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Investigation of a novel numerical scheme for
high-pressure supercritical fluids turbulence

By M. Bernades†, L. Jofre† AND F. Capuano†

High-pressure supercritical turbulence simulations are strongly susceptible to numer-
ical instabilities. The multi-scale nature of the flow, in conjunction with the nonlinear
thermodynamics and the strong density gradients across the pseudo-boiling line can trig-
ger spurious pressure oscillations and unbounded amplification of aliasing errors. A wide
variety of regularization approaches have been traditionally utilized by the community,
including upwind-biased schemes, artificial dissipation, and/or high-order filtering, where
stability is achieved at the expense of suppressing part of the turbulent energy spectrum.
In this work, a novel numerical scheme based on the paradigm of physics-compatible
discretizations is investigated. In particular, the proposed method discretely enforces
kinetic-energy conservation (by convection) as well as preservation of pressure equilib-
rium; the former is achieved using proper splitting of the convective terms, whereas
the latter is obtained by directly evolving an equation for pressure. The simultaneous
enforcement of these two properties can lead to stable and physically consistent scale-
resolving simulations of supercritical turbulence without the need for any form of artificial
stabilization. The novel method is preliminarly assessed on two benchmark cases, with
numerical results supporting the theoretical findings.

1. Introduction

Supercritical fluids are substances operating at temperatures and pressures above their
critical values (Tc, Pc), where no clear phase separation is present. However, within this
region, they can be distinguished between (i) supercritical fluids with gas-like density
and transport coefficients and (ii) liquid-like fluids with a large density and transport
coefficients similar to those of a liquid (Jofre & Urzay 2020). These peculiar thermophys-
ical characteristics present very interesting properties that can be fine-tuned for several
purposes. For instance, they can be leveraged to achieve turbulent regimes in microfluidic
devices (Bernades & Jofre 2022), which is of remarkable interest for energy applications
given the enhanced mixing and transfer rates of turbulent flows.
Although numerical simulations can be an invaluable tool to elucidate the underlying

physics of high-pressure supercritical turbulence, they also come with remarkable chal-
lenges. At supercritical conditions, the thermodynamic relations can become strongly
nonlinear. In particular, the rapid variations of density, viscosity, and thermal conductiv-
ity across the pseudo-boiling region can result in spurious pressure oscillations that can
contaminate the numerical solution and even lead to solution divergence (Ma et al. 2017).
Additionally, the multi-scale nature of the flow necessitates methods that are simultane-
ously able to capture the vast range of flow scales and to avoid unbounded amplification
of aliasing errors. Therefore, the numerical solution of supercritical fluids turbulence ulti-
mately requires methods that are (i) able to represent the wide range of turbulent scales
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(non-dissipative), (ii) nonlinearly stable, (iii) free of artificial pressure oscillations, and
(iv) computationally fast (efficient), as introduced by Bernades et al. (2022).
Several numerical strategies have been developed to deal with turbulent flows at super-

critical conditions. Abgrall & Karni (2000) proposed the concept of double-flux model-
ing, where internal energy is frozen within the time-integration step to artificially enforce
pressure equilibrium at a material interface. This method has been recently employed for
transcritical flows by Ma et al. (2017). In the same context, Terashima & Koshi (2012)
and Kawai et al. (2015), among others, proposed to evolve an equation for pressure, rather
than for, e.g., total energy, to prevent pressure oscillations, at the expense of total energy
conservation. Lacaze et al. (2019) compared pressure-, enthalpy- and total-energy-based
formulations in terms of stability and pressure behavior. In the above-mentioned works,
the conservative formulation of the Navier-Stokes equations is discretized, and nonlin-
ear stability is achieved by either filtering (Visbal & Gaitonde 2002) or upwind-biased
methods, such as HLLC (Toro 2009) or WENO (Shu 1999) schemes.
In this work, a novel approach inspired by the paradigm of physics-compatible dis-

cretizations is proposed and preliminarily assessed. The scheme is based on discretely
mimicking two properties: (i) kinetic-energy preservation (KEP) by convection, via split-
ting of the convective terms (Coppola et al. 2019a,b), and (ii) pressure-equilibrium preser-
vation (PEP), i.e., the property of maintaining constant pressure when both pressure and
velocity are initially uniform. The latter was recently achieved for ideal- and stiffened-gas
thermodynamics using a careful splitting for internal energy fluxes (Shima et al. 2021;
Jain & Moin 2022); here, PEP is enforced by evolving an equation for pressure. The
simultaneous enforcement of KEP and PEP can lead to stable and reliable simulations
of supercritical turbulence without the need for any form of artificial stabilization.
The objectives of this work are twofold: (i) introduce the novel KEP and PEP scheme,

and (ii) assess its properties and overall behavior with respect to several state-of-the-art
methods. Hence, the paper is organized as follows. First, in Section 2, the flow physics
modeling of supercritical fluids is presented. Next, the discretization frameworks con-
sidered in this work are described and numerically analyzed in Section 3. Then, the
numerical results are presented in Section 4. Finally, in Section 5, the work is concluded,
and future directions are proposed.

2. Flow physics modeling

The framework utilized for studying supercritical fluids turbulence in terms of (i)
equations of fluid motion and (ii) real-gas thermodynamics is described below.

2.1. Equations of fluid motion

The turbulent flow motion of supercritical fluids is generally described by the following
set of conservation equations of mass, momentum, and total energy

∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

∂ (ρv)

∂t
+∇ · (ρvv) = −∇P +∇ · τ , (2.2)

∂ (ρE)

∂t
+∇ · (ρvE) = −∇ · q −∇ · (Pv) +∇ · (τ · v) , (2.3)

where ρ is the density, v is the velocity vector, P is the pressure, τ is the viscous stress
tensor for Newtonian fluids, E is the total energy, and q is the Fourier heat conduction.
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2.2. Real-gas thermodynamics

The thermodynamic space of solutions for the state variables pressure P , temperature
T , and density ρ of a single substance is described by an equation of state. One popular
choice for systems at high pressures, which is used in this study, is the Peng-Robinson
equation of state (Peng & Robinson 1976) written as

P =
RuT

v̄ − b
− a

v̄2 + 2bv̄ − b2
, (2.4)

with Ru the universal gas constant, v̄ = W/ρ the molar volume, and W the molecular
weight. The coefficients a and b take into account real-gas effects related to attractive
forces and finite packing volume, respectively, and depend on the critical temperatures
Tc, critical pressures Pc, and acentric factors ω. They are defined as

a = 0.457
(RuTc)

2

Pc

[
1 + c

(
1−

√
T/Tc

)]2
and b = 0.078

RuTc

Pc
, (2.5)

where coefficient c is provided by

c =

{
0.380 + 1.485ω − 0.164ω2 + 0.017ω3 if ω > 0.49,
0.375 + 1.542ω − 0.270ω2 otherwise.

(2.6)

The Peng-Robinson real-gas equation of state needs to be supplemented with the corre-
sponding high-pressure thermodynamic variables based on departure functions calculated
as a difference between two states. In particular, their usefulness is to transform thermo-
dynamic variables from ideal-gas conditions (low pressure—only temperature dependent)
to supercritical conditions (high pressure). The ideal-gas parts are calculated with the
NASA 7-coefficient polynomial (Burcat & Ruscic 2005), while the analytical departure
expressions to high pressures are derived from the Peng-Robinson equation of state, as
detailed in Jofre & Urzay (2021).

2.3. Pressure-based formulation

Eq. (2.3) for total energy can be equivalently substituted by the evolution equation of
another thermodynamic variable using the equation of state and basic rules of calculus.
Here, the focus is placed on the pressure equation, which can be derived by properly
expanding the material derivative, as in, e.g.,

DP

Dt
=

(
∂P

∂ρ

)

e

Dρ

Dt
+

(
∂P

∂e

)

ρ

De

Dt
, (2.7)

where e is the internal energy. Upon properly deriving the material derivative of density,
momentum and internal energy from Eqs. (2.1)–(2.3), the pressure evolution equation
can be finally written as

∂P

∂t
+ v · ∇P + ρc2∇ · v =

1

ρ

βv

cvβT
(τ : ∇⊗ v −∇ · q), (2.8)

where c = 1/
√
ρβs is the speed of sound, with βs = −(1/v) (∂v/∂P )s the isentropic

compressibility and v = 1/ρ the specific volume; βv = (1/v) (∂v/∂T )P is the volume
expansivity; cv is the isochoric specific heat capacity; and βT = −(1/v) (∂v/∂P )T is the
isothermal compressibility. The system constituted by Eqs. (2.1)–(2.2) and Eq. (2.8) is
formally equivalent to the one presented in Section 2.1 but has different discrete proper-
ties, as outlined in the subsequent sections.
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3. Discretization frameworks

This section describes the discretization method of (i) the proposed KEP and PEP
scheme introduced in Section 1 and of (ii) several existing methods utilized for trans-
and supercritical fluids turbulence.

3.1. Novel kinetic-energy- and pressure-equilibrium-preserving scheme

The equations of fluid motion introduced in Section 2.1 are numerically tackled by adopt-
ing a standard semi-discretization procedure, i.e., they are first discretized in space and
then integrated in time. Spatial differential operators are treated using centered finite-
differencing formulas; a second-order centered scheme is used in this paper, although
the results can be easily generalized to formulas of any order that satisfy a discrete
summation-by-parts rule. The temporal errors that arise due to the time-integration
scheme (in this case a Runge-Kutta method) are assumed to be kept under control by
using sufficiently small time steps (Capuano et al. 2017a).
As reported in Section 1, the novel scheme is based on two main properties: KEP and

PEP. With regards to KEP, the convective terms of Eqs. (2.1)–(2.3) can be rewritten
with a common divergence (conservative) structure as

CD =
∂ρujφ

∂xj
, (3.1)

where φ is the transported scalar. The derivation of a family of KEP methods relies on the
preliminary observation that the general convective term in Eq. (3.1) can be equivalently
expressed as follows, using the product rule (Coppola et al. 2019b)

Cφ = φ
∂ρuj

∂xj
+ ρuj

∂φ

∂xj
, (3.2)

Cu = uj
∂ρφ

∂xj
+ ρφ

∂uj

∂xj
, (3.3)

Cρ = ρ
∂ujφ

∂xj
+ φuj

∂ρ

∂xj
, (3.4)

CL = ρφ
∂uj

∂xj
+ ρuj

∂φ

∂xj
+ φuj

∂ρ

∂xj
. (3.5)

Any linear combination of Eqs. (3.1)–(3.5) is a consistent formulation; for instance,
the convective terms for mass (φ = 1) and momentum (φ = ui) can be expressed as

M = ξMD + (1 − ξ)MA, (3.6)

C = αCD + βCφ + γCu + δCρ + ǫCL, (3.7)

where ξ is an arbitrary coefficient and α + β + γ + δ + ǫ = 1, and MD and MA are
the divergence and advective forms for the continuity equation, respectively. It can be
shown that, upon enforcing discrete conservation of global kinetic energy by convection, a
two-parameter family of energy-preserving formulations is found (Coppola et al. 2019b).
Here the attention will be focused on the so-called KGP (proposed by Kennedy & Gruber
(2008) and later shown to be energy-preserving by Pirozzoli (2010)) split form, which
is obtained by setting ǫ = 0 (sufficient condition for local conservation) and α = β =
γ = δ = 1/4. When applied to the continuity and momentum equations, the KGP
scheme preserves kinetic energy by convection and has proved to be particularly robust
in previous works, compared to other kinetic-energy-preserving splittings (Coppola et al.
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2019b). Hereinafter, the scheme obtained by evolving Eqs. (2.1)–(2.3), with the KGP
split applied to all the convective terms, will be referred to as KGP-Et.
The second component of the novel scheme is the enforcement of the PEP property.

PEP refers to a property of the Euler equations, according to which, if pressure and
velocity are initially constant in space, then pressure (and velocity) remains uniform
and constant in time (Abgrall 1996). The property is easily shown by considering a
one-dimensional inviscid version of the general pressure evolution equation, Eq. (2.8),

∂P

∂t
= −∂Pu

∂x
− (ρc2 − P )

∂u

∂x
, (3.8)

as well as the one-dimensional velocity-evolution equation that can be derived by sub-
tracting the mass equation multiplied by velocity from the momentum equation, yielding

∂u

∂t
= −1

ρ
(
∂ρuu

∂x
+

∂P

∂x
− u

∂ρu

∂x
). (3.9)

Based on Eqs. (3.8)–(3.9), it can be immediately deduced that when the initial pressure
and velocity are spatially constant (with density varying in space), then neither pressure
nor velocity change in time; it is therefore highly desirable that this equilibrium is also
discretely preserved in numerical simulations, leading to the concept of PEP schemes.
Nonetheless, numerical methods generally fail to reproduce this property discretely, even
in the context of ideal-gas thermodynamics.
Recently, Shima et al. (2021) and Jain & Moin (2022) proposed a flux formulation for

internal energy (while keeping, e.g., KGP splitting for momentum) able to ensure PEP
for compressible flows with ideal-gas equations of state. This method will be hereinafter
referred to as PEP-IG. The extension of this approach to real-gas thermodynamics in-
volves nonlinear departure functions and the real-gas equation of state, which makes
the analytical derivation of a PEP splitting particularly involved. In this work, the PEP
property is instead enforced by directly transporting an evolution equation for pressure,
i.e., Eq. (2.8) instead of total energy, Eq. (2.3). It is easily shown that when pressure
and velocity are initially uniform (with density varying in space), the discretization of
Eq. (2.8) inherently satisfies ∂P/∂t = 0.
The novel approach, labeled as KGP-Pt, is therefore based on the combinations of (i)

KGP convective scheme applied to mass and momentum, Eqs. (2.1)–(2.2) and (ii) the
solution of the pressure equation, Eq. (2.8).

3.2. Alternative methods for high-pressure turbulent flows

This section covers other standard numerical state-of-the-art approaches employed for
solving the equations of fluid motion for compressible flow considered and tested in this
study for comparison with the novel scheme.

– Divergence (D): Discretization of the conservative formulation of convection, as de-
fined in Eq. (3.7). The divergence form usually suffers from nonlinear instability and
leads to simulation blow-up, hence it is usually coupled with a stabilization scheme.

– Filtering (D + F4): This work focuses on the implicit filter F4 with αf = 0.495,
as proposed by Visbal & Gaitonde (2002), which filters the conservative variables of the
solution provided by the method D. These filters introduce numerical dissipation but
are generally successful in stabilizing the solution (when a nonlinearly unstable scheme
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is used). However, as reported by Lacaze et al. (2019), filtering can amplify pressure
oscillations due to the interaction with thermodynamic nonlinearities, particularly across
the pseudo-boiling line. The filter is defined as

αf ϕ̄i−1 + ϕ̄+ αf ϕ̄i+1 =

N∑

n=0

an
n
(ϕi+n + ϕi−n), (3.10)

where ϕ̄ is the filtered variable and an the filter coefficient parameters. Even though
increasing the order of the filter obviously leads to a less dissipative simulation, here the
stencil is limited to a four-point function for efficiency purposes; indeed, increasing the
stencil width is known to significantly deteriorate the parallel performances, especially
when dealing with implicit spatial schemes (Capuano et al. 2017b).

– Upwind-biased scheme (UB, H): These methods have been often used to capture
shocks and stabilize compressible simulations, either alone or in the context of hybrid
methods [i.e., in conjunction with non-dissipative schemes (H), with sensor-based switch-
ing as proposed by Ducros et al. (1999)]. Nevertheless, they are supposed to be unsuitable
for turbulence due to the high levels of artificial dissipation introduced. To this end, Sec-
tion 4 will use for comparison both UB (HLLC) and H (KGP + HLLC).

– Double-flux (Df): The double-flux approach (Abgrall & Karni 2000) was recently
extended by Ma et al. (2017) to transcritical fluids. In this method, the internal energy is
fixed within the time-integration step to artificially enforce pressure equilibrium, at the
expense of modifying the thermodynamics. Assuming a generalized relationship of type
e = (P v)/(γ∗ − 1) + e∗0, where e∗0 and γ∗ are nonlinear functions of the thermodynamic
states, in this approach γ∗ and e∗0 are forced to be frozen both in space and time during
each time step. By doing so, the solution is exempt from spurious pressure oscillations.
This method is usually coupled with the HLLC scheme (Ma et al. 2017), labeled here-
inafter as UB-Df. However, for the purpose of comparison, the Df will also be assessed
with the KGP scheme, here denoted as KGP-Df.

4. Numerical results

In this section, the numerical methods presented in Section 3 are comparatively as-
sessed and the results are presented for a one-dimensional inviscid advective test both
for (i) an ideal-gas and (ii) a real-gas framework.

4.1. One-dimensional advection test (ideal-gas thermodynamics)

As proposed by Shima et al. (2021), nonlinear one-dimensional advection is a useful
test to numerically assess pressure equilibrium and the generation of spurious pressure-
velocity oscillations. The sinusoidal density profile ρ = (ρmin + ρmax)/2 + (ρmax −
ρmin)/2 · sin (2π x) is advected at constant velocity v0 = 1m/s and pressure P0 = 1Pa,

where ρmin = 1kg/m
3
and ρmax = 3kg/m

3
, with reference ρ0 = 2kg/m

3
, on a domain

of length L = 1m discretized with 41 grid points and CFL = 0.3. The flow is advanced
up to 11 · t/tc (tc = 1s) with a standard fourth-order Runge-Kutta time integrator.
Two main conclusions can be extracted from the results shown in Figure 1. First, only
three schemes are free from pressure oscillations: D (which however is not KEP and
unstable for multi-dimensional flows), PEP-IG and the novel KGP-Pt. The KGP-Et
suffers from spurious oscillations, which in fact affect the thermophysical quantities.
However, dissipative methods minimize these oscillations, although not completely, as
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Figure 1. One-dimensional advection test under ideal-gas conditions (γ = 1.4), at t/tc = 11 for
KGP-Pt (solid blue line), KGP-Et (dashed cyan line), PEP-IG (green cross), D (purple circle),
UB (red dashed-dotted line), and H (orange plus sign) with the black dotted line being the exact
solution. Shown are normalized (a) density and (b) pressure.

seen for H in the inset to Figure 1(b). Second, the UB scheme leads to dissipation of
the density wave, while the H scheme is dissipating at a slightly lower rate, although the
sensor is generally switched on due to these oscillations, and the upwind-biased scheme
is governing the convective term. In any case, it is unable to prevent pressure wiggles.
All schemes suffer from density lag due to dispersion errors.

4.2. One-dimensional advection test (real-gas thermodynamics)

Similar to the ideal-gas advection test, a transcritical one-dimensional advection test
is performed for the real-gas framework as proposed by Ma et al. (2017). The test is
performed with the same domain length, mesh size, and time integrator as in the ideal-
gas case. In this case, N2 is the supercritical fluid operating at a bulk (constant) pressure
of P0 = 5MPa and advected at an initial constant velocity of v0 = 1m/s. The smooth
density profile is given by the harmonic wave ρ = (ρmin + ρmax)/2 + (ρmax − ρmin)/2 ·
sin (2π x), with ρmin/ρc = 0.182 (T = 300K) and ρmax/ρc = 2.531 (T = 100K) with
reference density ρ0/ρc = 0.305 (T = 200K).

Numerical results are depicted in Figure 2. Note that the schemes that did not attain
PEP under ideal-gas conditions have not been assessed for this case, as this property will
not be satisfied under transcritical conditions either. To this extent, the proposed method
KGP-Pt is compared against D+F4 (the divergence form coupled with implicit filter),
PEP-IG and the double-flux-based schemes. Four main conclusions can be extracted
from the results: (i) the PEP-IG, scheme is no longer PEP under transcritical conditions,
as demonstrated in the inset to Figure 2(b); (ii) the Df formulation is able to prevent
the spurious oscillations only if it is coupled with UB method, whereas when used with
KGP, the PEP property is not accomplished; (iii) filtering is unable to suppress pressure
oscillations, and oscillations are particularly severe when crossing the pseudo-boiling line
atX/L ≈ 0.65−0.85, in accordance with previous results showing that filters may amplify
pressure oscillations due to the interaction with nonlinear thermodynamics (Lacaze et al.
2019); and (iv) dissipative methods are clearly altering the thermodynamic properties
[i.e., density in Figure 2(a)], especially UB-Df. A small amount of dissipation is present
even when utilizing a low-dissipative filter, D+F4.
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Figure 2. One-dimensional advection test under transcritical thermodynamic conditions, at
t/tc = 10−2 for KGP-Pt (solid blue line), PEP-IG (green cross), KGP-Df (orange dashed-dotted
line), UB-Df (red dotted line) and D+F4 (purple dashed line) with black-dotted line being the
exact solution. Shown are normalized (a) density and (b) pressure.

D D+F4 KGP-Et PEP-IG UB H KGP-Pt KGP-Df UB-Df

KEP × × ⊙ ⊙ × × ⊙ ⊙ ×
PEP ◦ ◦ × ◦ ◦ ◦ ⊙ × ⊙
Table 1. Summary of numerical schemes assessment; ◦ property applies only to ideal gas, ⊙

property applies also to real gas, × property is not satisfied in any framework.

4.3. Assessment summary

Table 1 summarizes the KEP and PEP properties satisfied in ideal- and real-gas frame-
works for the schemes assessed within this work. It can be observed that the attainment
of both KEP and PEP properties under transcritical conditions is only accomplished by
KGP-Pt scheme. Other state-of-the-art schemes cannot guarantee these requirements, as
they are either contaminated by pressure oscillations, numerically dissipative, or globally
unstable.

5. Conclusions

This work has focused on proposing a novel scheme for supercritical fluids turbu-
lence and to comparatively assessing its performances with respect to several numerical
schemes commonly used in the literature. The novel scheme is based on the enforcement
of two main properties: (i) pressure equilibrium preservation, for stability against spu-
rious pressure oscillations resulting from the inherent nonlinearities of real-gas thermo-
dynamics, and (ii) kinetic-energy preservation by convection, to allow for low-dissipative
simulations and to prevent unbounded amplification of aliasing errors. The KEP and PEP
novel numerical method is proposed to be able to obtain stable and accurate transcritical
turbulent simulations without the need for any form of artificial stabilization.
The proposed scheme has been assessed with respect to several state-of-the-art numer-

ical schemes in a one-dimensional inviscid advection test. This test has been previously
proved to be particularly challenging in terms of both (i) preservation of pressure equilib-
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rium and (ii) nondissipative behavior. The results showed that the strategies specifically
developed for this class of problems, like the double-flux scheme, are able to mitigate pres-
sure oscillations but at the expense of requiring artificial dissipation based on upwind-
biased schemes and/or additional terms in the equations of mass and momentum. How-
ever, KEP methods generally preserve kinetic energy for ideal- and real-gas conditions,
although they are not able to avoid spurious pressure oscillations in either framework
(ideal- or real-gas conditions), eventually yielding instability and even blow-up of the
computations. In this regard, the novel scheme attains pressure equilibrium preservation
while simultaneously conserving kinetic energy and, as a result, it is an ideal candidate
for scale-resolving supercritical turbulence simulations.

These preliminary results motivate the authors to continue a careful assessment of this
method, particularly to (i) evaluate its global and local conservation properties and (ii)
comparatively test its behavior in a complex three-dimensional turbulent case.
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