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1
Summary

This work documents an implementation of a fibre reorientation model, or remod-
elling formulation, on the basis of a fibre-reinforced hyperelastic material. Further-
more, two models are considered to represent the mechanical deformation of the
fibres themselves: exponential and Worm-Like Chain (WLC). The fibre behaviour
was carried along to a macro-scale response by the microsphere approach for mul-
tiscale modelling. The fibres are embedded in a ground substance represented by
a NeoHookean isotropic strain energy function.

In addition to the fibre reorientation at a single point, we also studied how
this reorientation propagates in space as one moves away from a boundary of pre-
scribed displacement, where the whole process is initiated. It is hypothesised that
the anisotropy gain implied by remodelling confers stiffness to the material, and
so its propagation in space leads to increased stresses in the direction of prescribed
displacement.

The geometry used to study the implemented model consists of a plate with
two holes; they represent two neighbouring contractile cells, whereby the space in
between them was sampled to see the evolution of stress components and of an
anisotropy evolution parameter.

This scenario is of relevance in, for instance, the study of the Long Range Force
Transmission (LRFT) phenomenon, which attempts explaining the observed cell
alignment and matrix stiffening in connective tissues. LFRT is associated to cell
patterning during development of muscle and tendons, but also to life threaten-
ing conditions such as cancer propagation, pulmonary fibrosis and liver cirrhosis.
One initiator of the LFRT phenomenon is the contractile deformation of cells like
fibroblasts; this prescribed deformation simultaneously elicits reorientation of col-
lagen fibres, thus rendering the extracellular matrix anisotropic.

Keywords: Collagen fibre remodelling, connective tissue mechanics, micro-
spheres and remodelling, hyperelasticity and internal variables.
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2
Introduction

2.1 Mechanics of Fibre-Reinforced Soft Tissues

2.1.1 General Aspects

The formulation of mathematical models to study the mechanical behaviour of
fibre-reinforced soft biological tissues takes place mostly in the frame of continuum
mechanics of hyperelastic, anisotropic materials. It allows a separate formulation
of strain energies for the volumetric deformation, the isotropic ground substance
and the anisotropic contribution from a set of fibre families. Once here, however,
there has been a series of approaches, mainly marked by capturing the mechan-
ical behaviour of the reinforcing collagen fibres at the molecular lever, and then
conveying these micro-models to a macroscopic-level response [15]. Some call this
process mathematical homogenisation [35], and it encompasses a wide variety of
modelling approaches to multi-scale phenomena.

Although hyperelastic models are usually assumed to be incompressible, the
observed response of anisotropic tissue to hydrostatic loading motivated the for-
mulation of models in which the strain energy contribution from the fibre phase
depends on the whole set of stress invariants [53]; this forces to consider explicitly
a volumetric strain energy. By the same argument, other study proposes a model
whereby the isotropic matrix is poro-viscoeleastic, while the fibre contribution re-
mains dependent on the isochoric part of deformation tensors only [40]. In this
case, the claim is that such approach appropriately models the response of tendons
and cartilage present in large joints, in a similar way to how porous materials -soil
for instance- interact with fluids that can seep through their volume [19].

While there are two main fibrous components relevant to the behaviour of con-
nective tissue, elastin and collagen, the latter makes up the most fraction and
behaves as load carrying member [5]. Elastin is less stiff than collagen, and con-
tributes to the spring-back reaction of tissue to external stretching. It is regarded
as an intrinsic component of the isotropic extracellular matrix, and therefore in
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CHAPTER 2. INTRODUCTION 7

charge of determining its elastic properties [14]. It is usual modelling it using the
Neo-Hookean strain energy function.

Accounting for fibre contribution to strain energy in terms of invariants of the
isochoric part of stress and deformation tensors is usual, but it is not the only
approach applied to acceptable models. One such case considers the stress as a
linear combination of nth-order derivatives of the strain energy, each multiplied by
deformation invariants of the corresponding same degree [32]; this makes disper-
sion measures be easily incorporated, and their effects are thus deemed as special
cases of the proposed framework.

2.1.2 Microspheres, fibre properties and remodelling

One important aspect of modelling the mechanical response of the tissue is that
of linking the models at the microscopic, molecular level of the fibre constituents
to the macroscopic response. The microscopic-scale models can be either 1D rep-
resentations of molecules or geometrically simple assemblies thereof; macroscopic
response is a continuum mechanics description of matter in 3D space, at a much
larger size scale. One strategy is the so-called microsphere approach, whereby a 1D
model of the mechanics at molecular level is but a member or fibre of a set that fol-
lows some given statistical orientation distribution function (ODF) [2]; this ODF
is, in turn, a key component of some modelling efforts of fibre dispersion about a
preferred direction [31]. The set of accordingly dispersed fibres is then averaged
by integration over a unit sphere using an quadrature-like method; the choice of
discrete directions and their weights can significantly influence the accuracy of the
predictions made with such models [2, 51]. Furthermore, the mechanical contri-
bution of a fibre to the 3D nature of the continuum is obtained by postulating
that the strain energy function ψ is even with respect to a vector ri associated to
each fibre [29]. Hence, this dependency can be set forth in the form ψ(...ri ⊗ ri);
this dyadic product approach has been used in modelling works, and referred to
as structural tensor; for instance, in the context of fibre dispersion effect on the
behaviour of arterial layers [23].

As regards modelling the behaviour of individual fibres, there are two main-
stream approaches: phenomenological and microstructural. The former follows a
simplified, exponential-like description of observed load-deflection tests in a vari-
ety of biological tissue samples [22]. It can take many forms given by the choice of
several empirical constants, what nonetheless makes it difficult ascribing a precise
physical interpretation [34]. Meanwhile, an inverse tangent function, which may
resemble an exponential evolution for certain parameter values, has been shown
to explain a high percentage of variability in a statistical study of mechanical be-
haviour of thoracic and abdominal aortas [43]. Recently, attention has been drawn
to the fact that anisotropy models that use exponential-like strain energy functions
for fibres can lead to prediction of unphysical deformations, such as transverse ex-
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pansion in uniaxial tensile tests [20].

As for the microstructure-based models of fibre behaviour, one seminal work
is the modelling of the macromolecular network of rubber compounds as an eight-
chain model, whereby individual polymer chains are symmetrically laid out in a
paralellepiped [4]. This model makes a direct relationship between its micro- and
macroscopic measures of stretch, a fact that establishes a further relevant cate-
gorisation: affine and non-affine deformation models. Is already recognised that
the latter reproduces observed macroscopic deformations with more precision, par-
ticularly in non-uniform deformation conditions [42]. The contributions to strain
energy from the molecular features of the collagen fibres can be derived from
statistical mechanics principles, whereby a probability distribution of certain pro-
posed configurations is enforced [37]. The eight-chain model is generic in the sense
that it admits the formulation of special cases, such as orthotropic, 1D scenarios
[2, 50]. In addition, this model has also gained popularity thanks to the several
standard approaches from statistical mechanics and probabilistic theory that can
be applied to the representation of molecules, and the possibility to turn to a va-
riety of dimensional-scaling arguments to convey continuum models of matter [48].

The remodelling of fibre reorientation can turn to the evolution of parameters
of the ODF or to the explicit evolution of the orientation of the fibres themselves,
as done in this work (i.e. ODF ρ = 1). Moreover, in the context of the micro-
sphere approach to modelling, there is a direct association between the direction
of the fibres and those of the unit vector used for quadrature integration over the
unit sphere [50]. In some formulations, the evolution is driven by some measure
of the deformation, an approach which can also be applied to the combination of
fibre reorientation and tissue growth [49]. Other models rotate a structural tensor
by using a thermodynamics-defined driving force [39], thanks to the fact that the
evolution of internal variables in hyperelastic models is associated to a dissipation
of energy which can be tracked during calculations [29]. When deformation drives
the reorientation of fibres, the difference between the principal stretches of a de-
formation measure and those from a structural tensor defined in terms of a set of
fibres is the main factor that defines the direction of remodelling and the rate at
which it happens [27]. Time integration scheme and consistent linearisation to ob-
tain the tangent moduli are the main features of producing a specific formulation.

Yet another way to account for the role of fibre orientation on the stiffening of
the material on a preferred direction is proposed by Wang et al. [74]. Here they
formulate a continuum, not-multiscale model of fibrous tissue whereby a discrete
network of fibres is explicitly discretised, and the orientation of each is made part
of the element information. Then, if that direction matches one of the principal
axes of stress -within some tolerance-, then the material is automatically endowed
a larger stiffness along that direction. The model seems designed to purportedly
mimic the force transmission phenomenon.
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A common factor to any effort at modelling the mechanics of fibrous biological
tissues is that they are constrained by the numerous tissue morphologies present in
the body, and to the possibility of measuring their orientation accurately. For in-
stance, in certain zones of the brain, the orientation of axons determine a preferred
orientation of localised sets of reinforcing fibres [24], whereby careful establishment
of initial anisotropy and quantification of fibre dispersion parameters are crucial
to obtain dependable model results. Other model considers only one parameter
for the fibre orientation as part of a crack-propagation problem that represents the
tearing of an aorta sample [75]; energy release is then used as an output calculation
that traces the evolution of tissue tearing, whereas the ground substance is shown
to counteract as a tearing-arrest agent. A mechanical model of the aorta section
considers one of its layers with an explicit representation of a dispersion parameter
for the reinforcing fibres [23]; these also contribute to a pre-stressed state observed
when longitudinally cutting open a tubular specimen [68].

2.2 Fibre Orientation and Tissue Behaviour
As already mentioned, the information on fibre orientation in a tissue sample is
important in any attempt at modelling; but experimental challenges associated to
its measurement pose restrictions to the phenomena that models should address.
For instance, there are questions about defining a relevant fibre-length scale in
relation to the phenomena to be modelled and to the image analysis tools avail-
able [65]. Also, specialised approaches to image processing aimed at producing
quantitative data about fibre orientation can also be required [38]. Then again,
some studies on mathematical modelling of fibre reinforced ground substance use
a uniform distribution of fibre orientations for their analysis [2]. In any case, the
general phenomenon accepted for any modelling approach in the case of fibre re-
inforced soft tissues is that collagen fibres are the main load-carrying members
[77]; their individual properties and alignment determine the mechanical proper-
ties that mediate load-deformation behaviour and mechanical failure.

Fibre orientation, however, is not a condition that is given at the start of any
biological process and remains static, but one that can change due to mechanical
stimulation; moreover, mechanical stimulus triggers a feedback scenario whereby
force transmission in between cells activates intracellular mechanisms that, in turn,
promote changes in their extracellular environment; these changes themselves ef-
fect, finally, fibre reorientation [25]. In connective tissues in between muscular
fibres, originally crimpled bundles of collagen fibrils get aligned by the strain in-
duced by stretching sarcomeres [57]. Also, stress concentrators force the alignment
of fibres, as tested in a notched section of porcine, aortic sample [59]. Then again,
fibre reorientation and stiffening, though experimentally evident, may not be rel-
evant in the viscoelastic behaviour of the tissue they are embed in [58].
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At the molecular level, the structural features of certain types of collagen fi-
bres are relevant to the macroscopically observed mechanical behaviour of tissues
[54]. One study showed that, as tissue is stretched, there is first a macroscopic
straightening of fibrous kinks only later followed by such unfolding of constitut-
ing molecules [21]; the macroscopic stretching of tissue, however, is much larger
than that of the molecules. Other study confirms the idea that the axis of fibrils
coincides with the direction of the underlying molecules along which there is a
higher stress response under nanoindentation [76]. Nonetheless, collagen fibres in
connective tissues that are observed as narrow film bands seem to be isotropic, but
still with highly differentiated mechanical properties with respect to those from
the tissue sample they are embed in [79]. Cyclic loading, meanwhile, is capable of
bringing about changes at molecular level, namely deposition of insoluble elastin
onto collagen, which are associated to an observed increase in tissue stiffness and
strength [36].

2.3 A Context: Long-Range Force Transmission in
Tissues

Long Range Force Transmission (LRFT) in between cells of connective tissues,
particularly fibroblasts, has long been documented [26, 63]. This phenomenon is
related to stimulation of internal processes to the cells thus involved [9]; cell pat-
terning scenarios, such as those underlying development of cartilage and support
tissues [66, 71]; and participation in the force transfer in muscular tissues [46].
Furthermore, some harmful biological processes may also be influenced by this
kind long-range mechanical stimuli, such as tumour development [18].

As with any other solid continuum structure, transmission of forces between
two points in it, whereby a displacement is prescribed at such locations, takes
place by stiffening of the material in between: the larger the stiffness, the higher
the value of a force thus transmitted. However, to speak of a force transmission
as a phenomenon of interest, there must be a markedly orientated stiffening effect
in specific regions of the solid.

A first, basic stiffening effect comes from non-linear stress-strain behaviour of
biological tissues. In hyperelastic materials is typical to have growths of expo-
nential form, so that a stepped application of a prescribed displacement at points
A and B will turn neighbouring regions progressively stiffer. Eventually, the ma-
terial line in between A and B will become more stretched than other places of
the domain, and so a preferential stiffening occurs, to which a differentiated force
transmission ensues.

Given that, in addition to isolated cells, connective tissues consist of a ground
substance which embeds a wide variety of fibre-like structures [41], this first mech-
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anism of stiffening would turn to the isotropic nature of the ground substance
itself. However, its contribution to the stiffness of the connective tissue seems
not relevant, at least in animal samples of ligament and muscular fascicle [28].
Nonetheless, in a study, researchers artificially stimulated the the local stiffening
of a hydrogel sample by cross-linking its polymer units [80]. This locally stiffened
hydrogel, which mimicked the ground substance, led to the conclusion that such
stiffenning can be relevant to certain mechanosensing processes in stem cells, which
reside in embryonic connective tissue.

A second and more effective mechanism for stiffening is the fibrous second
phase in the ground-substance matrix. Although first considered analytically in
the design of composites for structural applications, the role of fibres on enhancing
material stiffness and stress transfer thereof is also acknowledged and studied in
the case of living matter [56, 72]. In this case, however, the effective mechanism
by which fibres contribute to the material stiffness is not just their presence but
the interaction between individual fibrils. This interaction takes place by chemical
bonding of the constituent molecules of the fibres either naturally, through binders
secreted by effector cells, or by external addition of reagents that reversibly attach
to the fibrils. Furthermore, said interaction has also been considered in the context
of ageing processes [8]. In particular, there are two chemical binding processes, one
of which takes place during growth and maturation phases of living tissue, while
the other one prevails during ageing. The latter is responsible for the stiffening of
tissues to an extent at which it is considered deleterious.

Apart from fibre interactions by molecular binding, an important factor in the
stiffening of tissues is the orientation of their fibres [74]. In one scenario, this
reorientation also stimulates an increase in stiffness of the cells embedded therein
[67]; this happens along the prevailing direction of the fibres, and the result is a
stiffened tissue altogether. In other, related application contexts, fibre orientation
is a strategy applied to tissue repairing with artificial, carbon nanotube scaffolds,
whose geometric layout stimulates certain patterns of cell growth [52]. Also, soft
robotics applications [47] turn to the same strategy: fibre-reinforced elastomers are
designed to create highly controlled, directed motion and exertion of force. This
has found applications in the creation of orthopaedic devices [6] and in procuring
ventricular assistance in blood-pumping devices [55].

2.4 Work performed and organisation
In this work we consider a hyperelastic-anisotropic model of biological, connective
tissue. The ground substance is modelled as a Neo-Hookean isotropic material,
whereas for the anisotropic contribution to the strain energy function we consid-
ered two cases: an exponential and then a Worm-Like Chain (WLC) model. These
turn to the microsphere approach to connect micro-scale description and macro-



CHAPTER 2. INTRODUCTION 12

scale continuum behaviour. Chapter 3 lays out the kinematic and the stress-and
elasticity tensor foundations, whereby we establish the way in which we use the
strain energy functions and the derivatives to be implemented in a user-defined
subroutine facility provided by Abaqus™. Also, relevant details of the microsphere
approach to modelling are commented, as well as those related to the model for
fibre reorientation; there, we used the model proposed by Menzel et al. [50], which
starts from a isotropic, spherical bundle of fibres, and disregards an Orientation
Distribution Function, so that ODF ρ = 1 in this work. Section 3.4 of chapter 3
presents the main features of the mesh employed, which had to be created with a
different tool to that of the finite element method solver proper; also, some notes on
postprocessing are exposed, for, again, external tools were used to generate results;
and then we comment on the main characteristics of the user-defined subroutine
UMAT, where the strain energy functions, the stress and elasticity tensor and the
updating of fibre orientation are implemented. Chapter 4 starts with an analytic
solution to the 1D uniaxial tension case, whereby the main effects of individual
fibre model and of the remodelling formulation parameters on stress σxx and on
the amount of remodelling as indicated by a parameter proposed by Menzel et al.
[50] are exposed. The second part of this chapter presents some numerical results,
whereby we start with the simulation of a simple shear test and then consider the
case of a plate with two holes, where a radial contraction is prescribed; these tests
were run for a number of combinations of fibre model and remodelling parameter
values.



3
Methods

3.1 Essential Kinematics
Figure 3.1 shows the kinematics of a material body B, which is a closed set of ma-
terial points. Here, κ0 is a function of B that maps the set of its material points to
the coordinates they occupy in space at the beginning of the deformation process;
κt does the same mapping at a time t thereafter. The motion is characterised by
the expression x = χ(X, t), where the motion function χ represents the transfor-
mation χ : κ0 −→ κt. This mapping relates the position vector X of a material
point belonging to B in configuration κ0, to its current position x corresponding
to configuration κt.

Figure 3.1: Kinematics of body B motion.

The deformation gradient F is defined as the material gradient of the deforma-
tion map χ(X, t). It is a second order tensor describing the motion of continua.

F = ∇χ(X, t), F =
∂x

∂X
, FiJei ⊗ eJ =

∂xi
∂XJ

ei ⊗ eJ. (3.1)
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Furthermore, J := detF is the Jacobian of the deformation tensor, and can be
used to represent a volume-preserving deformation constraint by setting J = 1.
This one is characteristic of incompressible materials [29]. The deformation tensors
employed in this document are defined on the basis of F and its volume-preserving
counterpart F = J−1/3F.

Strain is a definition based upon measurable deformation quantities, such as
elongation of rectilinear material segments or change of angle between two ma-
terial segments that are originally perpendicular to each other. Moreover, such
definitions must be unaltered by superimposed rigid body rotation [29].

The strain tensor used here is the right Cauchy-Green deformation tensors, C
and its volume-preserving fraction C. Its original definition is cast terms of the
deformation gradient F, shown by Equation 3.2.

C = FTF, C = F
T
F (3.2)

C is a strain measure referred to the original configuration κ0(B) and is par-
ticularly suited to formulating constitutive equations for large strain elasticity in
the context of hyperelasticity. From the point of view of computational implemen-
tation using the finite element method, however, a strain measure related to the
current configuration is preferred. In actual practice, commercial finite element
software that allows implementation of user-defined constitutive equations offer
the analyst a programming interface; in it, he/she can write subroutines for the
calculation of stress and elasticity tensor expressions for a prototype quadrature
point. Part of the task in writing such a user defined subroutine is casting the
resulting expressions in tensors associated to current configuration.

The ratio of the length of a material segment belonging to current configuration
κt(B) to that corresponding to the not-deformed one κ0(B) is called stretch ratio
λ, and is a suitable measure of deformation from the point of view of experimental
characterisation of materials and of proposing constitutive equations. Formally, λ
is the Euclidean norm of a vector λλλ that is the result of the action of F upon a
unit vector a0 which belongs to κ0(B), as Equation 3.3 indicates.

λ = |λλλ| = Fa0 (3.3)

In our work, fibre orientations ri take the place of the aforementioned unit
vector a0, and allow using their individual stretch λi to represent 1D, micro-scale
inspired strain energy functions. Their correspondence to a 3D quantity can be
achieved by use of so-called structural tensors, which are set out as dyadic products
(i.e. ri⊗ri). Furthermore, this 3D quantity is intended to be part of a continuum,
whereas the original 1D counterpart is valid at the microscale only. Such bridging
of scales is called homogenisation, and this work resorts to a specific form of it
called microsphere modelling. This approach is presented in section 3.2.3.
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3.2 Hyperelastic Materials

3.2.1 Components of Strain Energy Function

Hyperelasticity is a theory that allows producing relationships between stress and
strain with the aim of characterising the mechanical behaviour of elastic materials
undergoing large deformations. Here, a strain energy function ψ is usually cast in
terms of the right-Cauchy Green tensor C or its invariants.

The main feature of strain energy function ψ is the additive decomposition in
volumetric and volume-preserving -or isochoric- contributions, ψ = ψvol +ψich. As
regards the volumetric part of the strain energy, the definition J = detF implies
the expression ψvol = ψvol(J). On this basis, these models must comply with
the normalisation condition ψvol(1) = 0 and, then, fit experimental results with
as few empirical parameters as possible; moreover, these should convey a physical
interpretation. Then again, if the material is incompressible, there is no volumetric
strain energy function, and the stress contribution is just the hydrostatic pressure
p times the identity matrix. In that regards, the implementation used in this work
allows considering a compressible matrix -though this condition was not employed
actually-, whose strain energy function is given by Equation 3.4. Incompressibility
can be enforced by using a large value for the parameter κ therein.

ψvol(J) =
2J

κ
(
J

2
− 1), (3.4)

Regarding ψich, it is also additively split into an isotropic ψiso and an anisotropic
ψani contribution parts; for the former, we use the Neo-Hookean strain energy func-
tion that represents the ground substance, and it is given by Equation 3.5, where
I1 is the first invariant of C and C10 is an empirical, material dependent parameter
directly related to its stiffness.

ψiso = C10(I1 − 3) (3.5)

Meanwhile, the specific definition of ψani can follow different approaches. In
general, they start from the definition of a structural tensor as the dyadic product
of unit, material vectors a0. Sometimes, these products a0 ⊗ a0 are used to for-
mulate special invariants of deformation tensors [29]; others multiply said product
by other terms intended to capture features like fibre dispersion [2]. For instance,
Gasser et al. [23] propose the concept of Generalised Tensor H := a0 ⊗ a0; the
strain energy function is then the product of H and an Orientation Density dis-
tribution Function (ODF) ρ of a family of i = 1...n fibres. This is centred around
a preferred orientation given by the unit vector a0 in the reference configuration.

Another approach proposes strain energy functions at the individual fibre level
[2], what enables consideration of phenomenological and of micromechanical mod-
els of collagen fibre behaviour. In this approach the strain energy function for a
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family I of i = 1...n fibres, i.e. ψi
f , is expressed as the average over a unit sphere

U2 of n fibres per unit volume times the ODF ρ times a strain energy function of a
single fibre. In this work, however, we consider that fibres start from an isotropic
state, i.e. they are uniformly distributed over the surface of a sphere, and do not
turn to an ODF to establish its distribution at any time throughout the analysis.
In other words, ρ = 1. Furthermore, we also consider only one family of fibres, so
that the resulting strain energy function is as shown in Equation 3.6.

ψani =
∑
i

< nψi
f (λ) >, < nψi

f (λ) >=
1

4π

ˆ
U2

nψi
f (λ)dA (3.6)

3.2.2 Constitutive models for individual fibre behaviour

Generally speaking, it is assumed that fibres do not oppose compressing action,
so that their strain energy function equates zero whenever λ < 1. For λ ≥ 1,
there are at least two expressions representing the energy accumulation according
to the amount of stretching [2]: the exponential or phenomenological model, that
imitates the observed resistance in the stretching of rubber-like materials; and the
Worm-Like Chain model (WLC), that relies on a micromechanical model inspired
on the molecular structure of the collagen fibres.

Exponential model

In this case the strain energy function of ith fibre is given by Equation 3.7 [2, 30].

ψi
f =

k1

2k2

[exp(k2[λ2
i − 1]2)− 1] (3.7)

A simple plot of an exponential function of the form given in Equation (3.7)
shows that the material parameter k1 just scales the response at every value of
stretching λi, whereas an increase k2 forces most of the response to take place
at the largest values of stretch, see Figure 3.2. This could be use to fit experi-
mental observations like those reported by Roach et al. [60], whereby collagen is
considered very stiff and thus contributes little to tissue stresses at low stretches,
much unlike elastin fibres; at high stretches, the response is almost exclusively
due to collagen, and so small stretch increases in this region bring about large
stresses. The aforementioned role of k1 could be linked to the initial slope of the
stress-stretch curve, a parameter employed by some researchers to refer to different
tissue conditions [1, 16, 69].

Worm-Like Chain (WLC) model

In a WLC approach the collagen fibre is modelled as a discrete-point assemblage
that represents one or more of its constituent molecules. The principles of statisti-
cal mechanics can be used to give mathematical form to the strain energy function.
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Figure 3.2: Effect of parameters k1 and k2 in an exponential function.

In particular, a probability distribution function of the most likely configuration
is laid out, upon which a function for the energy associated to changing that con-
figuration emerges. In this work we use the specialisation of the eight-chain model
from Arruda et al. [4] to transversely isotropic materials. This particularisation
produces a strain energy function for a 1D stretching of the fibre, according to
Equation 3.8 [2, 3].

ψi
f =

nKΘL

4A

(
2
r2
i

L2
+

1

1− ri/L
− ri
L
− lnλ4r2

0

4r0L

[
4
r0

L
+

1

[1− r0/L]2
−1

]
−ψr

)
. (3.8)

In Equation 3.8 B := 1
4
nKΘr0/A is taken as a material dependent parameter

[2]; r0 is the length of the ith non-stretched molecular chain -here one molecu-
lar chain represents one fibre, according to the affine deformation concept- and
L is the maximum length attainable by a chain. Furthermore, ri := λir0; and
ψr = 2r2

0/L
2 + [1− r0/L]−1− r0/L is an energy term which accounts for a nonzero,

initial strain energy at zero stretch. It is important to note that r0 and L pose a
limit to the stretch that each chain can have in this model, namely λmax = L/r0.

3.2.3 The microsphere modelling approach

It is a numerical homogenisation technique whereby models of matter at mi-
crostructural level can be gathered into an equivalent contribution valid at the
continuum level. At the micro-scale level, discrete features of matter such as
molecular structure are the subject of direct modelling. At that size scale, this
way of addressing material modelling takes the form of 1D representations of rel-
atively simple assemblies of chain molecules based on kinetic theory or statistical
mechanics, or just continuum 1D, rod-like elements following a phenomenological
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response of matter.

The microsphere approach can be seen as based on the microplane concept,
whereby direction-dependent response of materials is captured by considering a
polyhedron at every quadrature point in a finite element scheme. According to
[12], the normal to the polyhedron facets represent the response of the material in
that specific direction, in what would be a micro-scale interpretation of the mate-
rial behaviour. To recover an equivalent macro-scale response, the polyhedron is
circumscribed into a unit sphere. The segments between the sphere centre and the
polyhedron vertices and mid-edge points are the quadrature vectors for integration
over the sphere.

There are several criteria as to the quadrature directions that lead to optimum
integration [7, 10] in the sense of the accuracy obtained given a number of integra-
tion directions, and of how this ratio depends on proper selection of such directions
and on the nature of the function being integrated.

In the context of the microsphere approach, the unit sphere U2 is addressed
directly, without resource to the aforementioned polyhedron, and the integration
directions are associated to the physical fibres of the biological tissue [50]. Here,
a typical part of the integrand is an orientation distribution function (ODF) ρ,
which is a continuous, spherical function, the Bingham model being one such case
[62]. Here, the accuracy of the integral is significantly influenced by the choice of
the set of integration directions [2].

As mentioned earlier, in this work we employed a uniform distribution of fi-
bres, i.e., ODF ρ = 1, so that application of the microsphere approach consists
of the numerical integration of the expression in Equation (3.6). To be specific,
we recognise that the stretch λ is both argument of the function to be integrated,
and function of the fibre orientations r. Then, the integration takes place at every
quadrature point of the continuum formulation, in a finite element context, and
is the sum of the function to be integrated evaluated at specific points within the
domain times a corresponding weight. In particular, we used a set of 184 integra-
tion directions also uniformly spaced over the sphere surface, following the work of
Alastrue et al. [2]. In this way, the integration scheme is that shown in Equation
(3.9).

< g(r) >=

ˆ
U2

g(r)dA ≈
n∑
i

wig(ri) (3.9)
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3.2.4 Calculation of stress and elasticity tensor

Stress tensor

Stress is defined as the ratio of internal force vector at a material point to the
oriented unit area element. If its orientation unit vector is n, and the force per
unit area, or traction, is denoted as t, then the Cauchy stress tensor σ is defined
by Equation 3.10. On this basis, Cauchy stress is a measure associated to current
configuration, and is the one used to cast actual results in almost any engineering
analysis.

t = σσσn. (3.10)

Multiplication of σσσ by the determinant J does not affect the properties of a
stress tensor, and is indeed another stress measure, called Kirchoff stress τττ , again
related to configuration κt(B), Equation 3.11. For this work, the original result of
the first derivative of the strain energy contribution from reinforcing fibres is cast
in this stress measure [2].

τττ = Jσσσ (3.11)

Nevertheless, when reference is made to the fibre orientation ri before it is
acted upon by the deformation gradient tensor, as was the case in our work, the
stress measure thus produced is the second Piola-Kirchoff. Equation 3.12 indicates
its relation to the Cauchy stress.

S = F−1P, S = JF−1σσσF−T (3.12)

Stress tensor S does not admit a straightforward interpretation from the point
of view of the verbal definition of stress [29]; the purpose of its definition is to assist
the implementation of numerical solution to problems with hyperelastic materials.

Stress tensor comes from differentiation of the strain energy function with re-
spect to some strain measure. The formulations will be presented in terms of
stress and strain measures referring to the current configuration, while some parts
of the actual implementation used in this work may turn temporarily to measures
associated to the material configuration.

The main feature is the volumetric-isochoric additive split of the strain energy:
ψ(b) = ψvol(J) + ψich(b). Although the material is considered incompressible in
this work, the formulations have an explicit term for ψvol; here, incompressibility
is enforced by setting a large value for parameter κ in Equation 3.13.

ψvol(J) = κJ(
J

2
− 1)→ dψvol

dJ
= κ(J − 1). (3.13)

The volumetric Cauchy stress can be calculated from the derivative of the strain
energy function according to Equation (3.14).
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σvol = 2J−1dψvol

dJ

∂J

∂b
b = 2J−1dψvol

dJ

J

2
b−1b =

dψvol

dJ
I, (3.14)

where I is the second order unit tensor.

As regards the volume-preserving Cauchy stress σich, the derivative with re-
spect to isochoric strain measure b follows Equation(3.15).

σiso = 2J−1(
∂ψiso(b)

b
)b = 2J−1(

∂ψiso(b)

b

∂b

∂b
)b. (3.15)

ψiso corresponds to the contribution from the isotropic matrix and it is modelled
by a Neo-Hookean material model, ψ = C10(I1 − 3), where C10 is a material
dependent parameter and I1 is the first invariant of b. Its relation to the first
invariant of b, i.e. I1 is given by I1 = J−2/3I1, and so we can establish that
ψiso(b) = ψiso(I1); we can then simply substitute ∂ψiso(b)/∂b by ∂ψisoI1/∂I1 in
Equation 3.15. Application of the identity for ∂b/∂b [29] leads to Equation (3.16).

σiso = Ps : σiso, (3.16)

where Ps = I− 1
3
I⊗ I is the fourth order spatial projection tensor, and I is the

fourth-order identity tensor [29]. Also, σiso is the so-called fictitious Cauchy stress
tensor, and is given by Equation (3.17).

σiso = 2J−1(
∂ψiso(I1)

∂I1

)b (3.17)

Finally, for the anisotropic stress contribution σani, the actual implementation
calculates first the so-called fictitious second Piola-Kirchoff stress Sani, which turns
to the first order differentiation of ψf (λ), as given by Equation (3.18) [2].

n
∂ψi

f

∂λi
= B

(
4
r0

L

[
λi −

1

λi

]
+

1

[1− ri/L]2
− 1

λi[1− r0/L]2
+

1

λi
− 1

)
(3.18)

Then Sani is given by Equation (3.19),

Sani =< n
∂ψi

f

∂λ
λ
−1

i r⊗ r > (3.19)

where r is a continuous function to describe the fibre orientation.

In the context of the microsphere approach to modelling, r is treated as a dis-
crete set ri, where i simultaneously represents integration directions and physical
fibre directions, following the arguments from the work of Menzel et al. [50]. Fur-
thermore, the brackets indicate the operation of averaging over a unit sphere; the
arguments inside the brackets are the integrand thereof.
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The implementation used in this work calculates the anisotropic Cauchy stress
from Sani using the Equation (3.20), where Pm = I− 1

3
(C−1 ⊗C) is the material

fourth order projection tensor [29]. The result of this calculation, when imple-
mented in a user subroutine, is passed back to the finite element software at every
quadrature point.

σani = J−1F(Pm : Sani)F
T
, (3.20)

Elasticity tensor

Although the software where we implemented the material model is a subroutine
that must return stress and elasticity tensor in current configuration measures, the
theoretical formulations can be presented in either the current or the original one.
In this section we present the elasticity tensor main expressions using measures
associated to the reference or material configuration.

The elasticity tensor is just the differentiation of stress, for instance C =
2∂S/∂C; additionally, the additive split into volumetric and isochoric contribu-
tion is also applied, i.e. C = Cvol + Ciso. From the result that Siso = JpC−1 [30],
then Cvol is given by Equation (3.21),

Cvol = Jp̃C−1 ⊗C−1 − 2JpC−1 �C−1 (3.21)

where the product C−1 �C−1 is defined in the work of Holzapfel [29]. Also, p̃
is short for p+ Jdp/dJ and p = dψvol/dJ .

As regards the expression for Ciso, though it straightforwardly follows from
derivation of the expression for Siso, obtained in turn from σiso (Equation (3.16))
and Equation(3.12), it is a set of terms obtained from a rather lengthy derivation
process1. However, the end result is the form given by Equation(3.22), and is the
way in which it is coded in the user subroutine UMAT used in this work.

Ciso = Pm : C : PT
4M +

2

3
Tr(J2/3S)P̃

− 2

3
(C−1 ⊗ Siso + Siso ⊗C−1)

(3.22)

In Equation (3.22), the term C is the fictitious material elasticity tensor, and
contains the double derivative ∂ψ2

iso/∂
2C, whereby the specific strain energy func-

tion is substituted. In this work, this approach is used to consider the Neo-
Hookean, isotropic ground substance.

The anisotropic contribution Cani comes from the second differentiation of the
strain energy function for the 1D fibre model, according to the expression derived
by Alastrue et al. [2] and shown in Equation (3.23).

1The details are presented in the Example 6.8 in reference [29].
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n
∂2ψi

f

∂λ
2

i

= B

(
1

λ
2

i

[
4
r0

L
− 1 +

1

[1− r0/L]2

]
+

2r0

L[1− ri/L]3
+ 4

r0

L

)
(3.23)

Then, the fictitious material elasticity tensor incorporates Equation (3.23) as
shown in Equation (3.24).

Cani =< n(λ2∂
2ψ

∂λ2
− λ∂ψ

∂λ
)r⊗ r⊗ r⊗ r > (3.24)

The strain energy function for the fibre contribution ψi
f is one that is cast in

terms of a single stretch value.

Even though not explicitly exposed in the work of Alastrue et al. [2], it could be
said that ψi

f is but a conventional energy function written in terms of deformation
stretches, whereby λ1 corresponds to the stretch of the fibre, and λ2 = λ3 = 1, for
the model for the fibre only considers its elongation. This same rationale can be
applied to the derivation of the fictitious stress Sani (Equation (3.19)). The details
of the operation and, in particular, the emergence of the dyadic products among
fibre orientations r are encompassed by the process called spectral decomposition
of stress and of elasticity tensor [29].

3.3 Remodelling Effects
When a material is deemed elastic, any amount of energy applied to it is returned
in the same quantity once the external forces or prescribed displacements are re-
moved. Internally, this means that the material structure has not undergone any
change. However, one key interest of this work lies on the effect that external forces
or displacements have on the degree of anisotropy of a model biological tissue. The
degree of anisotropy is directly related to the microstructure of the material, par-
ticularly the way fibrils are dispersed as a consequence of applied deformation.

When there is a change in an internal variable of the material, one part of the
input mechanical energy is lost or dissipated. For a system from which energy is
lost, this dissipation is a scalar quantity Din ≥ 0, according to the second law of
thermodynamics. In an elastic material, this quantity is equal to the rate of work
(power) exerted by internal forces, given by S : C.

To incorporate fibre reorientation and anisotropy gain thereof, the dissipation
is expressed simply as Din := S : C− ψ̇, where ψ is the strain energy function; this
function ψ is then declared to be function of the internal variables. They must be
able to track the evolution of the anisotropy, and here we find several possibilities.
One of the simplest consists on taking the orientation distribution function ρ = 1,
so that both fibre dispersion and preferred orientation are totally defined by the
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evolution of their individual directions ri; thus we have ψ = ψ(ri)[50].

Hence, the term ψ̇(ri) is equivalent to ∂ψ/∂ri · ṙi, and indicates there must be
a rate expression for the internal variable ri, whose integration produces the value
of ri that determines the value of stress Sani and elasticity tensor Cani at any time
throughout calculations.

Menzel et al. [50] stresses that, strictly speaking, remodelling processes in
living tissues are inevitably tied to growth. This says that a theoretical frame
whereby mass and energy can enter the analysis volume is a more appropriate set
to formulate a remodelling model.

Furthermore, the observed interaction among fibres and between fibres and
ground substance means that the strain energy function for the fibre should depend
on a non-affine statement of deformation.

3.3.1 Evolution equation for internal variables

In this work we follow the formulation proposed by Menzel et al. [50] whereby
ri is the only internal variable; other authors, for instance from Saez et al. [62]
turn to both ri and to the orientation of a preferred orientation of a set of fibrils
-represented by an orthogonal tensor Q- as internal variables.

The fact that we take ODF ρ = 1 means that our implementation does not
provide a preferred orientation to the set of fibres. Furthermore, the set of inte-
gration directions, which are the same set of vectors ri, correspond to a uniform,
isotropic spherical distribution and act out as starting condition of the material.
Rather, the model from Menzel et al. [50] ties the evolution of ri to the degree of
deformation of the surrounding material, as indicated by the eigenvectors of the
right-Cauchy Green tensor C.

When looking at the term ∂ψ/∂ri · ṙi, the part ∂ψ/∂ri represents a force,
according to Equation 3.25.

∂ψ

∂ri
=

∂ψ

∂(λ
2
)

∂(λ
2
)

∂ri
= −SiC · ri (3.25)

Hence, the expression for ṙi is taken as a projection of said force so that it is
perpendicular to ri. Moreover, this consideration complies with the requirement
that ˙ri · r = 0. The projection of the force is obtained by application of the
projection operator, so that ri is given by Equation 3.26.

ṙi = fi[I− ri ⊗ ri] ·C · ri (3.26)

This model for ṙ indicates that as C ·ri = 0 when ri matches one of C eigenvec-
tors, then these same eigenvectors constitute the horizon towards the reorientation
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process moves. Furthermore, the operator I− ri ⊗ ri represents the projection of
ṙi onto ri and is a factor that establishes how fast remodelling takes place.

As regards the weighting factor fi, it is also defined in terms of the extent of
gained anisotropy. To this end, the structural tensor A is defined by Equation
3.27.

A =
m∑
i=1

wiri ⊗ ri =
3∑

j=1

Ajnj ⊗ nj, (3.27)

where Aj are the eigenvalues of A. As the natural tendency for eigenvalues of
a matrix is to increase the difference A∆ between smallest and largest values, say
A1 and A3, then it is considered that ri will evolve as long as said difference stays
above some preset threshold or saturation value A∆. Furthermore, evolution can
also be constrained to each fibre being under a state of stretch above some limiting
value λc. With these considerations, the criterion to calculate fi can be stated as
shown by Equation 3.28.

fi =

{
0, λi ≤ λc
A∆−[A1−A3]

t∗A∆
, else.

(3.28)

The latter case in Equation (3.28)can also be rewritten as 1
t∗

(1− |A1−A3|
A∆

), which
highlights the limiting role that A∆ plays. Meanwhile, t∗ is a time relaxation-like
parameter.

The calculation of current value of ri can follow from an integration scheme
applied to Equation 3.26; for instance, an Euler-type method, as Equation 3.29
shows.

r̃n+1
i = rni + ∆tfi(C

n+1
, rni )[I− rni ⊗ rni ] ·Cn+1 · rni (3.29)

The form in Equation (3.29) was the one actually implemented in this work;
nonetheless, Menzel et al. [50] suggest that more accurate integration schemes
which incorporate specific features of the problem could be applied. Among those
features we can name the rotating motion of a unit vector in space, and the
exponential-like evolution of load-deflection responses typically observed in bio-
logical tissues. The former case can find motivation in the simulation of motion in
interconnected rigid body dynamics [13]; the latter, in the integration of constitu-
tive equations in plasticity [70].

3.4 Numerical Implementation

3.4.1 General Pre- and Postprocessing Features

For this work we used the user defined subroutines facility from Abaqus™. Specif-
ically, we coded the calculation of stress tensor, elasticity tensor and fibre re-
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modelling as a Fortran subroutine UMAT. Some other user subroutines were also
required for ancillary tasks: SDVINI to invoke the file with the set of initial fibre
orientations (set of 184 unit vectors in R3) and the set of weights to apply to
each of them, according to the microsphere setting for multiscale modelling; and
UEXTERNALDB, to enable extraction of quantities for post-processing at the end
of every increment.

Quantities for post-processing phase are generated automatically byAbaqus™
at the element quadrature points. We considered the following quantities for post-
processing purposes: the deformation gradient tensor F (nine entries), the Cauchy
stress tensor σ (six entries), the Cartesian coordinates of every quadrature point
per element (three entries), the set of 184 unit vectors for fibre orientation and the
value of the anisotropy gain parameter |A1 − A3|.

The availability of output data just at quadrature points demanded their ex-
trapolation to the element nodes. To this purpose, a postprocess Matlab™ file
was created that reads the Abaqus™ input file (extension .inp) data regarding el-
ement connectivity and node coordinates; it then reads the output files prompted
by UMAT; and finally uses the Lagrange shape functions for an eight-node hexa-
hedron to produce the corresponding value at the nodes. A loop over the mesh
nodes picks the available values of quantities contributed by elements sharing any
given node and produces their unweighted average value. These values are passed
on to a function inside the same postprocess Matlab™ .m file, that is in charge of
creating .vtk files to be read and displayed by Paraview™.

Given that simulations were run remotely on the UPC-Titani server, use of
Abaqus™-CAE was not practical. Fine meshes were produced locally with gmsh™
application. This made us devise specific procedures to exclude spurious nodes
before generating the .inp file to be read by Abaqus™. Furthermore, as regards the
postprocess, the extrapolation .m file was hard-wired to a given mesh, so creation
of another .m file in charge of reading the input .inp was required. For the case
of fine meshes of the plate with two holes case, the extrapolation code had to be
refactored and vectorised, so that data for visualisation could be generated within
reasonable times.

For the plate with two holes case, we employed two meshes to calculate results:
a rough mess with 2116 elements (Figure 3.3), to run a screening over a range of
values for the material properties, and a fine one, with 68290 nodes (Figure 3.4), to
see the smooth evolution of quantities between the hole edge and the plate centre.

The aforementioned post-processing procedure and files were in charge of gen-
erating the stress distribution plots for the parameter-screening stage presented in
the the Results section. But plotting the fibre pattern taken on by the set of fibres
as a consequence of remodelling was also a requirement, at least at some specific
locations within the mesh.
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Figure 3.3: Mesh of 2116 C3D8H hexahedral elements. This mesh was employed
for screening over a large number of parameter combinations.

Figure 3.4: Mesh of 68290 C3D8H hexahedral elements. Mesh refinement was set
to be symmetric with respect to the hole centres.
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Here, a set of instructions within the UEXTERNALDB and the UMAT sub-
routines generated another output file, IVARIA*.out, where ∗ is an index for the
number of increment where the set of 184 fibre orientations at each quadrature
point was produced. These files were too large in size to consider copying them all
from Titani server to our local machine. For instance, the rough mesh for the plate
with two-holes used in the parameter screening stage of the study case, consisted
of 2116 element or 16928 quadrature points; along with the need for double pre-
cision figures, this led to files of about 196 MB size for each (converged) increment.

So, a small shell script was created here to pick the set of 184 fibre orientations
from a selected element and a quadrature point in it. That shell script was run in
Titani server and produced a much smaller ≈ 12 KB file for each increment.

To select the elements at whose locations we wanted getting the fibre deforma-
tion patterns, we first plotted the whole mesh in Paraview™ and used the facilities
of its graphical interface to identify the index for a set of elements lying along the
segment that connects the plate hole centres. Nonetheless, only one quadrature
point was selected, namely #1, as automatically assigned by Abaqus™ ; this fact
led to inaccuracies particularly in the element on the hole edge, where gradients of
calculated quantities were significant. This fact also motivated the analysis of the
plate with two holes case using a much finer mesh (68290 elements), which should
only be carried out for a few selected combination of material properties.

Plotting of the set of 184 fibres, however, did not require extrapolation from val-
ues at quadrature points to values at element nodes; we created a post-processing
.m file that reads the entries of F at the element and quadrature point number
where the set of 184 fibre orientations ri were produced by the aforementioned shell
script, and calculated the product Fri. The resulting vector was passed on to a
.vtk file generating function and read as though these directions were 1D elements
of a mesh; so were these read and displayed in Paraview™.

For the parameter-screening stage of the study, it was in our interest plotting
the variation of stress components σ11, σ22 and σ12, and of anisotropy parameter
|A1 − A3| along the selection of elements between the hole centres of the plate.
Doing that on our local machine would require copying the entirety of the output
files produced by Abaqus™ ; so, in similar fashion to the management of the large
fibre-orientation files IVARIA*.out, we created a shell script that was run in Titani
and extracted the required stress components and value of |A1 − A3| for the se-
lected elements and their quadrature point #1. Again, this led to inaccuracies at
the element on the hole edge, due to potentially significant differences when going
from one quadrature point to the next.
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3.4.2 Finite Element Method

Abaqus™Interface

In our work, Abaqus™ is in charge of producing the interface for the finite element
method, up to the point of generating the calculation expressions that take place
at every quadrature point. The interface corresponds to producing an approxi-
mate solution to a variational problem for the quasi-static balance of momentum
for a solid mechanics problem. In this regards, the internal-variable nature of the
remodelling model employed in this work, was taken as a pseudo-time delayed
equilibrium response.

Within each increment the equilibrium response is calculated iteratively, for
the problem is nonlinear due to the hyperelastic material behaviour and the pres-
ence of large strains. Here, a conventional Newton-Raphson method is employed.
This is worth mentioning, for the load deflection curve in certain boundary value
problems with hyperelastic materials, for instance that of balloon inflation, ex-
hibits load-softening at some point throughout the inflation process [29]. In this
case, the load-deflection curve does not grow monotonically, but features a local
maximum, whereby the classical Newton method would fail to converge. Special
solution methods would be required here, for example, one of those belonging to
the line-search category [11].

The element utilised in this work is a eight-node hexahedron of hybrid type,
named C3D8H in Abaqus™. It has the three Cartesian components of displacement
as nodal variables and one value of pressure at the middle of the element volume.
Schoenherr et al. [64] propose a new hybrid element and uses, among others,
C3D8H element as benchmark, whereby convergence and stability are shown to
depend on the loading condition and the material model. A wider elaboration on
the capabilities and failure scenarios for hybrid finite elements can be found in the
work of Hughes [33].

Governing equations

For the problem at hand, the virtual work V is a nonlinear function of the
set of material point displacements u; its solution consists of the iterated solu-
tion of a linear approximation to V , as dictated by a Taylor series expansion:
V (u1) ≈ V (u0) + ∆V (u0).

The virtual Vi work due to internal forces, in the context of a large deformation
problem, can be cast for the body in the original, or reference, configuration Ω0.
As dimensions of work and energy are the same, Vi can be expressed as the product
of a strain, a stress measure and a differential element dΩ0, as shown in Equation
3.30.
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Vi =

ˆ
Ω0

SδEdΩ0, (3.30)

where S is the second Piola-Kirchoff stress tensor, and E is the Green strain
tensor.

In our work, external forces or those arising by prescribed displacements do not
change with body deformation, ∆V = ∆Vi. In this case ∆Vi is given by Equation
3.31 [17].

∆Vi =

ˆ
Ω0

(δETCSEδE) + (S : δDT δD)dΩ0, (3.31)

where CSE is the fourth-order constitutive tensor that relates S and E. This
tensor comes from the second differentiation of the strain energy function ψ with
respect to strain, whereas S is computed from the first derivative of ψ. The specific
expressions for these two quantities are to be implemented in UMAT; D = F − I
is the displacement gradient tensor.

The basic way in which UMAT contents are implemented allow considering a
compressible hyperelastic material model, by means of an explicit declaration for a
volumetric strain energy along with a compressibility material parameter (declared
in the input .inp file). However, our work instructs Abaqus™ using the C3D8H
mixed element, which enforces incompressibility, while incorporating hydrostatic
pressure p as an unknown to the finite element problem.

So, the linearised finite element problem to be solved reduces to 0 = (Vi +Ve)+
(∆Vi), where Ve is the virtual work due to prescribed tractions or, as is our case,
forces associated to prescribed displacements. Crisfield [17] provides a complete
account of the matrix formulation for specific element discretisations.

3.4.3 UMAT structure

The most important guiding feature here was the implementation of the remod-
elling model. As it was finally written, it starts by picking up the set of 184
initial-state unit directions from a given input file previously prepared; then it as-
signs these directions to every quadrature point of the whole mesh. This happens
at the beginning of the first increment, and before any stress or elasticity tensor
calculation takes place. An excerpt of the corresponding UMAT subroutine is:

if (flag.EQ.1) then
if (KINC.EQ.1) then
IPCOORD(1:KNIP,1)=STATEV(1:KNIP)
IPCOORD(1:KNIP,2)=STATEV((KNIP+1):(2*KNIP))
IPCOORD(1:KNIP,3)=STATEV((2*KNIP+1):(3*KNIP))
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colu = (1+((NOEL-1)*8))+(NPT-1)
FIBRES(:,colu)=STATEV
COORDOUT=STATEV
deleig = 0.0

end if
...

Whereby flag.EQ.1 ensures that what follows is applied at the start of every
increment; KINC.EQ.1 specialises instructions to the first increment only; STATEV
is a variable prepared in and shared from user subroutine SDVINI, which contains
the set of initial 184 unit vector directions of the fibres; FIBRES is a local variable
created with a save attribute, for STATEV does not keep updated values of the
fibre orientations in between increments; COORDOUT is also a local variable and
transfers the updated orientation of fibres to an output file named IVARIA; finally,
colu simply calculates the column index of FIBRES array associated to current el-
ement, whereas deleig stores the anisotropy parameter |A1−A3| and also transfers
it to an output file named A1A3AN*.txt.

At the end of the first increment, each element has undergone its own deforma-
tion; but, as no fibre orientation ri has taken place thus far, there is no apparent
remodelling yet. This is visible when, in the Results section, the plot of |A1 −A3|
corresponding to the first increment is equal to zero for all of the selected elements
of the mesh.

At the start of the second increment, each element has its own right-Cauchy
Green (isochoric) tensor C, so a subroutine in charge of calculating |A1−A3| and
then another one for updating ri are called. The updated fibre orientations they
produce are used to calculate stresses and elasticity tensors specific to the current
quadrature point. An excerpt of the relevant instructions is set out below:

if (KINC.GE.2) then
colu = (1+((NOEL-1)*8))+(NPT-1)
STATEVx = FIBRES(:,colu)
call calculate_Aeig(STATEVx,WEIGHTS,deleig)
Adelta = 0.1 ! 0.0 < Adelta < 1.0
call calculate_int_var(FG,DTIME,STATEVx,C,deleig, &

Adelta,rnPlusOne,NOEL,NPT,KINC)
IPCOORD(1:KNIP,1)=STATEVx(1:KNIP)
IPCOORD(1:KNIP,2)=STATEVx((KNIP+1):(2*KNIP))
IPCOORD(1:KNIP,3)=STATEVx((2*KNIP+1):(3*KNIP))
COORDOUT=STATEVx
FIBRES(:,colu) = STATEVx

end if

Here subroutines calculate_Aeig and calculate_int_var compute |A1 −A3| and
the updated orientations ri, respectively. The parameter A∆ is one from the re-
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modelling model, and is part of the variation during the screening study. Other
remodelling parameters of said study, namely t∗ and ∆t, are typed into the body
of calculate_int_var subroutine.

Given their central role in the generation of results specific to this work, we
set out next the abbreviated contents of subroutine calculate_Aeig first, which
implements calculation of the structural tensor A from Equation (3.27).

subroutine calculate_Aeig(STATEVx,weights,deleig)
C INPUTS:
C STATEVx: set of integration directions
C OUTPUTS:
C deleig: A1-A3 (max-min eigenvalues of structural matrix A)
...
newcoord(1:KNIP,1)=STATEVx(1:KNIP)
newcoord(1:KNIP,2)=STATEVx((KNIP+1):(2*KNIP))
newcoord(1:KNIP,3)=STATEVx((2*KNIP+1):(3*KNIP))
Atot = 0.0
absolErr = 1.0e-09

do i=1,KNIP
coordsCol(1:3,1) = newcoord(i,1:3)
coordsRow(1,1:3) = newcoord(i,1:3)
Adum = matmul(coordsCol,coordsRow)
Atot = Atot + weights(i)*Adum

end do

A = Atot
call Jacobi(A,x,absolErr,3)
A1=A(1,1)
A2=A(2,2)
A3=A(3,3)
deleig=abs(max(A1,A2,A3)-min(A1,A2,A3))

end subroutine

In the above we notice that Fortran subroutine Jacobi was used to calculate
eigenvalues2 of matrix A, so that the criterion in Equation (3.28) can be applied.

The summarised contents of subroutine calculate_int_var are as follows:

subroutine calculate_int_var(dfgrd,DTIME,STATEVx, &
& C,deleig,Adelta,rnPlusOne,NOEL,NPT,KINC)

C INPUTS:
C STATEVx: set of available integration directions

2subroutine taken from https://ww2.odu.edu/ agodunov/computing/programs/
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C OUTPUTS:
C STATEVx: set of updated integration directions
...
coorLam(1:KNIP,1)=STATEVx(1:KNIP)
coorLam(1:KNIP,2)=STATEVx((KNIP+1):(2*KNIP))
coorLam(1:KNIP,3)=STATEVx((2*KNIP+1):(3*KNIP))

do i=1,KNIP
rncol(1:3,1)=coorLam(i,1:3)
rnrow(1,1:3)=coorLam(i,1:3)
rnLam(1:3,1)=coorLam(i,1:3)
g1 = It-matmul(rncol,rnrow)
g2 = matmul(Ciso,rncol)
g = matmul(g1,g2)
t = matmul(dfgrd,rncol)
trow(1,1:3) = t(1:3,1)
str = sqrt(dot_product(t(:,1),t(:,1)))
if (str.le.strc) then
factor = 0.0

else
if (abs(deleig)/Adelta.LE.1.0) then
factor = (1/tstar)*(1-(abs(Adelta-deleig)/(tstar*Adelta)))

else
factor = 0.0

end if
end if
rn1tilde = rncol + DTIME*factor*g*timeFactor
normrn1tilde = sqrt(dot_product(rn1tilde(:,1),rn1tilde(:,1)))
if (normrn1tilde.gt.1.0E-6) then
rncol = rn1tilde/normrn1tilde

end if
rnPlusOne(i,1:3)=rncol(1:3,1)

end do
STATEVx(1:KNIP) = rnPlusOne(1:KNIP,1)
STATEVx((KNIP+1):(2*KNIP)) = rnPlusOne(1:KNIP,2)
STATEVx((2*KNIP+1):(3*KNIP)) = rnPlusOne(1:KNIP,3)
return

end subroutine calculate_int_var

In the subroutine above we notice that remodelling parameter ∆t is incor-
porated as the product of variable DTIME, which is internal to Abaqus™ and
measures the size of the load increment, and a local variable timeFactor, which
can be set by the user. As the value DTIME is out of full control on part of the
user, there is difficulty in establishing a direct relationship between the value of
the product DTIME*timeFactor, and that actually given to ∆t in the solution of a
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semi-analytical model, as the one presented in the Results section.

The approach so far exposed, in particular that regarding the consideration of
evolving fibre orientations by using a static array FIBRES, worked well for coarse
meshes up to about 3200 elements. But, when attempting to run this UMAT sub-
routine using the 68290-elements mesh, Abaqus™ did not allow using FIBRES, for
it was beyond the size limit for static arrays. This array was incorporated because,
for some reason, the reserved variable STATEV, although updated within UMAT
subroutine, it loses its value once UMAT returns control; when called back for the
next iteration on a quadrature point, STATEV only keeps the value assigned at the
beginning of the analysis through the user subroutine SDVINI.

Furthermore, turning FIBRES to be an allocatable (dynamic) array, along with
the save attribute, did not let deallocation of memory once UMAT finished its cal-
culations on a quadrature point. Here, once, again, Abaqus™, to the last of our
attempts before preparing this document, did not let continue the analysis under
that condition.

We consider, for a future development, creating a local variable within UMAT
that reads the updated fibre orientations, and then using a COMMON-BLOCK to
pass it on to SDVINI subroutine as a shared variable. The body of this subroutine
can then contain some conditional that makes STATEV read the shared variable
only at the start of increments two and beyond.



4
Results

4.1 Semi-Analytic Solution
Here we consider the formulation of a case that is relatively simple to model and
easy to test experimentally: the uniaxial, laterally unconstrained tension test. Its
solution is not strictly analytic in the sense that one application of a nonlinear
approximate solver is needed for the calculation of output variables. However, the
solution corresponds to a unique material element, so it can be used to benchmark
the responses from the analysis using the finite element method, which will be
presented later in a separate section.

The domain is a unit cube that is subjected to a prescribed stretch λ on one
of its end faces and directed perpendicular to it; we call this direction 11. The
opposite end is fixed in this direction, while transversal deformation, i.e. along
directions we call 22 and 33, are allowed. The corresponding deformation gradient
tensor is given by Equation (4.1), where λ∗ is the stretch in the transversal direc-
tion. This quantity and the stress σ11 are the unknowns of the problem.

F =

λ 0 0
0 λ∗ 0
0 0 λ∗

 (4.1)

The implementation accepts the explicit use of a volumetric strain energy; the
model is then based on the split S = Svol + Siso + Sani whereupon we apply the
relationship σ = J−1FSFT .

The nonlinear part of the model, whereby we apply the solver embed in fsolve
function of Matlab™, stems from the expression for the 22 direction of stress: the
left-hand side is just σ22 = 0, whereas the right-hand side is cast in terms of the
lateral stretch λ∗; this constitutes a nonlinear equation on λ∗.

The specific expressions for the stress contributions are those for Svol, Siso and

34
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Sani, which are then transformed into their Cauchy stress counterparts; they fol-
low Equations (3.15) and (3.13) for the computation of σvol; Equations (3.15) and
(3.5), for σiso; and Equations (3.19), (3.7) and (3.8) for σani.

The remodelling effects are incorporated by an update of the set of fibre orien-
tations ri after each converged iterative solution of the nonlinear problem for λ∗.
In addition, our implementation also allows for keeping the prescribed stretch λ
applied to the material volume, and compute the stress and the |A1−A3| response
as time evolves further. As earlier discussed, this is a measure of the extent of
gained anisotropy.

To account for soft tissues being almost incompressible, we fix the value of the
input variable from Abaqus™ .inp file that controls parameter κ in Equation (3.4)
so that it is sufficiently large. We do not comment out this expression from UMAT
subroutine, just so we can consider the influence of volumetric strain energy in a
future study.

In what follows, we consider responses for Neo-Hookean isotropic; for exponential-
and WLC model without remodelling; and for exponential- and WLC model with
remodelling. For all of them, we consider two sets of material parameters, as in-
dicated in Table 4.1. These come from the values given to typical medial and
adventitia layers of the arterial tube in the work of Alastrue et al. [2]; as indi-
cated in Table 4.1, these will be simply regarded as M-set and A-set of material
parameter values henceforth.

Case Parameter M-set value A-set value
Neo-Hookean µ 1.268 7.560

Exponential k1 17.040 58.902
k2 3.778 20.220

WLC
B 1.019 2.334
r0 1.045 0.414
L 1.477 0.554

Table 4.1: Sets "M" and "A" of material properties used with the semi-analytic
solution to the uniaxial tension problem.

As for the remodelling parameters, we considered the scheme shown in Figure
4.1 for the study of their effect. In it, we first evaluate the combination of values for
a reference point in what would be a space of variables [A∆, t

∗, ∆t]; then to asses
the effect of a change in A∆, t∗ and ∆t, respectively, we apply the set of parameter
values corresponding to the points variation of A∆, variation of t∗ and variation
of ∆t. For each case (exponential and WLC material models with material sets A
and M) we produced four plots, whose arrangement is also shown in Figure 4.1.
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Figure 4.1: Assignment of remodelling parameter values to the study of uniaxial
tension case using a semi-analytical model: scheme for value assignation (left);
arrangement of plots (right).
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Figure 4.2: Analytic solution to unit cube under uniaxial tension, Neo-Hookean
model: M- (left) and A-set (right) material properties.

4.1.1 Neo-Hookean, isotropic model

In principle, there are no limits to the maximum value of the stretch that can be
imposed to a material governed by the Neohookean, isotropic strain energy. How-
ever, WLC model allows for a maximum stretch along the fibre direction equal
to the ratio r0/L [2]. For the properties in Table 4.1, these maximum values are
≈1.35 and ≈1.41, for the A- and M-material sets, respectively. From this, we
will consider imposed stretches of up to 1.5. for the uniaxial tension case under
Neo-Hookean model.

Figure 4.2 shows the evolution of stress with prescribed stretching. Given that
the strain energy function depends on the square of the deformation, then the
stress-deformation curve is linear. Also, we can see that the A-set material is sig-
nificantly stiffer than the M-set one.
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Figure 4.3: Analytic solution to unit cube under uniaxial tension, exponential
model: M- (left) and A-set (right) material properties.

4.1.2 Exponential strain energy model

Although there is no reported limit for the value of the stretch that can be pre-
scribed in a uniaxial tension test when using the exponential model, there is a large
difference in the stress developed according to the material properties. Figure 4.3
shows the results produced by the exponential strain energy for the fibre, where
it is clear that a smaller stretch can be applied when using the A-set material
properties, before stress values grow out of proportion. Furthermore, with the A-
set properties, almost all of the stiffening of the material takes place at the upper
limits of stretching.

When considering the effect of remodelling, we recall that it enters the for-
mulation as an irreversible mechanical process, whereby an internal variable -here
the orientation of the fibres- experiences an evolution. The stress response and
anisotropy gain that follows such evolution depend on the rate at which external
load or prescribed traction is applied.

The time over which the total external action is applied is the product of the
-arbitrary- number of increments we split that external action into, and a time
increment ∆t; this is the time, in arbitrary units, we let the material evolve under
the action of any given increment of the external action before the next one is
applied. This evolution is analogous to a stress relaxation test on a viscoelastic
material.

So, in our example, if ∆t = 0.1 (arbitrary) seconds, and we split the application
of external action into 40 increments, then said application takes four (arbitrary)
seconds. Clearly, smaller values of ∆t represent faster application of external load.

After consideration of ∆t, the two parameters that are left to control the re-
modelling process are t∗ and A∆ The former acts out as a relaxation time, and is
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inversely proportional to the factor fi of equation (3.26); the latter sets a limit to
the evolution of fibre orientation ri: once |A1 − A3| equals A∆, fi = 0.

Figure 4.4 shows the effect of varying t∗, A∆ and ∆t on the stress σ11 and on
the parameter |A1 − A3|; the latter represents the extent to which the material
has gained anisotropy (|A1−A3| = 0 corresponds to full isotropic condition). The
combination [1, 0.1, 0.4] for [t∗, A∆, ∆t] serves as reference response, and indicates
the general trends: stiffening evolves exponentially, and the anisotropy evolves in
a way similar to the response to stress relaxation tests in viscoelastic materials;
once anisotropy gets to a maximum value, it remains there. A∆ clearly sets a limit
to the anisotropy gain.

Raising A∆ (top-right panel) brings about a non-uniform gain of anisotropy:
up to an applied stretch λ ≈ 1.2 the evolution is as shown in the reference case;
but then it continues as though another, independent increase of anisotropy took
place. Furthermore, the material stiffens significantly with respect to the reference
case.

The increase of t∗ defers attainment of maximum anisotropy to λ ≈ 1.5, while
also stiffening the material with respect to the results from the reference set of
values. No additional or independent process of anisotropy gain takes place. Fur-
thermore, a similar effect is obtained when reducing the time step ∆t (bottom
right panel), while the material is about as stiff as in the reference case.

The main change exhibited by the exponential model subject to remodelling
and with the material properties of the A-set is the much larger stiffening than
with M-set properties. This follows the trend shown in Figure 4.3. Meanwhile,
Figure 4.5 shows the details of the interaction with fibre remodelling, again with
respect to a reference case.

Furthermore, there is no effect in the way the extent of anisotropy evolves. Ap-
parently, with the set of considered values, most of the mechanical stiffness of the
composite depends on the stiffness of the fibres rather than on their reorientation.

4.1.3 WLC strain energy model

In this case the maximum stretch applied to the unit cube is the ratio r0/L. For
the M- and A- set material properties, it is λ ≈ 1.41 and λ ≈ 1.34, respectively.
For the case without remodelling, the evolution of stress σ11 is shown in Figure 4.6.

The gain of stiffness is somewhat more pronounced than that from the ex-
ponential model, whereas, just as in the exponential model case, A-set material
properties result in a stiffer material.
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Figure 4.4: Analytic solution to unit cube under uniaxial tension. Exponential
model with remodelling and M-set material properties for a series of [t∗, A∆, ∆t]
combinations (see Figure 4.1): reference values (top left), and effect of changing
A∆ (top-right), t∗ (bottom left) and ∆t (bottom right).

As for the response of the WLC model with the effect of remodelling, Figure
4.7, the reference case (top left panel) shows how the anisotropy indicator |A1−A3|
again evolves as though in a viscoelastic material under a stress relaxation test:
the fibre orientations reach a plateau whereby the eigenvectors of structural matrix
A are aligned to that of right Cauchy-Green isochoric tensor C. Increase of the
limiting value A∆ greatly increases the stiffness, while, as expected, the degree of
anisotropy that is gained also increases, though in a non-uniform way. Increase of
relaxation time parameter t∗ seems to have little effect on the stiffness, but defers
attainment of maximum anisotropy to the latter instances of applied stretch λ.
And decrease of ∆t, which represents a faster application of external load, lowers
the stiffness gained by the material and also the degree of anisotropy reached; fur-
thermore, the material does not seem to get to the full extent of anisotropy under
the maximum applied stretch.

When we consider the WLC model with remodelling and the A-set material
properties, Figure 4.8 shows that the reference case corresponds to a stiffer mate-
rial than that of the M-set properties. No significant difference is seen in the effect
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Figure 4.5: Analytic solution to unit cube under uniaxial tension. Exponential
model with remodelling and A-set material properties for a series of [t∗, A∆, ∆t]
combinations (see Figure 4.1): reference values (top left), and effect of changing
A∆ (top-right), t∗ (bottom left) and ∆t (bottom right).

of changing A∆, while increasing t∗ and decreasing ∆t produced a stiffer material
than with the M-set properties.

The semi-analytical model also allows visualising the pattern that fibres take
on as result of the remodelling action. The initial state is that of an isotropic
distribution of the fibres over a unit sphere, whereas the parameter combinations
that lead to the highest values of A∆ lead to the most marked remodelling effects
on the pattern of the set of fibres. In this regards, Figure 4.9 shows these two
case; the latter corresponds to the WLC model with A-set material properties and
remodelling parameters [t∗, A∆, ∆t] = [1, 0.4, 0.4].

It is interesting to note how the stress and the anisotropy indicator |A1 − A3|
evolve when we let the material be under the fixed action of the stretch λ once it
reaches its prescribed value, as though in a stress relaxation test. As it is a typical
feature of the study of viscoelastic materials, the main effect in the response would
come from the speed with which the stretch is applied. Here we selected the sce-
nario under WLC model with remodelling and M-set material properties, and two
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Figure 4.6: Analytic solution to unit cube under uniaxial tension, WLC model
model: M- (left) and A-set (right) material properties.
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Figure 4.7: Analytic solution to unit cube under uniaxial tension. WLCmodel with
remodelling and M-set material properties for a series of [t∗, A∆, ∆t] combinations
(see Figure 4.1): reference values (top left), and effect of changing A∆ (top-right),
t∗ (bottom left) and ∆t (bottom right).
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Figure 4.8: Analytic solution to unit cube under uniaxial tension. WLCmodel with
remodelling and A-set material properties for a series of [t∗, A∆, ∆t] combinations
(see Figure 4.1): reference values (top left), and effect of changing A∆ (top-right),
t∗ (bottom left) and ∆t (bottom right).

combination of remodelling parameters, whereby only ∆t is allowed to change. As
earlier mentioned, smaller ∆t represents faster application of the external stretch.

In this regards, Figure 4.10, left panel, and comparison with the reference case
from Figure 4.7 (top left panel), indicates how the material continues its gain of
anisotropy, while the exponential growth of stiffness breaks and resumes following
a much shallower trend. We notice that the x axis represents an arbitrary time τ ,
where it is clear that the time taken to apply the prescribed stretch is smaller as
∆t is given a smaller value also.

The right panel of Figure 4.10 shows how a faster application of stretch defers
the attainment of the maximum extent of anisotropy beyond λmax; however, from
the point of view of arbitrary time τ , this full extent of anisotropy takes less time.

At the point of maximum imposed stretch, the faster application of it produces
a less stiff material; however, the stress tends to keep growing, much unlike the
slower-application of stretch case, where it remained without further change.
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Figure 4.9: Initial, isotropic fibre distribution (left), and distribution after appli-
cation of a stretch λ ≈ 1.34 to the unit cube (right). WLC model with A-set
material properties and remodelling parameters [t∗, A∆, ∆t] = [1, 0.4, 0.4].
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Figure 4.10: Analytic solution to unit cube under uniaxial tension, WLC model
and M-set material properties: imposed λmax ≈ 1.41 is reached at (arbitrary) time
τ ≈ 15 (left) and τ ≈ 0.4 (right), and held fixed at that value from then on.
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4.2 Numerical Results
We start by running a simple shear FE simulation to visualise the contributions
of this fundamental stress state to what would be a more complex one; this is
to complement the results already observed in the semi-analytical solution, which
corresponds to a 1D tensile state. Here we considered the exponential- and WLC
models with fibre remodelling and used a single combination of material properties
and of remodelling parameters.

Then, in the light of the large number of possible combinations given by the
material parameters considered in this work, we ran a screening set of runs for
the plate with two holes case. The purpose of this study was to identify a combi-
nation of material properties and of remodelling parameter values with which the
stiffening and the remodelling effects, in addition to their propagation in space,
were evident. To that end, we obtained the variation of stress components and of
the anisotropy evolution parameter |A1−A3| as one moves away from a hole edge
in the direction of the neighbouring hole. Also, the fibre patterning associated to
remodelling is here presented.

The holes were used to prescribe a boundary displacement in the form or a ra-
dial contraction; the outer borders of the plate had zero prescribed displacement,
and the plate was considered to be under plane strain state.

4.2.1 Simple shear test simulation

The simple shear tests was simulated for a 9x9x9 C3D8H mesh. The purpose is
to visualise the main features of material stiffening and fibre reorientation under
this fundamental deformation condition. This can add further insight into the
results obtained for the plate with two holes using a coarse mesh, particularly on
the vicinity of the hole edge, where a radial displacement is prescribed. There, the
stress gradient is large and the stress state itself can also be complex, so a gen-
eral mesh makes it difficult assessing the factors behind remodelling and stiffening.

The set of material and remodelling properties were selected from the combi-
nations that the screening tests suggested could be more influential in generating
a response, as revealed in the next section. The exact values used to produce the
figure of this section appear in the corresponding caption.

Figure 4.11 shows the stress and right-Cauchy Green strain components taking
place on the plane of shearing, when considering the exponential strain energy
model for the fibres. The anisotropy gain parameter |A1 − A3| is also shown. As



CHAPTER 4. RESULTS 45

regards the WLC strain energy model, given that practically the same results were
obtained for stress and strain components, we do not repeat them here. In ad-
dition, though there is some difference in the value of |A1 − A3| (the maximum
value is ≈ 0.66 for the WLC model versus ≈ 0.73 for the exponential one), the
distribution pattern over the domain is also the same, and thus not repeated ei-
ther. Furthermore, the right-Cauchy Green components shown in the colour scale
follow the notation assigned by Paraview™, whereby C_0 = C11, C_2 = C22 and
C_8 = C33.

The material parameters applied correspond to those of the A-set shown in
Table 4.1, while the caption indicates those used in the remodelling expressions.

A salient feature of the result is the localisation of the fibre reorientation on the
left edge of the top surface, where displacement was prescribed. Furthermore, the
relative magnitudes of the stress and strain components are similar to each other.
So, regions of a domain subjected to prescribed shearing may not favour one spe-
cific direction for reorientation. In the remodelling model used in this work, these
are dictated by the eigenvectors of right-Cauchy Green tensor. The off diagonal
components of this strain tensor are almost zero in comparison.

Figure 4.11: Stress (top row, in kPa) and right-Cauchy Green (middle row) com-
ponents, and anisotropy gain parameter |A1 −A3| for the exponential model with
remodelling. Exponential strain energy parameters for the A-set material proper-
ties; remodelling parameters [A∆, t

∗, ∆t] = [0.8, 0.1, 0.5]
.
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4.2.2 Screening of Material Parameters

The plate with two holes represents a region in the connective tissue whereby the
interaction of two neighbouring cells, typically fibroblasts, emerges as a result of a
prescribed radial contraction. Given the number of combinations that are possible
with the material models here considered and the fact that there is a complex
stress state in the vicinity of hole edges, we ran FE simulations of the plate with
two holes case with a relatively coarse mesh. In this way, we intended seeing
only general trends at least to the point of being able to identify interesting com-
binations of material parameters, while keeping calculation times reasonably short.

Here, we plotted the variation of stress components σ11, σ22 and σ12, and that
of the anisotropy evolution parameter |A1−A3| as one moves from the edge of the
hole to a place in the middle of the two hole centres. For that, we selected the
aforementioned values at quadrature point #1, as assigned internally by Abaqus™,
for a set of 13 elements located in between the holes of the plate, as indicated in
Figure 4.12.

Figure 4.12: Elements whose quadrature point #1 provided the values of σ11, σ22

and |A1 − A3| for the parameter screening study. Only a fraction of the whole
plate is shown here

To formulate the combination of material properties to screen over with the
FE simulations, we proposed the array of values for exponential, WLC and re-
modelling models shown in Tables 4.3, 4.2 and 4.4, respectively. Then, to screen
over the parameters of the WLC- and exponential model, we fixed the remodelling
parameters at one specific combination; these are shown in the captions of the
corresponding figures. To screen over the remodelling parameters, we fixed first
the WLC- and then the exponential model parameters at the values for the A-set
material properties.

The values for the parameters of the fibre-strain energy models were taken so
as to span those reported by [2] for the media and adventitia layers of the arterial
tube. Given that these values stem from actual experiments, they may not be
arbitrarily chosen [73]. Additionally, the variation of the values reported for these
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Parameter value 1 value 2 value 3
B (kPa) 1.0 5.0 2.5
r0 (mm) 0.4 0.8 1.2
L (mm) 0.5 1.0 1.5

Table 4.2: Values of WLC-model properties for parameter screening study. Re-
modelling parameters held constant at A∆ = 0.4, ∆t = 0.5 and t∗ = 5.

Parameter value 1 value 2
k1 (kPa) 15 60
k2 (mm) 3 22

Table 4.3: Values of exponential model properties for parameter screening study.
Remodelling parameters held constant at A∆ = 0.4, ∆t = 0.5 and t∗ = 5.

curve-fitted properties can be significant.

Convergence of simulations in a reasonable number of increments and iterations
within them proved to be very sensitive to the value for radial, prescribed con-
traction of the holes. For instance, small values of the Neo-Hookean strain energy
parameter C10 led to convergence problems and forced to using small contractions,
while being overly conservative in this sense also led to fast converging simulations,
but with very little changes in regards of stiffness or fibre remodelling. Here we
used a radial contraction of about 20% the original radius of the hole.

Exponential- and WLC parameters.

Here we fixed the remodelling parameters at [A∆, ∆t, t∗] = [0.4, 0.5, 5] and run all
27 possible combinations from Table 4.2 and the four from 4.3. The results indicate
no visible difference in their effect on the way the tension components σ11 and σ22

evolve as increments of the applied prescribed radial contraction take place. No dif-
ference is seen in the evolution of the anisotropy gain parameter |A1−A−3| either.

Figure 4.13 shows the main aspects of the evolution of σ11 and σ22, while Fig-
ure 4.14 does that for the evolution of |A1 − A3|, for a selected combination of
WLC-model parameter values indicated in the caption.
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Parameter value 1 value 2 value 3
A∆ 0.1 0.4 0.8
t∗ 0.1 5.0 20.0
∆t 0.1 0.5 1

Table 4.4: Values of remodelling model properties for parameter screening study.
WLC properties held constant at B = 2.334 kPa, r0 = 0.414 mm and L = 0.554
mm; exponential model properties held constant at k1 = 58.902 kPa, k2 = 20.220
.
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Figure 4.13: Evolution of σ11 and σ22 for WLC-model with parameters B = 1.0
kPa, r0 = 0.8 mm and L = 1.5 mm and remodelling parameters A∆ = 0.1,
∆t = 1.0 and t∗ = 5. Values taken from data in Table 4.2. Results for first (blue),
intermediate (orange) and last (yellow) increment.

For the exponential model case, the corresponding results are shown in Figures
4.15 and 4.16, respectively, again for a selected combination of the exponential
model parameters.

In the evolution of |A1−A3| the first increment considers the starting condition
of the set of fibres, which represent an isotropic distribution; hence, the anisotropy
evolution parameter |A1 − A3| is zero.

As regards σ22, the series that are placed lower in the vertical direction repre-
sent negative values further away from zero.

The lack of more significant differences in stiffening, mainly in the values of
σ11, could be due to a too small radial contraction being applied. However, slight
differences can be seen in the way this stiffness is gained as increments evolve, and
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Figure 4.14: Evolution of |A1−A3| for WLC-model with parameters B = 1.0 kPa,
r0 = 0.8 mm and L = 1.5 mm and remodelling parameters A∆ = 0.1, ∆t = 1.0
and t∗ = 5. Values taken from data in Table 4.2. Results for intermediate (orange)
and last (yellow) increment.

in how much stresses drop when going further away from the hole edge towards
the plate centre.

Remodelling parameters and WLC model

The screening over parameters of remodelling revealed significant changes on some
regions of the range of values proposed in Table 4.4. Figure 4.17 shows a compari-
son of σ11, σ22, σ12 and |A3−A1|, respectively. Captions indicate the corresponding
values of remodelling parameters.

Stress component σ11 is the highest in value, and this happens at the element
lying on the edge of the hole; but stress gradients are also steeper here, so there
are significant differences among the stress values of the eight quadrature points of
the element, particularly in the last increment, where the totality of the prescribed
radial contraction has already been applied. In the specific case of Figure 4.17,
σ11 ≈ 5.55 kPa corresponds to the quadrature point #1, while that from point #4
of the same element is ≈ 23.84 kPa. So too happens with other stress components
considered in this parameter screening study.

Although these differences among stress values do not change the general evo-
lution trends along the direction connecting the centres of the plate holes, it con-
stitutes a caveat in the interpretation of maximum attainable stress values due to
the combination of fibre reinforcement and anisotropy.
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Figure 4.15: Evolution of σ11 and σ22 for exponential model with parameters
k1B = 15 kPa and k2 = 22, and remodelling parameters A∆ = 0.4, ∆t = 0.5 and
t∗ = 5. Values taken from data in Table 4.3. Results for first (blue), intermediate
(orange) and last (yellow) increment.

The evolution of the anisotropy parameter |A1 − A3| is intended to represent
the traction transfer in between cells embedded in connective tissue. However, its
value does not tell anything specific as regards the pattern taken on by the set of
fibres as prescribed radial traction is applied. It actually depends on the combined
state of stress and, particularly, of deformation, for the eigenvalues of the right
Cauchy-Green tensor C determine the orientations the remodelling fibres tend to.

Here, the bottom row of Figure 4.17 provides a picture of the pattern adopted
by fibres at the last increment, in quadrature point #1 of the element on the hole
edge.

The case corresponding to the right column in Figure 4.17 produces the stress
pattern shown by Figure 4.19. A logarithm scale has been used to highlight the
relative relevance of stress components in orders of magnitude, particularly given
the fact that their values decrease in exponential manner as one moves away from
the hole edges.

As expected, stress component σ11 prevails in the region in between the holes,
while σ22 does above and below them. Interestingly, their maximum values are
relatively close to each other.
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Figure 4.16: Evolution of |A1−A3| for exponential-model with parameters k1 = 15
kPa and k2 = 22, and remodelling parameters A∆ = 0.4, ∆t = 0.5 and t∗ = 5.
Values taken from data in Table 4.3. Results for intermediate (orange) and last
(yellow) increment.

Remodelling parameters and exponential model

As with the WLC model, the effect of varying remodelling parameters was also
significant when using the exponential strain energy for the fibres. Here, Figure
4.18 comes from the screening study guided by data in Table 4.4 and, as in the
previous section, they refer to the evolution of σ11, σ22 and |A1−A3| when moving
from the hole edge to the plate centre.

Similar to the evolution of the parameter |A1−A3| using the WLC fibre strain
energy, there are also combinations of remodelling parameters at which the in-
tended force transfer mechanism in between cells seems to be enhanced.

The stress distribution for the case corresponding to the right column in Figure
4.18 is displayed in Figure 4.20. Analogous to the WLC case, σ11 predominates
along the line in between the holes, whereas so do σ22 on above and below them.
Also, their magnitudes are relatively close.
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Figure 4.17: Evolution of σ11, σ22, |A1 − A3| and of fibre pattern (top to bot-
tom rows) for values of remodelling parameters [A∆, t

∗, ∆t]=[0.1, 0.1, 0.1] (left);
[0.4, 0.1, 0.1] (middle); and [0.8, 0.5, 1] (right). WLC model for fibre strain energy.
Results for first (blue), intermediate (orange) and last (yellow) increment.
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Figure 4.18: Evolution of σ11, σ22, |A1 − A3| and of fibre patterns (top to bot-
tom row) for values of remodelling parameters [A∆, t

∗, ∆t]=[0.1, 0.1, 0.1] (left);
[0.4, 0.1, 0.1] (middle); and [0.8, 0.5, 1] (right). Exponential model for fibre strain
energy. Results for first (blue), intermediate (orange) and last (yellow) increment.
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Figure 4.19: Stress distribution in the region in between plate holes, corresponding
to the parameters applied to the right column case of Figure 4.17: σ11 (top), σ22

(bottom)

Figure 4.20: Stress distribution in the region in between plate holes, corresponding
to the parameters applied to the right column case of Figure 4.18: σ11 (kPa, top),
σ22 (kPa, bottom).



5
Discussion

In the context of fibre remodelling and the transmission of force between cells
embed in a wide variety of connective tissues, the phenomenon has long been
identified, as reported in the work of Wang et al. [74]. The extent to which such
transmission takes place, in relation to the size of the cells, typically fibroblasts,
the realisation that collagen fibres are way stiffer than elastin ones, and the role
of fibre orientation in response to applied deformation, led to the generation of
models aimed at reproducing this scenario.

The results from the semi-analytic model proposed in this work, assign a sig-
nificant part of the stiffness to the properties of the reinforcing fibres, particularly
at large stretches and for the exponential material model. Here, at relatively small
values of parameter k2, results indicate that the extent of fibre orientation is in
fact associated to larger stiffness of the whole tissue; whereas larger values for this
same parameter renders the participation of fibre reorientation in the generation
of a stiffer material almost ineffectual.

In the case of WLC material model, the remodelling parameter A∆ is the one
that associates fibre reorientation with material stiffening to an extent that sur-
passes that owed to the effect of WLC material parameters alone.

In this sense, we may understand the stiffening not associated to fibre reorien-
tation as strain hardening of an isotropic surface matrix. More so if we consider
that the set of fibre directions that are input to our models is indeed uniformly dis-
tributed over a sphere surface. Some works share this view of the situation: Winer
et al. [78] indicates that nonlinear strain hardening isotropic gels promote cell
elongation, which is attributed to force transmission in between cells themselves,
particularly at small values of stiffness of that isotropic matrix. This situation
could be analogous to our results using the exponential model for the fibres and
relatively large values of parameter k1. In this case of small stretch-small stresses
regime, we could say that the fibres of the exponential model, rather than the
collagen, would rather represent the role of elastin fibrils.
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In a reference to the role of the isotropic matrix stiffness, Leong et al. [44] claim
that a higher value promotes interaction between cells, while low stiffness inhibited
polymerisation of actin, a molecule that enables mechanical motion and deforma-
tion of the cell. The increased interaction, however, was linked to the proximity to
the rigid substrate of the culture in which the study was made. In this sense, we
may turn to the results from the FE simulation of the simple shear case, in which
remodelling was observed close to boundaries of prescribed displacement. Though
the work of the same authors suggests that our model could be enhanced towards
reproducing their experimental observations, we must bear in mind that remod-
elling should have taken place along all the prescribed displacement boundaries,
and not just in a localised zone. Here, it could argued about some kind localisation
phenomenon of the fibre orientation, if we see it as an internal variable associated
to irreversible changes. But that is clearly only a speculation, and a thorough
revision of the implementation must be carried out first.

Evidence of tissue stiffening due to collagen fibres, though, prevails in the lit-
erature. However, it is the simulation of cross-linking of fibres what replicates the
experimentally observed force transmission in the long range. Our results stand in
stark contrast in the sense that it was not possible for us to clearly replicate this
phenomenon, but only suggest the generation of a directed stiffening, as shown
in Figures 4.20 and 4.19. Instead, Ma et al. [45] produced such experimental
evidence by culturing fibroblasts in collagen gel, where, as shown in Figure 5.1,
the contraction of the cells induces a markedly oriented tension along a chain of
collagen fibres. And then, the same authors successfully replicated this observa-
tion by creating a finite element model whereby fibres were explicitly discretised
and linked together by rigid joints, while embedded in an isotropic matrix, also
modelled as an elastic material.

This suggests that our model should incorporate a way to explicitly link to-
gether fibres, for their explicit interconnection, rather than just the anisotropy con-
ferred to the hosting matrix, is what underlies the force transmission phenomenon
[8, 56, 72], as mentioned in the literature review of the Introduction section. In
other words, force transmission is preceded by some form of explicit linking be-
tween fibres. We mention, however, that the modelling of the fibre at the same
scale than the matrix makes reorientation be due solely to the set of prescribed
connections among collagen fibres, whereas our implemented model considers the
reorientation starting from an initial isotropic condition and evolving due to the
state of deformation of the whole material considered as a single continuum.

In spite of this dependence, the results from our tests on the plate with two
holes geometry showed that reorientation fades very quickly when moving away
from the contracting holes. This is a shortcoming of our model, if we compare these
results against those from models that also reorient the fibres by using the defor-
mation state of the surrounding ground substance, for instance, the one presented
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Figure 5.1: Round fibroblasts (a) barely establish a field force around them (b),
while, when elongated (c), there is a clear traction path set in between them (d).
Image taken from reference [45].

by Wang et al. [74]. We think that our implementation is unable to sufficiently
follow that deformation, and that this could stem from, among other causes, the
integration scheme applied to the updating of fibre orientations, Equation (3.29).

There, we used a very simplistic forward-Euler expression, while the physical
process of biological tissue deformation evolves in a way that suggests application
of other, more sophisticated schemes. Therefore, as deformation progresses, the
result of our updating formula may lag behind the deformation of the media in
which the fibres are embed. The increasingly accumulated error may even intro-
duce spurious results at large strains.

Nevertheless, fibre reorientation was indeed produced by our implementation;
its pattern, which would be expected to align almost exclusively in the direction
connecting the plate holes, tends to form a varying degree of such reorientation
with some kind of lobes symmetric with respect to this direction. This suggests
that the eigenvalues of the right-Cauchy Green tensor may have similar magnitudes
in the direction of the centre line between the holes and in that perpendicular to
it, while the off-diagonal components would be very small in comparison.

The model weaknesses thus discussed must motivate further refinements to our
implementation, for even experiments carried out by Rudnicky et al. [61] and a
simplified multiscale simulation also presented by the same authors indicate that
reorientation of a fibre bundle not only increases the effective stiffness of the host
material, but also makes for a propagation of the reorientation of fibres deep into
the volume of the ground substance.
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In favour of the comparatively small stiffening effect predicted by our model for
the plate with two holes, it is suggested that contraction of elongated, rather than
round, symmetric cells, makes them exert much larger forces along their longitu-
dinal axis, and so enhances the force transmission action significantly [74]. To this
we may further add that the fibre strain energy models used in our work display
narrow ranges of stretch over which stresses grow too high, as in the case of the
exponential model, or just go beyond some limiting value, as in the case of the
WLC model.

In that sense, our simulations failed on the conservative side by applying a
value of radial stretch to the holes that was too small. The actual possibility of
high gradients of stress on the hole edges must be addressed by first employing
a much finer mesh; then, we may think of exploring alternative methods to the
classical Newton-Raphson to address the application of load increments in such
regions prone to bring about convergence problems; and the use of other hybrid
elements apparently less subject to stiffness issues when simulating high stresses.



6
Conclusions

Force transmission in between cells embed in connective tissue is a phenomenon
in which many current questions in tissue physiology are matter of research. One
factor is that fibre stiffness and orientation plays a significant role in it, as well as
the change of the set of orientations under the action of prescribed displacements.
These may come from the cells themselves by, for instance, a radial contraction
deformation.

In this work we implemented a fibre remodelling formulation to account for the
collagen reorientation due to deformation of the isotropic matrix in which these
fibres are embed. The model also considers two strain energy functions for the
collagen fibres and a Neo-Hookean model for the isotropic ground substance. We
used this model to study the force transmission in between cells. To this end, we
prepared and ran a UMAT subroutine in Abaqus™ software.

The problem domain is a plate under plane strain with two circular holes in it;
each is used to prescribe a radial displacement, so as to replicate cell contraction.
We employed performed a set of screening tests over a combination of material
and remodelling parameters to identify relevant values of them from the point
of view of stiffening and remodelling, and of the propagation of such remodelling
away from the boundary of prescribed displacement. To support the study, we also
produced a semi-analytic model of the uniaxial tension test and FE simulations of
the simple shear test.

While the semi-analytical model revealed marked effects of material and remod-
elling parameters in the stiffening and in the evolution of anisotropy, the simulation
of the plate with two holes case posed an essential difficulty: the material tends
to stiffen significantly only at large values of stretching. Once there, stress can
grow out of proportion, so that numerical calculations easily fail to converge if the
prescribed stretch is close or beyond certain limit. For the same reason, imposing
a stretch slightly under such a critical value, intending a fast and unproblematic
analysis, makes for a very small stiffening effect.
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At these low values of stretch, the stress response is almost completely deter-
mined by the stiffness of the ground substance. Only special values of parameters
for the fibre stiffness models may make the role of collagen fibre and their re-
orientation significant. At the other end, the critical stretch values are difficult
to assess in complex stress states, just as those taking place close to the hole edges.

The effect of larger stretches under the uniaxial test revealed that, with the
exponential model, parameter k1 controls the stiffening at small stretches, while
k2 is responsible for accumulating the effect at the large ones. In the WLC model,
stiffening is more markedly concentrated at these larger stretches. Given that both
exponential and WLC are microscale models that use affine deformation, critical
values of stretch for the element coincide with those for the micro-scale molecules.
This prevents considering interaction among collagen molecules, a phenomenon
which is strongly associated to the stiffening effect of the fibres on the tissue.

The remodelling parameter A∆ poses a limit to the extent of anisotropy gained
by each bundle of fibres. However, a high value of it may lead to reorganisation
of fibres in more than a single saturation stage. There can be, in fact, condi-
tions where anisotropy reaches its full extent and, at the same time, the material
is less stiff than other where anisotropy is not totally developed. These tenden-
cies are virtually the same when using a exponential or a WLC model for the fibre.

As regards the effect of parameter t∗, this depends on the set of properties for
the material model of the collagen fibre as well, but its main effect is procuring
stiffness to the material; meanwhile, lowering ∆t defers the attainment of maxi-
mum anisotropy. When the material is kept under the action of prescribed stretch
after it has reached its set value, smaller ∆t, which corresponds to faster applica-
tion of load, makes the stress at the time this maximum stretch is reached, smaller
than that with a larger ∆t. However, for smaller ∆t the stress value continues
growing, although not anymore in an exponential form.

The FE simulation of the uniaxial tension test revealed that fibre reorienta-
tion is not uniformly distributed, as stress is, but is greater at the constrained
displacement boundaries. However, the remaining set of material parameters may
make the stiffening effect of fibre reorientation negligible. Furthermore, for some
combination of material properties, the stress calculated by FE was higher than
the analytic one, and did not approach it sensibly as the mesh gets finer.

The shear strain FE solution implies a nonuniform stress distribution, with
stress localisation on the element edges perpendicular to the shearing plane. On
these locations, the stress state is complex, so it is possible to find different de-
grees of remodelling when going from one edge to the next. However, stress state
analysis on the vicinity of the hole edge indicates that the shear contribution to
the general stress state is not significant. Whether this scenario still holds as fibre
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remodelling evolves must be further investigated.

Finally, even though fibre remodelling was in deed reproduced by our FE im-
plementation, its propagation into the volume of material was less than expected,
at least in comparison to experimental observations of the phenomenon and to re-
sults from other, not-multiscale modelling attempts. This suggests a further study
on three issues: the behaviour of hybrid finite elements applied to a problem where
stiffness can grow abruptly; the solution methods, in the sense of exploring alterna-
tives to the usual Newton-Raphson; and the scheme of integration of the evolution
equation for fibres, in the sense of using a more sophisticated alternative to the
simple forward-Euler used here.
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