome sequence analysis is read mapping. As
a result, there are many works discussing the algorithms used for this process and its
acceleration on HPC processors [40, 78,116].

Recently, there have been multiple efforts to accelerate widely-used genome analysis
kernels exploiting novel hardware solutions. In particular, Darwin [108] is a genomics
co-processor designed for sequence alignment of third-generation reads. Similarly, Gen-
cache [88] extends the GenAx [59] accelerator by implementing in-cache operators to
accelerate read mapping. Very recently, SeGraM [48] was presented as an algorith-
m/hardware co-designed accelerator for sequence-to-graph mapping. Tony et al. [98]
provide a comprehensive review of state-of-the-art hardware acceleration techniques for
genomics.
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8 Conclusions

This document presents GenArchBench, a porting of 13 computationally demanding
kernels to Arm-based HPC CPUs. All these kernels are extracted from widely used
genomics tools and exploit coarse-grain thread-level parallelism. We have optimized the
kernels to exploit the capabilities of A64FX and Graviton3 processors, including the novel
Arm Scalable Vector Extension (SVE). Moreover, we have performed algorithmic and
code optimizations and adapted them to exploit Arm-optimized libraries. Furthermore,
we have conducted a detailed performance characterization of the kernels on four
different processors: two Arm CPUs (A64FX and Graviton3) and two x86-64 CPUs
(Intel Xeon Skylake Platinum 8160 and AMD EPYC 7742).

Overall, on single-thread executions, Graviton3 performs 1.3× better than the x86
machines. In contrast, the A64FX shows 2× slowdowns compared with the x86 machines.
Compared to their scalar implementations, the SVE-enabled kernels perform between 1.5
and 4.5 times better on the A64FX and between 1.2 and 1.8 times better on Graviton3.
On multi-threaded executions, Graviton3 showed performance improvements between
7% and 32% compared to the x86 systems. In this scenario, the A64FX performed 2.3×
worse than Graviton3.

Most notably, our results highlight that, although the A64FX offers high memory
bandwidth, the system implements a modest memory hierarchy and suffers from long-
latency memory access. In turn, this is translated into inefficiencies and bottlenecks
when executing GenArchBench’s kernels. Despite the fact that only two kernels can be
classified as memory bound, more than half of the kernels spend a considerable number
of cycles waiting for memory data on the A64FX.

Concerning power consumption, the peak power consumption of the x86 systems is
significantly higher than that of the A64FX. However, they implement dynamic frequency
and voltage scaling based on system load to control energy consumption. In contrast,
the A64FX always consumes near its peak power. The A64FX demonstrated good
energy-to-solution results compared to the x86 systems when using all available cores.
Unfortunately, Graviton3 is a closed system and does not expose power consumption
metrics.

To put the performance evaluation results in context, in this work we have evaluated the
performance of BWA-MEM2: a real application that executes two of GenArchBench’s
kernels. BWA-MEM2 performed similarly on Graviton3 and the x86 systems for single-
thread executions. However, Graviton3 showed speedups of between 1.1× and 1.5× over
the x86 machines when using all available cores. In contrast, BWA-MEM2 performed
2× worse on the A64FX than on the other machines.

Although we have presented many optimizations applied to GenArchBench’s kernels,
we can foresee room for improvement, not only for Arm architectures but also for x86.
Similarly, kernels based on the SIMDe library remain to be vectorized since the library
does not support SVE as of today. Moreover, we have observed that deep-learning
Python-based kernels deliver extremely poor parallel performance. Due to the increasing
importance of these types of applications, we believe that we need to focus on improving
their HPC performance. In that sense, we believe that GenArchBench lays down the
bases for future optimizations of genome analysis tools on Arm architectures. We hope
that this benchmark suite can be of great help to bioinformatics software developers
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and computer architects focusing on HPC Arm architectures.
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A Instruction Mix of Applications Using Dy-

namoRIO

DynamoRIO [13,46] is a dynamic binary instrumentation (DBI) framework designed to
be easily extensible. It exports a simple API that can be used to build custom tools to
analyze and modify the behavior of a program as it is running. DynamoRIO works on
various operating systems (Windows, Linux, and Android) and supports the execution
of unmodified applications on several architectures (x86 and Arm). DynamoRIO is the
foundation for widely used tools, such as the Arm Instruction Emulator (ArmIE) [5] or
WinAFL [35].

In this project, we have modified DynamoRIO’s opcode mix tool to obtain the instruction
mix of applications run on x86 systems. The original opcode mix tool outputs the
opcodes and count of the 100 most executed instructions by the application. We
wanted to compute a categorical instruction mix, similar to the one generated by
MICA [22,63], in order to compare it to the instruction mix provided by the Fujitsu
Advance Performance Profiler (Arm).

Table 6 presents the categories of our version of DynamoRIO’s opcode mix tool, along
with a description of the instructions that belong to each category. Our opcode mix tool
outputs the number of executed instructions of each of the presented categories. Since
x86 is a complex instruction set computer (CISC) architecture, a single instruction
may perform operations achieved by several instructions on a reduced instruction
set computer (RISC) architecture, such as Arm. To be comparable against the Arm
instruction mix of an application, the modified opcode mix tool classifies a single
x86 instruction into several categories based on its opcode, and whether it reads or
writes to memory. For example, an arithmetic instruction that reads its operands
from memory will be classified as both Integer/Logical and Store. Additionally, the
Load, Store, Register Move/Manipulation, Floating-Point and Integer/Logical

categories, are further divided into scalar and SIMD subcategories (e.g., Scalar-Load
and SIMD-Load). An instruction is classified as SIMD if it operates with registers
containing more than one operand. This is the case for most instructions introduced
in the following x86 extensions: SSE, SSE2, SSE3, SSSE3, SSE4, XOP, FMA4 and
CVT16, AVX, AVX2, and AVX512.

Category Description
Load Instruction that loads data from memory
Store Instruction that stores data to memory
Register Move/
Manipulation

Instruction that moves data between registers, or that performs
trivial data manipulation, e.g., setting a bit of a register to 1

Floating-Point Instruction that performs a floating-point operation

Integer/Logical
Instruction that performs an integer or logical
(NOT, OR, AND etc.) operation

Branch Instruction that may change the execution path of the program
Other Instruction not classified in any of the previous categories

Table 6: Categories and description of the modified DynamoRIO’s opcode mix tool.

Our version of DynamoRIO’s opcode mix tool is available at https://github.com/
LorienLV/dynamorio.
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B Energy Consumption Measurement Using RAPL

The Running Average Power Limit (RAPL) interface was introduced by Intel in their
Sandy Bridge microarchitecture [51] and by AMD in their Bulldozer CPUs [53]. RAPL
exposes the accumulated energy consumption of several system-on-chip (SoC) domains,
such as cores or DRAMs. RAPL information can be accessed using several methods:
Linux sysfiles, Perf, model-specific registers (MSR), or the AMD RAPL driver.

Linux sysfiles are usually readable without root privileges, so it is the most suitable
method to query the RAPL interface on multi-user systems, like HPC clusters. We
have implemented an abstraction library, called rapl stopwatch, that uses the RAPL
Linux sysfiles, to measure the energy consumption of a region of code over extended
periods of time in multi-thread environments. The user can instantiate a rapl stopwatch,
that works as a regular stopwatch but reports energy consumption instead of time. A
rapl stopwatch can be started, paused, and reset.

Different CPUs expose the energy consumption of different domains. Table 7 shows
the domains that can be accessed using rapl stopwatch. The domains are organized
hierarchically, e.g., the PACKAGE domain aggregates the energy consumption of the CORE
and UNCORE domains. In the case the domain wanted to be read is not exposed in the
target CPU, rapl stopwatch prints an error message.

Domain Description
NODE All the elements of a node (CPU + DRAM)
PACKAGE The packages (chips) of the system
CORE The cores of the chip
UNCORE Every element in the package but the cores

DRAM The main memory

Table 7: Description of the available RAPL domains in the rapl stopwatch library.

The energy uj RAPL sysfile, located in the directory of each domain, stores a numerical
value that represents the microjoules consumed by the domain since the last time the
value overflowed. The user can compute the energy consumed during a period of time by
computing the subtraction between the value stored in energy uj after and before the
period of time. The energy counters can overflow frequently. In the case of power-hungry
systems, such as the presented in this document, after a few minutes. To overcome this
problem, rapl stopwatch implements an internal per-domain 64 bits millijoules counter.
The counters are updated every 30 seconds by a thread using the value stored at the
energy uj file of each domain. This increases the time between overflows by several
orders of magnitude.

Figure 12 shows an example of how to measure the energy consumption of a region of
code using rapl stopwatch.

rapl stopwatch is available at https://github.com/LorienLV/rapl_stopwatch.
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// Prepare the library to start measuring energy using RAPL sysfs

// files.

int err = rapl_energy_api_init ();

if (err) {

fprintf(stderr , "Error␣initializing␣the␣API\n");

return 1;

}

// Instantiate a rapl_stopwatch

rapl_stopwatch_t rapl_sw;

rapl_stopwatch_init (& rapl_sw);

// Start measuring energy.

rapl_stopwatch_play (& rapl_sw);

do_work ();

// Stop measuring energy.

rapl_stopwatch_pause (& rapl_sw);

// Get the energy consumed during the work in the full node.

uint64_t count = 0;

err = rapl_stopwatch_get_mj (&rapl_sw , RAPL_NODE , &count);

if (err) {

fprintf(stderr , "Error␣reading␣the␣counter\n");

return 1;

}

printf("mJ:␣%" PRIu64 "\n", count);

// Destroy the rapl_stopwatch.

rapl_stopwatch_destroy (& rapl_sw);

// Destroy the RAPL API.

rapl_energy_api_destroy ();

Figure 12: Example of how to measure the energy consumption of a region of code
using the rapl stopwatch library.
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D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

43

https://github.com/efficient/libcuckoo
https://zenodo.org/record/1172816/files/Loman_E.coli_MAP006-1_2D_50x.fasta
https://zenodo.org/record/1172816/files/Loman_E.coli_MAP006-1_2D_50x.fasta
https://github.com/nanoporetech/medaka
https://github.com/boegel/MICA
https://github.com/nanopore-wgs-consortium/NA12878
https://github.com/nanopore-wgs-consortium/NA12878
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://datasets.pacb.com.s3.amazonaws.com/2014/c_elegans/list.html
https://hub.docker.com/r/armswdev/pytorch-arm-neoverse
https://hub.docker.com/r/armswdev/pytorch-arm-neoverse
https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html
https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html
https://github.com/simd-everywhere/simde
https://github.com/simd-everywhere/simde
https://github.com/rvaser/spoa
https://www.ncbi.nlm.nih.gov/sra/SRX020470
https://www.ncbi.nlm.nih.gov/sra/SRX206890
https://www.ncbi.nlm.nih.gov/sra/SRX207170
https://hub.docker.com/r/armswdev/tensorflow-arm-neoverse
https://hub.docker.com/r/armswdev/tensorflow-arm-neoverse
https://github.com/waveygang/wfmash
https://github.com/waveygang/wfmash
https://github.com/googleprojectzero/winafl
https://doi.org/10.1038/35087627
https://www.tensorflow.org/


[38] A. Ahmadi, A. Behm, N. Honnalli, C. Li, L. Weng, and X. Xie, “Hobbes:
optimized gram-based methods for efficient read alignment,” Nucleic Acids
Research, vol. 40, no. 6, pp. e41–e41, Dec. 2011. [Online]. Available:
https://doi.org/10.1093/nar/gkr1246

[39] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W. Tseng, and
D. Yeung, “Biobench: A benchmark suite of bioinformatics applications,” in IEEE
International Symposium on Performance Analysis of Systems and Software, 2005.
ISPASS 2005. IEEE, 2005, pp. 2–9.

[40] M. Alser, Z. Bingöl, D. S. Cali, J. S. Kim, S. Ghose, C. Alkan, and O. Mutlu,
“Accelerating genome analysis: A primer on an ongoing journey,” CoRR, vol.
abs/2008.00961, 2020. [Online]. Available: https://arxiv.org/abs/2008.00961

[41] M. Alser, J. Lindegger, C. Firtina, N. Almadhoun, H. Mao, G. Singh,
J. Gomez-Luna, and O. Mutlu, “From molecules to genomic variations:
Accelerating genome analysis via intelligent algorithms and architectures,”
Computational and Structural Biotechnology Journal, vol. 20, pp. 4579–4599, 2022.
[Online]. Available: https://doi.org/10.1016/j.csbj.2022.08.019

[42] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local
alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410,
1990.

[43] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
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